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A combustion instability in a combustor terminated by a nozzle is analysed and
modelled based on a low-order Helmholtz solver. A large eddy simulation (LES)
of the corresponding turbulent, compressible and reacting flow is first performed
and analysed based on dynamic mode decomposition (DMD). The mode with
the highest amplitude shares the same frequency of oscillation as the experiment
(approximately 320 Hz) and shows the presence of large entropy spots generated
within the combustion chamber and convected down to the exit nozzle. The lowest
purely acoustic mode being in the range 700–750 Hz, it is postulated that the
instability observed around 320 Hz stems from a mixed entropy–acoustic mode, where
the acoustic generation associated with entropy spots being convected throughout
the choked nozzle plays a key role. The DMD analysis allows one to extract
from the LES results a low-order model that confirms that the mechanism of the
low-frequency combustion instability indeed involves both acoustic and convected
entropy waves. The delayed entropy coupled boundary condition (DECBC) (Motheau,
Selle & Nicoud, J. Sound Vib., vol. 333, 2014, pp. 246–262) is implemented into a
numerical Helmholtz solver where the baseline flow is assumed at rest. When fed
with appropriate transfer functions to model the entropy generation and convection
from the flame to the exit, the Helmholtz/DECBC solver predicts the presence of an
unstable mode around 320 Hz, in agreement with both LES and experiments.
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1. Introduction
It has long been known that combustion instabilities can lead to high-amplitude

oscillations of all physical quantities (pressure, velocity, temperature, etc.). A classical
mechanism for combustion instability is a constructive coupling between acoustic
waves and the unsteady combustion that arises when pressure and heat release
fluctuations are in phase (see Rayleigh 1878; Lieuwen & Yang 2005; Culick
& Kuentzmann 2006). Another mechanism that may also support self-sustained
instabilities relies on the acoustic perturbations induced by entropy spots (temperature
and/or mixture heterogeneities, say) being generated in the flame region and evacuated
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Mixed acoustic–entropy combustion instabilities in gas turbines 543

through the downstream nozzle. This latter mechanism generates indirect combustion
noise, which may be perceptible outside of the combustion chamber (Cumpsty &
Marble 1977; Marble & Candel 1977; Bake et al. 2009; Howe 2010; Miles 2010;
Leyko et al. 2011; Duran, Moreau & Poinsot 2013). However, the contribution of
this mechanism to the unstable behaviour of air flames remains controversial.

(i) Purely thermoacoustic arguments usually allow one to explain the observed
instabilities very nicely in most cases (McManus, Poinsot & Candel 1993;
Candel et al. 2009).

(ii) Basic experiments studied in laboratories are usually operated at atmospheric
pressure (Lawn, Evesque & Polifke 2004; Karimi et al. 2009; Kornilov et al.
2009; Kim et al. 2010) to ease the technological issues. This means that
the combustor chamber is not connected to a choked nozzle, eliminating any
contribution of the indirect noise effect ab initio.

Knowledge about mixed acoustic–entropy combustion instabilities goes back to
the history of rocket engines and ramjets in the 1950s. Earlier works focused on
the downstream nozzle that ends the flame tube. Tsien (1952) formulated a transfer
function at the entrance of the nozzle via the derivation of an impedance, modelling
the damping or increasing contribution of the device. The problem was reformulated
later by Zinn (1972) and Morfey (1973) in terms of acoustic energy balance. Multiple
works dedicated to the characterisation of the nozzle impedance emerged in the 1970s.
Bohn (1977) for the subsonic case, as well as Marble & Candel (1977) for both
subsonic and supersonic cases, derived the reflection and transmission coefficients for
impinging acoustic and entropic waves in the zero-frequency limit (compact nozzle
assumption). This approach was later extended to the non-compact cases by Moase,
Brear & Manzie (2007) and Goh & Morgans (2011), and generalised for both subsonic
and choked flows with and without a shock wave by Duran & Moreau (2013).

It must be noted that the influence of the nozzle on the combustion zone located
upstream is most of the time not accounted for. For example, experiments (Bell,
Daniel & Zinn 1973; Zinn et al. 1973) or numerical studies (Bloy 1979) focused on
the acoustic response of nozzles for several flow parameters (influence of the Mach
number or amplitudes of temperature spot) and its sensitivity to the geometry details
(sharpness, area contraction effects). Purely mathematical models (Ffowcs-Williams
& Howe 1975) addressed the problem from the noise radiation point of view via
the derivation of Green functions. Concerning the interaction mechanism between the
combustion and the indirect noise generated at nozzles, to the authors’ knowledge
the first attempt to develop an analytical theory goes back to the works of Abouseif,
Keklak & Toong (1984), closely followed by Keller, Egli & Hellat (1985). They
found that the time lag characteristic of temperature spots detached from the flame
and convected to the nozzle could add a new family of eigenmodes affecting the
overall stability of the system. However, as recalled by Yu, Trouvé & Daily (1991),
there was a lack of experimental evidence on the contribution of a mixed convective
mode to the flame instability. Despite the fact that this latter work focused on the
interaction between vortex and nozzle, the results can be extrapolated to the interaction
between entropy and acoustic modes and constitute a first step to outline that the
instability mechanism relies on the combination of acoustic and convective time lags.
Contrary to the indirect combustion noise, the vortex shedding and its interaction
with the acoustics is an important part of the stability of solid rocket engines and
many studies have been devoted to this subject (Vuillot 1995; Chedevergne, Casalis
& Majdalani 2012). An experimental study that elucidated the role of the indirect
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noise on combustion instability was performed by Macquisten & Dowling (1994),
who observed that the flame burning in a simple tube could be strongly affected by
the addition of a nozzle. However, it was just an observation, which was not followed
by a modelling effort.

The works cited above were motivated by the study of rocket engines and ramjets.
The subject has seen renewed interest with the development of a lean premixed
combustor for gas turbines, especially in aeronautical applications, where these
engines cover a wide range of operating points and are more prone to combustion
instabilities due to the technological choices. The complexity of such systems has
naturally led to the development of low-order methods to predict thermoacoustic
instabilities. The most comprehensive works on low-order modelling of combustion
instability (Keller 1995; Dowling & Stow 2003; You, Huang & Yang 2005) rely
on the resolution of a wave equation governing the oscillatory field in the chamber.
Complemented by experiments (Hield, Brear & Jin 2009; Yu et al. 2010; Sisco et al.
2011), these low-order models show that a new family of instability modes that
depend on the mean flow velocity may exist. However, as pointed out by Eckstein
et al. (2006), one important issue is that the influence of indirect combustion noise is
not systematic and a low-frequency instability may appear even without the presence
of a nozzle, and vice versa. Some elements of response were provided by Polifke,
Paschereit & Doebbeling (2001), who showed that entropy and acoustic waves may
have a constructive or destructive phase dependence, as well as Sattelmayer (2003),
who argued that entropy spots are submitted to strong dilution (mixing) due to
the highly turbulent nature of the flow in practical combustors. Recent numerical
study by Morgans, Goh & Dahan (2013) suggests, however, that the amount of
dissipation of entropy spots convected by a turbulent flow may remain moderate.
The importance of the entropy wave dissipation in mixed modes introduced a new
mechanism to consider in models. It did not have to be considered for purely acoustic
unstable modes, which are only marginally affected by wave dissipation. The effects
of dissipation and dispersion on unstable mixed modes have been investigated in a
recent study by Goh & Morgans (2013). They confirmed that entropy waves can
destabilise a stable combustor, but can also have a stabilising effect on an unstable
configuration. Moreover, some configurations can exhibit a mode switch between
unstable modes. However, despite the fundamental interest of these studies, they still
rely on one-dimensional low-order methods and simple academic configurations.

Only a few numerical studies have been performed to reproduce a mixed
entropy–acoustic combustion instability in an air-breathing combustor. Zhu, Dowling
& Bray (2001) and Yao et al. (2012) considered an academic combustor and applied
the Reynolds averaged Navier–Stokes (RANS) methods, although the accuracy of
this approach when dealing with reacting turbulent flows is highly questionable.
Unsteady RANS computations have been performed by Hochgreb et al. (2013) in
an academic combustor. These authors found that the mechanism of convection
of entropy spots to the downstream nozzle has a key role in the establishment
of a self-sustained thermoacoustic oscillation, whose computed frequency matches
the experiments. Large-eddy simulation (LES) is now recognised as appropriate
(although computationally demanding) to deal with flame dynamics-related issues,
with or without coupling with acoustics – see Pitsch (2006), Schmitt et al. (2007),
Gicquel, Staffelbach & Poinsot (2012) and Wolf et al. (2012), among many others.
LES was used to investigate the noise generated by the impact of acoustic and
entropy waves on nozzles or turbine stages (see Bodony 2009; Duran et al. 2013).
However, to the authors’ knowledge, no LES study has dealt specifically with a
mixed entropy–acoustic instability.
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LES computations are very computationally demanding and faster tools are required
in the design process of new burners. A natural approach is to characterise the
stable/unstable modes in the frequency domain. An approximate linear wave equation
for the amplitude p̂(x) of the pressure perturbationsp′(x, t)= p̂(x) exp(−iωt) in reacting
flows may be derived from the Navier–Stokes equations (see Poinsot & Veynante
2011) and reads

ρ(x)c2(x)∇ ·
(

1
ρ(x)
∇p̂(x)

)
+ω2p̂(x)= iω(γ (x)− 1)q̂(x), (1.1)

where q̂(x) is the amplitude of the unsteady heat release q′(x, t) = q̂(x) exp(−iωt),
γ is the heat capacity ratio, ρ is the density of the baseline flow, c is the speed
of sound and ω is the complex angular frequency. In order to close the problem,
the flame is modelled as a purely acoustic element based on an n–τ type of model
(Crocco 1952). Equation (1.1) is referred to as the inhomogeneous Helmholtz equation
and corresponds to a nonlinear eigenvalue problem, which can be solved by using
appropriate discretisation techniques and numerical algorithms (Nicoud et al. 2007).

Equation (1.1) relies on the so-called zero-Mach-number assumption, stating that
the mean velocity is very small compared to the speed of sound. Nicoud & Wieczorek
(2009) suggest that the domain of validity of the zero-mean-flow assumption might be
rather small. One reason for this is that (1.1) does not support entropy waves. Thus
the acoustic generation due to the entropy spot being accelerated in the nozzle/turbine
located downstream of the combustion chamber is not accounted for and mixed modes
cannot be captured. Recall that the production of sound by acceleration of entropy
fluctuations is a key phenomenon when dealing with combustion noise; neglecting this
acoustic source when studying thermoacoustic instabilities is thus questionable.

Nevertheless, this somewhat restrictive assumption is necessary to derive a wave
equation for the thermoacoustic perturbations superimposed onto a non-isentropic
baseline flow, the alternative being to use the complete set of linearised Euler
equations (LEEs) (see Nicoud & Wieczorek 2009). Unfortunately, this would make
the computational effort needed to compute the thermoacoustic modes significantly
larger (five coupled equations being solved for) than what is required when dealing
with (1.1). More importantly, the LEEs couple the different modes of fluctuations
that may interact and produce a combustion instability. Consequently, solving the
LEEs would not be as informative as solving the Helmholtz equation with or without
additional terms related to the mean flow. Being able to (partly) account for the
effects of non-zero Mach number without relying on the LEEs is therefore highly
desirable to discriminate if an instability is purely of acoustic nature or if it relies on
a mixed acoustic–entropy mode of oscillation.

The objectives of this paper are the following:

(i) build and analyse an LES database to establish the presence of mixed modes in
a realistic combustion chamber;

(ii) develop and validate a methodology to capture the mean flow effects within the
zero-Mach-number framework (1.1);

(iii) apply the obtained low-order method to the same three-dimensional industrial-like
combustor.

First, the industrial configuration, the numerical set-up and the associated low-
frequency instability are presented in § 2. A purely acoustic study is performed with
the help of a zero-Mach-number Helmholtz solver, demonstrating that a classical
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thermoacoustic approach cannot represent the observed low-frequency mode. In § 3
a dynamic mode decomposition (DMD) is applied to the LES results in order to
investigate the presence of an entropy–acoustic coupling via the reconstruction of
a reduced-order model. A proper formalism is then introduced in § 4 in order to
account for the entropy–acoustic coupling within the zero-Mach-number framework
by the derivation of a delayed entropy coupled boundary condition (DECBC). Finally,
results from the zero-Mach-number Helmholtz solver with the DECBC approach are
presented to illustrate the potential of the method.

2. Combustor analysis
2.1. Description of the experimental configuration

The case considered in this study is a combustor developed by the SAFRAN Group
for aero-engine applications. Figure 1 shows the combustion chamber and the casing
with primary and dilution holes, although some parts (shaded) of the geometry
are not displayed for confidentiality reasons (these details do not affect the main
features presented and the conclusions reached). The air inlet connected to the
upstream compressor is also displayed. Note that the downstream high-pressure
distributor, which connects the combustor to the turbine in the actual experiment, is
not represented here nor directly accounted for in the remainder of the paper. Instead,
it is modelled by a choked nozzle with equivalent cross-sectional area. For choked
conditions, this ensures that the chamber sees an outlet condition close to the actual
one. The whole mass flow rate does not enter into the nozzle: approximately 16 % is
routed downstream of the surrounding casing (modelled in the simulation by suction
walls). The fuel line is also visible, as well as the swirled injector used to mix fuel
and air and to generate the recirculation zone that stabilises the flame. In the engine,
several injectors are mounted all around the azimuthal combustion chamber, although
only one sector with one injector is displayed in the figure. Note that this geometry
is representative of a typical aero-engine gas turbine combustor, as studied in other
works (see Dowling & Stow 2003).

Experiments were performed on the present configuration to study the effect
of liquid water ingestion. Depending on the ratio between the mass flow rates of
water and air, the overall stability of the engine evolves, the combustor becoming
increasingly unstable as the mass flow rate of water increases. As the temperature of
the ingested liquid water is approximately 300 K, it is postulated that all liquid water
is vaporised when flowing through the compressor. Adding water to the incoming air
has two effects: (i) a decrease of the air temperature and (ii) a dilution effect due
to the presence of vaporised water in the inlet air. Both effects decrease the flame
speed and can affect the instability mechanism but effect (ii) is small compared to a
decrease of the inlet temperature of the combustion air (the flame speed changes like
T2). Although not detailed in the present paper, several LES computations have been
performed for different inlet boundary conditions:

(i) one that takes into account the mass fraction of vaporised water in the gas
entering into the combustor;

(ii) one where only pure air enters the combustion chamber.

These tests show that the main effect is the decrease of the inlet temperature and
that the injection of vaporised water has a limited effect: no significant differences
were observed on the flame dynamics or the frequency and amplitude of the instability.
Therefore we considered only the first one by using a reaction mechanism where
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Kerosene Dilution holes

Suction outlet

Choked nozzle

Multi-perforated walls
Primary holesCasing

Air inlet

Swirler

(a)

(b)

FIGURE 1. Description of the configuration of interest. One sector of the azimuthal
SAFRAN combustor is represented. The high-pressure distributor downstream of the
combustion chamber is modelled by a nozzle with equivalent cross-section and which is
either (a) rectangular or (b) circular.

no chemical effect of water is included and only the air temperature plays a role.
In consequence, the effect of liquid water is only taken into account in the present
study by decreasing the air entering into the combustor. It is possible to link the
inlet temperature Tinlet to the mass flow rates of liquid water and air by a simple
enthalpy balance. The engine is found to be stable for Tinlet approximately 760 K but
unstable for Tinlet approximately 560 K. In unstable cases the measured pressure signal
exhibits strong fluctuations at approximately 330 Hz and with a maximum amplitude
of approximately 5× 104 Pa.

2.2. Numerical set-up
To analyse this instability, LES were performed using the AVBP solver (CERFACS
2009). The latter is based on a cell-vertex formulation and a set of finite element/finite
volume schemes for unstructured meshes. A two-step Taylor–Galerkin scheme (third
order in time and space) was retained (Colin & Rudgyard 2000). Two regimes
were computed by LES, corresponding to two representative operating conditions
investigated experimentally at SAFRAN: one that contains a strong instability at
nearly 330 Hz (Tinlet= 557 K; operating point Cold); and one that shows no instability
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(Tinlet = 762 K; operating point Hot). In each case, only one angular sector (out of
20) was computed, axiperiodic conditions being prescribed at the lateral boundary. It
is consistent with the experimental data showing that the low-frequency instability
is not an azimuthal mode. Turbulent combustion was represented with the dynamic
thickened flame model developed by Colin et al. (2000). A simple two-step kinetic
scheme was used to represent kerosene–air chemistry (Franzelli et al. 2010). The
global power is approximately 1.4 × 106 W while the global equivalence ratio is
approximately 0.3, which is characteristics of lean combustors. The mass flow rate
of air entering into the domain is ṁO = 1.37 kg s−1, while the Reynolds number
in the inlet channel is approximately 7.5 × 105. The mass flow rate of kerosene is
ṁF = 0.032 kg s−1.

Boundary conditions are imposed through the NSCBC formulation (Poinsot &
Lele 1992) to control spurious acoustic reflections. The solid walls are adiabatic
and a classical logarithmic law is imposed to mimic the near-wall shear stress
(Schmitt et al. 2007). The coincident walls between the combustion chamber and the
casing are actually multi-perforated and modelled in the simulation by an adiabatic
homogeneous suction/injection boundary condition (Mendez & Nicoud 2008a,b). Only
the hydrodynamics effects of the multi-perforated walls are taken into account by
the model, not the associated acoustic damping. For each LES computation, data are
recorded for a period of 120 ms after the whole system reaches a limit cycle state.
As the expected instability phenomenon has a frequency of approximately 330 Hz,
this latter choice ensures that the averaging procedure of physical fields and signal
processing like Fourier transforms cover at least 40 cycles.

As mentioned in § 2.1, the turbine is replaced by a choked nozzle with equivalent
cross-sectional area. The natural question that arises is whether the response of the
nozzle to entropic (temperature) perturbations is sensitive to the three-dimensional
nature of the temperature hotspots. Two nozzle geometries were tested so as to ensure
the robustness of the results to the shape of the nozzle, a flat one and a circular one,
depicted in figure 1(a) and (b), respectively.

The fundamental characteristic of the LES methodology is that the mesh grid acts as
a spatial filter for the turbulence spectrum, the larger scales being solved numerically
on the discretised domain, while the effect of the smallest scales is modelled by a
subgrid-scale turbulent viscosity µt. It is then crucial to estimate the sensitivity of the
results to the mesh refinement as well as models for µt. The present study focuses
on the instability generated inside the chamber, downstream of the flame. Thus only
the pressure amplitude and the frequency of the phenomena are considered as crucial
parameters to assess the quality of the LES. No further investigations were performed
to quantify the influence of the mesh level refinement as well as the subgrid-scale
models on the physics of the flow and the flame. Hence, two meshes were tested for
the geometry coupled with a circular nozzle: a baseline one (approximately 5.6 million
cells) and a fine one (approximately 15 million cells). Note that, in both meshes, the
veins inside the swirler as well as the dilution holes are refined to capture the flow
in small geometrical details.

Moreover, two subgrid-scale models for the turbulent viscosity µt have been tested.

(i) The first is the classical Smagorinsky model (Smagorinsky 1963),

µt = (CS∆)
2
√

2S̃ijS̃ij, (2.1)

where ∆ denotes the filter characteristic length and CS = 1.8 is a constant.
The turbulent viscosity µt is then proportional to the resolved filtered strain
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Run Operating point Baseline mesh Fine mesh Circular nozzle Flat nozzle Regime

1 Cold × × Unstable
2 Hot × × Stable
3 Cold × × Unstable
4 Hot × × Stable
5 Cold × × Unstable
6 Hot × × Stable

TABLE 1. Summary of the LES computations performed on the two operating points Cold
(Tinlet = 557 K) and Hot (Tinlet = 762 K) depending on the nozzle geometry (circular or
flat) and the mesh (baseline mesh approximately 5.6 million cells, fine mesh approximately
15 million cells). The last column denotes if the computed flow was found to be stable
or unstable. Recall that the experiment is unstable for Cold and stable for Hot.

tensor S̃ij. The Smagorinsky model was developed in the 1960s and has been
extensively tested over a wide range of flow configurations. This model is easy
to implement and presents good properties for flows away from solid walls at
a low computational cost. Furthermore, it supplies the right amount of kinetic
energy dissipation in homogeneous isotropic turbulent flows. The Smagorinsky
model is also known as being too dissipative in wall-bounded flows and to
overpredict the wall shear stress near solid boundaries. This problem can be
avoided by the use of wall-law boundary conditions.

(ii) The second is the sigma model (Nicoud et al. 2011),

µt = (Cσ∆)
2σ3(σ1 − σ2)(σ2 − σ3)

σ 2
1

, (2.2)

where Cσ = 1.5 is a model constant, and σ1 > σ2 > σ3 > 0 are the singular
values of the resolved velocity gradient tensor. The σ model was developed
to overcome some drawbacks observed on most of the static models without
using an additional test filter. Indeed, it presents the interesting property of
vanishing in various laminar flow configurations (pure shear, pure rotation, pure
dilatation/contraction, etc.) for which no subgrid-scale activity is expected. It
also has the property of vanishing with the proper asymptotic behaviour near
solid boundaries.

Table 1 presents a summary of the LES computations performed on the two
operating points depending on the nozzle geometry and the mesh refinement. In order
to discriminate either the effect of the nozzle or the inlet temperature, all numerical
and physical parameters in the computations are strictly the same.

2.3. LES results
Figure 2 displays typical snapshots (instantaneous temperature fields) of the LES for
the operating points Cold and Hot. Contours of the heat release rate (1× 109 W m−3)
are superimposed onto the temperature field. Both cases exhibit a typical swirled flame
with a central recirculation zone around the axis of the swirler. An interesting feature
of the flame is that chemical reactions occur also near the cooling film, as well as
along the dilution jet where fresh air flows into the combustor. Theoretically, the role
of the dilution holes is to confine the flame to the upstream zone by suddenly reducing
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A

A

Temperature (K)

300 600 900 1200 1500 1800 2100 2400 2700

(a)

(b)

FIGURE 2. Instantaneous fields of temperature with superposition of one contour of heat
release rate (white line, 1× 109 W m−3) at operating points (a) Cold and (b) Hot. The
snapshots are from run nos. 5 and 6, respectively (see table 1).

the fuel : air ratio. In both cases, this objective is reached and the temperature drops
after the dilution jets. However, in the case of the operating point Cold (figure 2a),
a hot pocket of temperature is released after the dilution jets and the mixture is
still reacting when convected to the downstream nozzle by the mean flow. A set
of temperature snapshots is displayed in figure 3 showing how this hot pocket is
created, convected and ejected by the nozzle. In contrast, in the case of the operating
point Hot, the dilution jets play their role and the flame is confined (figure 2b). Only
burned gas is convected to the downstream nozzle.

The pressure signal is recorded at a probe (denoted A, see figure 2) located at the
entrance of the nozzle. Results for the operating points Cold and Hot are depicted in
figure 4 by the solid and dotted lines, respectively. In the case of operating point Cold,
the pressure exhibits strong harmonic fluctuations at a fundamental low frequency
close to the experimental value (330 Hz). The mean pressure is approximately 1.65×
106 Pa. The amplitude of the limit cycle is quite large and is in the range of pressure
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Temperature (K)

300 600 900 1200 1500 1800 2100 2400 2700

(a) (b)

(c) (d)

FIGURE 3. Instantaneous fields of temperature with superposition of one contour of heat
release rate (white line, 1× 109 W m−3). Full cycle of the evolution of the temperature.
(a) The flame is confined in the primary zone. (b) A hot pocket of temperature is created
under the dilution holes. (c) The hot pocket is convected downstream. (d) The hot pocket
is ejected through the exit nozzle.
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FIGURE 4. Pressure signals from LES data at probe A and for the circular nozzle
geometry: operating point Cold, run no. 5 (——); operating point Hot, run no. 6 (· · · · · ·).
The mean pressure is approximately 1.65 × 106 Pa and 5 × 104 Pa for operating points
Cold and Hot, respectively.

fluctuation amplitudes measured in the experiments (approximately 5× 104 Pa). In the
case of operating point Hot, the pressure signal is typical of broadband noise, with
a smaller fluctuation level. The mean pressure is also higher (approximately 1.76 ×
106 Pa) than for the Cold case.
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FIGURE 5. Spectra of pressure signals from LES data at probe A performed on the coarse
mesh and for the operating point Cold: circular nozzle (——), run no. 1 (see figure 1a
and table 1); flat nozzle (· · · · · ·), run no. 3 (see figure 1b and table 1). The mean pressure
value has been subtracted from processed signals.

In order to assess the influence of the shapes of the downstream nozzle, two
computations have been performed using the baseline mesh for the operating point
Cold, both with the flat and circular geometry (run nos. 1 and 3, see table 1). Figure 5
presents the amplitude of the Fourier transform of each signal recorded at probe A.
The mean pressure value has been subtracted from processed signals. The first two
peaks at 320 and 640 Hz are virtually the same for both nozzle geometries, while the
frequency of the third and fourth peaks (approximately 960 Hz and approximately
1280 Hz, respectively) are slightly shifted. This shows that the estimation of the
instability is not sensitive to the nozzle geometry for the low-frequency mode of
interest. Only the circular nozzle geometry will be considered in the remainder of
the paper.

As explained in § 2.2, operating points Cold and Hot were solved with the two
levels of mesh refinement (run nos. 1, 2, 5 and 6 in table 1). Figure 6 presents the
modulus of the Fourier transform of the pressure signal recorded at probe A for
run no. 5 (fine mesh) and no. 1 (baseline mesh). The mean pressure value has been
subtracted from processed signals. Results for the first unstable mode are similar,
even if the amplitude of fluctuations computed with the baseline mesh is slightly
under-predicted and their frequency slightly shifted. This can be explained by the
fact that the baseline mesh is more dissipative and that entropy waves are dissipated
too rapidly during their convection to the downstream nozzle. The modulus of the
Fourier transform of the pressure signal recorded at probe A for the operating point
Hot is also displayed in figure 6. A peak is present at the frequency of approximately
435 Hz and has an amplitude of 2500 Pa. It is remarkable that pressure fluctuations
for the operating point Hot are very weak compared to those for the operating point
Cold, confirming the capacity of LES to capture and discriminate between stable
and unstable regimes on both meshes of table 1. Although not depicted in figure 6,
results for run no. 2 are similar to those for run no. 6.

Additionally, to make sure that the instability mechanism predicted by LES is
independent of the subgrid-scale model for the turbulent viscosity µt, run no. 5 was
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FIGURE 6. Spectra of pressure signals from LES data at probe A and for the circular
nozzle geometry: operating point Cold and fine mesh, run no. 5 (——); operating point
Cold and coarse mesh, run no. 1 (· · · · · ·); operating point Hot and fine mesh, run no. 6
(– –•– –). The mean pressure value has been subtracted from processed signals.

computed with the classical Smagorinsky model and the sigma model as described
in § 2.2. Results for the modulus of the Fourier transform of the pressure signal
recorded at probe A are depicted in figure 7. The mean pressure value has been
subtracted from processed signals. Results for the first unstable mode are similar in
both frequency and amplitude. For the second unstable mode, results with the sigma
model differ slightly: the frequency is shifted by a few hertz, while the amplitude is
under-estimated. However, for the phenomena of interest at approximately 320 Hz,
figure 7 demonstrates that the results are independent of the modelling of the turbulent
viscosity µt. Note that a run without subgrid-scale model has been attempted on
both baseline and fine meshes. These computations are unstable and lead to rapid
numerical divergence: this demonstrates that the numerical viscosity is weak and that
subgrid-scale models for the turbulent viscosity µt are essential. Finally, as results are
very similar even when the mesh is refined and the subgrid-scale model is changed,
the LES computations are considered robust to reproduce the instability phenomena
accurately.

2.4. Helmholtz analysis
An acoustic analysis is performed by using the AVSP software (Nicoud et al. 2007)
that solves the Helmholtz equation (1.1) numerically as an eigenvalue problem. The
unsteady heat release rate q̂(x) constitutes a forcing source related to the acoustic–
flame coupling. It is modelled based on an n–τ type of model (Crocco 1952):

q̂(x)= nlocal(x)û(xref ) eiωτlocal(x) · nref . (2.3)

Equation (2.3) essentially relates the unsteady heat release q̂ to the acoustic
velocity û along the direction of the unit vector nref at reference location xref . The
space-dependent amplification factor (unit J m−4) and the time delay (unit s) are nlocal
and τlocal, respectively. The nlocal–τlocal parameters can be estimated experimentally or
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FIGURE 7. Spectra of pressure signals from LES data at probe A and for the circular
nozzle geometry and fine mesh (operating point Cold, run no. 5): Smagorinsky model
(Smagorinsky 1963) (——); sigma model (Nicoud et al. 2011) (– – –). The mean pressure
value has been subtracted from processed signals.

by analytical models. However, in the present study, these parameters are directly
extracted from the LES database by post-processing the heat release rate and velocity
signals obtained for the self-sustained case Cold. Note that the Helmholtz equation
only involves the acoustic pressure p̂ and that the velocity vector û can be deduced
from p̂ by using the momentum equation under the zero-Mach-number assumption:
iωρû=∇p̂. Finally (1.1) solved by the Helmholtz solver is rewritten as follows:

ρ(x)c2(x)∇ ·
(

1
ρ(x)
∇p̂(x)

)
+ω2p̂(x)= (γ (x)− 1)nlocal(x) eiωτlocal(x)∇p̂(xref ) · nref

ρ(xref )
.

(2.4)
The sound speed c, the mass density ρ and the heat capacity ratio γ are local variables
that are estimated from time-averaged LES solutions.

Solutions of (2.4) are basically a set of eigenmodes that are characterised by a
complex frequency and associated shapes of pressure distribution. The imaginary
part of the complex frequency is interpreted as the stability rate of the eigenmode.
Care must be taken concerning the interpretation of the stability rate. Usually the
temporal evolution of a combustion instability is decomposed into two phases (Poinsot
& Veynante 2011): (i) an exponential linear growth, followed by (ii) a nonlinear
limit cycle. The stability rate computed by the Helmholtz equation only provides
information about the linear transient phase. Validating this piece of information
against LES data would require measuring the growth rate from temporal signals
during the transient linear phase, which is very challenging when dealing with a
turbulent flow. A common way of checking the validity of a low-order thermoacoustic
analysis is to assume that any mode with a (strong) positive growth rate should lead
to a limit cycle with similar frequency and spatial structure. At the same time, any
linear mode with negative or marginally positive growth rate is expected to be damped
without forming a limit cycle.

Note that, although the Helmholtz analysis is conducted in the linear domain, the
models are fed with parameters (the field of speed of sound, n–τ parameters for
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Truncation

M = 0.1
M = 0.2

M = 1

FIGURE 8. Isocontour of Mach number in the combustor for the computation at operating
point Cold. The black line represents the location where the domain is truncated (M≈0.1).

the active flame or DECBC) computed from the nonlinear state (the limit cycle).
This is of course a limitation of the present approach but it is the usual practice in
thermoacoustic studies (Martin et al. 2006; Wolf et al. 2012). A posteriori results
tend to show that the linear study is able to capture unstable/stable modes with a
coherent estimation of the frequency. Recent studies (Selimefendigil & Polifke 2011;
Silva et al. 2013) demonstrate that it is possible to capture the nonlinear behaviour
when combining several transfer functions computed from the linear regime.

2.4.1. Acoustic boundary conditions
Since (2.4) assumes no mean flow, it is necessary to restrict the study of

thermoacoustic instabilities to only the combustion chamber (where the Mach number
is always small). As depicted in figure 8, the domain is truncated at the outlet,
before the nozzle, where the Mach number is M ≈ 0.1. It is then crucial to take
into account the proper acoustic environment of the combustor, such as, for example,
the presence of a compressor or a turbine. This is illustrated in figure 9, where Z0

up
stands for the proper acoustic impedances that must be imposed at the edges of the
Helmholtz (M = 0) domain in order to account for the transmission or reflection of
acoustic waves due to the compressor and turbine. Note that the Mach number in the
surrounding elements is not necessarily small, especially in the turbine, where the
flow is highly accelerated. The natural question that arises is then: What is the proper
way to impose an impedance that models non-zero-Mach-number (M 6= 0) elements
onto a Helmholtz solver based on the zero-Mach-number assumption? This subject
has been handled by the authors in previous works (see Motheau, Nicoud & Poinsot
2012; Motheau, Selle & Nicoud 2014) and is briefly recalled in the following.

When dealing with acoustics in the presence of mean flow effects, the impedance
over a boundary with normal n may be formulated in two different ways:

ρ c ZM
up û · n− p̂= 0 or alternatively

c
ρ

ZM
mJ m̂ · n− Ĵ = 0, (2.5a,b)

where m̂ = ρû + up̂/c2 and Ĵ = p̂/ρ + u · û are the (complex amplitudes of the)
mass flow rate and total enthalpy, respectively, and ZM

up and ZM
mJ are the impedances

associated with variables (û, p̂) and (m̂, Ĵ), respectively. The choice of this latter set
of fluctuating state variables is commonly made in the aeroacoustic community (see
Peters et al. 1993; Karlsson & Åbom 2010) because they are themselves independent
of the flow when placed in a wave equation, contrary to the pressure or the velocity,
which are locally dependent on the flow velocity (see Doak 1998). The superscript M
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uniform

Flow domain where M
is small and assumed

zero
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uniform

Compressor Combustion chamber Turbine

FIGURE 9. Schematic view of the modelling strategy. Instead of solving for the LEEs over
the whole domain, the Helmholtz equation is solved over the combustion chamber only,
the acoustic environment from compressor and turbine being accounted for by imposing
relative impedances.

in (2.5) denotes the fact that the impedances are relevant to acoustic elements where
the mean flow is not at rest (as in a compressor or turbine, see figure 9). Of course,
the impedances ZM

up and ZM
mJ are two different complex-valued numbers although they

represent the same physical element (compressor or turbine). For example, a perfect
tube end where the acoustic pressure p̂ is zero would correspond to ZM

up = 0 but
ZM

mJ =M · n= u · n/c. More generally, these impedances are related by the following
relation:

ZM
mJ =

ZM
up +M · n

1+ ZM
up M · n . (2.6)

Now, since the Helmholtz equation is solved for in the combustion chamber where
the mean flow is assumed at rest, a boundary impedance Z0

up should be imposed in
order to account for the effects of the compressor/turbine on the acoustics. Even if p̂
is the primary variable (see (1.1)) in the combustion chamber, the proper impedance
Z0

up to be imposed at the edge of the chamber is not necessarily ZM
up. Even if the Mach

number is zero in the chamber, it is not in the nozzle, and its effect should be taken
into account when computing ZM

up. A careful analysis of the energy flux through the
interface between the combustion chamber and the outer acoustic elements (Motheau
et al. 2014) shows that a proper choice is Z0

up = ZM
mJ because this introduces an error

of order M2 on the energy flux, while Z0
up = ZM

up introduces an error of order M. For
example, if a choked feeding line is located upstream of the combustion chamber, the
mass flux is constant (m̂ · n = 0, ZM

mJ =∞) and the proper boundary condition for
the Helmholtz domain is simply Z0

up =∞. Similarly, if the feeding line imposes the
velocity instead of the mass flux (û · n = 0, ZM

mJ = 1/M · n, ZM
up = ∞), the proper

boundary impedance is Z0
up = 1/M · n and not ∞.

In the present study, the nozzle impedance ZM
up was computed based on the

analytical approach of Duran & Moreau (2013), which solves the quasi-one-
dimensional LEE via the Magnus expansion. The main advantage of this latter
method over the Marble & Candel (1977) compact approximation is that, for any
given complex frequency, it gives the exact amplitude of the impedance and the
related phase relations, while keeping a negligible computational cost. The impedance
ZM

up was then corrected for Mach effects using (2.6) to provides ZM
mJ .

2.4.2. Results
Several computations of the operating points Cold and Hot have been performed

with the AVSP Helmholtz solver (Nicoud et al. 2007). In all cases, a baseline mesh
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(approximately 105 nodes) was generated from the LES grid in order to represent
the geometry properly. Additionally, a zero normal acoustic velocity condition was
imposed over all boundaries except (a) over the chamber exit, where the nozzle
impedance ZM

mJ (see § 2.4.1) is imposed, and (b) over the air inlet, which is modelled
by a constant mass flow rate m̂ · n= 0, i.e. ZM

mJ =∞.
The sound speed c is computed from the averaged temperature field given by LES

and interpolated on the coarse acoustic mesh. In a cold region such as the casing
where fresh air is flowing, the sound speed is approximately 300 m s−1 and it reaches
approximately 900 m s−1 in hot regions. The fields of nlocal and τlocal are computed
by taking the Fourier transform of the signals of fluctuating heat release rate and
velocity, so as to form q̂(x) at each point of the domain as well as û(xref ) · nref at a
reference point xref located inside the swirler. For Helmholtz computations of the case
Cold, figure 10 presents the fields of nlocal and τlocal extracted at frequency 320 Hz of
the thermoacoustic instability. The reference point xref for the velocity as well as the
normal reference vector nref are also shown. For computations of the case Hot, the
fields of nlocal and τlocal are extracted at 440 Hz (not shown), which is the frequency
in the LES signals (see figure 6) where most of the activity occurs.

The main properties of the computations performed, as well as the results for
the first mode, are gathered in tables 2 and 3 for operating points Cold and Hot,
respectively. The ‘Active flame’ column reports whether or not the flame–acoustic
coupling (the right-hand side term of (2.4)) is included. The ‘Boundary conditions’
column reports whether the value of Z0

up (see § 2.4.1) at the outlet is set to ∞ (simple
m̂ · n = 0 condition) or computed from the analytical nozzle theory of Duran &
Moreau (2013). Computations of the operating points Cold and Hot feature the same
behaviour. The first eigenmode obtained for operating point Cold is in the range of
690–730 Hz, very far from the instability at 320 Hz encountered in the experiments
and the LES computations. Similarly, the first mode computed for operating point
Hot is found in the range of 817–840 Hz, contrary to the (limited) thermoacoustic
activity observed at approximately 435 Hz. Runs B show that the coupling with the
flame only shifts the frequency by a few hertz and has a damping effect on the
acoustic modes. Runs C show that the use of more accurate boundary conditions
has a limited effect on the frequency of the first eigenmode. Using an active flame
model and proper boundary conditions within a Helmholtz solver framework is the
most employed method to calculate thermoacoustic modes and to draw the stability
map of a reactive system. However, runs D confirm that such a method totally fails
to capture the desired unstable mode of interest in this particular study. This result
suggests that the instability encountered in the present combustor is not of purely
acoustic nature and supports the idea that it relies on a convective path. The next
natural question is this: How can evidence be found for this path, if it exists, and
how can it be modelled in the purely zero-Mach-number acoustic framework? The
next section is devoted to an advanced post-processing of the LES by using DMD.

3. Dynamic mode decomposition
3.1. Theoretical background

Experiments or simulations of flows often lead to complex, dynamic and nonlinear
systems that cannot be analysed directly by simple visualisation or statistical
techniques. Advanced methods have emerged during the past decades to provide
a detailed analysis of many flow fields. In this context, the extraction of coherent
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FIGURE 10. Fields of nlocal and τlocal computed at 320 Hz and for the operating point
Cold, run no. 5. The black dot indicates the location of the reference point xref for the
acoustic velocity.

Name Outlet impedance, Active flame Frequency Growth/decay rate
ZM

mJ (Hz) (s−1)

Run A ∞ No 731 0
Run B ∞ Yes 703 −18
Run C From Duran & Moreau (2013) No 721 −27
Run D From Duran & Moreau (2013) Yes 690 −42

TABLE 2. Results for Helmholtz computations of operating point Cold (Tinlet = 557 K).

structures from the flow as well as their stability analysis have become essential. The
time evolution of a flow is described by

dv(t)
dt
= Av(t), (3.1)
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Name Outlet impedance, Active flame Frequency Growth/decay rate
ZM

mJ (Hz) (s−1)

Run A ∞ No 840 0
Run B ∞ Yes 830 0
Run C From Duran & Moreau (2013) No 826 −30
Run D From Duran & Moreau (2013) Yes 817 −28

TABLE 3. Results for Helmholtz computations of operating point Hot (Tinlet = 762 K).

where v is a vector containing the physical variables representative of the flow and A
is a linear operator. When integrated between t and t+1t while keeping A constant,
(3.1) leads to

v(t+1t)≈ e1tAv(t). (3.2)

In practice, the flow is time-discretised and represented by a set of N vectors whose M
components (M�N) contain any relevant quantity taken either from experimental or
numerical data at N different instants. Mathematically speaking, the amplitudes of all
the variables at all points are represented by the following sequence of state vectors:

V N
1 = {v1, v2, v3, . . . , vN}, (3.3)

where the subscript and superscript denote the time index of the first and last snapshot,
respectively. If the state vectors contain enough information, the flow dynamics can be
approximated by a linear operator Ã= e1tA such that

vn+1 = Ãvn, ∀n. (3.4)

The Ã operator may be studied through its eigenvectors Φ̃n and eigenvalues λ̃n, which
provide the model structure and frequency/growth rate, respectively. In practice, the
eigenvalue problem

ÃΦ̃n = λ̃nΦ̃n (3.5)

cannot be solved since Ã is either unknown or too large. The DMD developed by
Schmid (2010) is an algorithm to approximate the matrix Ã. The DMD is an extension
of a previous method presented by Rowley et al. (2009) and based on the Arnoldi
algorithm. Equations (3.3) and (3.4) may be expanded into the following relation:

ÃV N−1
1 = V N

2 = V N−1
1 S + reT

N−1. (3.6)

Here r is the residual vector, which tends to zero when the number of snapshots N
increases, eN−1 is the (N − 1)th unit vector and the matrix S is of companion type
with

S =


0 a1
1 0 a2

. . .
. . .

...

1 0 aN−2
1 aN−1

 , (3.7)
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where the coefficients {a1, a2, a3, . . . , aN−1} are the only unknowns. The matrix S
shifts the snapshot index 1 to N−1 and is a low-dimensional representation of the full
system. Consequently, S and Ã share the same eigenvalues, since they are similar from
(3.6) if the residual vector on the right-hand side is indeed negligible. The advantage
of considering S is its reduced size, (N − 1) × (N − 1), compared to the size of Ã,
M ×M. One drawback of the DMD is that the operator S may be ill-conditioned in
practice, especially when dealing with noisy signals. Several formulations of S are
available in the literature, as for example by expanding V N−1

1 via a singular value
decomposition (SVD) (Schmid 2010) or a QR decomposition (Schmid et al. 2011). In
the present paper, the variant proposed by Chen, Tu & Rowley (2012) is implemented
and described as follows. The operator S is reformulated by using (3.6):

S = (V N−1
1 )−1V N

2 . (3.8)

Introducing first the following SVD, V N−1
1 =UΣW H, where U and W are unitary and

Σ is diagonal, the Moore–Penrose inversion of (V N−1
1 )−1 leads to

(V N−1
1 )−1 =WΣ−1UH. (3.9)

Introducing the substitution U = V N−1
1 WΣ−1 into (3.9) and replacing the whole

expression into (3.8) gives

S =WΣ−1Σ−1W H(V N−1
1 )HV N

2 . (3.10)

The operators W and Σ may then be simply computed by forming the following
diagonalisation:

(V N−1
1 )HV N−1

1 =WΣ2W H. (3.11)

This construction of S is robust even when V N−1
1 is nearly rank-deficient, and

computing the product (V N−1
1 )HV N−1

1 requires less memory (see Chen et al. 2012) than
performing an SVD directly. The last step is to solve the eigenproblem Ssn = µnsn,
where sn and µn are the eigenvectors and eigenvalues of S. From (3.6) (neglecting
the residual term), the relations between the eigenvectors Φ̃n and eigenvalues λ̃n of Ã
and their counterparts sn and µn are

Φ̃n = V N−1
1 sn (3.12)

λ̃n = µn. (3.13)

Recalling that Ã= e1tA, the eigenvectors and eigenvalues of A are

Φn = Φ̃n = V N−1
1 sn, (3.14)

λn = ln(λ̃n)

1t
= ln(µn)

1t
. (3.15)

Thus studying the (N− 1)× (N− 1) matrix S gives information about the whole flow
dynamics A.
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3.2. Application of the DMD
Dynamic mode decomposition (DMD) was applied to the LES data in order to
better understand the nature of the instability illustrated in § 2.3. For this purpose,
200 snapshots were recorded over a time range corresponding to approximately eight
cycles of the instability, thus leading to a sampling of 28 snapshots by period. This
amount of data is sufficient for the DMD to break down the reactive turbulent flow
into dynamically relevant structures with periodic evolution over time (Schmid 2010).
The input vectors (see (3.3)) for the DMD algorithm were built from the nodal values
of pressure, static temperature, entropy, reaction rate and the three components of
the velocity at each grid point of the mesh used for the LES. Note that the entropy
variable, denoted s, is not directly an output of the code and has been computed for
each node of the domain from LES data with the following expression:

s(x)= Cp(x)
γ (x)

ln
(

p(x)
ρ(x)γ (x)

)
. (3.16)

Although not detailed in the present study, several trials have been performed
by changing the total number of snapshots or by composing the input vector with
different sets of variables, showing that the number of variables taken into account
in the DMD does not change the conclusions drawn in the remainder of this study.
Moreover, variations in the total number of snapshots have a limited impact and only
shift the frequency of the most unstable mode by a few hertz.

The DMD results of the LES for operating points Cold and Hot are depicted in
panels (a) and (b) of figures 11 and 12, respectively. Figure 11 shows the L 2-norm
‖Φn‖L 2 = √ΦH

n Φn of the pressure fluctuations associated with the different DMD
modes. Figure 12 shows the amplification rate Im(λn) of the pressure DMD mode.
The DMD analysis for operating point Hot does not exhibit a strong emerging
mode. Although not evident, a peak is present at the frequency of 434 Hz and has
an amplitude of approximately 3500 Pa, in agreement with experiments and the
Fourier analysis (see figure 6). However results for the unstable operating point Cold
presented in figure 11(a) exhibit a strong peak at 323 Hz, in good agreement with the
Fourier analysis conducted in § 2.3 (see figure 6). Additional peaks with a decreasing
amplitude are also present at frequencies 648, 969 and 1290 Hz. A close look at
the spectrum of the amplification rate Im(λn) depicted in figure 12 shows that each
mode featuring a strong pressure activity has a null amplification. This result was
expected because the DMD analysis is performed on LES data recorded when the
thermoacoustic instability has reached a limit cycle. The transition from the stable to
unstable operating points, i.e. when the energy is growing inside the combustor, has
not been considered in the present study. Note also that the eigenmodes extracted by
DMD are related by a simple relation fn = nf0, suggesting that the modes of higher
frequency are harmonics of a fundamental mode f0.

The modulus of the fluctuating temperature field for the DMD mode with the
highest amplitude at 323 Hz is depicted in figure 13(a). The relative phase of the
temperature and pressure mode is also recorded along the combustor, from the swirler
to the exit nozzle. The path where the data are extracted is represented by a white
line and the phase is plotted in figure 13(b). Two different zones can be distinguished,
each with a specific behaviour of the temperature fluctuations:

(i) Zone I corresponds to the primary zone between the swirler and the dilution
holes. The unsteady swirled flame naturally generates temperature fluctuations,
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FIGURE 11. Pressure amplitude (L 2-norm) spectrum from the DMD analysis of the LES
computation at operating points (a) Cold and (b) Hot. The frequency is Re(λn).
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FIGURE 12. Amplification spectrum (Im(λn)) from the DMD analysis of the LES
computation at operating points (a) Cold and (b) Hot. The frequency is Re(λn).

but this latter mechanism is confined in the primary zone (I). Indeed, the flame
is surrounded by a zero fluctuating temperature area, suggesting that no pockets
of temperature generated by the flame are connected with zone II downstream
of the dilution holes. This statement is supported by the behaviour of the phase,
which shifts from −π to π inside zone I. Fluctuations of temperature then roll
up inside the flame and no convection to the downstream zone II occurs.

(ii) Zone II extends from the dilution holes to the exit nozzle. Strong fluctuations of
temperature occur along the jets of fresh air that flow from the dilution holes.
A large pocket of fluctuating temperature is formed at the top end of the jets, in
the middle of the combustor. The phase unrolls monotonically from the formation
area of the hot pockets to the downstream nozzle.

The analysis of the modulus and phase of the temperature for the first DMD mode
at 323 Hz suggests that hot pockets of fluctuating temperature are released after the
dilution holes and convected to the downstream nozzle. This statement confirms the
scenario observed in figure 3 showing a series of temperature fields taken from the
LES. However, the DMD gives more insight about the origin of these hot pockets:
they are not created directly by the flame, which is confined in the primary region,
but are generated by the hot gases interacting with the dilution jets.
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FIGURE 13. Temperature fluctuations for the first DMD mode at 323 Hz of operating
point Cold. (a) Modulus over the mid-plane. (b) Phase of the temperature (——) and
pressure (· · · · · ·) along the path depicted by the white line.

In order to better understand the mechanism at the origin of the thermoacoustic
instability, the fluctuating pressure, temperature and velocity fields from the first DMD
mode at 323 Hz were reconstructed over one period. The four phases displayed in
figure 14 support the idea that the unstable mode of interest relies, at least partly,
on an entropy–acoustic coupling. Note that the velocity is represented only by its
component along the y-axis, i.e. the streaming axis of the dilution jets.

(i) At phase 0, the pressure is low everywhere within the combustion chamber and a
pocket of cold gas is present downstream of the primary reaction zone, roughly at
the middle of the combustion chamber. The velocity perturbations of the dilution
jets are maximum: more fresh air is blown into the combustor.

(ii) At phase π/2, the cold pocket is convected downstream and the unsteady
pressure in the chamber is approximately zero. The velocity perturbations of the
jets are very small.

(iii) At phase π, the cold pocket interacts with the exit nozzle and a new pocket
of hot gas is generated downstream of the primary zone, while the fluctuating
pressure within the chamber is now positive and the dilution jets have reached
their minimum velocities.

(iv) At phase 3π/2, the pocket of hot gas is convected by the mean flow and the
pressure within the chamber decreases, while the velocity perturbations of the
dilution jets are now again very small.

As recalled in the Introduction, each interaction between a hot or cold pocket of gas
and the nozzle generates acoustics, which may propagate downstream (generating what
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DMD mode at 323 Hz for the operating point Cold (Tinlet = 557 K). From top to bottom,
the four rows correspond to phases 0, π/2, π and 3π/2.
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is known as indirect noise) or upstream (generating another perturbation of the flame
region and promoting the creation of a new entropy spot). This creates a pressure
drop between the surrounding casing and the combustor. In the same phase relation,
depending on the sign of the pressure drop, the dilution jets are either (a) blowing
fresh air into the combustor, thus decreasing the combustion and creating the cold
pocket, or (b) blowing fresh air out of the combustor, enhancing the formation of a
hot pocket. When the pressure drop decreases to zero, the dilution jets are annihilated
and the pocket of cold/hot temperature is released and convected by the mean flow.

The acoustic response of the nozzle to an impacting temperature fluctuation can
be characterised by the analytical theory based on the Euler equations of Duran &
Moreau (2013). The amplitude of the reflected acoustic wave scales with the incident
temperature fluctuation, and the ratio p̂/T̂ is typically of the order of 100 Pa K−1 for
most nozzles. As a consequence, for temperature fluctuations of approximately 350 K
measured at 323 Hz from the DMD analysis of the LES data (see figure 14), the
pressure fluctuations generated by the nozzle can then be computed with the help of
the reflection coefficient and qualitatively estimated to be approximately 35 000 Pa,
which is in fair agreement with the pressure fluctuations (see figure 11) measured
in the LES. The angle of p̂/T̂ is between 3π/4 and π, which is also in agreement
with the LES/DMD results (see figure 13). Hence, for this nozzle and flow regime,
temperature pockets impacting the nozzle generate strong opposite-sign pressure
fluctuations in the combustion chamber. Note that any acoustic pressure fluctuation
generates a certain amount of temperature fluctuations, even in the absence of a
nozzle or accelerated flow. Under the isentropic assumption, one obtains

T̂ = T
(
γ − 1
ρ c2

)
p̂. (3.17)

Figure 15 shows that the isentropic temperature fluctuations at the entrance of the
nozzle are almost 25 times smaller than the temperature fluctuations measured in the
LES via the DMD and are also out of phase. This demonstrates that the temperature
fluctuations seen in zone II are not the thermal signature of the pressure (acoustics)
fluctuations in the chamber; instead, they are generated by the interaction between the
primary zone and the dilution jets. After interacting with the nozzle, they generate a
strong pressure fluctuation of opposite sign. This demonstrates that the combustion
instability does not rely on a purely acoustic mode. Additionally, the temperature
signal at the air inlet entrance in the casing is also reconstructed from the DMD mode
at 323 Hz and compared to the acoustic temperature signal. The results depicted in
figure 16 suggest that the casing surrounding the combustion chamber features only
a purely acoustic activity, demonstrating that the instability mechanism is confined
in the combustion chamber and is not introduced at the air inlet of the domain. The
idea that the unstable mode close to 320 Hz involves a coupling between entropy and
acoustics is further supported by the numerical Helmholtz analysis of the combustor
performed in § 2.4.2, which shows that the smallest purely thermoacoustic frequency
mode is close to 690 Hz, very far from the observed 320 Hz. The next two sections
describe how this acoustic–entropy coupling phenomenon can be accounted for within
the Helmholtz framework.

4. Introducing entropy–acoustic coupling in Helmholtz formulation
As detailed in the authors’ previous work (see Motheau et al. 2013, 2014), the

purely acoustic formulation used in Helmholtz solvers can be augmented to account
simply for convective/acoustic modes by:
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FIGURE 15. Reconstructed temperature signal at the entrance of the nozzle measured from
the first DMD mode at 323 Hz (——). Reconstructed acoustic temperature signal at the
entrance of the nozzle computed with (3.17) and the pressure signal measured from the
first DMD mode at 323 Hz (· · · · · ·). Note that the second curve is multiplied by a factor
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FIGURE 16. Reconstructed temperature signal at the air inlet entrance of the casing
measured from the first DMD mode at 323 Hz (——). Reconstructed acoustic temperature
signal at the air inlet entrance of the casing computed with (3.17) and the pressure signal
measured from the first DMD mode at 323 Hz (· · · · · ·).

(i) modelling the entropy wave from the flame zone to the nozzle using a time delay
(similar to flame transfer function delays used for classical thermoacoustics);

(ii) introducing the entropy wave reflection into acoustics at the nozzle location by
using an extended outlet impedance accounting for entropy–acoustic reflection.

These formulations are described in § 4.1, which presents the DECBC model, and
tested in § 4.2.

4.1. Delayed entropy coupled boundary conditions
The acoustic impedance is imposed onto the computational domain as a uniform
boundary condition over a discretised surface. In this context the boundary condition
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relies on a quasi-one-dimensional formulation. Hence, the fluctuating pressure
and velocity fields can be reformulated in a general manner with the following
one-dimensional relations (Pierce 1981):

p̂(ξ)
γ p
= Aoutejkoutξ + Aine−jkinξ , (4.1)

û(ξ) · n
c

= −(Aoutejkoutξ − Aine−jkinξ ), (4.2)

where kin = ω/c(1 −M) and kout = ω/c(1 +M) are the acoustic wavenumber of the
acoustic waves Ain and Aout propagating along the curvilinear axis ξ (see figure 17) at
the speed of sound c against or towards the direction of the flow, respectively. Here
Ain is the wave entering into the computational domain while Aout is the wave leaving
the domain at c(1+M). Note that the minus sign in front of the right-hand side of
(4.2) stems from the fact that the unit vector normal to the exit boundary is collinear
with the ξ -axis, pointing towards negative ξ . Following Marble & Candel (1977) an
acoustic wave is generated by the entropy spots flowing through the exit nozzle or
turbine. At the location ξ = 0 where the boundary condition is imposed, the wave
Ain represents the acoustics generated by the nozzle and entering the computational
domain. It can be assumed linear in the two outgoing waves,

Ain = RupAout + Rspσ
out, (4.3)

where Rup and Rsp are the reflection coefficients for an impacting acoustic and entropy
wave, respectively. The term σ is the wave of the entropy fluctuations ŝ(ξ)/Cp =
σ outejksξ that is convected at the mean flow speed and leaving the domain, Cp is the
heat capacity at constant pressure and ks=ω/cM the wavenumber associated with the
convection of entropy spots by the mean flow. At ξ = 0, (4.1) and (4.2) become

p̂(ξ)
γ p
= Aout + Ain, (4.4)

û(ξ) · n
c

= −Aout + Ain, (4.5)

while
ŝ

Cp
= σ out. (4.6)

Equation (4.3) may then be recast into the form

p̂(Rup − 1)− ρ c û · n(Rup + 1)+ 2
γ p
Cp

Rspŝ= 0, (4.7)

with Rup = Ain/Aout and Rsp = Ain/σ out. Note that all the parameters γ , p, ρ, c and
Cp must be taken at the location where the boundary condition represented by (4.7)
is imposed. After introducing the relation between the acoustic impedance and the
acoustic reflection coefficient, Z0

up = (Rup + 1)/(Rup − 1), the implementation of (4.7)
into the Helmholtz solver AVSP leads finally to the following reformulation of the
boundary condition (4.7):

p̂
Z0

up

− ρ c û · n+ Z0
up − 1
Z0

up

γ p
Cp

Rspŝ= 0. (4.8)

Note that, similarly to the impedance Z0
up, Rsp can be deduced either by the compact

hypothesis of Marble & Candel (1977) or by the analytical LEE method of Duran &
Moreau (2013).
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FIGURE 17. Schematic representation of the curvilinear coordinate system of the
computational domain. The nozzle boundary condition is located at ξ = 0. The normal
n of the boundary is taken inwards.

As the Helmholtz solver relies on the zero-Mach-number assumption, the effect of
elements, such as the nozzle, where a mean flow occurs can simply be taken into
account by imposing the right energy flux through the proper impedance formulation
(see § 2.4.1). However, imposing only the acoustic impedance, equation (2.6), means
neglecting the entropy–acoustics coupling and the subsequent sound being generated
by the entropy spots flowing through the exit nozzle or turbine.

Now, ŝ in (4.8) is not available in the Helmholtz domain and the entropy
fluctuation at the edge of the combustion chamber must be modelled before (4.8)
can be applied. Assuming that the entropy fluctuations at the exit have first been
generated in the flame region before being convected by the mean flow, one obtains
ŝ = ŝf exp(iωτc), where ŝf is the amount of entropy being generated by the flame
and τc is the convection time from the flame to the exit. Consistently with the
Helmholtz framework, it is then useful to relate the generated entropy ŝf to some
acoustic quantity. It is done here in a way similar to the n–τ model (Crocco 1952)
for unsteady heat release, connecting the entropy fluctuation to the acoustic velocity
taken at a reference point located upstream of the flame region,

ŝf =Gus eiωτus ûref · nref , (4.9)

where Gus and τus are the gain and the time delay of the entropy generation from an
acoustic perturbation û at the location xref and along the direction nref . Rewriting (4.8)
then leads to the following DECBC:

p̂
Z0

up

− ρ c û · n+ Z0
up − 1
Z0

up

γ p
Cp

RspGus eiωτus eiωτc ûref · nref = 0. (4.10)

The DECBC has been validated elsewhere in the case of an academic one-dimensional
combustor mounted on a compact nozzle (see Motheau et al. 2012, 2014).

4.2. Application of the DECBC approach
Recall that the configuration investigated in the present paper exhibits a low-frequency
mode of oscillation at a frequency significantly smaller than any acoustic mode.
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Helmholtz analysis performed in § 2.4.2 failed to capture this low-frequency mode.
It is thus natural to investigate whether the DECBC approach described in § 4.1
helps to recover this latter mode. The transfer function between the acoustic velocity
upstream of the flame and the entropy generated downstream of the primary zone
was assessed by post-processing the LES via the DMD analysis. More precisely, this
entropy transfer function was defined as

GLES
us eiωτLES

us = 〈ŝf 〉
ûref · nref

, (4.11)

where nref is a unit reference vector aligned with the main axis of the combustor (as
in § 2.4, figure 10), ûref is the acoustic velocity at the reference point depicted in
figure 18 and 〈ŝf 〉 is the entropy fluctuation averaged over a small volume located
downstream of the primary combustion zone (see figure 18), in agreement with the
mode structure observed from the DMD analysis of § 3.2. Obtaining the acoustic
velocity fluctuations ûref is challenging because the reference point is located inside
the swirler where hydrodynamic fluctuations are present. However, as the present study
focuses on a low-frequency instability, the hydrodynamic component is considered
negligible. Note that this transfer function is similar to but different from the classical
flame transfer function, which relates the upstream acoustic velocity to the unsteady
heat release based on an n–τ type of model (Crocco 1952; Nicoud et al. 2007).
Consequently, the fluctuating velocity ûref for both the active flame and DECBC
approach is chosen at the same reference point. Following the rationale developed in
§ 4.1, the DMD analysis was also used to measure the convection time τ LES

c from the
flame region to the end of the combustion chamber (see figure 18). Note that, because
the entropy spots decay during their convection through the chamber exit (owing to
the turbulent mixing and dissipation), the time delay τ LES

c must be completed by a
gain GLES

c (smaller than unity) to relate the entropy in the flame region to the entropy
at the exit:

ŝ=GLES
c eiωτLES

c 〈ŝf 〉. (4.12)

Finally, the entropy fluctuations in (4.8) can be modelled as

ŝ=GLES
us GLES

c eiω(τLES
us +τLES

c )ûref · nref . (4.13)

The DECBC condition for the three-dimensional SAFRAN combustor is obtained by
injecting (4.13) into (4.10) and reads:

p̂
Z0

up

− ρ c û · n+ Z0
up − 1
Z0

up

γ p
Cp

RspGLES
us GLES

c eiω(τLES
us +τLES

c )ûref · nref = 0. (4.14)

Note that the fields of nlocal and τlocal for the active flame (see (2.3)) have also been
computed from the DMD analysis and it has been checked that they are very close
to the one computed with the Fourier transform (see § 2.4.2). The first DMD mode at
323 Hz (Cold) was also used to assess the entropy-related gains GLES

us and GLES
c and

the time delays τ LES
us and τ LES

c . Figure 19 presents the following reconstructed signals
from this DMD mode:

(i) the reference fluctuating velocity ûref · nref ;
(ii) the fluctuating entropy 〈ŝf 〉 averaged over a volume located in the middle of the

combustor where the formation of the pocket occurs (see figure 18);
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FIGURE 18. Computational domain for the Helmholtz analysis. The point of reference and
the zone of averaging used for the entropy generation modelling (4.11) are displayed as
well as the exit section where the entropy–acoustic boundary condition (4.10) is applied.
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FIGURE 19. Reconstructed signals from the first DMD mode at 323 Hz for the operating
point Cold: reference velocity ûref · nref (· · · · · ·); entropy 〈ŝf 〉 averaged in middle of
combustor (——); entropy 〈ŝ〉 averaged at exit plane upstream of nozzle (– - –).

(iii) the fluctuating entropy ŝ averaged over the exit boundary condition of the
Helmholtz domain.

The gain and time delay of transfer functions described in (4.11) and (4.12) can
therefore be easily estimated with the help of elementary signal processing. The results
are summarised in table 4 for the two operating points Cold (Tinlet = 557 K) and Hot
(Tinlet = 762 K). Note that these values are assumed to be independent of frequency.

4.3. Helmholtz/DECBC results
Helmholtz computations are performed for each operating point Cold and Hot by
using the respective fields of sound speed, active flame n–τ fields and transfer
functions from table 4. The outlet impedance ZM

mJ is computed from the Duran &
Moreau (2013) theory. Results for the first mode are gathered in table 5. As already
stated in § 2.4.2, the first acoustic mode for the operating point Cold oscillates
at around 690 Hz, very far from the 320 Hz instability observed in the LES and
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Operating point GLES
us τ LES

us (s) GLES
c τ LES

c (s)

Cold (Tinlet = 557 K) 84 2.13× 10−3 0.63 7.82× 10−4

Hot (Tinlet = 762 K) 74 1.76× 10−3 0.48 4.14× 10−4

TABLE 4. Gain and time delay of the transfer functions modelling the entropy fluctuations
for the operating points Cold (Tinlet = 557 K) and Hot (Tinlet = 762 K).

Operating point Frequency (Hz) Growth/decay rate (s−1)

Cold (Tinlet = 557 K) 318 +267
Hot (Tinlet = 762 K) 429 +12

TABLE 5. Helmholtz computations with the DECBC approach.

experiment; this acoustic mode is slightly damped (decay rate of approximatively
−40 s−1), even while taking into account the proper acoustic flux at the inlet/outlet
as well as the coupling between acoustics and combustion through the active flame
model (see table 2). Introducing the DECBC approach corrects this behaviour: the
Helmholtz solver now gives a strong unstable mode (growth rate 267 s−1) oscillating
at 318 Hz (see table 5), in fair agreement with the LES and experiment. Note that
the frequency of oscillation obtained (318 Hz) is rather close to the first DMD
mode (323 Hz), thus justifying a posteriori the fact that the transfer function gain
and delay were assumed to be independent of frequency when performing the
Helmholtz computations. The shapes of the first modes from the DMD analysis and
the Helmholtz computations with the DECBC approach are depicted in figure 20.
The fluctuating pressure p̂ is made non-dimensional by setting max(Re(p̂))= 1. It is
remarkable that the eigenmode computed by the Helmholtz solver with the DECBC
approach (figure 20b) is rather similar to the DMD mode (figure 20a). The maximum
amplitude of fluctuation is located inside the whole combustion chamber, while the
casing exhibits a structure close to a quarter wave mode.

The methodology described previously is also applied to the operating point Hot.
The results exhibit the same behaviour (table 5). A mode is found at 429 Hz with a
small growth rate, consistent with the LES result, which showed a small-amplitude
mode at 435 Hz. In Silva et al. (2013), the authors mention that the growth
rates assessed by a Helmholtz solver should be offset by a negative quantity that
represents all the damping effects not included in the zero-Mach-number framework
(acoustic boundary layers, vortex generation in shear layers, etc.). Consequently, the
mode predicted for case Hot at +12 s−1 is consistent with the DMD analysis and
experiments. Note also that the growth rate obtained for Cold is much larger than
for Hot, in full agreement with the LES/experimental results, which display a strong
instability in the first case only. Once included in a low-order Helmholtz solver, the
acoustic–entropy coupling allows one to recover the low-frequency instability of the
LES and experiments. This demonstrates that this instability is indeed driven by the
acoustic waves generated by strong entropy fluctuations being convected through the
nozzle. To the authors’ knowledge, this is the first time that such an instability has
been identified in an aero-engine configuration.
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FIGURE 20. Shapes of the first pressure eigenmode for the operating point Cold:
(a) DMD analysis (323 Hz); (b) Helmholtz computation with the DECBC approach
(318 Hz). The fluctuating pressure p̂ is made non-dimensional by setting max(Re(p̂))= 1.

5. Conclusion

High-fidelity computations of a realistic aero-combustor that features a strong
low-frequency instability under certain operating conditions have been performed.
Experiments show that the establishment of an instability depends to first order
on the inlet temperature of the air entering the combustion chamber. LES of two
operating points representative of the stable/unstable states of the combustor were
first performed, showing that the computations can discriminate between the stable
and unstable operating points. In any case a low-frequency mode is found, featuring
either strong or very weak fluctuations of all physical variables. The DMD analysis
demonstrates that pockets of fluctuating entropy/temperature are created inside the
combustor and convected to the downstream nozzle, creating a reflected acoustic
perturbation that goes back to the flame.

The LES were complemented by a purely acoustic analysis where the coupling
between acoustics and combustion is taken into account by an active flame model
based on an n–τ formalism. For both operating points, the results exhibit a damped
eigenmode, the frequency of which is very far from the low-frequency mode observed
in the experiments and LES computations. This suggests that the mechanism leading
to the combustion instability relies on a coupling between entropy and acoustic waves
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inside the nozzle. As this latter mechanism is neglected in the Helmholtz analysis,
owing to the zero-Mach-number assumption, the low-frequency mode cannot be
reproduced.

A DECBC is then developed as a means to recover some of the convective effects
when representing a thermoacoustic system under the zero-Mach-number formalism.
This model consists of two steps, one for the entropy generation in the flame region,
and one for the convection/dissipation of the entropy spots through the combustion
chamber. This results in a transfer function that relates a reference acoustic velocity
in the burner and entropy at the exit of the chamber and which was assessed by post-
processing LES data via the DMD analysis. The acoustics generated by the convection
of the entropy spots through the exit nozzle are then treated by applying a proper
boundary condition that couples entropy and acoustic quantities.

Helmholtz computations coupled with the DECBC approach are conducted for
both stable/unstable operating points. The results exhibit low-frequency eigenmodes
with frequency, shape and stability behaviour in very good agreement with the
experimental and LES data. This elucidates the major role played by the coupling
between entropy and acoustic waves inside the nozzle on the establishment of
this combustion instability, contrary to the coupling between the flame and the
acoustics or the sound speed field, which have a minor influence. This study shows
that the acoustic–entropy coupling should be accounted for when performing the
thermoacoustic analysis of (complex) combustors, contrary to what is usually done.
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