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Abstract
Statistical inference on graphs often proceeds via spectral methods involving low-dimensional embed-
dings of matrix-valued graph representations such as the graph Laplacian or adjacency matrix. In this
paper, we analyze the asymptotic information-theoretic relative performance of Laplacian spectral embed-
ding and adjacency spectral embedding for block assignment recovery in stochastic blockmodel graphs by
way of Chernoff information. We investigate the relationship between spectral embedding performance
and underlying network structure (e.g., homogeneity, affinity, core-periphery, and (un)balancedness) via a
comprehensive treatment of the two-block stochastic blockmodel and the class of K-blockmodels exhibit-
ing homogeneous balanced affinity structure. Our findings support the claim that, for a particular notion
of sparsity, loosely speaking, “Laplacian spectral embedding favors relatively sparse graphs, whereas adja-
cency spectral embedding favors not-too-sparse graphs.” We also provide evidence in support of the claim
that “adjacency spectral embedding favors core-periphery network structure.”

Keywords: stochastic blockmodel; Laplacian matrix, adjacency matrix, spectral embedding, network structure, core-
periphery, Chernoff information

1. Preface
The stochastic blockmodel (SBM) (Holland et al., 1983) is a simple yet ubiquitous network model
capable of reflecting community structure that has been widely studied via spectral methods in
mathematics, statistics, physics, and engineering disciplines. Each vertex in an n-vertex K-block
SBM graph belongs to one of K blocks (communities), and the probability that any two vertices
share an edge depends exclusively on the vertices’ block assignments (memberships).

This paper provides a detailed comparison of two popular spectral embedding procedures by
synthesizing recent advances in random graph limit theory. We undertake an extensive inves-
tigation of network structure for SBM graphs by considering sub-models exhibiting various
functional relationships, symmetries, and geometric properties within the inherent parameter
space consisting of block membership probabilities and block edge probabilities. We also provide
a collection of figures depicting relative spectral embedding performance as a function of the
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SBM parameter space for a range of sub-models exhibiting different forms of network structure,
specifically homogeneous community structure, affinity structure, core-periphery structure, and
(un)balanced block sizes. The remainder of this paper is organized as follows.

• Section 2 introduces the formal setting considered in this paper and contextualizes this work
with respect to the existing statistical network analysis literature.

• Section 3 establishes notation, presents the generalized random dot product graph (GRDPG)
model (of which the SBM is a special case), defines adjacency spectral embedding (ASE) and
Laplacian spectral embedding (LSE), presents the corresponding spectral embedding limit
theorems, and specifies the notion of sparsity considered in this paper.

• Section 4 motivates and formulates a measure of large-sample relative spectral embedding
performance via Chernoff information.

• Section 5 presents a treatment of the two-block SBM and certain K-block SBMs whereby
we elucidate the relationship between spectral embedding performance and network model
structure.

• Section 6 offers further discussion and some concluding remarks.
• Section 7 provides additional details intended to supplement the main body of this paper.

2. Introduction
Formally, we consider the following SBM setting.

Definition 1 (K-block SBM). Let K ≥ 2 be a positive integer and π be a vector in the interior of
the (K − 1)-dimensional unit simplex in R

K. Let B ∈ (0, 1)K×K be a symmetric matrix with distinct
rows. We say (A, τ )∼ SBM(B, π) with scaling factor 0< ρn ≤ 1 provided the following conditions
hold. Firstly, τ ≡ (τ1, . . . , τn)�, where τi are independent and identically distributed (i.i.d.) random
variables with P[τi = k]= πk. Then, A ∈ {0, 1}n×n denotes a symmetric (adjacency) matrix such
that, conditional on τ , for all i≤ j, the entries Aij are independent Bernoulli random variables with
E[Aij]= ρnBτi,τj . If only A is observed, then we write A∼ SBM(B, π).1 �

The SBM is an example of an inhomogeneous Erdős–Rényi random graph model (Bollobás
et al., 2007) and reduces to the classical Erdős–Rényi model (Erdős & Rényi, 1959) in the degen-
erate case when all the entries of B are identical. The SBM enjoys an extensive body of literature
focused on spectral methods (von Luxburg, 2007) for statistical estimation, inference, and com-
munity detection (Fishkind et al., 2013; McSherry, 2001; Lei & Rinaldo, 2015; Rohe et al., 2011;
Sussman et al., 2014; Sarkar & Bickel, 2015). Considerable effort has also been devoted to the
information-theoretic and computational investigation of the SBM as a result of interest in
the community detection problem; for an overview, see Abbe (2018). Popular variants of the
SBM include the mixed-membership SBM (Airoldi et al., 2008) and the degree-corrected SBM
(Karrer & Newman, 2011).

Within the statistics literature, substantial attention has been paid to the class of K-block SBMs
with positive semidefinite block edge probability matrices B. This is due in part to the exten-
sive study of the RDPG model (Nickel, 2006; Young & Scheinerman, 2007; Athreya et al., 2018),
a latent position random graph model (Hoff et al., 2002) which includes positive semidefinite
SBMs as a special case. Notably, it was recently shown that for the RDPG model, both LSE (see
Definition 3) and ASE (see Definition 3) behave approximately as random samples from Gaussian
mixture models (Athreya et al., 2016; Tang & Priebe, 2018). In tandem with these limit results,
the concept of Chernoff information (Chernoff, 1952) was employed in Tang and Priebe (2018) to
demonstrate that neither LSE nor ASE dominates the other for subsequent inference as a spectral
embedding method when the underlying inference task is to recover vertices’ latent block assign-
ments. In doing so, the results in Tang and Priebe (2018) clarify and complete the groundbreaking
work in Sarkar and Bickel (2015) on comparing spectral clusterings for certain SBM graphs.
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Tang and Priebe leave open the problem of comprehensively investigating Chernoff informa-
tion as a measure of relative spectral embedding performance for SBM graphs. Moreover, they do
not investigate how relative spectral embedding performance corresponds to underlying network
model structure. This is understandable, since the positive semidefinite restriction on B limits the
possible network structure that can be investigated under the RDPG model.

More recently, the limit theory in Tang and Priebe (2018) was extended to hold for all SBMs
within the more flexible framework of the generalized RDPG (GRDPG) model (Rubin-Delanchy
et al., 2017). This advancement nowmakes it possible to conduct amore comprehensive Chernoff-
based analysis, and that is precisely the aim of this paper. We set forth to formulate and analyze a
criterion based on Chernoff information for quantifying relative spectral embedding performance
which we then further consider in conjunction with underlying network model structure. The
investigation carried out in this paper is, to the best of our knowledge, among the first of its kind
in the study of statistical network analysis and random graph inference.

This paper focuses on the following two models which have garnered widespread interest
[e.g., see Abbe (2018) and the references therein].

(1) The two-block SBM with B= [ a b
b c
]
and π = (π1, 1− π1)�, where a, b, c, π1 ∈ (0, 1);

(2) The K ≥ 2 block SBM exhibiting homogeneous balanced affinity structure, that is, Bij = a
for all i= j, Bij = b for all i 	= j, 0< b< a< 1, and π = ( 1K , . . . , 1

K
)� ∈R

K .

Using the concept of Chernoff information (Section 4), we obtain an information-theoretic sum-
mary characteristic ρ� ≡ ρ�(B, π) such that the cases ρ� > 1, ρ� < 1, and ρ� = 1 correspond to the
preference of spectral embedding procedure based on approximate large-sample relative perfor-
mance, summarized as ASE > LSE, ASE < LSE, and ASE = LSE, respectively. The above models’
low-dimensional parameter spaces facilitate visualizing and analyzing the relationship between
network structure [i.e., SBM(B, π)] and embedding performance [i.e., ρ�(B, π)].

This paper considers the task of performing inference on a single large graph. As such, we
interpret the notion of sparsity in reference to the magnitudes of probability parameters, namely
the magnitudes of the entries of B. This notion of sparsity corresponds to the interpretation and
intuition of a practitioner wanting to do statistics with an observed graph. We shall, with this
understanding in mind, subsequently demonstrate that LSE is preferred as an embedding method
in relatively sparse regimes, whereas ASE is preferred as an embedding method in not-too-sparse
regimes.

We remark that the scaling factor ρn in Definition 1, which is included at the onset for the
purpose of general presentation, indexes a sequence of models wherein edge probabilities change
with n. Given our interest in single large graph inference where edge probabilities do not depend
on n, we take ρn to be constant in n, which by rescaling is equivalent to setting ρn ≡ 1. Limit
theorems are known for regimes where ρn → 0 as n→ ∞, but these regimes are uninteresting for
single graph inference from the perspective of relative spectral embedding performance (Tang &
Priebe, 2018).

3. Preliminaries
3.1 Notation
In this paper, all vectors and matrices are real-valued. The symbols := and ≡ are used to
assign definitions and to denote formal equivalence, respectively. Given a symmetric positive
definite n× n matrix M, let 〈·, ·〉M :Rn ×R

n →R denote the real inner product induced by M.
Similarly, define the induced norm as ‖ · ‖M := √〈·, ·〉M. In particular, given the n× n identity
matrix I, denote the standard Euclidean inner product and Euclidean norm by 〈·, ·〉 ≡ 〈·, ·〉I and
‖ · ‖2 := √〈·, ·〉, respectively. In this paper, det(·) and tr(·) denote the matrix determinant and
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matrix trace operator, respectively. Given a diagonal matrix D := diag(d11, d22, . . . , dnn) ∈R
n×n,

|D| denotes the entrywise absolute value ofD.
The vector of all ones in R

n is denoted by 1n, whereas the zero matrix in R
m×n is denoted by

0m,n. We suppress the indices for convenience when the underlying dimensions are understood,
writing instead 1 and 0.

Let N := {1, 2, 3, . . . } denote the set of natural numbers so that [n] := {1, 2, . . . , n} when-
ever n ∈N. For integers d+ ≥ 1, d− ≥ 0, and d := d+ + d−, let Id+

d− := Id+
⊕

(− Id−) ∈R
d×d be

the direct sum (diagonal) matrix consisting of the identity matrix Id+ ∈R
d+×d+ and (− Id−) ∈

R
d−×d− , together with the convention that Id+

0 ≡ Id+ . For example, I11 ≡ diag(1,−1) ∈R
2×2 and

I21 ≡ I2 ⊕ (− I1)≡ diag(1, 1,−1) ∈R
3×3.

For integers n≥ d ≥ 1, the set of all n× d real matrices with orthonormal columns shall
be denoted by On,d. Let O(d+, d−) denote the indefinite orthogonal group with signature
(d+, d−), and let Od+ ≡Od+,d+ ≡O(d+, 0) denote the orthogonal group in R

d+×d+ . In partic-
ular,M ∈O(d+, d−) has the characterizationM�Id+

d−M= Id+
d− . In the case of the orthogonal group,

this characterization reduces to the relationshipM� ≡M−1.

3.2 The GRDPGmodel
A growing corpus has emerged within the statistics literature focused on the development of the-
ory and applications for the RDPGmodel (Nickel, 2006; Young & Scheinerman, 2007). This latent
position random graph model associates to each vertex in a graph an underlying low-dimensional
vector. These vectors may be viewed as encoding structural information or attributes possessed
by their corresponding vertices. In turn, the probability of two vertices sharing an edge is spec-
ified through the standard Euclidean inner (dot) product of the vertices’ latent position vectors.
While simple in concept and design, this model has proven successful in real-world applications
in the areas of neuroscience and social networks (Lyzinski et al., 2017). On the theoretical side, the
RDPG model enjoys some of the first-ever statistical theory for two-sample hypothesis testing on
random graphs, both semiparametric (Tang et al., 2017b) and nonparametric (Tang et al., 2017a).
For more on the RDPG model, see the survey Athreya et al. (2018) and the references therein.

More recently, the GRDPG model was introduced as an extension of the RDPG model that
includes as special cases the mixed membership SBM as well as all (single membership) SBMs
(Rubin-Delanchy et al., 2017). Effort toward developing theory for the GRDPGmodel has already
produced new findings and raised new research questions related to the geometry of spectral
methods, embeddings, and random graph inference. The present paper further contributes to
these efforts.

Definition 2 (The GRDPG model). For integers d+ ≥ 1 and d− ≥ 0 such that d := d+ + d−, let F
be a distribution on a set X ⊂R

d such that 〈Id+
d−x, y〉 ≡ y�Id+

d−x ∈ [0, 1] for all x, y ∈X . We say that
(X,A)∼GRDPG(F) with signature (d+, d−) and scaling factor 0< ρn ≤ 1 if the following hold. Let
X1, . . . , Xn ∼ F be independent and identically distributed random (latent position) vectors with

X := [X1| · · · |Xn]� ∈R
n×d and P := ρnXId

+
d−X� ∈ [0, 1]n×n. (1)

For each i≤ j, the entries Aij of the symmetric adjacency matrix A ∈ {0, 1}n×n are then generated in
a conditionally independent fashion given the latent positions, namely

{Aij|Xi, Xj} ∼ Bernoulli(ρn〈Id+
d−Xi, Xj〉). (2)

In this setting, the conditional probability Pr[A|X] can be computed explicitly as a product of
Bernoulli probabilities. �
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To reiterate, we consider the regime ρn ≡ 1 and therefore suppress dependencies on ρn later
in the text. In addition, moving forward we use adorned versions of the symbol ρ to denote
Chernoff-related quantities unrelated to ρn in a manner consistent with the notation in Tang and
Priebe (2018) (e.g., see Section 4).

When d− = 0, the GRDPG model reduces to the RDPG model. When the distribution F is
a discrete distribution on a finite collection of vectors in R

d, then the GRDPG model coincides
with the SBM, in which case the n× n edge probability matrix P arises as an appropriate dila-
tion of the K ×K block edge probability matrix B. Moreover, given any valid B ∈ (0, 1)K×K as in
Definition 1, there exist integers d+, d−, and a matrixX ∈R

K×d such that B has the (not necessar-
ily unique) factorization B≡XId+

d−X�, which follows since the spectral decomposition of B can be
written as B≡UB�U�

B = (UB|�|1/2)Id+
d−(UB|�|1/2)� :=XId+

d−X�. This demonstrates the ability
of the GRDPG framework in Definition 2 to model all possible SBMs formulated in Definition 1.

Remark 1 (Nonidentifiability in the GRDPG model). The GRDPG model possess two intrinsic
sources of nonidentifiability, summarized as “uniqueness up to indefinite orthogonal trans-
formation” and “uniqueness up to artificial dimension blow-up.” More precisely, for (X,A)∼
GRDPG(F) with signature (d+, d−), the following considerations must be taken into account:

(1) For any Q ∈O(d+, d−), (X,A) d= (Y, B) whenever (Y, B)∼GRDPG(F ◦Q), where F ◦Q
denotes the distribution of the latent position vector Y1 =QX1 and

d= denotes equality in
distribution. This source of nonidentifiability cannot be mitigated. See Equation (2).

(2) There exists a distribution F′ on R
d′ for some d′ > d such that (X,A) d= (Y, B), where

(Y, B)∼GRDPG(F′). This source of nonidentifiability can be avoided by assuming, as we
do in this paper, that F is nondegenerate in the sense that for X1 ∼ F, the second moment
matrix E[X1X�

1 ] ∈R
d×d is full rank.

Definition 3 (ASE and LSE). LetA ∈ {0, 1}n×n be a symmetric adjacency matrix with eigendecom-
position A≡∑n

i=1 λiuiu�
i and with ordered eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn| corresponding to

the collection of orthonormal eigenvectors u1, u2, . . . , un. Given a positive integer d such that d ≤ n,
let SA := diag(λ1, . . . , λd) and UA := [u1| . . . |ud] ∈On,d. The ASE of A into Rd is then defined to
be the n× d matrix X̂ :=UA|SA|1/2. [The matrix X̂ serves as a consistent estimator for X up to
indefinite orthogonal transformation as n→ ∞].

Along similar lines, define the normalized Laplacian of A as

L(A) := (diag(A1n))−1/2A(diag(A1n))−1/2 ∈R
n×n (3)

whose eigendecomposition is given by L(A)≡∑n
i=1 λ̃iũiũ�

i with ordered eigenvalues |λ̃1| ≥ |λ̃2| ≥
· · · ≥ |λ̃n| corresponding to orthonormal eigenvectors ũ1, ũ2, . . . , ũn. Given a positive integer d such
that d ≤ n, let S̃A := diag(λ̃1, . . . , λ̃d) and let ŨA := [ũ1| . . . |ũd] ∈On,d. The LSE of A into R

d is
then defined to be the n× d matrix X̆ := ŨA|S̃A|1/2. [The matrix X̆ serves as a consistent estimator
for the matrix (diag(XId+

d−X�1n))−1/2X up to indefinite orthogonal transformation as n→ ∞]. �

Remark 2 (Consistent estimation and parametrization involving latent positions). The matrices X
and (diag(XId+

d−X�1n))−1/2X, which are one-to-one invertible transformations of each other, may
be viewed as providing different parametrizations of GRDPG graphs. As such, comparing X̂ and X̆
as estimators is rather technical in nature and not immediately straightforward. In order to carry
out such a comparison, we subsequently adopt an information-theoretic approach in which we
consider a particular choice of f -divergence which is both analytically tractable and statistically
interpretable in the current setting.
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For the subsequent purposes of this paper, Theorems 1 and 2 (discussed next) state
slightly weaker formulations of the corresponding limit theorems obtained in Rubin-Delanchy
et al. (2017) for ASE and LSE.

Theorem 1 (ASE limit theorem for GRDPG, adapted (Rubin-Delanchy et al., 2017)). Assume the
d-dimensional GRDPG setting in Definition 2 with ρn ≡ 1. Let X̂ be the ASE into Rd with ith row
denoted by X̂i. Let �(·,�) denote the cumulative distribution function of the centered multivari-
ate normal distribution in R

d with covariance matrix �. Then, with respect to ASE, there exists a
sequence of matrices Q≡Qn ∈O(d+, d−) such that, for any z ∈R

d,

Pr
[√

n
(
QX̂i − Xi

)≤ z
]→ ∫

X
�(z,�(x))dF(x) (4)

as n→ ∞, where for X1 ∼ F,

�(x) := Id
+

d−�−1
E

[
g(x, X1)X1X�

1

]
�−1Id

+
d−

with� :=E[X1X�
1 ] and g(x, X1) := 〈Id+

d−x, X1〉(1− 〈Id+
d−x, X1〉).

Theorem 2 (LSE limit theorem for GRDPG, adapted (Rubin-Delanchy et al., 2017)). Assume the
d-dimensional GRDPG setting in Definition 2 with ρn ≡ 1. Let X̆ be the LSE into R

d with ith row
denoted by X̆i. Let �(·,�) denote the cumulative distribution function of the centered multivari-
ate normal distribution in R

d with covariance matrix �. Then, with respect to LSE, there exists a
sequence of matrices Q̃≡ Q̃n ∈O(d+, d−) such that, for any z ∈R

d,

Pr

[
n

(
Q̃X̆i − Xi√∑

j〈Id+d−Xi,Xj〉

)
≤ z

]
→
∫
X

�(z, �̃(x))dF(x) (5)

as n→ ∞, where for X1 ∼ F and μ :=E[X1],

�̃(x) := Id
+

d−�̃
−1

E

[
g̃(x, X1)

(
X1

〈Id+d−μ,X1〉
− �̃Id+d−x

2〈Id+d−μ,x〉

)(
X1

〈Id+d−μ,X1〉
− �̃Id+d−x

2〈Id+d−μ,x〉

)�]
�̃

−1Id
+

d−

with �̃ :=E

[
〈Id+
d−μ, X1〉−1X1X�

1

]
and g̃(x, X1) :=

[
〈Id+
d−μ, x〉−1〈Id+

d−x, X1〉(1− 〈Id+
d−x, X1〉)

]
.

4. Spectral embedding performance
We desire to compare the large-n sample relative performance of ASE and LSE for subsequent
inference, where the subsequent inference task is naturally taken to be the problem of recovering
latent block assignments. Here, quantifying spectral embedding performance will correspond to
approximating the large-sample optimal error rate for recovering the underlying block assign-
ments following each of the spectral embeddings. Toward this end, we now introduce Chernoff
information and Chernoff divergence as appropriate information-theoretic quantities.

Given independent and identically distributed random vectors Yi arising from one of two abso-
lutely continuous multivariate distributions F1 and F2 on � =R

d with density functions f1 and
f2, respectively, we are interested in testing the simple null hypothesisH0 : F = F1 against the sim-
ple alternative hypothesis HA : F = F2. In this framework, a statistical test T can be viewed as a
sequence of mappings Tm :�m → {1, 2} indexed according to sample sizem such that Tm returns
the value two whenH0 is rejected in favor ofHA and correspondingly returns the value one when
H0 is favored. For each m, the corresponding significance level and type-II error are denoted by
αm and βm, respectively.
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Assume that the prior probability ofH0 being true is given by π ∈ (0, 1). For a given α�
m ∈ (0, 1),

let β�
m ≡ β�

m(α�
m) denote the type-II error associated with the corresponding likelihood ratio test

when the type-I error is at most α�
m. Then, the Bayes risk in deciding betweenH0 andHA givenm

independent random vectors Y1, Y2, . . . , Ym is given by

inf
α�
m∈(0,1)

πα�
m + (1− π)β�

m. (6)

The Bayes risk is intrinsically related to Chernoff information (Chernoff, 1952, 1956), C(F1, F2),
namely

lim
m→∞

1
m

[
inf

α�
m∈(0,1)

log (πα�
m + (1− π)β�

m)
]

= −C(F1, F2) (7)

where

C(F1, F2) := − log
[

inf
t∈(0,1)

∫
Rd

f t1(x)f
1−t
2 (x)dx

]
= sup

t∈(0,1)

[
− log

∫
Rd

f t1(x)f
1−t
2 (x)dx

]
.

In words, the Chernoff information between F1 and F2 is the exponential rate at which the
Bayes risk decreases as m→ ∞. Note that the Chernoff information is independent of the prior
probability π . A version of Equation (7) also holds when considering K ≥ 3 hypothesis with dis-
tributions F1, F2, . . . , FK , thereby introducing the quantity mink	=l C(Fk, Fl) [see, e.g., Tang and
Priebe (2018)].

Chernoff information can be expressed in terms of the Chernoff divergence between distribu-
tions F1 and F2, defined for t ∈ (0, 1) as

Ct(F1, F2)= − log
∫
Rd

f t1(x)f
1−t
2 (x)dx (8)

which yields the relation

C(F1, F2)= sup
t∈(0,1)

Ct(F1, F2). (9)

Chernoff divergence is an example of an f -divergence and as such satisfies the data processing
lemma (Liese & Vajda, 2006) and is invariant with respect to invertible transformations (Devroye
et al., 2013). One could instead use another f -divergence for the purpose of comparing the two
embedding methods, such as the Kullback–Liebler divergence. Our choice is motivated by the
aforementioned relationship with Bayes risk in Equation (7).

In this paper, we explicitly consider multivariate normal distributions as a consequence of
Theorems 1 and 2 when conditioning on the individual underlying latent positions for SBM
graphs. In particular, given F1 =N (μ1,�1), F2 =N (μ2,�2), and t ∈ (0, 1), then for�t := t�1 +
(1− t)�2, the Chernoff information between F1 and F2 is given by

C(F1, F2)= sup
t∈(0,1)

[
t(1−t)

2 (μ2 − μ1)��−1
t (μ2 − μ1)+ 1

2 log
(

det(�t)
det(�1)tdet(�2)1−t

)]

= sup
t∈(0,1)

[
t(1−t)

2 ‖μ2 − μ1‖2�−1
t

+ 1
2 log

(
det(�t)

det(�1)tdet(�2)1−t

)]
.

Let B ∈ (0, 1)K×K and π denote the matrix of block edge probabilities and the vector of block
assignment probabilities for a K-block SBM as before. This corresponds to a special case of the
GRDPG model with signature (d+, d−), d+ + d− = rank(B), and latent positions νk ∈R

rank(B).
For an n-vertex SBM graph with parameters (B, π), the large-sample optimal error rate for
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recovering block assignments when performing ASE can be characterized by the quantity ρA ≡
ρA(B, π , n) defined by

ρA :=min
k	=l

sup
t∈(0,1)

[
nt(1−t)

2 ‖νk − νl‖2�−1
kl (t)

+ 1
2 log

(
det(�kl(t))

det(�k)tdet(�l)1−t

)]
(10)

where �kl(t) := t�k + (1− t)�l for t ∈ (0, 1).
Similarly, for LSE one has ρL ≡ ρL(B, π , n) given by

ρL :=min
k	=l

sup
t∈(0,1)

[
nt(1−t)

2 ‖ν̃k − ν̃l‖2
�̃

−1
kl (t)

+ 1
2 log

(
det(�̃kl(t))

det(�̃k)tdet(�̃l)1−t

)]
(11)

where �̃kl(t) := t�̃k + (1− t)�̃l and ν̃k := νk/(
∑

k′ πk′ 〈Id+
d−νk′ , νk〉)1/2.

To assist in the comparison and interpretation of the quantities ρA and ρL (namely for ν̃k), we
are assuming throughout this paper that nk = nπk. The factor n in Equations (10) and (11) arises
from the implicit consideration of the n-sample precisionmatrices (�kl(t)/n)−1 and (�̃kl(t)/n)−1.
The logarithmic terms in Equations (10) and (11) are dominated by the preceding terms for
large n, collectively motivating the following large-sample measure of relative performance ρ�.
In particular, as n→ ∞, it holds that

ρA
ρL

≡ ρA(n)
ρL(n)

→ ρ� ≡ ρ�
A

ρ�
L
:=

min
k	=l

sup
t∈(0,1)

[
t(1− t)‖νk − νl‖2

�−1
kl (t)

]

min
k	=l

sup
t∈(0,1)

[
t(1− t)‖ν̃k − ν̃l‖2

�̃
−1
kl (t)

] . (12)

Here we have suppressed the functional dependence on the underlyingmodel parametersB andπ .
For large n, observe that as ρ�

A increases, ρA also increases, and therefore the large-sample optimal
error rate corresponding to ASE decreases in light of Equation (7) and its generalization. Similarly,
large values of ρ�

L correspond to good theoretical performance of LSE. Thus, if ρ� > 1, then ASE is
to be preferred to LSE, whereas if ρ� < 1, then LSE is to be preferred to ASE. The case when ρ� = 1
indicates that neither ASE nor LSE is superior for the given parameters B and π . To reiterate, we
summarize these preferences as ASE > LSE, ASE < LSE, and ASE = LSE, respectively.

In what follows, we fixate on the asymptotic quantity ρ�. For the two-block SBM and certain
K-block SBMs exhibiting symmetry, Equation (12) reduces to the simpler form

ρ� =
sup
t∈(0,1)

[
t(1− t)‖ν1 − ν2‖2

�−1
1,2 (t)

]

sup
t∈(0,1)

[
t(1− t)‖ν̃1 − ν̃2‖2

�̃
−1
1,2 (t)

] (13)

for canonically specified latent positions ν1 and ν2. In some cases, it is possible to concisely obtain
analytic expressions (in t) for both the numerator and denominator. In other cases, this is not
possible. A related challenge with respect to Equation (12) is analytically inverting the interpolated
block conditional covariance matrices �kl(t) and �̃kl(t). Section 7 provides additional technical
details and discussion addressing these issues.

5. Elucidating network structure
5.1 The two-block SBM
Consider the set of two-block SBMs with parameters π ≡ (π1, 1− π1)� and B ∈ B :={
B=

[
a b
b c

]
: a, b, c ∈ (0, 1)

}
. When π = ( 12 ,

1
2 )

�, then a≥ c without loss of generality by
symmetry.
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Table 1. Summary of embedding
performance in Section 5.1.1

ρ� = 1⇐⇒ψa,b = 0 ; (ASE = LSE)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ� > 1⇐⇒ψa,b > 0 ; (ASE > LSE)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ� < 1⇐⇒ψa,b < 0 ; (ASE < LSE)

In general, for any fixed choice of π , the class of models B can be partitioned according to
matrix rank, namely

B ≡ B1
⊔

B2 := {B : rank(B)= 1; a, b, c ∈ (0, 1)}
⊔

{B : rank(B)= 2; a, b, c ∈ (0, 1)}.
The collection of sub-models B1 further decomposes into the disjoint union of the Erdős–
Rényi model with homogeneous edge probability a= b= c ∈ (0, 1) and its relative complement
in B1 satisfying the determinant constraint det(B)≡ ac− b2 = 0. These partial sub-models can
be viewed as one- and two-dimensional (parameter) regions in the open unit cube, (0, 1)3,
respectively.

Similarly, the collection of sub-models B2 further decomposes into the disjoint union of
PD2 ∩ B2 and IND2 ∩ B2, where PD2 denotes the set of positive definite matrices in R

2×2 and
IND2 := {B ∈ B2 : ∃X ∈R

2×2, rank(X)= 2, B=XI11X�}. Here only I20 ≡ I2 and I11 are necessary
for computing edge probabilities via inner products of the latent positions. Both of these partial
sub-models can be viewed as three-dimensional (parameter) regions in (0, 1)3.

Remark 3 (Latent position parametrization). Onemight ask whether or not for our purposes there
exists a “best” latent position representation for some or even every SBM. To this end, and more
generally, for any K ≥ 2 and M ∈ PDK ⊂R

K×K , there exists a unique lower-triangular matrix
L ∈R

K×K with positive diagonal entries such that M= LL� by the Cholesky matrix decompo-
sition. This yields a canonical choice for the matrix of latent positions X when B is positive
definite. In particular, for B ∈ PD2, then B=XI2X� with X :=

[ √
a 0

b/
√
a

√
ac−b2/

√
a

]
. In contrast,

for B ∈ IND2, then B=XI11X� with X :=
[ √

a 0
b/

√
a

√
b2−ac/

√
a

]
, keeping in mind that in this case

b2 − ac> 0. The latter factorization may be viewed informally as an indefinite Cholesky decom-
position under I11. For the collection of rank one sub-modelsB1, the latent positions ν1 and ν2 are
simply taken to be real-valued scalars.

5.1.1 Homogeneous balanced network structure
We refer to the two-block SBM sub-model with B= [ a b

b a
]
and π = ( 12 ,

1
2 )

� as the homogeneous
balanced two-block SBM. The cases when a> b, a< b, and a= b correspond to the cases when
B is positive definite, indefinite, and reduces to Erdős–Rényi, respectively. The positive definite
parameter regime has the network structure interpretation of being assortative in the sense that
the within-block edge probability a is larger than the between-block edge probability b, consis-
tent with the affinity-based notion of community structure. In contrast, the indefinite parameter
regime has the network structure interpretation of being disassortative in the sense that between-
block edge density exceeds within-block edge density, consistent with the “opposites attract”
notion of community structure.

For this SBM sub-model, ρ� can be simplified analytically (see Section 7 for additional details)
and can be expressed as a translation with respect to the value one, namely

ρ� ≡ ρ�
a,b = 1+ (a− b)2(3a(a− 1)+ 3b(b− 1)+ 8ab)

4(a+ b)2(a(1− a)+ b(1− b))
:= 1+ ca,b ×ψa,b (14)

where ψa,b := 3a(a− 1)+ 3b(b− 1)+ 8ab and ca,b > 0. By recognizing that ψa,b functions as a
discriminating term, it is straightforward to read off the relative performance of ASE and LSE
according to Table 1.
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Figure 1. (Color online) The ratio ρ� for the homogeneous
balanced sub-model in Section 5.1.1. The empty diagonal
depicts the Erdős–Rényimodel singularity at a= b.

Further investigation of Equation (14) leads to the observation that ASE < LSE for all val-
ues 0< b< a≤ 3

7 , thereby yielding a parameter region for which LSE dominates ASE. On the
other hand, for any fixed b ∈ (0, 1) there exist values a1 < a2 such that ASE < LSE when a= a1,
whereas ASE > LSE when a= a2. Figure 1 demonstrates that for homogeneous balanced network
structure, LSE is preferred to ASE when the entries in B are sufficiently small, whereas conversely
ASE is preferred to LSE when the entries in B are not too small.

Remark 4 (Model spectrum and ASE dominance I). In the current setting, the largest eigenvalue
of B is given by λmax(B)= a+ b, hence by Equation (14), λmax(B)> 1 implies ASE > LSE. This
observation amounts to a network structure-based (i.e., B-based) spectral sufficient condition for
determining when ASE is preferred to LSE.

Remark 5 (A balanced one-dimensional SBM restricted sub-model). When b= 1− a, the homoge-
neous balanced sub-model further reduces to a one-dimensional parameter space setting in which
ρ� simplifies to the form

ρ� = 1+ 1
4 (2a− 1)2. (15)

Here ρ� ≥ 1, demonstrating that ASE uniformly dominates LSE for this restricted sub-model.
Additionally, it is potentially of interest to note that in this setting the marginal covariance matri-
ces from Theorem 1 for ASE coincide for each block. In contrast, the same behavior is not true for
LSE.

5.1.2 Core-periphery network structure

We refer to the two-block SBM sub-model with B=
[
a b
b b

]
and π = (π1, 1− π1)� as the core-

periphery two-block SBM. We explicitly consider the balanced (block size) regime in which π =
( 12 ,

1
2 )

� and an unbalanced regime in which π = ( 14 ,
3
4 )

�. Here, the cases a> b, a< b, and a= b
correspond to the cases when B is positive definite, indefinite, and reduces to the Erdős–Rényi
model, respectively.

For this sub-model, the ratio ρ� is not analytically tractable in general. That is to say, simple
closed-form solutions do not simultaneously exist for the numerator and denominator in the def-
inition of ρ�. As such, Figure 2 is obtained numerically by evaluating ρ� on a grid of points in
(0, 1)2 followed by smoothing.

For a> b, graphs generated from this SBM sub-model exhibit the popular interpretation of
core-periphery structure in which vertices forming a dense core are attached to surrounding
periphery vertices with comparatively smaller edge connectivity. Provided the core is sufficiently
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Figure 2. (Color online) The ratio ρ� for the core-periphery sub-model in Section 5.1.2. The empty diagonal depicts the
Erdős–Rényimodel singularity at a= b.

dense, namely for a> 1
4 in the balanced regime and a> 1

2 in the unbalanced regime, Figure 2
demonstrates that ASE > LSE. Conversely, ASE < LSE uniformly in 0< b< a for small enough
values of a in both the balanced and unbalanced regime.

In contrast, when a< b, the sub-model produces graphs whose network structure is inter-
preted as having a comparatively sparse induced subgraph which is strongly connected to all
vertices in the graph but for which the subgraph vertices exhibit comparatively weaker connectiv-
ity. Alternatively, the second block may itself be viewed as a dense core which is simultaneously
densely connected to all vertices in the graph. Figure 2 illustrates that for the balanced regime, LSE
is preferred for sparser induced subgraphs. Put differently, for large enough dense core with dense
periphery, then ASE is the preferable spectral embedding procedure. Observe that LSE is preferred
to ASE in only a relatively small region corresponding approximately to the triangular region
where 0< b< 1− 4a, which as a subset of the unit square has area 1

8 . Similar behavior holds for
the unbalanced regime for approximately the (enlarged) triangular region of the parameter space
where 0< b< 1− 2a, which as a subset of the unit square has area 1

4 .
Figure 2 shows that as π1 decreases from 1

2 to 1
4 , LSE is favored in a growing region of the

parameter space, albeit still in a smaller region than that for which ASE is preferred (numerically
verified, not shown). Together with the observation that LSE dominates in the lower-left corner
of the plots in Figure 2, where a and b have small magnitude, we are led to say in summary that
LSE favors relatively sparse core-periphery network structure. To reiterate, sparsity is interpreted
with respect to the parameters a and b, keeping in mind the underlying simplifying assumption
that nk = nπk for k= 1, 2.

Remark 6 (Model spectrum and ASE dominance II). For 0< b< a< 1, the largest eigenvalue
of B is given by λmax(B)= 1

2
(
a+ b+ √

a2 − 2ab+ 5b2
)
. Numerical evaluation (not shown)

demonstrates that λmax(B)> 1
2 implies ASE > LSE. Along the same lines as the discussion in

Section 5.1.1, this observation provides a network structure (i.e., B-based) spectral sufficient
condition for this sub-model for determining the relative embedding performance ASE > LSE.

5.1.3 Two-block rank one sub-model
The sub-model for which B= [ a b

b c
]
with a, b, c ∈ (0, 1) and det(B)= 0 can be re-parameterized

according to the assignments a �→ p2 and c �→ q2, yielding B=
[
p2 pq
pq q2

]
with p, q ∈ (0, 1). Here
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(a) (b)
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Figure 3. (Color online) The ratio ρ� for the two-block rank one sub-model in Section 5.1.3. The empty diagonal depicts the
Erdős–Rényimodel singularity at p= q.

rank(B)= 1 and B is positive semidefinite, corresponding to the one-dimensional RDPG model
with latent positions given by the scalars p and q with associated probabilities π1 and π2,
respectively. Explicit computation yields the expression

ρ� =
(√p+ √q

)2(
π1p2 + π2q2

)2(√
π1p(1− p2)+ π2q(1− pq)+√π1p(1− pq)+ π2q(1− q2)

)2
4(π1p+ π2q)2

(√
π1p4(1− p2)+ π2pq3(1− pq)+√π1p3q(1− pq)+ π2q4(1− q2)

)2 (16)

whereby ρ� is given as an explicit, closed-form function of the parameter values p, q, and π1, with
π2 = 1− π1. The simplicity of this sub-model together with its analytic tractability with respect
to both B and π makes it particularly amenable to study for the purpose of elucidating network
structure. In the following, consideration of this sub-model further illustrates the relationship
between sparsity (based on edge probabilities) and relative embedding performance.

Figure 3 demonstrates how LSE favors sparse graphs in the sense of the edge probabilities, p and
q, as well as how relative embedding performance changes in light of (un)balanced block sizes,
reflected by π1. Here the underlying Bmatrix is always positive semidefinite, and both cases p> q
and p< q correspond to a modified notion of core-periphery structure. In particular, when p> q,
then p2 > pq> q2, yielding a hierarchy of core-periphery structure when passing from vertices
that are both in block one to vertices that are in different blocks and finally to vertices that are
both in block two. Note the similar behavior in the bottom-right triangular regions in Figure 3(a)
and (b) and in the same bottom-right triangular region in Figure 2.

Remark 7 (The two-block polynomial p SBM restricted sub-model). Consider the restricted sub-
model in which B=

[
p2 pγ+1

pγ+1 p2γ

]
, for γ > 1 and π1 ∈ (0, 1). Provided γ � 1 and π1 is fixed, then

ρ� in Equation (16) satisfies the approximate behavior

ρ� ≈
(
1+

√
1−p2

)2
4(1−p2) . (17)

The above approximation exceeds the value one since 1>
√
1− p2 for all p ∈ (0, 1) and is simul-

taneously agnostic with respect to π1. Moreover, for large values of γ , the block edge probability
matrix is approximately of the form B≈

[
p1 p2
p2 p3

]
with p1 � p2 ≈ p3, where p2 and p3 are very

small. This restricted sub-model can therefore be viewed as exhibiting an extremal version
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Figure 4. (Color online) The ratio ρ� for p, π1 ∈ (0, 1) when q= pγ , γ ∈ {2, 4, 6} in Section 5.1.3.

(a) (b)

p p

Figure 5. (Color online) The ratio ρ� for p ∈ (0, 1), γ ∈ [2, 7] when q= pγ in Section 5.1.3.

of core-periphery structure corresponding to the extremal regions in Figure 2, where ASE is
preferred.

In Figure 4, the progression from left to right corresponds to tending toward the approximation
presented in Equation (17). For larger values of γ when q= pγ (not shown), the region where
ASE > LSE continues to expand. We do not discuss or pursue the taking of limits within the
parameter space(s) in light of degenerate boundary value behavior and in order to avoid possible
misinterpretation.

Figure 5 offers a different perspective in which γ is allowed to vary continuously for both the
balanced and the unbalanced regime. As in Figure 3, Figure 5 demonstrates that LSE is preferred
for network structure wherein the block with comparatively higher edge probability exhibits
smaller block membership size.

5.1.4 Full-rank two-block SBMs
This section presents a macroscopic view of full-rank two-block SBMs with B= [ a b

b c
]
, (a, b, c) ∈

(0, 1)3, for the regimes π = ( 12 ,
1
2 )

� and π = ( 14 ,
3
4 )

�. The parameter space is partitioned via
the latent space geometry of B, namely according to whether B is either positive definite or
indefinite.
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Figure 6. (Color online) The parameter region where ASE < LSE for full rank B in Section 5.1.4. The plots depict numerical
evaluations of ρ� for a, b, c ∈ [0.01, 0.99] with step size 0.01. The color scale corresponds to b values for the plotted triples
(a, b, c).

Figure 6(a) and (b) each present a three-dimensional view of the parameter space region where
ASE< LSE. The separate positive definite and indefinite parameter regions exhibiting ASE< LSE
can be seen extending from faces of the unit cube. Specifically, the conic-like region rising up from
the b= 0 face corresponds to B for which B ∈ PD2, whereas the hyperbolic-like regions extending
from the a= 0 and c= 0 faces correspond to B for which B ∈ IND2.

For the balanced case reflected in Figure 6(a), let a≥ c without loss of generality by symmetry,
and hence ρ� is symmetric about the plane defined by a= c. For the unbalanced case shown in
Figure 6(b), symmetry no longer holds, and geometric warping behavior can be seen with respect
to the a= c plane. Figure 7(a) and (b) provides a bird’s-eye view of the three-dimensional pos-
itive definite parameter region from the top-down vantage point of b= 1. The latter provides
another view of the warping phenomenon observed for π = ( 14 ,

3
4 )

� that holds in general for all
unbalanced regimes.

In both block size regimes depicted in Figure 6, the colored parameter region occupies less than
one fourth of the unit cube volumetrically, thereby quantitatively providing a coarse overall sense
in which ASE is to be preferred to LSE for numerous two-block SBMs.

5.2 The K-blockmodel with homogeneous balanced affinity network structure
This section generalizes the analysis in Section 5.1.1 to the setting of K-block homogeneous bal-
anced affinity SBMs, where Bij = a for all i= j, Bij = b for all i 	= j, 0< b< a< 1, and πi = 1

K for
1≤ i≤K.

Theorem 3. For K-block homogeneous balanced affinity SBMs as in Section 5.2, the ratio ρ� in
Equation (12) can be expressed analytically as

ρ� = 1+ (a−b)2(3a(a−1)+3b(b−1)(K−1)+4abK)
4(a+(K−1)b)2(a(1−a)+b(1−b)) := 1+ ca,b,K ×ψa,b,K (18)

where ψa,b,K := 3a(a− 1)+ 3b(b− 1)(K − 1)+ 4abK and ca,b,K > 0.
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Figure 7. A top-down projected view of the positive definite region where ASE< LSE in Section 5.1.4, with a, b, and c corre-
sponding to length, depth, and width, respectively. The plots depict numerical evaluations of ρ� for a, b, c ∈ [0.01, 0.99] with
step size 0.01.

As in Table 1, the function ψa,b,K is the discriminating term that explicitly characterizes the
relative performance of ASE and LSE.

Hereψa,b,K satisfies (4ab− 3(a− b2))K <ψa,b,K < (4ab)K, and there are explicit constants c(1)a,b
and c(2)a,b depending only on a and b such that 1

K c
(1)
a,b < ca,b,K ×ψa,b,K < 1

K c
(2)
a,b. Viewing a and b

as fixed, we can summarize the above behavior using the asymptotic notation ca,b,K ×ψa,b,K =
a,b( 1K ). Equation (18) can therefore be summarized in terms of K as

ρ� = 1+ a,b
( 1
K
)

(19)
demonstrating that ρ� → 1 as K → ∞. In words, for the class of SBMs under consideration, ASE
and LSE in a sense have asymptotically (in K) equivalent embedding performance (via ρ�). This
amounts to a statement concerning a sequence of models with a necessarily growing number of
vertices in order to ensure the underlying assumption of equal block sizes.

Rewriting the level-set ψa,b,K = 0, which holds if and only if ρ� = 1, yields the equation( 1−a
b
) 1
K +

(
1−b
a

)
K−1
K = 4

3 (20)

together with the observation that ASE > LSE (resp., ASE < LSE) when the left-hand side of
Equation (20) is less than (resp., greater than) the value 4

3 . The above equation, perhaps interest-
ingly, depicts a convex combination (in terms of K) involving the variables 1−a

b and 1−b
a , where

the value 4
3 is interpretable as a Chernoff-based information theoretic threshold.

The observation that ψa,b,K > (4ab− 3(a− b2))K in the context of Equation (18) implies a
sufficient condition for determining a parameter region in which ASE > LSE uniformly in K.
Specifically, the condition (4ab− 3(a− b2))> 0, equivalently written as a−b2

ab < 4
3 , ensures that

ψa,b,K > 0 and hence that ρ� > 1.

Remark 8 (Detectability and phase transitions in random graph models). With respect to the
random graph literature, the setting considered in this paper corresponds to a strong consis-
tency regime (i.e., exact recovery) in which the block membership of each individual vertex
is recovered almost surely for graphs on n vertices with n→ ∞. For different regimes where
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edge probabilities are allowed to decrease as a function of n, numerous deep and fascinating
detectability and phase transition phenomena are known, some of which also employ Chernoff
divergence and related considerations (Abbe, 2018). In the context of homogeneous balanced
affinity SBMs, the signal-to-noise ratio (SNR) := (a−b)2

K(a+(K−1)b) has been shown to function as an
important information-theoretic quantity. Here too the SNR appears, albeit with respect to ca,b,K ,
in the sense that

ca,b,K := (a−b)2
4(a+(K−1)b)2(a(1−a)+b(1−b)) ≡

(
(a−b)2

K(a+(K−1)b)

)
c̃a,b,K = SNR× c̃a,b,K

for some constant c̃a,b,K > 0. Perhaps more interestingly,

ca,b,K ≡ 1
4

(
λmin(B(K))
λmax(B(K))

)2 ( 1
σ 2(B11(K))+σ 2(B22(K))

)
where σ 2(Bij(K)) is the edge variance corresponding to a pair of vertices in blocks i and j, together
with eigenvalues λmin(B(K))= a− b and λmax(B(K))= a+ (K − 1)b. The constant factor 1

4 could
just as easily be absorbed by redefiningψa,b,K . It may well prove fruitful to further investigate these
observations in light of existing results in the literature.

6. Discussion and conclusions
Loosely speaking, LSE may be viewed as a degree-normalized version of ASE in light of
Equation (3). As such, the analysis presented in this paper seeks to understand normalization in
the context of spectral methods (Sarkar & Bickel, 2015; von Luxburg, 2007). Moreover, our work
together with Rubin-Delanchy et al. (2017) addresses network models exhibiting indefinite geom-
etry, an area that has received comparatively limited attention in the statistical network analysis
literature. The ability of indefinite modeling considerations to reflect widely observed disassorta-
tive community structure is encouraging and suggests future research activity in this and related
directions.

Core-periphery network structure, broadly construed, is considered to be ubiquitous in real-
world networks (Csermely et al., 2013; Holme, 2005; Leskovec et al., 2009), though it must be
emphasized that usage of the term core-periphery is at times ambiguous and inconsistent in
the literature. Our usage is similar to Jeub et al. (2015) and Zhang et al. (2015) wherein core-
periphery structure is taken to mean that the edge probabilities in the SBM B matrix satisfy the
relationship a> b> c. More specifically, in Section 5.1.2, we first use core-periphery to describe the
setting where b= c. This formulation, which conveniently enables two-dimensional visualizations
for fixed block membership vectors, also captures different versions of idealized core-periphery
structure as proposed in Borgatti and Everett (2000), particularly when 1≈ a> b≈ 0 and when
0≈ a< b≈ 1. Subsequently in Section 5.1.3, we investigate restricted rank SBM sub-models
and pay particular attention to parameter regions of the abovementioned core-periphery form
a> b> c. At a more macroscopic level, Figure 6 illustrates that ASE is most often preferred to LSE
in this parameter region, provided the probabilities (parameters) a, b, and c are not too small.With
this understanding and the ability of the SBM to serve as a building block for hierarchically model-
ing complex network structure, our findings pertaining to spectral embedding for core-periphery
structure may be of particular interest.

The approach adopted in this paper is asymptotic and theoretical in nature. Our findings mesh
with the contemporary, related work in Priebe et al. (2019), which carries over the ideas discussed
here to real-data connectome analysis and empirically driven simulation examples. In terms of
future work, it would be interesting to conduct Chernoff-based analysis for other matrix-valued
graph representations. Another valuable future contribution would be to obtain precise finite
sample results for describing spectral embedding performance.
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To reiterate, this paper examines the information-theoretic relationship between the perfor-
mance of two competing, widely popular graph embeddings and subsequent vertex clustering
with an eye toward underlying network model structure. The findings presented in Section 5 sup-
port the claim that, for sparsity interpreted as B having entries that are small, loosely speaking,
“LSE favors relatively sparse graphs, whereas ASE favors not-too-sparse graphs.” Moreover, our
results provide evidence in support of the claim that “ASE favors certain core-periphery network
structure.” Of course, caution must be exercised when making such general assertions, since the
findings in this paper demonstrate intricate and nuanced functional relationships linking spectral
embedding performance to network model structure. Nevertheless, we believe such summarative
statements are both faithful and useful for conveying a high-level, macroscopic overview of the
investigation presented in this work.

7. Supplementary material
7.1 Latent position geometry
All SBMs in Definition 1 can be formulated as instantiations of GRDPGmodels possessing inher-
ent latent position (vector) structure. Earlier observations for the two-block SBM in Section 5 are
summarized in the following table, for which the implicit underlying vector π may be viewed as
an additional parameter space dimension that weights the latent positions ν1 and ν2 by π1 and π2,
respectively.

Model geometry: Canonical latent positions:

Positive definite B(a, b, c) ν1 = (√a, 0)�, ν2 = (b/√a,√ac− b2/
√
a
)� inR2

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Indefinite B(a, b, c) ν1 = (√a, 0)�, ν2 = (b/√a,√b2 − ac/
√
a
)� inR2

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rank one B
(
p2, pq, q2

)
ν1 = p, ν2 = q inR

For the homogeneous balanced affinity two-block network structure investigated in
Section 5.1.1, the latent position geometry can be equivalently reparameterized as two vectors on
the circle of radius r := √

a separated by the angle θ := arccos (b/a). This behavior generalizes to
the homogeneous balanced affinity K-blockmodel. More specifically, when B≡ B(K) ∈ (0, 1)K×K

has value a on the main diagonal and value b on the off-diagonal with 0< b< a< 1, we can write
B=XX� via the Cholesky decomposition, with X= [x1|x2| . . . |xK]�. For K = 2, 3, 4, the matrix
X(K) is given by

X(2) :=
[ √

a 0

b√
a

√
(a−b)(a+b)

a

]
(21)

X(3) :=

⎡
⎢⎢⎣

√
a 0 0

b√
a

√
(a−b)(a+b)

a 0

b√
a

√
(a−b)(a+b)

a
b

a+b

√
(a−b)(a+2b)

a+b

⎤
⎥⎥⎦ (22)

X(4) :=

⎡
⎢⎢⎢⎢⎢⎣

√
a 0 0 0

b√
a

√
(a−b)(a+b)

a 0 0

b√
a

√
(a−b)(a+b)

a
b

a+b

√
(a−b)(a+2b)

a+b 0

b√
a

√
(a−b)(a+b)

a
b

a+b

√
(a−b)(a+2b)

a+b
b

a+2b

√
(a−b)(a+3b)

a+2b

⎤
⎥⎥⎥⎥⎥⎦ (23)
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By induction, for K ≥ 3, the entries of the vector xK are given by

xK =
(
x(1)K−1, x

(2)
K−1, . . . , x

(K−2)
K−1 ,

(
b

a+(K−2)b

)
x(K−1)
K−1 ,

√
(a−b)(a+(K−1)b)

a+(K−2)b

)�
∈R

K . (24)

Only IK0 and I1K−1 are necessary with respect to combining possible inner products on account
of the sign-flip involving a− b. Beginning with the second row in each of the Xmatrices, the first
column of each matrix can be written in the more illuminating form

√
ab
a .

For this specific K-blockmodel, symmetry with respect to equally spaced vectors on the√
a-radius sphere in R

K together with block membership balancedness translates into shared
covariance structure such that Equation (12) reduces to Equation (13). The first two rows of X
are ideal candidates to serve as canonical latent positions for subsequent computation, since these
vectors are maximally sparse in the sense of having the fewest nonzero entries and merely become
zero-inflated as a function of K. These geometric considerations are crucial in the subsequent
proof of Theorem 3.

7.2 Analytic derivations for the two-block SBM
The value of ρ� in Equation (14) for the homogeneous balanced two-block SBM can be com-
puted by brute force; however, such an approach offers only limited insight and understanding of
how the covariance structure in Theorems 1 and 2 interact to yield differences in relative spectral
embedding performance as measured via Chernoff information. This section offers a different
approach to understanding ρ� as a covariance-based spectral quantity.

The following lemma is a general matrix analysis observation that establishes a correspon-
dence between the inverse of a convex combination of 2× 2 matrices and the inverses of the
original 2× 2 matrices. The proof of Lemma 4 follows directly from elementary computations
and is therefore omitted. Extending Lemma 4 to n× n invertible matrices is intractable in general.

Lemma 4. Let M0,M1 ∈R
2×2 be two invertible matrices. For each t ∈ [0, 1] define the matrix

Mt := (1− t)M0 + tM1. ProvidedMt is invertible, then the inverse matrixM−1
t can be expressed as

M−1
t ≡ (1−t)M−1

0 +det(M1M−1
0 )tM−1

1
det(M1M−1

0 )t2+tr(M1M−1
0 )t(1−t)+(1−t)2

. (25)

If, in the context of Lemma 4, det(M1M−1
0 )= 1, then Equation (25) simplifies to

M−1
t ≡ (1−t)M−1

0 +tM−1
1

t2+tr(M1M−1
0 )t(1−t)+(1−t)2

.

which is nearly a convex combination of the inverse matricesM−1
0 andM−1

1 modulo division by a
degree-two polynomial in the parameter t. If, in addition, tr(M1M−1

0 ) 	= −2 (which always holds
when M0 and M1 are both positive definite), then the inverse matrix at the value t = 1

2 further
simplifies to

M−1
1/2 ≡

(
2

2+tr(M1M−1
0 )

) (
M−1

0 +M−1
1

)
(26)

For the homogeneous balanced two-block SBM considered in Section 5.1.1, one can explicitly
check that the above det(·) and tr(·) conditions are satisfied. Moreover, the value t� = 1

2 achieves
the supremum in both the numerator and denominator of ρ� in Equation (12). With these obser-
vations in hand, it follows by subsequent computations that for both the positive definite and
indefinite regimes,
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ρ� =
‖ν1 − ν2‖2

�−1
1,2 (1/2)

‖ν̃1 − ν̃2‖2
�̃

−1
1,2 (1/2)

=

⎛
⎜⎜⎝
(

2
2+tr(�(ν1)�−1(ν2))

)
(

2
2+tr(�̃(ν1)�̃

−1(ν2))

)
⎞
⎟⎟⎠×

(
(ν1 − ν2)�(�−1(ν1)+�−1(ν2))(ν1 − ν2)

(ν̃1 − ν̃2)�(�̃
−1(ν1)+ �̃

−1(ν2))(ν̃1 − ν̃2)

)

=
(
2+ tr(�̃(ν1)�̃

−1(ν2))
2+ tr(�(ν1)�−1(ν2))

)
× 1

= 1+ tr(�̃(ν1)�̃
−1(ν2))− tr(�(ν1)�−1(ν2))

2+ tr(�(ν1)�−1(ν2))

= 1+ (a− b)2(3a(a− 1)+ 3b(b− 1)+ 8ab)
4(a+ b)2(a(1− a)+ b(1− b))

.

7.3 Proof of Theorem 3
This section is dedicated to proving Theorem 3 for K ≥ 2 block SBMs exhibiting homogeneous
balanced affinity structure. The proof is divided into two parts which separately evaluate the
suprema in the numerator and denominator of ρ� in Equation (12). By invoking underlying sym-
metries in latent space and the covariance structure of the ASE and LSE limit results, respectively,
we shall leverage the (considerably simpler) ASE computations (numerator) when working with
LSE (denominator). Further simplifying the numerator and denominator yields the more easily
interpretable (shifted) expression of ρ� provided in Equation (18).

Proof: First recall the discussion of latent space geometry in Section 7.1, specifically that for the
homogeneous balanced affinity K-block SBM, the canonical latent positions can be arranged row-
wise as a lower-triangular matrix X where each latent position vector has norm

√
a and each pair

of distinct latent position vectors has common inner-product b. This rotational symmetry implies
rotational symmetry for the block-conditional covariance matrices in Theorems 1 and 2, and as
such, the formulation of ρ� in Equation (18) can be reduced to simply working with the latent
position pair {ν1, ν2} without loss of generality. This pair is attractive, since the nonzero entries of
these vectors remain unchanged for all K ≥ 2. Moreover, one need only work with the standard
inner product since d− = 0.

7.3.1 Proof of Theorem 3: ASE (numerator)
Let g(x, X1) := 〈x, X1〉(1− 〈x, X1〉) and for 0< t < 1 define gt(x1, x2, X1) := tg(x1, X1)+
(1− t)g(x2, X1). By Theorem 1, �(x)=�−1

E[ g(x, X1)X1X�
1 ]�

−1, and therefore �1,2(t) :=
t�(ν1)+ (1− t)�(ν2)=�−1

E[ gt(ν1, ν2, X1)X1X�
1 ]�

−1. Evaluating the inner expectation yields

E[ gt(ν1, ν2, X1)X1X�
1 ]=

K∑
i=1

1
K (t〈ν1, νi〉(1− 〈ν1, νi〉)+ (1− t)〈ν2, νi〉(1− 〈ν2, νi〉))νiν�

i

= b(1− b)�+
(
a(1−a)−b(1−b)

K

)[
tν1ν�

1 + (1− t)ν2ν�
2
]

= b(1− b)�+N(c0Dt)N�

whereN := [ν1|ν2] ∈R
K×2, c0 :=

(
a(1−a)−b(1−b)

K

)
, andDt := diag(t, 1− t). Clearly c0Dt is invert-

ible, as is � since the underlying distribution F is nondegenerate. Moreover, X is also invertible
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since the K-blockmodel under consideration is also rank K. The relation X�X=K� implies
�−1 =KX−1(X�)−1 and therefore X�−1X� =KI, so ν�

i �
−1νj =KIij, where Iij denotes the

indicator function for indices i and j. Thus, (c0Dt)−1 + 1
b(1−b)N

��−1N= (c0Dt)−1 + K
b(1−b) I,

which is also invertible. By an application of the Sherman–Morrison–Woodbury matrix inversion
formula (Horn and Johnson (2012), Section 0.7.4), then

E[ gt(ν1, ν2, X1)X1X�
1 ]

−1 =
(
b(1− b)�+N(c0Dt)N�)−1

=
(

1
b(1−b)

)
�−1 −

(
1

b(1−b)

)2
�−1N

(
1
c0D

−1
t + K

b(1−b) I
)−1

N��−1

For ν := ν1 − ν2 =
(
a−b√

a ,−
√
(a−b)(a+b)

a ,0,...,0

)�
∈R

K , then ν��ν = 2
K (a− b)2 and N�ν = (a− b)

(1,−1)� ∈R
2. These observations together with subsequent computations yield the following

chain of equalities:

‖ν‖2
�−1

1,2 (t)
= ν� (�−1

E[ gt(ν1, ν2, X1)X1X�
1 ]�

−1
)−1

ν

= ν�(�E[ gt(ν1, ν2, X1)X1X�
1 ]

−1�)ν

= ν��
(

1
b(1−b)�

−1 −
(

1
b(1−b)

)2
�−1N

(
1
c0D

−1
t + K

b(1−b) I
)−1

N��−1
)
�ν

= ν�
(

1
b(1−b)�−

(
1

b(1−b)

)2
N
(

1
c0D

−1
t + K

b(1−b) I
)−1

N�
)

ν

=
(

1
b(1−b)

)
ν��ν −

(
1

b(1−b)

)2
ν�N

(
1
c0D

−1
t + K

b(1−b) I
)−1

N�ν

=
(

2(a−b)2
b(1−b)K

)
−
(

a−b
b(1−b)

)2
(1,−1)

(
1
c0D

−1
t + K

b(1−b) I
)−1

(1,−1)�

=
(

2(a−b)2
b(1−b)K

)
−
(

a−b
b(1−b)

)2
tr
((

1
c0D

−1
t + K

b(1−b) I
)−1
)

=
(

2(a−b)2
b(1−b)K

)
−
(

a−b
b(1−b)

)2 ( (a(1−a)−b(1−b))b(1−b)t
((a(1−a)−b(1−b))t+b(1−b))K + (a(1−a)−b(1−b))b(1−b)(1−t)

((a(1−a)−b(1−b))(1−t)+b(1−b))K

)
= (a−b)2(a(a−1)+b(b−1))

(a(1−a)+(a(a−1)−b(b−1))t)(b(b−1)+(a(a−1)−b(b−1))t)K

In particular,

sup
t∈(0,1)

[
t(1− t)‖ν‖2

�−1
1,2 (t)

]
= 1

K
(a−b)2

a(1−a)+b(1−b) (27)

where by underlying symmetry the supremum is achieved at t� = 1
2 over the entire parameter

region 0< b< a< 1.

7.3.2 Proof of Theorem 3: LSE (denominator)
Recall that for this model Id+

d− ≡ Id since d− = 0. From Theorem 2 for LSE, the block conditional
covariance matrix for each latent position x can be written in the modified form

�̃(x)=E

[(
g(x,X1)
〈x,μ〉

) (
�̃

−1X1〈X1,μ〉 − x
2〈x,μ〉

)(
�̃

−1X1〈X1,μ〉 − x
2〈x,μ〉

)�]
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We begin with several preliminary observations in order to define the quantities c1, c2, and c3.
Namely, for each latent position (row) x of X,

〈x,μ〉 =
(
a+(K−1)b

K

)
= :c1 (28)

E[ g(x, X1)]=
(
a(1−a)+(K−1)b(1−b)

K

)
=: c2 (29)

E[ g(x, X1)X1] :=
(
a(1−a)−b(1−b)

K

)
x+ b(1− b)μ =: c3x+ b(1− b)μ (30)

Subsequent computations yield

�x=
(
a−b
K

)
x+ bμ[

�−
(
a−b
K

)
I
]
xx� = bμx�

〈�x, x〉 =
(
a2+(K−1)b2

K

)
�̃≡E

[
1

〈X1,μ〉X1X�
1

]
= 1

c1�

The above observations allow us to write �̃(x) as

E

[(
g(x,X1)
〈x,μ〉

) (
�̃

−1X1〈X1,μ〉 − x
2〈x,μ〉

)(
�̃

−1X1〈X1,μ〉 − x
2〈x,μ〉

)�]

= �̃
−1

E

[
g(x,X1)
〈x,μ〉

(
X1〈X1,μ〉 − �̃x

2〈x,μ〉
) (

X1〈X1,μ〉 − �̃x
2〈x,μ〉

)�]
�̃

−1

= 1
c1�

−1
E

[
g(x, X1)

(
X1 − 1

2c1�x
) (

X1 − 1
2c1�x

)�]
�−1

Expanding the term inside the expectation and applying linearity of expectation allows us to
analyze each piece in turn. The first term in the expansion can be analyzed via the previous
computations for ASE. For the second term,

E

[
1
2c1 g(x, X1)X1x��

]
= 1

2c1E[ g(x, X1)X1]x��

= 1
2c1

(
c3xx� + b(1− b)μx�)�

= 1
2c1

(
c3xx� + (1− b)

[
�− ( a−b

K )I
]
xx�)�

=
(
1−b
2c1

)
�xx��+

(
Kc3−(a−b)(1−b)

2c1K

)
xx��

=
(
1−b
2c1

)
�xx��+

(
a(b−a)
2c1K

)
xx��

Note that the transpose of this matrix corresponds to the third term in the implicit expansion of
interest (not shown). Finally, the fourth term simply reduces to the form

E

[
g(x,X1)

(
1
2c1�x

) (
1
2c1�x

)�]= c2
(

1
2c1�x

) (
1
2c1�x

)� =
(

c2
4c21

)
�xx��
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Thus,

E

[
g(x, X1)

(
X1 − 1

2c1�x
) (

X1 − 1
2c1�x

)�]

=E[ g(x, X1)X1X�
1 ]−E[ 1

2c1 g(x, X1)X1x��]−E[ 1
2c1 g(x, X1)X1x��]�

+E[ g(x, X1)( 1
2c1�x)( 1

2c1�x)�]

=E[ g(x, X1)X1X�
1 ]−

(
a(b−a)
2c1K

)
xx��−

(
a(b−a)
2c1K

)
�xx� +

(
c2
4c21

− 1−b
c1

)
�xx��

Let M1 ≡M1(t) :=NDtN� and M2 :=� with respect to the notation introduced earlier in the
derivation for ASE. By completing the appropriate matrix product, there are explicit constants di
depending on a, b, and K, such that

�̃1,2(t)= t�̃(ν1)+ (1− t)�̃(ν2)

=�−1
(
d1�+ d2NDtN� + d3NDtN��+ d3�NDtN� + d4�NDtN��

)
�−1

=�−1 ((d1M2 + d5M1
)+ (I+ d6M2)(d7M1)(I+ d6M2)

)
�−1

= :�−1 (M3 +M4)�
−1

whereM3 ≡M3(t) := d1M2 + d5M1(t) andM4 ≡M4(t)= (I+ d6M2)(d7M1(t))(I+ d6M2).
Note that ν̃k :=

(
1

〈νk,μ〉
)1/2 × νk =

(
K

a+(K−1)b

)1/2 × νk for k= 1, 2, so

‖ν̃‖2
�̃

−1
1,2 (t)

= ν̃��̃−1
1,2 (t)ν̃ =

(
K

a+(K−1)b

)
ν�� (M3 +M4)

−1 �ν

The above matrix inversion can again be carried out via the Sherman–Morrison–Woodbury
formula. We omit the algebraic details. Subsequent computations and simplification yield

sup
t∈(0,1)

[
t(1− t)‖ν̃‖2

�̃
−1
1,2 (t)

]
= 4(a−b)2(a+(K−1)b)2

4(a(1−a)+b(1−b))(a+(K−1)b)2K+(a−b)2K(3a(a−1)+3b(b−1)(K−1)+4abK)

(31)
By underlying symmetry, the supremum is achieved at t� = 1

2 over the entire parameter region
0< b< a< 1. Taken together, Equations (27) and (31) simplify to yield ρ� as in Equation (18),
thereby completing the proof. �
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Notes
1 The distinct row assumption removes potential redundancy with respect to block connectivity and labeling. Namely, if
rows k and k′ of B′ are identical, then their corresponding blocks are indistinguishable and can without loss of generality
be merged to form a reduced block edge probability matrix B with corresponding combined block membership probability
πk + πk′ . We also remark that Definition 1 implicitly permits vertex self-loops, a choice that we make for mathematical
expediency. Whether or not self-loops are disallowed does not alter the asymptotic results and conclusions presented in this
paper.
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