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The recently discovered centre-mode instability of rectilinear viscoelastic shear flow (Garg
et al., Phys. Rev. Lett., vol. 121, 2018, 024502) has offered an explanation for the origin
of elasto-inertial turbulence that occurs at lower Weissenberg numbers (Wi). In support
of this, we show using weakly nonlinear analysis that the subcriticality found in Page
et al. (Phys. Rev. Lett., vol. 125, 2020, 154501) is generic across the neutral curve with
the instability becoming supercritical only at low Reynolds numbers (Re) and high Wi.
We demonstrate that the instability can be viewed as purely elastic in origin, even for
Re = O(103), rather than ‘elasto-inertial’, as the underlying shear does not feed the kinetic
energy of the instability. It is also found that the introduction of a realistic maximum
polymer extension length, Lmax, in the FENE-P model moves the neutral curve closer to
the inertialess Re = 0 limit at a fixed ratio of solvent-to-solution viscosities, β. At Re = 0
and in the dilute limit (β → 1) with Lmax = O(100), the linear instability can be brought
down to more physically relevant Wi � 110 at β = 0.98, compared with the threshold
Wi = O(103) at β = 0.994 reported recently by Khalid et al. (Phys. Rev. Lett., vol. 127,
2021, 134502) for an Oldroyd-B fluid. Again, the instability is subcritical, implying that
inertialess rectilinear viscoelastic shear flow is nonlinearly unstable – i.e. unstable to
finite-amplitude disturbances – for even lower Wi.

Key words: viscoelasticity, bifurcation

1. Introduction

Viscoelastic flows have been of interest ever since the observation 70 years ago that a
substantial reduction in viscous drag on a wall of a pipe carrying turbulent flow is possible
after adding only a few parts per millon of long-chain polymers (Toms 1948) – just
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as, curiously, adding further polymer quickly saturates this effect when the so-called
‘maximum drag reduction’ (MDR) regime is entered (Virk 1970), with skin friction
reduced by ∼80% relative to its Newtonian value. Efforts to explain this phenomenon have
naturally focused on understanding how low polymer concentrations moderate Newtonian
turbulence (e.g. Lumley 1969; Tabor & de Gennes 1986; Procaccia, Lvov & Benzi 2008;
White & Mungal 2008). However, the discovery of a new form of viscoelastic turbulence –
‘elasto-inertial’ turbulence (EIT) – in 2013 (Dubief, Terrapon & Soria 2013; Samanta et al.
2013; Sid, Terrapon & Dubief 2018), which exists at large Reynolds number Re = O(103)

and Weissenberg number Wi = O(10), has provided a competing and even less well
understood possibility. Provided that Wi is large enough, EIT can exist at much lower
Re than Newtonian turbulence, explaining what has been labelled in the past as ‘early
turbulence’ (Jones & Maddock 1966; Goldstein, Adrian & Kreid 1969; Hansen & Little
1974; Draad, Kuiken & Nieuwstadt 1998; Samanta et al. 2013; Chandra, Shankar &
Das 2018; Choueiri, Lopez & Hof 2018). At higher but fixed Re, it is also possible, as
the polymer concentration is steadily increased from zero, to relaminarize Newtonian
turbulence before triggering EIT (Choueiri et al. 2018; Chandra et al. 2018). In direct
numerical simulations (DNS), increasing Wi from a state of EIT quenches the flow down
to a simple travelling wave solution and presumably laminar flow if Wi is large enough
(e.g. see figure 2 in Page, Dubief & Kerswell 2020; Dubief et al. 2020). At even higher
Re, it is currently unclear whether the two types of turbulence merge or co-exist, and how
MDR fits into the situation remains an outstanding issue (e.g. Xi & Graham 2010, 2012;
Samanta et al. 2013; Graham 2014; Choueiri et al. 2018, 2021; Lopez, Choueiri & Hof
2019).

Further questions also exist as to how EIT relates to another form of viscoelastic
turbulence – ‘elastic’ turbulence (ET) – that was discovered a decade earlier (Groisman &
Steinberg 2000). This is generated by the well-known ‘elastic’ linear instability of curved
streamlines (Larson, Shaqfeh & Muller 1990; Shaqfeh 1996) and exists at vanishingly
small Reynolds numbers so inertial effects are unambiguously irrelevant for sustaining
the turbulence. This elastic instability is also possible in planar geometries, but requires
finite-amplitude disturbances to generate streamline curvature (Meulenbroek et al. 2004;
Morozov & Saarloos 2007). Intriguingly, substantial linear transient growth can occur in
the purely elastic limit via a polymeric ‘lift-up’ effect, with streaks in the streamwise
velocity (Jovanović & Kumar 2010, 2011), but is very different in appearance to these
finite-amplitude solutions. In contrast to the inertialess ET, a fairly large Re is required
for EIT, indicating that inertia is important here. This suggests that EIT and ET are
distinct phenomena (e.g. see figure 30 of Chaudhary et al. 2021) yet they could still be
two extremes of the same whole (Samanta et al. 2013; Qin et al. 2019; Choueiri et al.
2021; Steinberg 2021). Finally, the underlying mechanism that sustains EIT has yet to be
clarified (Dubief et al. 2013; Terrapon, Dubief & Soria 2015; Sid et al. 2018; Shekar et al.
2018, 2020; Page et al. 2020; Chaudhary et al. 2021).

A major step forward in explaining the origin of EIT was made recently when a linear
instability was found at relatively high Wi � 20, which could reach down to a threshold
Rec ≈ 63 in pipe flow (Garg et al. 2018; Chaudhary et al. 2021). This finding overturned
a long-held view that no new linear instability would appear by adding polymers to a
Newtonian rectilinear shear flow: see Chaudhary et al. (2019, 2021) for an extensive
historical discussion of this point, and the recent review by Sanchez et al. (2022). This
instability was also confirmed in channel flow (Khalid et al. 2021a) using an Oldroyd-B
fluid, but was found absent in an upper-convected Maxwell fluid (Chaudhary et al. 2019).
The instability is a centre-mode instability that has a phase speed close to the maximum
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base flow speed and appeared to need inertia (finite Re) to exist – in a channel with an
experimentally relevant β (the ratio of solvent-to-solution viscosities) of 0.9 and elasticity
number 0.1, the threshold Rec ≈ 200 (Khalid et al. 2021a) consistent with the finite
threshold of Rec ≈ 63 found earlier in pipe flow (Garg et al. 2018; Chaudhary et al.
2021). However, in the dilute limit (β → 1) and in contrast with pipe flow, Khalid et al.
(2021a) also found that Rec could be pushed down to approximately 5 by the time β

reached 0.99, albeit at very large Wi (= O(103)). Further computations (Khalid, Shankar
& Subramanian 2021b) have confirmed that the elastic limit of Re = 0 can indeed be
reached at β = 0.9905 and Wi ≈ 2500. Looking beyond the extreme value of Wi – which
is apparently achievable experimentally (Vashney & Steinberg 2018; Schnapp & Steinberg
2021) – this result has established a fascinating connection between an instability that
appears to need inertia, elasticity and solvent viscosity (finite (1 − β)) and a purely elastic
instability when (1 − β) is small enough (Khalid et al. (2021b) refer to this as an ‘ultra
dilute’ polymer solution).

However, EIT appears at lower Wi (figure 2 in Page et al. 2020) and sometimes lower Re
at a given Wi (see figure 1(b) in Choueiri et al. 2021) than the centre-mode instability. For
example, in channel flow at Re = 1000 and β = 0.9 in an FENE-P fluid with Lmax = 500,
EIT occurs around Wi = 20, whereas the centre-mode instability threshold is Wi ≈ 70
(figure 2 (left) in Page et al. 2020). This means that if EIT is connected dynamically to this
instability, then the hierarchy of nonlinear solutions that emerge from the linear instability
must be substantially subcritical, reaching to Wi values far below those of the neutral
curve (and similarly for Re for high enough Wi). This was confirmed in one specific case
on the neutral curve – (Re, Wi, β) = (60, 26.9, 0.9) – where the bifurcation was shown
to be strongly subcritical, with the branch of travelling wave solutions reaching down to
Wi = 8.77 (Page et al. 2020). Moreover, the travelling wave solutions adopt a distinctive
‘arrowhead’ form in the polymer stress when Wi is small enough, which can be recognized
as an intermittently observed coherent structure in the DNS of EIT (Dubief et al. 2020).

The primary purpose of this paper is to back up this initial finding of subcriticality by
carrying out a systematic survey of whether the centre-mode bifurcation is subcritical or
supercritical across the entire neutral curve for a typical value of β of 0.9 using weakly
nonlinear analysis (Stuart 1960; Watson 1960). In doing so, we also take the opportunity
to confirm that the instability is present for an FENE-P fluid with reasonable maximum
polymer extension Lmax (see (2.1d)) and, spurred on by the recent results of Khalid et al.
(2021b), explore how the presence of finite Lmax affects the dilute limit (β → 1) where
Re = 0 can be reached. We also examine the energetic source term, or terms, for the
instability, uncovering a consistent picture even on the part of the neutral curve reaching
to high Re.

The plan of the paper is as follows. In § 2, the FENE-P model is introduced and the
presence or not of polymer diffusion as indicated by a Schmidt number Sc is discussed. The
weakly nonlinear expansions are also introduced. While this is now an established method
in the fluid dynamicists’ toolbox, for viscoelastic models where the (coarse-grained) local
polymer configuration is represented by a positive definite conformation tensor C, there
are some technicalities that need some attention. We follow the framework suggested
recently by Hameduddin et al. (2018) and Hameduddin, Gayme & Zaki (2019) to treat
this issue, which requires a bit more formal development than is normal. Having set
this up, § 3 then presents the weakly nonlinear analysis, which proceeds as usual albeit
with a proxy for C being expanded instead of C itself. Results in § 4 are arranged as
follows: §§ 4.1 and 4.2 consider (β, Lmax) = (0.9, 500) with Sc → ∞; § 4.3 considers
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(β, Lmax, Sc) = (0.9, 100, 106); § 4.4 performs an energy analysis over the neutral curves
of §§ 4.1 and 4.3; and finally § 4.5 examines the Re = 0 situation, varying β over the
approximate range [0.97, 0.99] for Wi � 200 and Lmax ∈ [40, 100] (Sc → ∞). More
moderate β are considered in Appendix C, specifically (β, Lmax) = (0.74, {250, 500, ∞})
and (0.56, {500, ∞}) (all at Sc → ∞). Lastly, § 5 presents a discussion of the paper’s
results.

While this work was going through review, we became aware of the complementary
work of Wan, Sun & Zhang (2021) on the weakly nonlinear analysis of axisymmetric pipe
flow. Their findings are consistent with those reported here for channel flow.

2. Formulation

We consider pressure-driven viscoelastic flow between two parallel stationary rigid plates
separated by a distance 2h and assume that the flow is governed by the FENE-P model

∂tu + (u · ∇) u + ∇p = β

Re
�u + 1 − β

Re
∇ · T (C), (2.1a)

∇ · u = 0, (2.1b)

∂tC + (u · ∇) C + T (C) = C · ∇u + (∇u)T · C + 1
Re Sc

�C. (2.1c)

The constitutive relation for the polymer stress, T , is given by the Peterlin function

T (C) := 1
Wi

( f (tr C) C − I) , where f (x) :=
(

1 − x − 3
L2

max

)−1

, (2.1d)

with Lmax denoting the maximum extensibility of polymer chains. Here, C ∈ Pos(3)

(the set of positive definite 3 × 3 matrices) is the polymer conformation tensor, and
β ∈ [0, 1] denotes the viscosity ratio β := νs/ν, where νs and νp = ν − νs are the
solvent and polymer contributions to the total kinematic viscosity ν. The equations are
non-dimensionalized by h and the bulk speed

Ub := 1
2h

∫ h

−h
ux dy (2.2)

which, through adjusting the pressure gradient appropriately, is kept constant so that the
Reynolds and Weissenberg numbers are defined as

Re := hUb

ν
, Wi := τUb

h
, (2.3a,b)

where τ is the polymer relaxation time. Polymer diffusion – the last term in (2.1c) – is
often omitted as the typical magnitude of the Schmidt number, Sc ∼ O(106). Here it is
retained throughout the nonlinear analysis to: (i) allow a more realistic comparison with
results from DNS, where a relatively low Schmidt number (Sc ∼ O(103)) is required for
the solver to converge (Page et al. 2020); and (ii) assess its importance more generally.
Non-slip boundary conditions are imposed on the velocity field. If an infinite Schmidt
number Sc is considered, then no boundary conditions for the conformation tensor C are
needed. In the case of finite Schmidt numbers, we apply Sc → ∞ at the boundary to retain
this situation (Sid et al. 2018).
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In the course of this work, we compute neutral curves for the recently discovered
centre-mode instability (Garg et al. 2018) in a channel following the recent work by
Khalid et al. (2021a,b). The marginally-stable eigenfunctions form the basis of a weakly
nonlinear expansion in the amplitude of the bifurcating solution. The key objective here
is to ascertain whether the bifurcation is supercritical or subcritical. Subcriticality would
indicate that bifurcated solutions exist beyond the parameter domain of linear instability,
thereby implying that the flow is nonlinearly unstable – i.e. unstable to sufficiently large
amplitude disturbances – in new, potentially more interesting parameter regimes. A case
in point is the very recent discovery that the centre-mode instability still operates at
Re = 0, albeit at very high Wi = O(1000) and ultra-dilute polymer solutions of 1 − β =
O(10−3) (Khalid et al. 2021b). While these extremes are on the margins of physical
relevance, a strongly subcritical instability could still see its consequences in the form
of finite-amplitude solutions at vastly different Wi and β.

2.1. Base state
The base state to (2.1a)–(2.1c) is the steady unidirectional solution and satisfies the
following reduced set of equations:

∂xp = β

Re
∂yyux + 1 − β

Re Wi

[
( f (tr C))2

L2
max

tr(∂yC) Cxy + f (tr C) ∂yCxy

]
, (2.4a)

1
Wi

( f (tr C) Cxx − 1) = 2Cxy ∂yux + 1
Re Sc

∂yyCxx, (2.4b)

1
Wi

(
f (tr C) Cyy − 1

) = 1
Re Sc

∂yyCyy, (2.4c)

1
Wi

( f (tr C) Czz − 1) = 1
Re Sc

∂yyCzz, (2.4d)

1
Wi

(
f (tr C) Cxy

) = Cyy∂yux + 1
Re Sc

∂yyCxy, (2.4e)

where u = uxx̂ + uyŷ. Since Re is based on the bulk speed, the applied pressure gradient
is adjusted until the bulk speed is unity (after non-dimensionalization) (e.g. Dubief et al.
2013, 2020; Samanta et al. 2013; Sid et al. 2018). Figure 1 displays the base state
(ub, pb, Cb) for a particular parameter combination. It is worth remarking that Umax is
very nearly 1.5 in units of Ub for β close to 1 (e.g. β = 0.9, which is used in the main part
of the paper) and then Wi based on the bulk velocity (as here) is very close to two-thirds
of a Weissenberg number based on Umax (Garg et al. 2018; Chaudhary et al. 2021; Khalid
et al. 2021a,b). In Appendix C, we consider β = 0.56 and β = 0.74, where this simple
relationship no longer holds.

2.2. Perturbative expansions
The weakly nonlinear expansions for the velocity and pressure components are written
straightforwardly in the form

u = ub +
N∑

k=1

εku(k), p = pb +
N∑

k=1

εkp(k). (2.5a,b)
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Figure 1. Laminar base state at β = 0.9, Lmax = 500, Sc → ∞, Wi = 60, Re = 68. The components of
the base flow conformation tensor, Cb, are normalized by their values at the bottom wall (y = −1):
Cb,xx|y=−1 = 39 235, Cb,yy|y=−1 = Cb,zz|y=−1 = 0.84, Cb,xy|y=−1 = 129.

However, the conformation tensor C calls for a more careful treatment, since the set of
positive definite 3 × 3 matrices, Pos(3), cannot be a vector space. Instead, it may be
endowed with the structure of a complete Riemannian manifold. Perturbations of order εk

still make sense in this setting, but one has to interpret the εk distance in terms of the metric
arising from the Riemannian structure of the manifold Pos(3). In developing perturbations
for the conformation tensor C, we follow the framework of Hameduddin et al. (2018, 2019),
who focused on precisely this issue. We may view C as the left Cauchy–Green tensor
associated with the polymer deformation, i.e.

C = FF T , (2.6)

where F denotes the deformation gradient with thermal equilibrium taken as the reference
configuration. A further decomposition of F into two successive deformations, which may
be written as

F = F bL, (2.7)

separates the deformation corresponding to the perturbation, L, from the deformation
associated with the base state, which may be expressed as

F b = C1/2
b . (2.8)

(This representation is not unique; any F b = C1/2
b R works with R ∈ SO(3). The choice

R = I is natural in the sense that it allows for a geodesic between Cb and C to be expressed
solely in terms of F b and G.)

The fluctuating deformation gradient L has an associated left Cauchy–Green tensor G =
LLT . Combining these observations, we have that

C = F bGF T
b . (2.9)

The tensor G is necessarily positive definite since C is, and by nature it acts as the
conformation tensor representing the fluctuations of C around Cb.
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The evolution equation (2.1c) for the conformation tensor can be rewritten in terms of
G as

∂tG + (u · ∇)G = 2 sym (G h(u)) − F−1
b T F−T

b , (2.10)

with
h(u) = F T

b · ∇u · F−T
b − (F−1

b (u · ∇)F b)
T . (2.11)

As described by Hameduddin et al. (2019), an additive expansion of the form (2.5a,b)
no longer makes sense on Pos(3), since there is no a priori guarantee that the resulting
C remains positive definite. Instead, Hameduddin et al. (2019) proposed a multiplicative
expansion based on the decomposition (2.7) that consists of a series of successively smaller
deformations, which may be written in the form

Lwnl = Lε
(1)L

ε2

(2) . . . LεN

(N). (2.12)

The matrix Lwnl may differ from L given in (2.7) by a rotation only.
Under the additional assumption that the Lεk

(k) are rotation-free with det(L(k)) > 0, each
L(k) is positive definite. The conformation tensors associated with these deformations are
then given by Gεk

(k) = Lεk

(k)(L
εk

(k))
T . To make sense of ε-magnitude perturbations, we make

use of the Riemannian manifold structure of Pos(3). In particular, the Gεk

(k) may be thought
of as length ∼ |ε|k geodesics emanating from I on the manifold Pos(3). That is, we may
take G(k) ∈ TIPos(3) = Sym(3) such that

Gεk

(k) = exp
(
εkG(k)

)
, (2.13)

with
d(I, Gεk

(k)) = |ε|k‖G(k)‖F, (2.14)

where d is the metric induced by the Riemannian structure of Pos(3). (TIPos(3) is the
tangent space at the point I of Pos(3).) Note that this is analogous to weakly nonlinear
expansions on vector spaces equipped with the Frobenius norm, only now we measure the
corresponding distance on Pos(3) with the Riemannian metric.

This approach eventually leads to an expansion of the form

G = exp
(

ε
G(1)

2

)
· · · exp

(
εN−1 G(N−1)

2

)
exp

(
εNG(N)

)
exp

(
εN−1 G(N−1)

2

)
· · · exp

(
ε
G(1)

2

)

= I + εG(1) + ε2

(
G(2) + G2

(1)

2

)
+ ε3

(
G(3) + sym

(G(1)G(2)

) + G3
(3)

6

)
+ · · · . (2.15)

This representation of the weakly nonlinear terms is equivalent to a standard expansion for
C of the form (2.5a,b), as the operation G( j) �→ F bG( j)F T

b serves as a bijection between the
two solution sets, as long as F b ∈ C0([−1, 1]; GL(3)), i.e. F b is a 3 × 3 invertible matrix
with continuous functions in y ∈ [−1, 1] as entries.

While the new formulation does not in practice modify the mechanics of constructing a
weakly nonlinear expansion, the mathematical consistency of the approach yields a variety
of tools for measuring perturbations on Pos(3) in the only suitable manner, according to
the corresponding metric. One such measure, which we will use frequently in the sections
to follow, is the geodesic distance from the mean, given by

d(Cb, C) = d(I, G) =
√

tr G2. (2.16)
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3. Weakly nonlinear analysis

Let ϕ = (ux, uy, p, Gxx, Gyy, Gzz, Gxy) denote the vector composed of all state variables.
This is further decomposed into two parts, a contribution from the base state and a
fluctuating part

ϕ = ϕb + ϕ̂, (3.1)

where the interest is now in solving the governing system (2.1) for the perturbations ϕ̂.
The Peterlin function (2.1d) for T is first expanded around the base conformation state Cb
as

T (C) = T (Cb) + D T (Cb)[Ĉ] + 1
2 D2 T (Cb)[Ĉ, Ĉ] + 1

6 D3 T (Cb)[Ĉ, Ĉ, Ĉ] + · · · . (3.2)

For the analysis that follows, it suffices to perform the above expansion (3.2) up to
third order, and to compress the notation, we will consider only Wi and Re as varying
parameters. The others, β and Sc, are assumed fixed, but similar expansions for them may
be obtained in an analogous fashion. After a subtraction of the laminar solution, (2.1) can
be written in an operator form locally around the base state (ub, Cb) as

L (Re, Wi)
[
ϕ̂
] + B (Re, Wi)

[
ϕ̂, ϕ̂

] + T (Re, Wi)
[
ϕ̂, ϕ̂, ϕ̂

] = 0, (3.3)

where L(Re, Wi) is linear, B(Re, Wi) is bilinear, and T(Re, Wi) is symmetric trilinear.
These are given explicitly as

L (Re, Wi)
[
ϕ̂
]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂tû + (ub · ∇)û + (û · ∇)ub + ∇p̂ − β

Re
�û − 1 − β

Re
∇ · (D T (Cb)[F bĜF T

b ])

∇ · û
∂tĜ + (ub · ∇)Ĝ − 2 sym(h(û) + Ĝ h(ub)) + F−1

b D T (Cb)[F bĜF T
b ]F−T

b

− 1
Re Sc

F−1
b �(F bĜF T

b )F−T
b

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.4)

B (Re, Wi)
[
ϕ̂1, ϕ̂2

]

=

⎛
⎜⎜⎜⎜⎝

(û1 · ∇)û2 − 1 − β

2Re
∇ · (D2 T (Cb)[F bĜ1F T

b , F bĜ2F T
b ])

0

(û1 · ∇)Ĝ2 − 2 sym(Ĝ1h(û2)) + 1
2

F−1
b D2 T (Cb)[F bĜ1F T

b , F bĜ2F T
b ]F−T

b

⎞
⎟⎟⎟⎟⎠ ,

(3.5)

T (Re, Wi)
[
ϕ̂1, ϕ̂2, ϕ̂3

]

=

⎛
⎜⎜⎜⎜⎝

−1 − β

6Re
∇ · (D3 T (Cb)[F bĜ1F T

b , F bĜ2F T
b , F bĜ3F T

b ])

0

1
6

F−1
b D3 T (Cb)[F bĜ1F T

b , F bĜ2F T
b , F bĜ3F T

b ]F−T
b

⎞
⎟⎟⎟⎟⎠ . (3.6)

It is worth remarking that the base state (ub, Cb) in the above operators depends on
all parameter values (Wi, Re, β, Sc) through (2.4). Linear stability theory is concerned
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Weakly nonlinear analysis of the viscoelastic instability

with the eigenvalue problem arising from the linearized equations L(Re, Wi)[ϕ̂] = 0. In
practice, this is addressed formally by assuming a specific form of the disturbance, and
solving

L(Re, Wi)[ϕ(1,1)( y) exp(ikx − iωt)] = 0, (3.7)

for pairs (ω,ϕ(1,1)), where ω = ωr + iωi is the a priori unknown complex frequency,
ϕ(1,1) is the associated eigenmode, and k is the prespecified wavenumber.

Assume now that a bifurcation occurs at a certain triple (WiL, ReL, k), i.e. there exists an
eigenmode of (3.7) such that its associated eigenfrequency is real (subsequently denoted
by ωL = ωL,r), which marks the state of marginal stability in the temporal sense. We
wish to uncover how the eigenfunction ϕ(1,1) evolves as we move slightly away from the
bifurcation point. For this, consider small perturbations to all relevant parameters of the
form

(Wi, Re, ωr) = (WiL, ReL, ωr,L) + ε2(Wi1, Re1, ωr,1) + · · · , (3.8)

and formally expand the operator L around (ReL, WiL) as

L(ReL + ε2 Re1, WiL + ε2 Wi1) = L(ReL, WiL) + ε2 Re1 L′
Re(ReL, WiL)

+ ε2 Wi1 L′
Wi(ReL, WiL). (3.9)

The subtle difference here from standard weakly nonlinear expansions lies in the fact that
now the base state obtained from (2.4) depends on the parameters Wi and Re. To make this
clear and explicit, we write

L′
Re(ReL, WiL)= d

dRe

∣∣∣∣
(ReL,WiL)

L=
(

∂

∂Re
+ ∂ub,i

∂Re
∂

∂ub,i
+ ∂Fb,ij

∂Re
∂

∂Fb,ij

)∣∣∣∣
(ReL,WiL)

L,

L′
Wi(ReL, WiL) = d

dWi

∣∣∣∣
(ReL,WiL)

L=
(

∂

∂Wi
+ ∂ub,i

∂Wi
∂

∂ub,i
+ ∂Fb,ij

∂Wi
∂

∂Fb,ij

)∣∣∣∣
(ReL,WiL)

L,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

with

∂L
∂Re

(ReL, WiL)[ϕ̂] =

⎛
⎜⎜⎜⎜⎝

β

Re2
L

�û + 1 − β

Re2
L

∇ · (D T (Cb)[F bĜF T
b ])

0
1

Re2
L Sc

F−1
b �(F bĜF T

b )F−T
b

⎞
⎟⎟⎟⎟⎠ (3.11)

and

∂L
∂Wi

(ReL, WiL)[ϕ̂] =

⎛
⎜⎜⎜⎝

1 − β

ReL WiL
∇ · (D T (Cb)[F bĜF T

b ])

0

− 1
WiL

F−1
b D T (Cb)[F bĜF T

b ]F−T
b

⎞
⎟⎟⎟⎠ . (3.12)

Due to the complexity of the laminar equations (2.4), the base flow’s dependence on
the parameters is sought numerically, i.e. the terms ∂ub,i/∂Re and ∂Fb,ij/∂Re – and the
corresponding terms in the Wi direction – are computed via a finite-difference scheme.
We note here that alternatively one could also compute the entirety of L′

Re (and L′
Wi) with

a finite-difference scheme.
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G. Buza, J. Page and R.R. Kerswell

To explore how the ϕ(1,1) wave develops as these parameters change, we seek solutions
of (3.3) as a weakly nonlinear expansion of the form

ϕ(t, x, y) = ϕb( y) +
N∑

l=1

∑
q∈Jl

εl (ϕ(l,q) + ϕ̃(l,q)

)
( y) exp (iq(kx − ωrt)) + O(εN+1),

(3.13)

where Jl = {−l, −l + 2, . . . , l − 2, l}, and ϕ̃(l,q) is the term that represents the dependence
of O(εl) perturbations on the lower-order G( j) terms in (2.15). For instance, ϕ̃(1,q) = 0,

q ∈ {−1, 1}, and

ϕ̃(2,2) = 1
2 (0, 0, 0, (G2

(1,1))xx, (G2
(1,1))yy, (G2

(1,1))zz, (G2
(1,1))xy). (3.14)

To simplify the notation, let

Eq : (t, x) �→ exp
(
iq(kx − ωr,Lt)

)
(3.15)

and

Lq[ϕ] := L[ϕEq]. (3.16)

Now, upon substituting the specific form of ϕ̂ from (3.13) into (3.3), we obtain a hierarchy
of problems as follows:

O(ε) : L1[ϕ(1,1)] = 0, (3.17a)

O(ε2) : L0[ϕ(2,0) + ϕ̃(2,0)] + B[ϕ(1,1)E1,ϕ(1,−1)E−1] + B[ϕ(1,−1)E−1,ϕ(1,1)E1] = 0,

(3.17b)

L2[ϕ(2,2) + ϕ̃(2,2)] + B[ϕ(1,1)E1,ϕ(1,1)E1] = 0, (3.17c)

O(ε3) : L1[ϕ(3,1) + ϕ̃(3,1)] + B[ϕ(1,−1)E−1, (ϕ(2,2) + ϕ̃(2,2))E2]

+ B[(ϕ(2,2) + ϕ̃(2,2))E2,ϕ(1,−1)E−1] + B[ϕ(1,1)E1,ϕ(2,0) + ϕ̃(2,0)]

+ B[ϕ(2,0) + ϕ̃(2,0),ϕ(1,1)E1] + 3T [ϕ(1,1)E1,ϕ(1,1)E1,ϕ(1,−1)E−1]

+ Re1 L′
Re[ϕ(1,1)E1] + Wi1 L′

Wi[ϕ(1,1)E1] − iωr,1ϕ(1,1) =: L1[ϕ(3,1)] + η = 0,

... (3.17d)

where η is the known part of (3.17d). One subtlety in solving the hierarchy of problems is
maintaining the constancy of the volumetric flux. This boils down to introducing a constant
correction to the pressure gradient, ∂xp(2,0), to ensure that ϕ(2,0) has zero flux. Provided
that the bifurcation is of codimension one, (3.17a) (equivalent to the linear problem (3.7))
has a non-unique solution of the form

A
ϕ(1,1)

‖ϕ(1,1)‖L2([−1,1];C7)
, A ∈ C. (3.18)

The aim is to map out the possible values of the steady-state amplitude A in the parameter
space (Wi, Re). Once an eigenmode of the form (3.18) is pushed through (3.17a)–(3.17d),
an explicit solvability condition can be derived, as detailed in the following.
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Weakly nonlinear analysis of the viscoelastic instability

3.1. Solvability condition
Let us view the functions ϕ(i,j) : [−1, 1] → C7 as elements of L2([−1, 1]; C7). The inner
product on L2([−1, 1]; C7) is given by

〈ϕ,ψ〉L2([−1,1];C7) =
∫

[−1,1]
〈ϕ( y),ψ( y)〉C7 dy. (3.19)

(In the following, we use an L2 inner product on matrix-valued functions as well. In this
case, we simply identify the matrices with vectors in the canonical way – i.e. we replace
the C7 inner product below the integral with a Frobenius one.)

The linear problem (3.17a) implies that L1 has a non-trivial kernel. Therefore, the
Fredholm alternative theorem implies the existence of a finite-dimensional subspace of
solutions to the adjoint homogeneous problem

L∗
1[ψ] = 0, (3.20)

subject to the appropriate boundary conditions (matching those of the original problem).
Moreover, the original equation (3.17d) has a solution ϕ(3,1) if and only if

〈η,ψ〉L2([−1,1];C7) = 0, ∀ψ ∈ kerL∗
1 satisfying the boundary conditions. (3.21)

Assuming that the bifurcation is of codimension one, we know that dim(kerL∗
1) = 1, so

it suffices to check (3.21) for any ψ1 ∈ kerL∗
1 that satisfies the boundary conditions. With

this procedure, we obtain the complex solvability condition

a Re1 + b Wi1 + c|A|2 + dωr,1 = 0, (3.22)

where

a := 〈
L′

Re[ϕ(1,1)E1],ψ1
〉
L2([−1,1];C7)

,

b := 〈
L′

Wi[ϕ(1,1)E1],ψ1
〉
L2([−1,1];C7)

,

c := 〈
B[ϕ(1,−1)E−1, (ϕ(2,2) + ϕ̃(2,2))E2] + B[(ϕ(2,2) + ϕ̃(2,2))E2,ϕ(1,−1)E−1]

+ B[ϕ(1,1)E1,ϕ(2,0) + ϕ̃(2,0)] + B[ϕ(2,0) + ϕ̃(2,0),ϕ(1,1)E1]

+ 3T [ϕ(1,1)E1,ϕ(1,1)E1,ϕ(1,−1)E−1],ψ1
〉
L2([−1,1];C7)

,

d := 〈−iϕ(1,1),ψ1
〉
L2([−1,1];C7)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.23)

Equation (3.22) gives the desired relationship between the parameters (Wi1, Re1) and the
steady-state amplitude A, which allows us to track how these finite-amplitude states emerge
from the bifurcation point.

4. Results

As indicated above, we are interested in uncovering the nature of the initial bifurcation
associated with the centre-mode instability first identified by Garg et al. (2018) in pipe flow
and, most relevantly for us, later by Khalid et al. (2021a) in channel flow. This previous
work assumed an Oldroyd-B fluid that allows infinite polymer extension, i.e. Lmax → ∞
for the FENE-P model (2.1d). Given this, our objectives in what follows are twofold.
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Supercritical

Subcritical
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Wi
100

0
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6

8

20 40 60 80 100

(b)(a)

Figure 2. (a) Neutral curve corresponding to marginal linear stability at β = 0.9, Lmax = 500, Sc → ∞.
Results of the weakly nonlinear analysis are shown in the form of a curve at steady-state amplitude |A| = 0.4.
(b) Development of the critical wavenumber, kcrit, along the neutral curve. Since kcrit varies monotonically
along the neutral curve, it provides a convenient parametrization of it in subsequent figures.

On the one hand, we want to explore the effects of finite extensibility on the
aforementioned instability. And on the other, with the aid of the weakly nonlinear analysis,
we aim to identify parameter regions where the instability persists beyond the neutral curve
to lower Wi in particular.

4.1. β = 0.9, Lmax = 500 and Sc → ∞
In order to test the weakly nonlinear analysis, we begin by examining the parameter regime
considered by Page et al. (2020), where β = 0.9 and Lmax = 500. Using Sc = 103 to
stabilize their time-stepping code, Page et al. (2020) observed substantial subcriticality at
(Re, Wi, k) = (60, 26.9, 2) on the upper branch of the neutral curve since they were able
to continue the branch of solutions down to Wi = 8.77. Figure 2 shows the neutral curve
at β = 0.9, Lmax = 500 with Sc → ∞: see Appendix A for numerical details. The neutral
curve is insensitive to the choice of Sc on the scale of figure 2 provided that it is � 102.
Alongside the neutral curve, we display the results of the weakly nonlinear analysis by
plotting a curve corresponding to a finite (small) steady-state amplitude |A|, as obtained
from the solvability condition (3.22). The linear instability is a Hopf bifurcation, so the
steady-state solutions are travelling waves (in x) with phase speed ωr/k and a constant
amplitude that decreases to zero at the neutral curve. This finite-amplitude curve in figure 2
indicates clearly subcriticality along the upper branch of the neutral curve. Proceeding
down to the lower branch of the curve, the Hopf bifurcation switches to being supercritical
for Wi � 40 (the red dashed line crosses the black neutral curve).

Figure 2 confirms the subcritical behaviour observed by Page et al. (2020) at the
point (Wi, Re, k) ≈ (27, 60, 2), which is marked by a shaded square. The corresponding
bifurcation diagrams with respect to model parameters Wi and Re are shown in figure 3,
where the newly developed approach for perturbative expansions of Hameduddin et al.
(2019) (described in § 2.2) is compared with a standard expansion in the conformation
tensor, C. The two approaches are in clear agreement – a detailed discussion behind the
reason for this is given in Appendix B. In this context, the real advantage of using the form
of expansions established in § 2.2 is that we now have immediate access to quantities with
tangible physical meaning (cf. figures 6, 7 and 8).
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Weakly nonlinear analysis of the viscoelastic instability
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Figure 3. Bifurcation diagrams at (Wi, Re, k) ≈ (27, 60, 2) (�). Only the unstable branch is displayed, with a
comparison of two methods for the expansion for the conformation tensor.

65

Weakly nonlinear analysis
Branch continuation

26.0 26.2 26.4 26.6 26.8 27.0 27.26463
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626160
0
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||u
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0.006
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0.010
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Figure 4. Validation of the weakly nonlinear analysis at (Wi, Re, k) ≈ (27, 60, 2) (�) with a full branch
continuation prediction. The L2 norms are taken over the whole domain Ω = [0, 2π/k] × [−1, 1].

As a final check, results of the weakly nonlinear analysis are compared with a full
branch continuation computation (see Appendix A for details of the method) in figure 4.
A finite but large Schmidt number Sc = 103 had to be selected for this comparison, as the
latter method requires a diffusion term to produce reliable results. The curves are in good
agreement – on top of each other near the bifurcation point, but then diverging slightly
(not visible on the plots) as the amplitude increases (as they should). This divergence, of
course, is because the weakly nonlinear analysis is based on a 3-mode Fourier expansion
whereas the branch continuation curve is from a 40-mode Fourier expansion.

We now examine the bifurcation on the lower branch of the neutral curve for Wi > 40
to confirm the supercriticality predicted by the weakly nonlinear analysis. In figure 5,
bifurcation diagrams resulting from the weakly nonlinear analysis for the point � in
figure 2 are plotted with the result from the Fourier–Chebyshev based branch continuation
algorithm. The clear agreement that we observe in the vicinity of the critical point confirms
the existence of a stable supercritical state, and validates the weakly nonlinear predictions
along the lower branch of the neutral curve. A further confirmatory test (backing the initial
supercriticality) was performed at a single point using independent finite-difference-based
DNS (as used in Page et al. (2020) and Dubief et al. (2020); see also § 4.3 in Buza et al.
(2022)).

4.2. Flow and polymer field prediction
The various flow and polymer fields generated as part of the weakly nonlinear analysis
can be used to generate an approximation to the solution near to a bifurcation point.
The structure of the critical eigenfunction at the � in figure 2 is shown in figure 6.
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Weakly nonlinear analysis
Branch continuation
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Figure 5. Bifurcation diagrams at point �. The L2 norms are taken over the whole domain
Ω = [0, 2π/k] × [−1, 1].
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Figure 6. Real (solid lines) and imaginary (dashed lines) parts of the unstable eigenfunction ϕ(1,1) at the point
�. (a) Axial (streamwise) velocity u(1,1),x and vertical velocity u(1,1),y. (b) All four non-zero components of
G(1,1) ∈ TI Pos(3), the tangent form of the polymer strain perturbation tensor. (c) All four non-zero components
of C(1,1) ∈ Pos(3), the corresponding fluctuation tensor from a standard expansion.

The flow and conformation tensor structures are familiar from previous studies (Garg
et al. 2018; Khalid et al. 2021a), whereas the Cauchy–Green perturbation tensor G(1,1)

has not been shown before. Figure 6 shows that all components of G(1,1) are confined to
the centreline of the channel. For instance, G(1,1),xx develops a noticeable magnitude only
above y = −0.2. On the other hand, C(1,1),xx indicates that the streamwise normal stretch
reaches its maximum towards the bottom of the channel. This difference is explained by the
shape of the laminar base state Cb (cf. figure 1), which is smaller near the centreline, thus
computing G(1,1) = F−1

b C(1,1)F
−T
b amplifies changes in that region, i.e. G(1,1) recognizes

deformations that are large relative to Cb. Again, this is an immediate consequence of
the fact that the Riemannian metric on Pos(3) depends on the base point Cb. Physically,
the new formulation highlights that the polymeric disturbance caused by the centre-mode
instability is confined to a small layer around the centreline, which would not be immediate
from a standard expansion in C (cf. figure 6(c) or figure 17 in Khalid et al. 2021a). Similar
observations were reported in the context of transient growth analysis in Zhang (2021) (see
figures 4 and 13 therein).

Higher-order disturbances are more difficult to interpret on Pos(3), but up to O(ε2) can
still be thought of as consecutive geodesic perturbations (Hameduddin et al. 2019). The
O(ε2) terms from the weakly nonlinear expansion are given in figure 7, which displays
the first nonlinear mean correction ϕ(2,0), and figure 8, which shows ϕ(2,2). With these
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Figure 7. The nonlinear mean correction ϕ(2,0) at the point �. (a) Axial (streamwise) velocity u(2,0),x and
vertical velocity u(2,0),y = 0. (b) All four non-zero components of G(2,0) ∈ TI Pos(3), the mean correction to the
conformation tensor in its tangent form. (c) All four non-zero components of C(2,0) ∈ Pos(3), the corresponding
tensor from a standard expansion.
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Figure 8. Real (solid lines) and imaginary (dashed lines) parts of the nonlinear correction ϕ(2,2) at the point
�. (a) Axial (streamwise) velocity u(2,2),x and vertical velocity u(2,2),y. (b) All four non-zero components
of G(2,2) ∈ TI Pos(3). (c) All four non-zero components of C(2,2) ∈ Pos(3), the corresponding tensor from a
standard expansion.

fields known, the full flow state can be approximated by evaluating the weakly nonlinear
expansion (3.13) up to second order, including |A| in the shape functions as necessary.
This low-order approximation is compared with a full state from the continuation tool in
figure 9 at the point ♦ on the supercritical bifurcation branch (see figure 5).

4.3. β = 0.9, Lmax = 100 and Sc = 106

In this subsection, we reduce Lmax to 100 to explore less extensible (more realistic)
polymers and reintroduce the conformation tensor diffusion term into the governing
equations (2.1c) by considering a finite Schmidt number, Sc = 106. Figure 10 shows
the corresponding marginal stability curve complemented with a finite-amplitude curve
from the weakly nonlinear analysis. The Lmax = 500 neutral curve is also displayed for
comparison (bright grey). All visible changes are caused by the adjustment of Lmax; the
introduction of finite Sc alone has no visual effect. The key observation from figure 10 is
that reducing Lmax shifts the neutral curve down in Re, and reduces the slope of the lower
branch. In particular, lowering Lmax has a destabilizing effect in the elastic regime (low
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Figure 9. Comparison of the supercritical state at point ♦ (identified in figure 5) as predicted by the weakly
nonlinear analysis (a) and branch continuation (b) techniques. Contours show the geodesic distance between
the base and full states d(Cb, C) =

√
tr G2; lines correspond to the perturbation stream function.

20

102

103

40 60 80

Supercritical

Subcritical

Neutral curve, Lmax = 100

Neutral curve, Lmax = 500
|A| = 0.4 curve, Lmax = 100

Linearly unstable

Wi

Re kcrit

kcrit → 0

k crit
 → ∞

Wi
100

0

2

4

6

8

20 40 60 80 100

(b)(a)

Figure 10. (a) Neutral curve corresponding to marginal linear stability at β = 0.9, Lmax = 100, Sc = 106.
Results of the weakly nonlinear analysis are shown in the form of a curve at steady-state amplitude |A| = 0.4.
The Lmax = 500 neutral curve from figure 2 is also shown for comparison. (b) Development of the critical
wavenumber, kcrit, along the neutral curve (corresponding curve for Lmax = 500 again shown in grey).

Reynolds numbers). This counterintuitive finding is the primary motivation for examining
in § 4.5 the Re = 0 instability found recently by Khalid et al. (2021b) at finite Lmax.

4.4. Energy analysis
We now examine the energetic contributions of the different terms in (2.1) in order to
examine the mechanisms driving the centre-mode instability. This approach has proved
useful to diagnose the character of instabilities – for example, Joo & Shaqfeh (1991, 1992)
identified purely elastic instabilities in curved channel flows with this procedure (see also
Zhang et al. 2013; Agarwal, Brandt & Zaki 2014). Taking an L2 inner product of the
momentum equations at O(ε) and the disturbance velocity field u(1,1) = (ϕ(1,1),1,ϕ(1,1),2)
gives (for more details see e.g. Zhang et al. 2013) the disturbance kinetic energy equation

∂tE := 1
2∂t‖u(1,1)‖2

L2 = P + E + W , (4.1)

where

P := −1
2

〈∇ub, u(1,1) ⊗ ū(1,1) + ū(1,1) ⊗ u(1,1)

〉
L2 (4.2)
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(ū is the complex conjugate of u) is the disturbance kinetic energy production due to the
underlying shear of ub,

E := − β

Re
‖∇u(1,1)‖2

L2 (4.3)

represents the viscous dissipation and is strictly negative, and

W := −1 − β

2Re

(〈∇u(1,1), T (1,1)

〉
L2 + 〈

T (1,1), ∇u(1,1)

〉
L2

)
(4.4)

indicates the rate of work done on the fluid by the polymeric stresses, with

T (1,1) := D T (Cb)[F bG(1,1)F
T
b ]. (4.5)

Extending this procedure to identify the mechanisms behind the growth of elastic energy
stored in the polymer is well known to be problematic (Doering, Eckhardt & Schumacher
2006). The underlying issue is that the elastic potential energy, which is a function of tr C,
does not correspond to a norm in the obvious fashion that the kinetic energy does. Once
again, this essentially comes down to the fact that the set Pos(3) does not constitute a
linear vector space, and there is no notion of norm available. This may be overcome by
measuring disturbances in C along geodesics in Pos(3), according to the metric induced
by the Riemannian structure. The work of Hameduddin et al. (2018) suggests that

(d(Cb, C))2 = (d(I, G))2 = tr(GHG), (4.6)

which immediately gives us a way of quantifying the evolution of polymer disturbances as

J := ‖d(Cb, C)‖2
L2 =

∫
[−1,1]

tr(GH( y)G( y))dy, (4.7)

a formulation that was proposed originally in Hameduddin et al. (2019). This, in fact, is
the main advantage of relying on the alternative formulation of the governing equations
given in (2.10). This newly defined quantity J in (4.7) is equal to ‖G‖2

L2 , which is a natural
generalization of the kinetic energy from (4.1).

Adopting this polymer energy measure J, an energetic evolution equation for the
polymer disturbances can now be obtained by taking an L2 inner product of G(1,1) with the
linearized disturbance equation (in a symmetric fashion), to obtain

∂tJ = Ab + A1 + T + Ep, (4.8)

where

Ab := 〈G(1,1), 2 sym
(G(1,1)h(ub)

)〉
L2 + 〈

2 sym
(G(1,1)h(ub)

)
,G(1,1)

〉
L2 (4.9)

represents the contribution due to the base velocity field,

A1 := 〈G(1,1), 2 sym
(
h(u(1,1))

)〉
L2 + 〈

2 sym
(
h(u(1,1))

)
,G(1,1)

〉
L2 (4.10)

is the corresponding term capturing the effect of the disturbance velocity field u(1,1),

T := −
〈
G(1,1), F−1

b T (1,1)F
−T
b

〉
L2

−
〈
F−1

b T (1,1)F
−T
b ,G(1,1)

〉
L2

(4.11)

is the polymeric relaxation term, and

Ep :=
〈
G(1,1),

1
Re Sc

F−1
b �(F bG(1,1)F

T
b )F−T

b

〉
L2

+
〈

1
Re Sc

F−1
b �(F bG(1,1)F

T
b )F−T

b ,G(1,1)

〉
L2

(4.12)

is the polymeric diffusion contribution.
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Figure 11. Energy analysis results across the Lmax = 500 neutral curve shown in figure 2. (a) Components
contributing to the production of the turbulent kinetic energy, E. (b) Components contributing towards the
evolution of the polymeric disturbance, J (Ep = 0 for the limit Sc → ∞ considered here and so is not plotted).
All values are normalized across the neutral curve.

The contribution of each individual term along the neutral curve of subsection 4.1
(parametrized by the wavenumber kcrit, which varies monotonically along the curve) is
shown in figure 11 for both the kinetic energy equation (4.1) (figure 11a) and the polymer
‘energy’ equation (4.8) (figure 11b). Based on the recent discovery of an inertialess linear
instability that stems from the lower branch of the neutral curve (Khalid et al. 2021b), it
was anticipated that the underlying destabilizing effects would be driven elastically along
this branch. This is exactly what is seen: the polymer stress term is the sole energizing
term for the disturbance kinetic energy. Figure 11, however, indicates that this holds over
the upper branch as well, so that the centre-mode instability remains purely elastic – i.e. the
rate of polymer work W is the only positive contribution to ∂tE – throughout the entirety
of the neutral curve shown. Not even at Re = 3000 do we have a positive contribution from
the turbulence production term P , which is the term that represents inertial effects and
is responsible for the onset of instability in Newtonian turbulence. In inertia-dominated
flows, P is the primary cause of turbulent kinetic energy growth (Zhang et al. 2013).

In the J equation, the base flow (Ab) is positive but barely contributes, so that the effect
of polymeric relaxation processes T is balanced by the input of the perturbation velocity
field through A1 (Ep = 0 as Sc → ∞ and so is not plotted). The dominance of A1 along
the neutral curve is due to the base polymer stretch, rather than via the base flow shear
directly.

Choosing large but finite Sc does not change this conclusion. Figure 12 shows the energy
analysis results for the neutral curve at Lmax = 100 in figure 10. Again, the polymeric
viscous dissipation term Ep does not contribute to the growth of J (Ep starts to become
significant only for Sc ∼ O(102)) and the energy source for the instability is solely elastic.

4.5. Inertialess limit
In this subsection we explore the low-Re elastic limit of the centre-mode instability
motivated by the finding in § 4.3 that decreasing Lmax makes the instability move to lower
Re. Recent work (Khalid et al. 2021b) has found the centre-mode instability for Re = 0
in the Oldroyd-B model, albeit at very high Wi and very small (1 − β), i.e. the dilute
limit. Our aim here is to see if we can find this instability at a lower, more realistic
Wi by varying Lmax in the FENE-P model. Taking the limit Sc → ∞ first and then
multiplying the momentum equation (2.1a) through by Re allows the Re → 0 limit to be
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Figure 12. Energy analysis results across the Lmax = 100 neutral curve shown in figure 10. (a) Components
contributing to the production of the turbulent kinetic energy, E. (b) Components contributing towards the
evolution of the polymeric disturbance, J. All values are normalized across the neutral curve.

100

Oldroyd-B
Lmax = 500
Lmax = 100

80

60

40

20

0
50 100 150 200 250 300

100

80

60

40

20

0

β = 0.99
Oldroyd-B
Lmax = 500
Lmax = 100

β = 0.98

Linearly unstable

Linearly unstable

Wi
50 100 150 200 250 300

Wi

Re

(b)(a)

Figure 13. Neutrally stable curves (solid lines) around the inertialess (Re = 0) limit for ultra-dilute polymer
solutions at β = 0.99 (a) and β = 0.98 (b). The dashed lines are finite-amplitude curves that show the nonlinear
behaviour indicated by the weakly nonlinear analysis.

accessed smoothly. When Re = 0, the so-called creeping limit equations

∇p = β �u + (1 − β)∇ · T (C), (4.13a)

∇ · u = 0, (4.13b)

∂tC + (u · ∇) C + T (C) = C · ∇u + (∇u)T · C, (4.13c)

are reached (see Buza et al. (2022) for a different distinguished limit where instead Re Sc
is kept finite). The effect of the viscosity ratio β for Lmax → ∞ (an Oldroyd-B fluid) is
known already (see inset (B) of figure 2 in Khalid et al. 2021b). The instability first appears
at β = 0.9905, with the critical Wi decreasing as β increases to 0.994, reaching a minimum
of Wi ≈ 649 (note that their value Wi′ = 973.8 is defined using the base centreline speed),
and then increasing again as β continues to increase beyond 0.994 towards 1. Thus the
lowest β for which the Re = 0 instability still exists (limited by the slope of the lower
branch on the marginal curve) could also be decreased if the threshold Wi for instability
is decreased through adjusting Lmax. This is what we find; see figure 13, which shows that
instability at Re = 0 is possible at just over Wi = 100 for β = 0.98 and Lmax = 100. The
finite-amplitude curves generated by weakly nonlinear analysis and shown in figure 13
further imply the existence of an unstable subcritical state in this inertialess regime.
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Figure 14. (a) Neutrally stable curves (solid lines) at the inertialess limit Re = 0 for ultra-dilute polymer
solutions. The dashed lines are finite-amplitude curves that show the nonlinear behaviour indicated by the
weakly nonlinear analysis. (b) Changes in the critical wavenumber, kcrit, as the neutral curves are traversed.
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Figure 15. The energy budget for the polymeric disturbance, J, at the inertialess limit, at point � (Wi = 115,
β = 0.98) in figure 14. Note that the scale for ∂tJ (left axis) is enlarged to improve visibility.

That is, the flow continues to be nonlinearly unstable when lowering Wi below the
threshold for linear instability.

Figure 13 suggests that further reduction in the threshold Wi for instability may be
possible by making Lmax even smaller. Neutral curves in the Wi–β plane at Re = 0 for
Lmax = 40, 70 and 100 are shown in figure 14 along with the concomitant finite-amplitude
curves. Two important features are evident from this figure. First, the destabilizing effect
of Lmax has a limit, which appears to be Lmax ∈ [40, 100] for Re = 0. Second, the weakly
nonlinear analysis indicates that the bifurcation is subcritical with respect to β, except for
high Wi along the lower branch (in the Wi–β plane) of the neutral curve where it becomes
supercritical.

The results of an energy budget analysis are shown in figure 15 for this Re = 0 instability
at Wi = 115 and β = 0.98 – the � in figure 14 – as a function of Lmax. The kinetic
energy evolution equation (4.1) is unable to handle the vanishing Re situation, so we
focus exclusively on the budget in J, the measure introduced for polymeric perturbations.
Figure 15 tracks how the disturbance growth rate, ∂tJ, and each term contributing to it,
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changes as Lmax is varied at point � (cf. figure 14). (Note that ∂tJ = 0 indicates points
on the neutral curve, e.g. there is no instability at Lmax = 100 at �.) The contribution
stemming from the base flow, Ab, is still negligible, which indicates that stability is
determined by the balance between (destabilizing) A1 and (stabilizing) T . The dissipation
rate associated with polymeric relaxation processes, T , becomes increasing negative as
Lmax is decreased, ultimately causing stabilization. As expected from figure 14, an optimal
Lmax exists (≈ 60) for this particular pairing of Wi and β. That it exists at all – i.e. the
FENE-P model is more unstable than the Oldroyd-B model for this inertialess centre-mode
instability – is a surprise.

5. Discussion

In this paper, we have considered the character of the bifurcation of a recently discovered
centre mode (Garg et al. 2018; Khalid et al. 2021a) in rectilinear viscoelastic channel
flow for large Re = O(103) down to the inertialess limit of Re = 0. Using weakly
nonlinear analysis within a formal framework that respects the positive definiteness of
the conformation tensor C (Hameduddin et al. 2018, 2019), we find that the subcriticality
found by Page et al. (2020) for one point of the neutral curve at Lmax = 500 is generic
across the neutral curve and for different Lmax. Supercriticality is found only at large Wi on
the ‘lower’ (low-Re) branch of the neutral curve in the Wi–Re plane; otherwise, the branch
of travelling waves arising from the neutral curve reaches down to lower Wi and the region
where EIT is found. In this extended region of parameter space, the base flow is nonlinearly
unstable to disturbances of sufficient amplitude. The threshold amplitude to trigger this
instability is determined by the minimal amplitude of approach of the stable manifold of
the lower branch of travelling waves to the base flow. This is bounded from above by the
amplitude of the lower branch itself, and the one branch-tracking calculation done so far
(see figure 3 in Page et al. 2020) indicates that this is small: the volume-averaged tr C of the
travelling wave solutions stays within 5 % of the base flow value even when Wi is reduced
to 50 % of its value at the bifurcation. Hence, for practical purposes, the base flow may
well appear linearly unstable below the neutral curve in Wi (recent experiments suggest a
similar situation in Re; Choueiri et al. 2021). Assessing how far this situation continues as
Wi is decreased requires, of course, a full branch continuation procedure to map out the
surface of travelling wave solutions.

By using an FENE-P fluid, we have also confirmed that the centre-mode instability
persists for maximum polymer extension down to Lmax = 40 at least. Somewhat
counterintuitively, the introduction of finite Lmax is found to move the neutral curve closer
to the inertialess Re = 0 limit at fixed β. Pursuing this further by entering the dilute
(β → 1) limit, we also find that finite Lmax can bring the linear instability found recently by
Khalid et al. (2021b) down to a more physically relevant Wi � 110 at β = 0.98, compared
with their threshold of Wi ≈ 649 (based on the bulk velocity) at β = 0.994 for Lmax → ∞.
Again, the instability is subcritical, implying that inertialess rectilinear viscoelastic shear
flow is nonlinearly unstable for even lower Wi. Assessing exactly how low again requires
locating the saddle node (turning point) of the travelling waves as Wi decreases, which
requires a branch continuation code.

Finally, by considering the various energy terms in the disturbance kinetic energy
equation, we have found that the centre-mode instability is purely elastic in origin even for
Re = O(103), rather than ‘elasto-inertial’, as the underlying shear does not energize the
instability. This finding is consistent with the recent smooth connection found by Khalid
et al. (2021b) to an entirely elastic instability at Re = 0, and suggests that EIT and ET
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may indeed be two different extremes of the same whole. Given that this instability is
being suggested as the origin of EIT (Garg et al. 2018; Page et al. 2020; Chaudhary et al.
2021; Khalid et al. 2021a), the importance of inertia must emerge at finite amplitude and is
perhaps already there in the travelling wave solutions, especially when they establish their
‘arrowhead’ form familiar from DNS at higher amplitudes and lower Wi (Dubief et al.
2020).

In terms of experiments, the centre-mode instability has been investigated recently in
both channel (Schnapp & Steinberg 2021) and pipe (Choueiri et al. 2021) flow. In a pipe,
Choueiri et al. (2021) observed evidence of the centre-mode instability at high Wi =
O(100) and low (subcritical) Re. More relevant to the current results are the essentially
inertialess (Re � 0.3) channel flow experiments of Schnapp & Steinberg (2021), which
were conducted at very high Wi ∈ (100, 1700]. Finite-amplitude travelling waves (or
‘elastic’ waves in their terminology) were triggered by ‘small’ disturbances – in contrast to
the ‘large’ disturbances used in Pan et al. (2013) for Re � 0.01 and Wi � 10. Interestingly
for the calculations performed here, they estimate the presence of a linear instability at
Wi = 125 ± 25. However, both studies were performed at considerably lower values of β

than those studied in the bulk of this paper (β = 0.74 in Schnapp & Steinberg (2021), and
β = 0.56 in Choueiri et al. 2021). We have examined both of these solvent viscosities in
Appendix C, and find that the significant reduction in β leads to both (i) a smaller unstable
region in the Wi–Re plane, and (ii) almost uniformly supercritical behaviour around the
neutral curve. This does not preclude the possibility that the branch may bend back down
towards lower Re and Wi, which cannot be captured in our third-order weakly nonlinear
analysis but which can be studied by branch continuation of the travelling waves.

The obvious next steps after the analysis described here – and particularly important in
the context of the experimental observations at low β – are to employ a branch continuation
procedure to track the travelling waves produced by the centre-mode instability to finite
amplitudes, and then to explore where they exist in parameter space. The inertialess limit
is perhaps the most interesting but hardest to access numerically. These travelling waves,
of course, provide their own launch pad for further (secondary) bifurcations, from which
subsequent solutions then suffer tertiary bifurcations, and so forth. Establishing that this
bifurcation cascade occurs precisely where EIT is observed in parameter space would
provide convincing evidence of the importance of the centre-mode instability. We hope to
report on further progress in this direction in the near future (see Buza et al. 2022).
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Appendix A. Numerical methods

The eigenvalue problem (3.17a) and the subsequent nonlinear equations in (3.17) were
solved using a Chebyshev discretization. (For the special case of Re = 0, the operators
in (3.17) were based on the creeping equations instead, as discussed in the main text.)
Exploiting the symmetries of the centre eigenmode, the expansions were performed over
half the channel width, y ∈ [−1, 0], with appropriate boundary conditions to enforce
the symmetry of ux, antisymmetry of uy, and appropriate symmetries for the various
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components of C. This approach crucially concentrates the collocation points near both the
channel boundary and the centreline where the eigenmode is localized, so that manageable
truncations prove adequate. For the β = 0.9 neutral curves, 200 Chebyshev modes were
sufficient, while higher β values needed 300–400 Chebyshev modes due to the increasing
localization of the unstable eigenmode (see Khalid et al. 2021b). The neutral curves were
obtained using a continuation scheme that relies on the tangent that the weakly nonlinear
analysis yields. Specifically, in the Wi–Re plane, this is given by substituting |A| = 0 into
(3.22):

Re1

Wi1
= − Im(d̄b)

Im(d̄a)
. (A1)

In solving the eigenvalue problem, a shift-inverse spectral transformation (Meerbergen,
Spence & Roose 1994) was employed, using the eigenvalue at the previous continuation
step, to isolate the critical eigenmode. The unstable mode was then obtained via standard
power iteration. All results were cross-checked using two grid resolutions.

Results of the weakly nonlinear analysis were validated by an independently developed
branch continuation routine. In this, the flow solution is assumed to be steady in an
appropriately chosen Galilean frame (i.e. a travelling wave) that allows the time derivatives
to be replaced by a spatial derivative in x premultiplied by an a priori unknown phase
speed c = ωr/k. The governing equations are then discretized in space using Fourier
modes in x and Chebyshev modes in y across the domain (x, y) ∈ [0, 2π/k] × [−1, 1]
to leave a high-dimensional – typically O(105) degrees of freedom – nonlinear system of
equations for the expansion coefficients. A good starting guess for the solution and c can be
generated near the neutral curve, then the solver propagates along the solution surface via
a pseudo-arclength continuation algorithm based on a Newton–Raphson iterative scheme
(e.g. Dijkstra et al. 2014). Simulations for the curves appearing in figures 4 and 5 were
run at 80 Chebyshev and 40 Fourier modes (so 7 × 40 × 80 × 2 = 44 800 real degrees
of freedom). Resolution independence was checked carefully at the terminal point of
each branch shown (using up to 80 000 degrees of freedom). In this paper, the branch
continuation code was used only to confirm the weakly nonlinear analysis. A future report
will describe it in detail, when the results of using it to explore solution morphology a
finite distance from the neutral curve will be presented.

Appendix B. Equivalence of the G and C formulations for weakly nonlinear analysis

In this appendix, we show the equivalence of the G and C formulations in the context of
weakly nonlinear analyses. The only assumption required for this is

F b ∈ C0([−1, 1]; GL(3)), (B1)

which is fulfilled for any positive definite solution Cb of (2.4) due to physical
considerations (det(F b( y)) = 0 would imply that material elements are compressed to zero
volume). Let us denote by K : L2([−1, 1]; C7) → L2([−1, 1]; C7) the map translating
between the two formulations, i.e.

K : (u, p, vec(G)) �→ (u, p, vec(F bGF T
b )). (B2)

(The operation vec sends G to (Gxx, Gyy, Gzz, Gxy).) Then K is a bounded linear operator
by (B1), with a bounded inverse K−1.
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Governing equations (2.1) for C may now be obtained upon applying K to the equations
for G (cf. (2.10)). Revisiting the sequence of problems (3.17) arising in weakly nonlinear
theory, now in the C formulation with ϕC := (ux, uy, p, Cxx, Cyy, Czz, Cxy), yields

O(ε) : KL1K−1[ϕC
(1,1)] = 0, (B3a)

O(ε2) : KL0K−1[ϕC
(2,0)] + KB[K−1ϕC

(1,1)E1,K−1ϕC
(1,−1)E−1]

+ KB[K−1ϕC
(1,−1)E−1,K−1ϕC

(1,1)E1] = 0, (B3b)

KL2[K−1ϕC
(2,2)] + KB[K−1ϕC

(1,1)E1,K−1ϕC
(1,1)E1] = 0, (B3c)

O(ε3) : KL1[K−1ϕC
(3,1)] + KB[K−1ϕC

(1,−1)E−1,K−1ϕC
(2,2)E2]

+ KB[K−1ϕC
(2,2)E2,K−1ϕC

(1,−1)E−1] + KB[K−1ϕC
(1,1)E1,K−1ϕC

(2,0)]

+ KB[K−1ϕC
(2,0),K−1ϕC

(1,1)E1]

+ 3KT[K−1ϕC
(1,1)E1,K−1ϕC

(1,1)E1,K−1ϕC
(1,−1)E−1]

+ Re1KL′
Re[K−1ϕC

(1,1)E1] + Wi1KL′
Wi[K−1ϕC

(1,1)E1] − iωr,1ϕ
C
(1,1) = 0,

... (B3d)

At first order, we have
ker(KL1K−1) = K kerL1, (B4)

which is of complex dimension one on the neutral curve, so that ϕC
(1,1) = Kϕ(1,1) up

to complex multiplication (this degree of freedom is eliminated upon imposing (3.18)),
establishing equivalence at the level of linear stability. Substituting this into equations at
second order and comparing them with their G counterparts (3.17), we obtain

ϕC
(2,0) = K(ϕ(2,0) + ϕ̃(2,0)) and ϕC

(2,2) = K(ϕ(2,2) + ϕ̃(2,2)). (B5a,b)

Since K is an isomorphism and the ϕ̃ parts are already known (cf. (3.14)), (B5) establishes
equivalence at second order. At third order, a solvability condition is derived (see § 3.1)
upon taking the inner product of (B3c) with a non-zero element of the kernel of the adjoint
problem. In the C formulation, the adjoint kernel takes the form

ker(KL1K−1)∗ = ker((K−1)∗L∗
1K∗) = (K−1)∗ kerL∗

1, (B6)

thus ψC
1 = (K−1)∗ψ1 up to complex multiplication (which is irrelevant because the entire

equation will be multiplied with it). Taking the inner product with ψC
1 , any term of (B3c)

will behave similarly to

〈Re1KL′
Re[K−1ϕC

(1,1)E1], (K−1)∗ψ1〉L2([−1,1];C7)

= Re1
〈
L′

Re[ϕ(1,1)E1],ψ1
〉
L2([−1,1];C7)

= Re1a. (B7)

In the nonlinear terms, the same conclusion is reached once (B5) is substituted. Thus a, b,
c and d are unchanged in the solvability condition (3.22).

Perhaps a more ‘natural’ inner product for the G formulation is obtained upon replacing
the C7 inner product under the L2 integral with a Frobenius one (equivalent to taking
the Gxy component twice), given that the Riemannian metric reduces to the Frobenius
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Figure 16. Neutrally stable curves (solid lines) for low solvent viscosities β = 0.74 (a) and β = 0.56 (b). The
dashed lines are finite-amplitude curves that show the nonlinear behaviour indicated by the weakly nonlinear
analysis.

inner product at the base of perturbations, I ∈ Pos(3). This change is compensated for
by the adjoint kernel similarly to (B7), leaving the resulting solvability condition (3.22)
unchanged.

Note that the above procedure in (B5) can be continued up to arbitrary order, thereby
making generalized weakly nonlinear theories independent of the chosen formulation as
well.

The G formulation does make a difference, however, in scenarios where the novel
perturbation measures are incorporated directly into the analysis. For instance, the use
of (4.7) in the energy analysis of § 4.4 changes proportions in the polymeric energy
balance. Another such example is transient growth analysis, explored recently using the
G formulation in pipe flows (Zhang 2021), which clearly depends on the choice of norm
used in the objective functional.

Appendix C. Results at moderate β

Motivated by recent experimental results (Choueiri et al. 2021; Schnapp & Steinberg 2021)
at higher polymer concentrations, we discuss briefly the impact of reducing β on both the
linear instability and the predictions of our weakly nonlinear analysis. We consider two
solvent viscosities, β = 0.74 and β = 0.56, which match the values obtained in Schnapp
& Steinberg (2021) and Choueiri et al. (2021), respectively (note that the latter study was
done in a pipe, precluding any direct comparison here). Neutral curves and the weakly
nonlinear results are reported in figure 16 for both Oldroyd-B fluids and FENE-P fluid
with relatively high Lmax. The reduction in β noticeably shrinks the region of instability in
the Wi–Re plane, notably bending the lower part of the curve – which connects to Re = 0
at high β – upwards. Moreover, in contrast to the dilute (β 	 0.9) results in the bulk of
this paper, the introduction of finite extensibility has a uniformly stabilizing effect. This
behaviour is perhaps more typical of the more realistic polymer model; in many cases the
reduction in the base-state normal stress tends to suppress more ‘interesting’ Oldroyd-B
results (e.g. see the linear analyses in Ray & Zaki 2014; Page & Zaki 2015).

In addition, the weakly nonlinear results (dashed lines in figure 16) indicate almost
uniformly supercritical behaviour around the neutral curve (note the small exception at
high Wi for β = 0.74 and Lmax = 250). This finding should be contrasted to the recent
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experimental results at extreme Wi 	 100 of Schnapp & Steinberg (2021), who have
observed finite-amplitude travelling waves at very low Re at β = 0.74, and motivates
further study via branch continuation of exactly where nonlinear travelling waves are
predicted to exist in the parameter space.
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