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SUMMARY
In this paper, a method is proposed for dynamic balancing
of hexapods for high-speed applications. The kinematic
structure of the hexapod is based on the parallel mechanism.
For high-speed applications, hexapod dynamics is the
dominant factor, and dynamic balancing becomes very
important. The proposed method is aimed at minimizing the
changes in the hexapod inertia over the workspace by
utilizing the tool holder attached to the hexapod’s end-
effector as a counterweight.

KEYWORDS: Hexapods; Dynamic balancing; High-speed appli-
cations; Tool holder.

1. INTRODUCTION
The conventional machine tools have been built based on
stacking motion systems, such as x-y tables, and as such the
bottom motion system has to carry the weight of the motion
systems on the top. Due to this stacking nature, the traveling
speeds of the conventional machine tools are limited. While
research is being carried out on utilization of lightweight
materials to reduce the weight of the motion systems, new
machine tools are being developed based on unconventional
machine kinematics. Two types of machine have emerged,
namely, gate structure and hexapod. In a gate structure, the
actuators are placed on a gantry to withstand the weight
while driving other passive mechanisms, such as scissors or
gate shifters, which in turn provide the motions in the
required directions.1

The hexapod is based on the parallel closed-chain
kinematic structure known as the Stewart platform.2 This
structure has already been used in various applications, for
instance, flight simulator,3 telescope tip tilting system4 and
micro biological manipulator.5 Compared to the conven-
tional machine tools, the parallel mechanism structure offers
superior stiffness, lower mass and higher acceleration.

While repeatability and tracking accuracy are maintained at
the same level, the maximum feedrate and acceleration of
the hexapod machine tool can now reach about 100m/min of
velocity and 1–2g of acceleration, respectively,6 a sub-
stantial increase from about 30m/min of velocity and 0.3g
of acceleration of the conventional machine tools. Moreo-
ver, hexapods have the potential to be highly reconfigurable
and modular, with other advantages including higher
dexterity, simpler and fewer fixtures, and multi-mode
manufacturing capabilities. Also, it can be shown that the
hexapod machine tool has reduction or even cancellation
effect of the leg errors on the hexapod location accuracy.7

Research in the parallel mechanism can be categorized in
two areas: mechanical design and control design. Mechan-
ical design of a hexapod involved kinematic structure design
combined with kinematics and dynamics analysis. Kine-
matic structure design of a parallel mechanism is a classic
problem, and has been studied extensively, as summarized
by Hunt,8 and Earl and Rooney.9 There are a number of
ways to classify the parallel mechanism. Here, we are
interested in joint actuations, and in this regard, the parallel
mechanism structure may be classified as prismatic or
revolute. The commercially available hexapods, as listed in
Table I, are mainly prismatic type, called servo-struts, which
use servo-motors to drive and control ball screws to provide
linear motions along the legs. New servo systems utilizing
linear direct drives are being explored.10 Though revolute
joints are not seen in the commercial hexapods, research is
being carried out. For example, a three degrees-of-freedom
hexapod, called DELTA, was developed in Switzerland, and
later modified as a six degree-of-freedom hexapod, called
HEXA in France11 for high-speed applications. In these two
prototypes, each leg is made of a two-link manipulator with
the first joint attached to the base under actuation while the
second joint as a passive joint. Besides pure prismatic or
revolute joint actuation, hybrid design of combining the two
was discussed by Behi12 and Tsai.13

Table I. Commercial hexapods.

Machine Maker Acceleration, Velocity, Repeatability

VARIAX Giddings & Lewis, Inc. 1 g, 66m/min, 11mm.
Octahedral Hexapod Ingersoll Milling Machine Co. 0.5g, 40m/min, ~10mm.
Tornado 2000 Hexel Corp. 0.5–1.5g, 15–25m/min, 10mm.
HexaM Toyoda Machine Works Ltd. 1.2g, 100/m/mim, 10mm.
Geodetic Hexapod Geodetic 1g, 40m/min, ~10mm.
TM LAPIK 1g, 15m/min, Not available
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As for the kinematics and dynamics analysis of the
parallel mechanism, a great deal of research has been
carried out, resulting in a very rich literature. Due to the
space limitation, only a few representative methods are
mentioned here. For example, the Plücker line coordinates14

and motor algebra15 were introduced for the kinematic and
dynamic analysis of the parallel manipulator. The Grass-
mann geometry16 was applied to analyze the singular
configurations of the parallel manipulator. The methods
based on the optimization theory were developed to improve
the kinematic performance of the parallel manipulator, such
as workspace maximization and kinematic isotropy.7 A
modified design method was proposed by Stoughton and
Arai18 to increase the dexterity of the parallel mechanism by
placing the legs of parallel manipulator on two concentric
circles.

In terms of the parallel mechanism control, there are two
basic methods, namely, non model-based control, such as
PID,19 and model-based control, such as computed
torques.20 The former is effective for most position control
applications but not adequate for tracking control opera-
tions, and hence the latter was developed for more precise
control. Two approaches used in the model-based control of
the closed-chain mechanisms are linearized and non-
linear.21 In the first approach, the parallel mechanism is
modeled as a linear system and controlled by an adaptive
control method. In the second approach, control inputs are
determined based on a full dynamic model. The linearized
approach may have stability problem while the non-linear
approach does not.21

Due to the fact that hexapods are used for high-speed
applications, the hexapod dynamics becomes the dominant
factor and dynamic balancing is of particular importance.
Dynamic balancing will not only improve the hexapod
dynamic performance by reducing the disturbance due to
dynamic force variation, but also enhance the control
system, especially for the linear direct drive that is very
sensitive to dynamic force variation.10 Walker21 pointed out
that a linearized system could perform satisfactorily if the
dynamic parameters are not subject to rapid change. Upon
achieving dynamic balancing, dynamic change is minimized
and hence a hexapod may be well under a linearized control,
thereby simplifying the control system.

In this paper, the problem of hexapod dynamic balancing
is the first time addressed. A method is proposed aiming at
minimizing the changes in the hexapod dynamic forces over
the workspace by utilizing the tool holder attached to the
hexapod’s end-effector as a counterweight. To describe the
proposed method, the rest of the paper is organized as
follows. Kinematic and dynamic formulation is described in
Section 2, dynamic balancing in Section 3, balancing
methodology in Section 4, and case studies in Section 5.
The paper concludes at Section 6.

2. KINEMATIC AND DYNAMIC FORMULATION

2.1 Kinematic structure
The hexapod under consideration is a six degrees-of-
freedom prismatic type of parallel mechanism, as shown in

Figure 1. In this structure, each leg is driven linearly along
its axis, with one end fixed in the base and the other end
fixed in the moving platform. The mobility of the mecha-
nism can be examined by the following equation8

M =d(n2g21)+ Og

i=1

fi (1)

where M denotes the mobility, or the effective degrees-of-
freedom, d is the order of the system (d =3 for planar
motion, and d =6 for spatial motion), n is the number of the
links including the frame, g is the number of joints, and fi is
the number of degrees-of-freedom for the i th joint. For a six
degree-of-freedom hexapod, M is 6 and d is 6. For the
prismatic structure, n is 14, as each leg consists of two links
with one fixed and another sliding, in total 12, plus the base
and the moving platform. If each leg has its own connection
with the base and the moving platform then there are 18
joints, that is 12 connection joints and 6 prismatic joints. By
substituting M =6, d =6, n =14 and g =18 into equation (1),
it can be seen that the required joint degrees-of-freedom for
each leg is 6. Excluding the prismatic joint (1 d.o.f.), then
for each leg one connecting joint should be spherical (3
d.o.f.) and another should be universal (2 d.o.f.), which is
the case under this study. The prismatic joints are active,
whereas the connecting joints are passive joints. For high-
speed applications, the passive joints are very critical in
terms of friction, as excessive friction generates heat, which
may degrade machine performance or even damage the
machine in the worst case. New anti-friction joints, such as
hydrostatic and magnetic, are under development.22

2.2 Kinematic equations
The leg kinematic equations of a hexapod are formulated by
considering closed kinematic loops. For the ith loop as
shown in Figure 1, the following relationship holds

li =h+pi 2bi for i =1,6 (2a)

where Li is the leg vector, h is the translation vector between

Fig. 1. Schematic of a six degree-of-freedom prismatic hexapod.
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the base and the moving platform, pi is the position vector
of the ith leg’s joint attached to the moving platform, and bi

is the position vector of the ith leg’s joint attached to the
base platform, and these vectors are expressed in global
coordinates O-xyz. In terms of the rotation matrix R
between the base and the moving platform, vector p i can be
expressed as p i =R tp i, where superscript t indicates a
vector with respect to the coordinate frame on the moving
platform O-xtytzt. Substituting the rotation matrix form into
equation (2a) yields

li =h+R tp i 2b i (2b)

The leg displacement equations are obtained by taking the
norm of equation (2b) as

qi = i = i L i i h+R tp i 2b i i (3a)

For given parallel mechanism structure, b i and tp i are both
determined, and only variables in equation (3a) are h, R,
and qi. The translation vector h contains three scalar
variables, representing three linear movements. The rotation
matrix R can be shown to have three independent scalar
variables in terms of tr(R) and vect(R).23 Hence, equation
(3a) represents a set of non-linear equations with six
knowns and six unknowns, and can be re-written in a
symbolic form as

q= f (x) (3b)

where q=[q1, q2, . . . q6]
T, and x=[xp, xo]

T, xp and xo are the
vectors presenting the hexapod’s position and orientation,
respectively, and they are determined from R and h. For
given translation vector h and rotation matrix R, q can be
determined by the inverse kinematics, which is straighfor-
ward. The forward kinematics, i.e. to determine R and h for
given leg displacements q, is relatively difficult.24 Addi-
tional angle sensors are useful to solve this problem.25

Taking time derivative of equation (2b) yields the leg
velocity vector

L̇ i =v+v3 R tp i (4a)

where v and v are the linear and angular velocity of the
moving platform, and the leg velocity is obtained by
projecting the leg velocity vector on to the leg unit vector

q̇ i =eT
i L̇ i (4b)

where e i is the unit vector of the ith leg and given by e i = l i/
qi. The leg acceleration vector is given by taking time
derivative of equation (4a)

L̈ i = v̇+v̇3 RtPi +v3 (v3 R tp i) (5a)

Subsequently, the leg acceleration equals

q̈i =eT
i L̈ i (5b)

2.3 Dynamic equations
The dynamic equations of the hexapod are presented here
for the moving platform, as leg mass is usually considered
negligible. Discussion on full dynamics including leg mass
can be found in reference 26. In light of the Lagrange
formulation, the Lagrangian of the moving platform can be
written as

L =
1

2
ẋT Mẋ2mgTh (6)

where ẋ=[vT vT]T, g is the gravitational acceleration vector,
and M is the inertia matrix in terms of the moment of inertia
I and the mass m of the moving platform, i.e.

M=F I
o

0

m1 G
To relate the Lagrangian to the actuator coordinates, the
instantaneous kinematics is used, that is

q̇=Jẋ (7)

where q̇=[q̇1 q̇2 . . . q̇6]
T and J is the Jacobian defined as

JT =F R tp13 e1

e1

R tp23 e2

e2

. . .

. . .

R tp63 e6

e6
G (8)

In light of equation (7), the Lagrangian can be re-written in
terms of the actuator coordinates as

L =
1

2
q̇TDq̇2m gT h (9)

where D is the generalized inertia matrix defined as

D=(J21)T MJ21 (10)

In terms of D, the equations of the motion of the hexapod
can be obtained as

Dq̈+C(q̇, q)+G = u (11)

where u=[u1, u2, . . . u6]
T is the vector of the actuator forces,

G is the gravitational term, and C is defined as

C=SO6

i=1

­D
­qi
D q̇2

1
2

col.F q̇ T ­D
­q1

q̇, . . . q̇ T ­D
­q6

q̇G (12)

where col.[] denotes a column vector.

3. DYNAMIC BALANCING

3.1 Generalized inertia ellipsoid (GIE)
Since hexapods are designed to operate at high speeds,
system dynamics becomes very important. As can be seen
from equation (11), the dynamic equations of the hexapod
are coupled, non-linear and configuration-dependent. Cou-
pling effect appears both in D, inertia term, and C, the
centrifugal and Coriolis terms, indicating that the inertia,
centrifugal and Coriolis forces in different directions affect
each other. Non-linearity is present also in D and C, as it can
be noted that D(q) is configuration-dependent and C(q̇, q) is
configuration and velocity-dependent. For high speed appli-
cations, due to increased speed and acceleration, the inertia,
centrifugal and Coriolis forces become very large, and if not
balanced, could degrade hexapod’s performance.
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For the past twenty years or so, research has been carried
out on balancing of parallel mechanisms. There are two
types of balancing, namely, static balancing and dynamic
balancing. Static balancing is to balance the gravity so that
the weight of the machine components does not produce any
force or torque at the actuators under static conditions.
Raghavan and Roth27 proposed a design methodology for
parallel manipulators based on static balancing. Stoughton
and Arai18 presented a modified design of the Stewart
platform by introducing two concentric circles both at the
base and at the end effector, and showed improvement in
static balancing. Jean and Gosselin28 studied the problem of
static balancing of planar parallel manipulators, and derived
the balancing conditions for one, two and three degrees-of-
freedom of planar parallel manipulators.

Dynamic balancing is to balance the inertia so that the
dynamic force change could be cancelled or minimized. The
focus in this area, however, has been on dynamic balancing
of four bar linkages. In general, it is possible to completely
balance the dynamic force of four bar linkages,29 whereas it
is difficult to balance the dynamic moment and additional
mechanisms, such as idler loops, may be needed.30 Till now,
the problem of dynamic balancing of spatial parallel
mechanisms has not been investigated. This problem is of
particular importance for hexapods under high-speed appli-
cations. Nevertheless, research on minimization of inertia
change has been studied for the serial manipulators, as
summarized by Singh and Rastegar.31 The approach is to
find an optimal generalized inertia matrix D as close to
isotropy and constancy as possible. This idea is adopted
here for dynamic balancing of hexapods. Prior to describing
the proposed method for hexapod dynamic balancing, the
concept about isotropy and constancy is reviewed.

3.2 Isotropy
Isotropy can be defined by the generalized inertia ellipsoid
(GIE).32 Denote by l i the i th eigenvalue, and by a i the ith
eigenvector of D (i =1, 6), the direction of the ith axis of the
GIE is defined by ai and the length is equal to 1/Ïl i.
Isotropy is referred to as a sphere GIE, i.e. all the axis
lengths are equal, and in this case, the dynamic forces are
de-coupled. To measure isotropy of D, an anti-isotropy
measure31 can be used

s (D)=
1

Ïk (D)
= Î l n

l1

(13)

where k(D) is the condition number of D, l1 and ln are the
maximum and minimum eigenvalue of D, respectively. GIE
is isotropic when s = 1, and is not when s < 1. Since s ≤ 1,
maximization of s means closer to isotropy. As for the size
of GIE, it can be measured by

g (D)=
1

2nÎ 1

det (D)
=

1

2nÎ 1

(l1·l2 . . . ln)
(14)

where det (D) is the determinant of D. As shown by Asada,32

g(D) is related to the inverse of the square root of the

average generalized moment of inertia, and hence maxi-
mization of g(D) will reduce the hexapod inertia. Another
isotropy measure introduced by Ma and Angeles33 is the
dynamic condition index (DCI)

iB iF =
1

2
b TWb (18)

where subscript F denotes the Frobenius norm, and b is the
vector composed of the upper triangular components of B
defined as B=D(q)2m1, m= tr (D)/6, and W is the diagonal
weighting matrix that can be selected based on the relative
relevance between entries of D. Minimization of DCI is
closer to isotropy.

3.3 Constancy
Constancy means that matrix D is invariant within the
workspace. It can be seen from equation (12) that if D does
not vary with q, i.e. ­D/­q, then C=0, indicating that there
will be no non-linear forces from centrifugal and Coriolis
terms. It was shown in reference 32 that change in D could
be expressed in terms of changes in l i and a i, that is

dD =

dl1

(l1 2l2)df12

:

(l1 2ln)df1n

(l1 2l2)df12

dl2

:

. . .

. . .

. . .

:

. . .

(l1 2ln)df1n

. . .

:

dln

(15)

where f ij is the angle between a i and a j. Two constancy
measures were introduced in reference 34 in terms of
changes in li and a i with respect to q. The first measure is
defined by the Euclidean norm of the eigenvalue deriva-
tives

t1 =I ­l

­q I (16)

where l=[l1, l2, . . . l6]
T. The second measure is expressed

as

t2 =I AT S
­A
­q I (17)

where A=[a1, a2, . . . a6], and o=diag(l i ).

4. BALANCING METHODOLOGY

4.1 The global dynamic characteristics
As mentioned in the previous section, the measures of
isotropy and constancy are function of the actuator config-
urations q. In order to minimize the change in D, a global
dynamic measure is needed, and it may be formulated by
considering a task function of the hexapod. When a hexapod
is assigned to a specific task, it is possible to specify a task
function in the global coordinates x in terms of the number
of visitations to a region,31 for example
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p(x)=
ni

N
if xPV i, i=1, K (18)

where p (x) represents a probability function ni indicates the
number of visitations to region Vi, N is the total number of
visitations, and K is the total number of regions. Note from
equation (3b) that x and q are related by the hexapod
kinematics.

With the probability function p(x), a global dynamic
measure can be defined based on an equivalent probabilistic
model. Denote by GDI a global dynamic index, it can be
selected from the indices given in Section 3 or their
combinations, depending on the nature of the problem. For
example, if the dynamic condition index (DCI) is chosen as
the GDI, then GDI ; DCI.

Upon selection of a GDI, the statistical parameters, such
as commonly used mean value and standard deviation can
be obtained using the probability theory. The mean value
may be interpreted as a middle point of the GDI over the
regions considered, and the standard deviation as the
fluctuation of the GDI relative to the middle point. If
necessary, higher order statistical parameters can also be
used. In the paper, we limit ourselves to the mean value and
standard deviation.

4.2 Dynamic balancing using optimization
To this end, the problem of hexapod dynamic balancing may
be more specifically defined as an optimization problem.
Three approaches are presented here. Denote by E (·) the
mean value, the first approach is given as to minimize the
mean value of the GDI

min
V

(E(GDI)) (19)

meaning that the average dynamic change of the GDI is
minimized. This approach is useful when the overall
dynamics needs to be adjusted. The second approach is to
minimize the standard deviation

min
V

(SD(GDI)) (20)

where SD (·) indicates the standard deviation. Equation (2)
shows that the dynamic variation is minimized, which is the
main concern of dynamic balancing. The third approach is
to minimize the maximum value of the GDI over the region
considered

min
V

(max(GDI)) (21)

The goal of this approach is to minimize the bound of the
GDI, the similar effect to the second approach. Based on the
nature of the problem under study, one can use one of three
approaches or their combinations to perform dynamic
balancing.

4.3 Relationship between kinematic and dynamic
characteristics
Before giving examples to demonstrate the proposed
dynamic balancing method, it may be worthwhile to

mention the relationship between the hexapod kinematic
and dynamic characteristics. By referring to equation (10),
one can see that the hexapod generalized inertia matrix D
consists of two parts, namely, the Jacobian J and the inertia
matrix M.

The inertia matrix M is constant, as defined in the moving
platform coordinates, and has no contribution to variation in
D. It is the Jacobian J that causes D to vary with the
hexapod configurations, implying that geometric design of
the hexapod is important in terms of dynamic balancing.
Though a number of geometric design methods were put
forward in the literature, there has been no discussion
regarding the effect on the dynamic balancing. Due to the
limitation of the paper, this problem will be addressed in a
separate paper.

Isotropy of D is affected by M and J, and it is obvious
that if M and J are isotropic, then D is isotropic. The
kinematic isotropy, i.e. isotropic J, has been addressed in
the literature.17 For achieving isotropic M a sphere type of
the tool holder may be more applicable. This will be the
subject of the future research.

5. CASE STUDIES

5.1 System description
The geometric structure of the hexapod under study is given
in Figure 2. Its base and moving platform are made of
hexagon shape. The origins of the global coordinates
attached to the base and the moving plate coordinates are set
at the centroid of the hexagons. The coordinates of the
connecting passive joints on the base and platform are
defined with respect to the origins of the respective
coordinates, and the details are given in Appendix A. The
moment of the inertia of a hexagon shape was derived using
the symbolic package, Maple, and the results are given in
Appendix B.

5.2 Task definition
To demonstrate the proposed method, we define a task
probability function as a sphere within the hexapod’s
workspace. Inside the sphere, it is assumed that the task
probability is uniformly distributed, and only the position is
of concern. Then this probability function can be given as

p(xp)=

3

4pb3

0

ixp i ≤ b

elsewhere
(22)

where b is the radius of the sphere, and xp is the position
vector.

For a selected global dynamic index (GDI), the mean
value can be obtained as

E [GDI]= EVGDI(xp)p(xp)dV (23)

and the standard deviation can be given as

SD [GDI]=ÏEV([GDI(xp)2 E [GDI]) 2 p(xp)dV (24)

Also, the bound of the GDI can be determined as

max(GDI(xp)) (25)
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5.3 Implementation
For the purpose of dynamic balancing, we propose here to
use the tool holder attached to the moving platform as the
hexapod’s balancing counterweight. Denote by m* the
counterweight of the tool holder, and by r its center of mass
in the moving platform coordinates; consider that the tool
holder has an initial weight mo, and the total weight is
m=mo +m*, then the problem of dynamic balancing is to
find m* and r.

For the comparison purpose, three isotropic measures
given in Section 3.2 namely, s(D), g(D) and DCI, are used.
For better dynamic performance, it is required to maximize
the first two. To follow the standard approach of minimiza-
tion, the following conversion is made for the first two
indices

max
(r,m*);xpPV

(s(D(xp; m*, r))) ⇒ min
(r,m*);xpPV

(k(D(xp; m*, r))) (26)

and

max
(r,m*);xpPV

(g (D(xp; m*, r))) ⇒ min
(r,m*);xpPV

(2g (D(xp; m*, r)))

(27)

For the third index, it is defined as

min
(r,m*);xpPV

(DCI(xp; m*, r)) (28)

For each GDI considered, three approaches defined in
equations (19) to (21) are implemented. For optimization,
m* and r=[rx, ry, rz]

T are constrained as below

m*≥0;

rx =0;

20.3≤ ry ≤0.3;

and

20.3≤ rz ≤0.3

The geometric and material parameters are given as
Lb =1.0m, 1b =0.05m, Lp =0.5m, 1p =0.03m, t (thick-

ness)=0.1m, r (density)=8000 kg/m3. In the simulation, the
initial value of r and m* are ro =[0, 20.3, 20.3]T and
mo*=10.

Tables II to X show the simulation results. It is recalled
that for the symbols used in these tables, b is the radius of
the sphere region, ry and rz are the components of the center
of the tool holder (note that rx =0), m* is the counterweight.
Tables 2–4 are the results of k(D) considering E [k(D)],

Fig. 2. Geometry of the base and the moving platform.

Table II. Results of min E [k(D)].

b ry rz m* E [k(D)] Corresponding
SD [k(D)]

0.05 20.3 0.000 6.9575 5.6915 0.5382
0.15 20.3 20.0003 11.3329 7.1936 1.56525
0.25 20.3 20.0002 18.3668 10.4994 4.4653
0.35 20.3 0.0000 48.6977 25.5267 37.025

Table III. Results of min SD [k(D)].

b ry rz m* SD [k(D)] Corresponding
E [k(D)]

0.05 0.1743 20.0059 4.9064 0.0314 6.8366
0.15 20.3 0.1096 25.5053 1.0833 9.243
0.25 20.3 20.0540 49.3229 3.9970 11.882
0.35 20.2992 20.0002 63.5916 34.571 25.804

Table IV. Results of min max [k(D)].

b ry rz m* max [k(D)]

0.05 0.2208 20.0006 0 2.5635
0.15 0.3 20.0515 7.6033 3.18276
0.25 0.3 0.000 46.9189 4.38654
0.35 20.3 0.0000 62.8524 40.0499
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SD [k(D)] and max[k(D)]. Tables 5–7 are the results of g(D)
considering E[2g(D)], SD [2g(D)] and max[2g(D)].
Tables VIII–X are the results of DCI considering E [DCI],
SD [DCI] and max[DCI]. In all the simulation cases, the
sphere region is varied by radius b in order to investigate its
effect.

Observations can be made from Tables II to X. In terms
of three approaches, i.e. min E, min SD and minmax, the

increasing values of the counterweight m* are produced as
the sphere region increases, and the center of mass always
varies. For the comparison purpose, SD corresponding to
min E, and vice versa are calculated, and interestingly the
optimal value of min E is in the same magnitude of E
obtained from min SD, and so is the other around. However,
and the optimization results are relatively close for k(D), but
not for the other indices.

In terms of three measures, i.e. k(D), 2g(D) and DCI,
the last two intend to apply a zero counterweight, however,
the center of mass always varies.

6. CONCLUDING REMARKS
In this paper, a method for hexapod dynamic balancing has
been discussed. The method is based on the concept of
minimization of the hexapod inertia change by utilising the
tool holder attached to the end-effector as a counterweight.
The global dynamic index (GDI) has been put forward using
the task probability function. Three approaches are pro-
posed including minimization of the mean value, the
standard deviation and the bound. Examples are provided to
demonstrate the proposed method.
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APPENDIX A CONNECTING JOINT
COORDINATES
Denote by Lb and lb the long and short side of the base
hexagon, respectively, according to the label given in Figure
2, the connecting joint coordinates of the base are given
below

b1: [Lb/2, 2yb, 0]
b2: [(Lb +lb)/2, lb3 cs 2yb, 0]
b3: [lb/2, (Lb +lb)3 cs 2yb, 0]
b4: [2 lb/2, (Lb +lb)3 cs 2yb, 0]
b5: [2 (Lb +lb)/2, lb3 cs 2yb, 0]
b6: [2Lb/2, 2yb, 0]

where cs =cos(30°), and yb =(Lb/2+lb)3 tg(30°). Likewise,
the connecting joint coordinates of the moving platform are
given as
tp1: [Lp/2, 2yp, 0]
tp2: [(Lp +1p)/2, lp3 cs 2yp, 0]
tp3: [lp/2, (Lp +lp)3 cs 2yp, 0]
tp4: [2 lp/2, (Lp +lp)3 cs 2yp, 0]
tp5: [2 (Lp +lp)/2, lp3 cs 2yp, 0]
tp6: [2Lp/2, 2yp, 0]

where yp =(Lp/2+lp)3 tg(30°), and Lp and lp are the long and
short side of the platform hexagon, respectively.

APPENDIX B MOMENT OF INERTIA OF A
HEXAGON
Denote by L and l the long and short side of a hexagon, the
moment of inertia along x, y and z axis is given as

Ixx =Ï3 S 1
96

L4 2
5
32

l4 +
1

4
Ll3 2

1
8

L2l2 D
Iyy =Ï3 S 1

96
L4 2

5
32

l4 +
1
4

Ll3 2
1
8

L2l2 D
Izz = Ixx + Iyy
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