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Abstract

We observe a fundamental relationship between Steenrod operations and the
Artin–Schreier morphism. We use Steenrod’s construction, together with some new
geometry related to the affine Grassmannian, to prove that the quantum Coulomb
branch is a Frobenius-constant quantization. We also demonstrate the corresponding
result for the K-theoretic version of the quantum Coulomb branch. At the end of the
paper, we investigate what our ideas produce on the categorical level. We find that
they yield, after a little fiddling, a construction which corresponds, under the geometric
Satake equivalence, to the Frobenius twist functor for representations of the Langlands
dual group. We also describe the unfiddled answer, conditional on a conjectural ‘mod-
ular derived Satake’, and, though it is more complicated to state, it is in our opinion
just as neat and even more compelling.
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1. Introduction

1.1 This paper is about power operations.

1.2 Overview
A power operation is an enhanced version of a pth-power, or more generally nth-power, map. One
of the most famous examples is Steenrod’s operations [SE62], a cornerstone of algebraic topology.
We will give an account of Steenrod’s construction in the language of derived categories. To be
precise, we produce a categorical version of the ‘total external Steenrod operation’. When we
look at what this construction does to the constant sheaf and compose with a diagonal restriction
functor, we recover the Steenrod cohomology operations; when instead we focus attention on the
dualizing complex of an E2-group and compose with a pushforward along the multiplication,
we recover Kudo–Araki–Dyer–Lashof operations [KA56, DL62]. However, the new context in
which we put these old ideas allows us to make new observations about them, including a fun-
damental relationship between Steenrod operations and the Artin–Schreier morphism, and one
between Kudo–Araki–Dyer–Lashof operations and the concept of Frobenius constancy, proving
the Frobenius constancy of all quantum Coulomb branches [BFN16] in the process. We use a
version of this construction adapted to perverse sheaves to provide a geometric description of the
functor which corresponds under geometric Satake [MV07] to the Frobenius twist functor from
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the theory of algebraic groups, and give a conjectural description of the compatibility between
these structures and the (unproven at the time of writing) ‘derived geometric Satake’ (see [BF08]
for the characteristic 0 case), through the newly proposed ‘Frobenius character twist’. A key geo-
metric input is our extension of the theory of Beilinson–Drinfeld Grassmannians [BD91] which
in particular yields a generalization of the ‘global convolution diagram’ to the case of the variety
of triples [BFN16].

A reader who knows about equivariant constructible derived categories on complex algebraic
varieties will be able to understand these constructions even if they do not know any homotopy
theory. Perhaps this is an advantage.

1.3 In § 2, we will give an account of Steenrod’s construction in the language of derived cat-
egories. In these terms, the construction itself is very simple, and it yields not only Steenrod’s
cohomology operations but also operations in Borel–Moore homology, which are related to the
Kudo–Araki–Dyer–Lashof operations.

1.4 In § 3, we will introduce a different type of power operation, due to Bezrukavnikov and
Kaledin [BK08], which is an important tool in non-commutative algebraic geometry. Such a
power operation is known as a Frobenius-constant quantization. Essentially, a Frobenius-constant
quantization of a commutative algebra A over Fp is a one-parameter flat deformation A� of A in
associative algebras which has a large center; see § 3.1 for a precise definition which also justifies
regarding such a thing as a power operation. The main example is the Weyl algebra

Fp[�]〈x, ∂〉/([∂, x] = �)

which contains xp, ∂p in its center.

1.5 We will then illustrate a general method to apply Steenrod’s construction to produce
Frobenius-constant quantizations.

Remark 1.1. The method is on the fundamental level purely homotopical, and is known to the
author to apply to any S1-framed E3-ring spectrum over Fp. For example, it can be used in
conjunction with ideas of derived algebraic geometry to explain the famous result that the
algebra of differential operators on a smooth variety of characteristic p is a Frobenius-constant
quantization of the ring of functions on its cotangent bundle. This appears on the surface to be
of a very different flavor than the main thrust of the present paper, which is primarily concerned
with mod p homology rings on complex algebraic varieties. As previously mentioned, in this
paper we take a point of view practically devoid of homotopy theory. I hope that homotopy
theorists will be able to read between the lines!

The example which we use to illustrate the method is the quantum Coulomb branch of
Braverman, Finkelberg and Nakajima [BFN16], or rather, its natural characteristic p version.
That is, we prove the following theorem.

Theorem 1.2. For any complex reductive algebraic group G, and finite-dimensional represen-
tation N of G, and any odd prime p, the corresponding mod p quantum Coulomb branch is a
Frobenius-constant quantization.

The Coulomb branch is the G-equivariant mod p Borel–Moore homology of a certain com-
plex algebraic space R related to the affine Grassmannian Gr of G. The space R is equipped
with a ‘loop-rotation’ C

∗-action, and the quantum Coulomb branch is obtained by switch-
ing on loop-rotation equivariance; the deformation parameter � enters as the C

∗-equivariant
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cohomology of a point. The key geometric insight behind Theorem 1.2 is that, following
ideas of Beilinson and Drinfeld [BD91], one may deform the space R into to Rp, in such a
way that the action of Cp (the cyclic group of order p) on R, which applies the loop rota-
tion by pth roots of unity, is deformed to the Cp action on Rp, which permutes the factors
cyclically.

Example 1.3. Recall that the affine Grassmannian Gr of the complex reductive group G is an
algebraization of the space ΩpolK of based polynomial loops in a fixed compact form K of G;
this is homotopy equivalent to the space ΩK of all based loops in K. The S1-action on ΩK given
by rotating loops and then renormalizing (by dividing on the right, say, by the value at 1 ∈ K)
corresponds to the loop-rotation action of C

∗ on Gr. We give a heuristic explanation, in terms of
ΩK and its ‘renormalized loop-rotation’ action, of the key geometric insight mentioned above,
in the case R = Gr.

Recall first that ΩK has a (strict) group structure given by pointwise multiplication of loops
(using the group structure of K), and this is reflected in the existence of a convolution diagram
for Gr. Next, recall that ΩK has a (homotopy) group structure given by concatenation of based
loops, and this is reflected in the existence of the Beilinson–Drinfeld affine Grassmannian, which
is a deformation of Gr into Gr2. Moreover, these two group structures of ΩK commute (up to
homotopy) and are part of an S1-family of group structures. This is reflected in the existence
of a ‘global convolution diagram’ linking the convolution diagram and the Beilinson–Drinfeld
Grassmannian. Thus we have a kind of dictionary between some homotopy-theoretical structures
and some algebraic structures. The algebraic structures are not strict algebraizations of their
topological counterparts (at least in any obvious sense), but we shall say that they correspond
under the ‘algebraization paradigm’ (for want of a better term).

Now, consider the map

(ΩK)p → ΩK

which speeds up each loop by a factor of p and then concatenates the results. Observe that the
action of Cp on the left by cyclic permutation of the factors is compatible under this map by the
‘renormalized loop-rotation’ action of Cp as a subgroup of S1 on the right. Our ‘key geometric
insight’ is essentially what corresponds to this under the algebraization paradigm.

Remark 1.4. We will never again use the notation Cp, since every finite cyclic group considered
will be given as a subgroup of C

∗. We will use the notation μp instead. Given an algebraic space
X and a finite set S, we will write XS for Hom(S,X), that is, the product of X with itself |S|
times with factors being labeled by the elements of S. Bringing these together, be warned that
the expression Xμp denotes the p-fold product of X with itself labeled by the elements of μp,
and does not denote the fixed points of some action of μp on X.

1.6 This is already quite a broad class of examples: for instance, partially spherical rational
Cherednik algebras; see [BEF20, Web19]. It is expected that the same underlying geometry will
lead to the discovery of large centers of related algebras. In fact, in § 4 we indicate how the
same underlying geometry shows that the K-theoretic version of integral quantum Coulomb
branch, which is itself a q-deformation of the K-theoretic version of the Coulomb branch, admits
a large center when q is evaluated at any complex root of unity (not necessarily of prime order).
Essentially the only difference with the homological case is to replace Steenrod’s construction
with a so-called ‘Adams construction’ which is to Adams operations as Steenrod’s construction
is to Steenrod’s operations.
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Question 1.5. Is it possible to develop the theory of equivariant elliptic Borel–Moore homology
far enough to deduce the analogous ‘large center’ statements for the elliptic analogues of the
Coulomb branch?

1.7 In the final section, we investigate the meaning of our constructions on the level of the con-
structible derived category. We are especially interested in understanding what our constructions
correspond to in terms of representations of the Langlands dual group G∨

Fp
over Fp.

Conjecture 1.6. (i) For sufficiently large p, there are monoidal equivalences (‘derived geomet-
ric Satake with coefficients modulo p’; see [BF08] for the version with complex coefficients):

Db
G(O)(Gr,Fp) ∼= Cohfr

G∨
Fp

(Sym(g∨Fp
[−2])),

Db
G(O) �C∗(Gr,Fp) ∼= Cohfr

G∨
Fp

(U�(g∨Fp
[−2])).

Here the left-hand categories denote the equivariant constructible derived categories with coeffi-
cients in Fp in the sense of Bernstein and Lunts [BL06]. As for the right-hand side, g∨

Fp
[−2] denotes

the Lie algebra of G∨
Fp

placed in cohomological degree 2, Sym(g∨
Fp

[−2]) denotes its symmetric
algebra (considered as a commutative differential graded (dg) algebra with trivial differential)
and U�(g∨Fp

[−2]) denotes its canonical (Poincaré–Birkhoff–Witt) one-parameter deformation to
a non-commutative dg-algebra with � in cohomological degree 2 (also with trivial differential).
The expression Cohfr

G∨
Fp

(∗) denotes the full triangulated subcategory of the (derived) category

of G∨
Fp

-equivariant dg-modules generated by the objects which are free over the G∨
Fp

-equivariant
dg-algebra (∗).

(ii) (Paraphrasing), our geometric construction, when reinterpreted on the level of equivariant
constructible derived categories, yields a triangulated functor

Db
G(O)(Gr,Fp)→ Db

G(O) �C∗(Gr,Fp)[�−1]

which corresponds under the above equivalences to the functor

Cohfr
G∨

Fp

(Sym(g∨Fp
[−2]))→ Cohfr

G∨
Fp

(U�(g∨Fp
[−2])[�−1])

which is the composition of the external Steenrod/Tate power functor

Cohfr
G∨

Fp

(Sym(g∨Fp
[−2]))→ Cohfr

(G∨
Fp

)(1)
(Sym(g∨Fp

[−2])(1)[�±1]),

followed by the restriction of equivariance along the Frobenius map

G∨
Fp
→ (G∨

Fp
)(1),

followed by the base change along the G∨
Fp

-equivariant central flat algebra extension

Sym(g∨Fp
[−2])(1)[�±1]→ U�(g∨Fp

[−2])[�−1].

In particular, for a representation V of G∨
Fp

, this functor sends the free object

V ⊗ Sym(g∨Fp
[−2])

to the free object
V (1) ⊗ U�(g∨Fp

[−2])[�−1].

Here V (1) denotes the Frobenius twist of V , that is, the G∨
Fp

-representation obtained from V
by pulling back along the Frobenius map. It is therefore reasonable to regard our functor as
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the correct ‘Frobenius twist’ functor in this context (indeed we do not believe there to be any
alternative). We call this functor the ‘Frobenius character twist’, since its source and target are
in some sense categories of character sheaves.

(iii) The Frobenius character twist is a central monoidal functor, that is, it admits a monoidal
lift through the monoidal center of its target. This is not really conjectural: it is provably
true of both our geometrically constructed functor and the Frobenius character twist, and the
compatibility of the two lifts would surely follow from any proof of the earlier parts of the
conjecture.

Although the above picture is conjectural (mainly because we cannot prove derived geomet-
ric Satake with coefficients modulo p), we can prove an underived version. Namely, we give a
geometric description of the functor

Pervsph(Gr,Fp)→ Pervsph(Gr,Fp)

which corresponds to the Frobenius twist functor under the underived geometric Satake
equivalence [MV07]

S : Rep(G∨
Fp

)→ Pervsph(Gr,Fp).

The construction is as follows. Consider the μp-equivariant deformation Gr(p) of Gr (with loop
rotation) toGrp (with cyclic permutation). Given a spherical perverse sheaf F ∈ Pervsph(Gr,Fp),
one may view its pth external power as a spherical perverse sheaf on Gr(p)|A1−{0} and take the
IC sheaf of the result:

IC(F�p).

Let i : Gr → Gr(p) denote the inclusion of the zero fiber of the deformation. Then we have a
Thom map i∗[−1]→ i![1], and this gives us a map of perverse sheaves

i∗IC(F�p)[−1]→ i!IC(F�p)[1].

Let Fr(F) denote the image of the above Thom map.

Theorem 1.7. Fr is the required functor. That is, if

Fr : Rep(G∨
Fp

)→ Rep(G∨
Fp

)

denotes the Frobenius twist functor, then we have an equivalence

Fr ◦ S ∼= S ◦ Fr
where S is the geometric Satake equivalence.

This appears as Theorem 5.1 in the text.

1.8 Background required to read this paper.
(i) Homotopy theory. As previously mentioned, no homotopy theory (besides the basics of homol-
ogy and cohomology) is required to read this paper, despite the fact that its arguments are
actually quite relevant to homotopy theory. Familiarity with Steenrod operations may help,
but on the other hand may not because our approach is somewhat non-traditional and can be
confusing to homotopy theorists. In any case that aspect of this paper is self-contained.

(ii) Algebraic geometry. We will use heavily S. Raskin’s theory of placid ind-schemes [Ras15]. This
is a beautiful theory describing a certain class of infinite-dimensional algebro-geometric objects
(placid ind-schemes) which can be handled, via some categorical bookkeeping, in essentially the
same way as finite-type schemes. It does not rely on any algebraic geometry deeper than a basic
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understanding of the functorial approach based on the Yoneda embedding and fundamental
concepts such as flatness and smoothness, and nor does the present paper. We will try to explain
enough of the material of [Ras15] ourselves that the reader need not constantly refer to it (it is
nonetheless highly recommended reading).

All the algebro-geometric objects we consider will be defined over C, and although we will
use the Yoneda embedding to define them and reason about them, we will always think of them
as complex analytic spaces when considering their invariants (homology, sheaf categories etc.).
No understanding of stacks is required, even though much of the geometry can be interpreted in
terms of quotient stacks.

(iii) Sheaf theory. We use Bernstein and Lunts’ theory of equivariant constructible derived cat-
egories [BL06] in order to build invariants out of our complex geometric objects. In particular,
this involves forgetting about their algebro-geometric nature and replacing them by their sets of
C-points with the analytic topology. The primary alternative is to stay in the world of algebraic
geometry and use the étale topology. Although using the étale topology has some well-known
advantages (e.g. the theory of weights), we do not need them in the present work and so prefer
to stick to the (in our opinion) conceptually easier analytic topology framework. The reader who
is more comfortable with the étale topology most likely has no difficulty translating our results
in those terms. Section 5 also uses the theory of perverse sheaves; cf. [DBB83].

The reader who is not familiar with either theory of constructible derived categories but
knows a little more homotopy theory may still be able to understand everything apart from § 5
which is explicitly about Bernstein and Lunts’ category. For, apart from in that section, we are
only really using the constructible derived category as a mechanism for producing structures on
Borel–Moore homology, and for this there are purely homotopical means. To be precise, although
we describe operations on the level of the constructible derived category, ultimately we restrict
attention to their effect on a single object, the dualizing complex ω; and even then we only really
care about its global sections complex Γ(X,ω), which is (by definition) just the Borel–Moore
complex of X, that is, the reduced singular complex of the one-point compactification of X
(denoted Fp ∧ X̄). If X is equipped with the action of a group G, then so is Fp ∧ X̄, and the
notation

HomDG(X,Fp)(Fp,Σnω)

will refer to the −nth homotopy groups of the G-homotopy invariants of Fp ∧ X̄. If the reader
bears this in mind, they should be able to translate enough of what is phrased in terms of con-
structible derived categories to fully understand the main result about the (quantum) Coulomb
branch.

(iv) Representation theory. The definition of the Coulomb branch (originally found in [BFN16])
takes as input a complex reductive algebraic group plus a finite-dimensional representation, but
one does not really need to know to this theory well to understand the definition and the other
arguments. The constructions of [MV07, BFN16, BFN17] are used throughout the paper but are
explained in reasonable detail here so, while helpful, are not necessary reading, except for § 5
where Mirković and Vilonen’s geometric Satake equivalence [MV07] is essential.

2. Steenrod’s construction

2.1 Overview
Let p be an odd prime number, and let μp be the group of complex pth roots of unity. Let R be
a commutative ring. Let k be a field of characteristic p, and let F : k → k be the Frobenius map.
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Let X be a topological space and let D+(X,R) denote the bounded-below derived category
of sheaves of k-modules on X. We write Xμp for Map(μp, X). Following Steenrod [SE62], we
construct a functor

St : D+(X,R)→ D+
μp

(Xμp , R)

where D+
μp

(Xμp , R) denotes the bounded-below μp-equivariant derived category of sheaves of
R-modules on Xμp . This functor is not linear or triangulated, but nonetheless if we take R = k,
compose with restriction to the diagonal and apply to morphisms between shifted constant
sheaves we obtain linear maps

F ∗Hn(X, k)→ Hpn
μp

(X, k) ∼=
⊕

i+j=pn

H i(X, k)⊗Hj(Bμp, k) (2.1)

for each n ≥ 0. Recall that H∗(Bμp, k) = k[a, �] is the super-polynomial algebra in one variable
a of degree 1 and one variable � of degree 2. Here � is the first Chern class of the tautological
complex line bundle on Bμp arising from the embedding μp ⊂ C

∗.
The direct sum of the maps of (2.1) is not in the most naive sense an algebra homomorphism.

This fact led Steenrod to introduce certain correction factors which make it so; his famous coho-
mology operations are then defined to be the coefficients of the resulting algebra homomorphism
in the monomial basis of k[a, �]. However, the sum of maps of (2.1) does give a homomorphism
of super-graded algebras

H∗(X, k)(1) → H∗
μp

(X, k) ∼= H∗(X, k)[a, �] (2.2)

where H∗(X, k)(1) denotes the Frobenius twist of H∗(X, k). Naively one might think that this
is just the p-dilation of F ∗H∗(X, k). This is wrong: rather, the natural and correct definition of
the Frobenius twist of an algebra A in any symmetric monoidal category over k is as the Tate
cohomology

A(1) := Ĥ0
μp

(A⊗μp)

where the symmetric monoidal structure endows A⊗μp with the structure of μp-equivariant
algebra. In the case of the super-graded k-algebra H∗(X, k), the underlying super-graded k-
module of this construction is the same as the p-dilation of F ∗H∗(X, k), but the multiplication
differs by a sign (at least when p ≡ 3 mod 4), removal of which is part of the purpose of Steenrod’s
correction factors.

We prefer therefore to use Steenrod’s operations in their raw form, that is, without the
correction factors and packaged as in (2.2). This has the advantage of revealing the following
fundamental connection between Steenrod’s operations and the Artin–Schreier map, which is
obscured by the correction factors.

Fact 2.1. (i) Let X = BT for some complex torus T . Then the Picard group of X is canonically
isomorphic to the character lattice X

•(T ) of T , and the cohomology ring is the polynomial algebra

H∗(X,Z) = SymZ X
•(T )

with X
•(T ) in degree 2. This is equal to the ring O(tZ) of polynomial functions on the canonical

Z-form of the scheme t = Lie(T ). Likewise we have

H∗(X, k) = O(tk)

where tk denotes the canonical k-form of t.
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(ii) Under this identification, the map of (2.2) factors as

O(tk)(1) AS�−−→ O(tk)[�] ⊂ O(tk)[a, �]

where AS� corresponds, on the level of k̄-points, to the k̄×-equivariant family, parameterized by
� ∈ k̄, of additive maps of free k̄-modules

k̄ ⊗ tk → k̄(1) ⊗ tk∑
i

xi ⊗ vi �→
∑
i

(xpi − �
p−1xi)⊗ vi

for a basis {vi} of tFp . This family interpolates between the usual Artin–Schreier map for � = 1
and the Frobenius map for � = 0.

Proof. (i) This is a standard fact which boils down to the calculation

H∗(CP
∞,Z) = Z[[CP

1]∗],

the free algebra on the degree 2 cochain v∗ = [CP
1]∗ dual to the degree 2 chain represented by

the embedded CP
1. An isomorphism T = (C∗)d gives an isomorphism

H∗(BT,R) ∼= R[v∗1, . . . , v
∗
d]

for any commutative ring R, and we will fix one for ease of exposition.
(ii) This is just saying that the map of (2.2), when applied to X = BT , sends each generator

v∗i to (v∗i )
p − �

p−1v∗i . Since we have not actually defined the map (2.2) yet, we postpone the
proof until § 2.8. However, notice that since v∗i has degree 2 the expected image

(v∗i )
p − �

p−1v∗i

is exactly the generating function of the Steenrod powers of v∗i (with placeholder variable �), up
to some sign in the coefficients. Therefore the result will follow from a careful study of Steenrod’s
normalization factors (or rather, what happens if we don’t use them!). �
Remark 2.2. The appearance of AS� in the topological setting was the first indication that
Steenrod’s construction might be related to the theory of Frobenius-constant quantizations,
where AS� plays a central role; see Fact 3.2.

2.2 Steenrod’s construction
Recall that p is an odd prime, μp is the group of complex pth roots of unity, R is a commutative
ring, k is a field of characteristic p and X is a topological space. We denote by C+(X,R)
(respectively, D+(X,R)) the category of bounded-below cochain complexes of sheaves of
R-modules on X (respectively, the corresponding bounded-below derived category). Recall that
the latter is obtained from the former by inverting quasi-isomorphisms (this is important to us,
and does not hold in the unbounded case). If Y is a topological space with an action of μp, we
denote by C+

μp
(Y,R), D+

μp
(Y,R) the corresponding μp-equivariant categories. Since μp is a finite

group, these are the same as the (bounded-below) cochain, derived categories of μp-equivariant
sheaves of R-modules on Y .

Consider the functor of pth external tensor power

C+(X,R)
�p−−→ C+(Xμp , R).

It sends quasi-isomorphisms to quasi-isomorphisms, and so descends to a (non-triangulated)
functor

D+(X,R)
�p−−→ D+(Xμp , R)
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by the universal property of derived categories. Notice that the cochain-level functor factors as

�p : C+(X,R) StC−−→ C+
μp

(Xμp , R) −→ C+(Xμp , R).

To make this explicit, we first choose an isomorphism

μp ∼= Z/p ∼= {1, . . . , p} =: [p];

the result will be independent of this choice. Write σ for the generator of μp corresponding to
1 under the isomorphism. Then, for a complex A•, we give the complex (A•)�p with degree n
term (

(A•)�p)n =
⊕

i1+···+ip=n

Ai1 � · · ·�Aip

the μp-equivariant structure by letting the generator σ act in degree n by the direct sum of the
canonical isomorphisms of sheaves

Ai1 � · · ·�Aip ∼= σ∗(Ai2 � · · ·�Aip �Ai1)

each twisted by the sign (−1)i1(n−i1). The sign twist is the natural (Koszul) choice which makes
the action of μp commute with the differential. Moreover, given a chain map f : A• → B•, f�p is
automatically a μp-equivariant chain map. Since the functor Cbμp

(Xμp , R)→ Cb(Xμp , R) reflects
quasi-isomorphisms, it follows immediately that StC descends to a functor StD as below:

�p : D+(X,R) StD−−→ D+
μp

(Xμp , R) −→ D+(Xμp , R).

Writing Σ for the suspension functor, we have StDΣ ∼= ΣpStD. Also, StD is not triangulated,
nor additive, nor even linear. To control the failure of linearity, and for future reference, we now
introduce the following special element of R[μp].

Definition 2.3. The norm element N ∈ R[μp] is given by

N =
∑
x∈μp

x.

Observe that, given two objects A,B of D+
μp

(X,R), we have an action of μp on

HomD+(X,R)(A,B)

where by definition, x ∈ μp sends the non-equivariant morphism f to xfx−1. The following two
propositions control the failure of linearity.

Proposition 2.4. Suppose given two parallel morphisms f, g : A• → B• in D+(X,R). Then
the morphism

StD(f + g)− StD(f)− StD(g) : StD(A•)→ StD(B•)

is an induced map. That is, there exists some non-equivariant map

h : (A•)�μp → (B•)�μp

such that the equivariant map

N(h) =
∑
x∈μp

xhx−1 : StD(A•)→ StD(B•)

is equal to StD(f + g)− StD(f)− StD(g).
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Proof. The maps f, g, h appearing in the statement are morphisms of derived categories. Let us
right away replace A•, B• by quasi-isomorphic complexes so that f, g may be realized as genuine
maps of complexes. Let f, g denote the constant functions μp → {f, g} with respective values
f, g. Then μp acts freely on {f, g}μp − {f, g}; choose a set {h1, . . . , hd} of orbit representatives
(d = (2p − 2)/p). Then each hi determines a non-equivariant map (A•)�μp → (B•)�μp , hence so
does their sum h. Then we have

(f + g)�μp − f�μp − g�μp =
∑
x∈μp

xhx−1

where, by definition, xhx−1 is the composition

xhx−1 : (A•)�μp ∼= x∗(A•)�μp
x∗(h)−−−→ x∗(B•)�μp ∼= (B•)�μp

where the two isomorphisms are given by the equivariant structures. �
Let Fr : R→ R denote the pth-power morphism of commutative monoids (using the

multiplication on R and forgetting the addition).

Proposition 2.5. StD is Frobenius-multiplicative with respect to the action of the multiplica-
tive monoid R on hom-sets. That is, StD determines a functor

StD : IndRRD
+(X,R)→ D+

μp
(Xμp , R)

which respects multiplication by R. Here the category on the left is obtained from Db(X,R)
by regarding each hom-set as a set with an action of the multiplicative monoid R and inducing
along the pth-power map of monoids R→ R.

Proof. Clear. �
Note that IndRRD

b(X,R) is not an additive category in general. However, suppose that R = k
and k is perfect. In that case, the Frobenius map of monoids is actually a map of rings F , and
is, moreover, bijective. Write M : k -mod→ k -set for the forgetful functor, where k -set denotes
the category of sets with action of the multiplicative monoid k. We have the following lemma.

Lemma 2.6. Suppose that k is a perfect field of characteristic p. Then we have

M ◦ F ∗ ∼= Indkk ◦M.

Proof. Indeed, in that case both F ∗ and Indkk are equivalent to the functor of restriction along
the inverse of Frobenius. �

It follows that if k is a perfect field of characteristic p, we have produced a k-multiplicative
functor

StD : F ∗D+(X, k)→ D+
μp

(Xμp , k).

Since the source F ∗D+(X, k) is triangulated, we find this statement somewhat nicer than the
version for general R. However, the functor StD itself is still not linear, triangulated etc.

2.3 Localization
The category D+

μp
(Xμp , R) is enriched, in a triangulated sense, over H∗

μp
(Xμp , R). That is, the

monoidal structure of D+
μp

(Xμp , R) gives maps of R-modules

Hn
μp

(Xμp , R) ∼= HomD+
µp (Xµp ,R)(R,Σ

nR)→ HomD+
µp (Xµp ,R)(id,Σ

n)
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for each n ≥ 0, whose sum is a map of algebras. In particular, D+
μp

(Xμp , R) is enriched in the
same sense over

H∗
μp

(∗, R) ∼= H∗(Bμp, R) ∼= R⊗LZ (Z[�]/p�).

Here � is the first Chern class of the tautological line bundle on Bμp corresponding to the
embedding μp → C

∗. In particular, this super-commutative ring receives a map from R⊗L
Z

Z[�] =
R[�] so that D+

μp
(Xμp , R) is enriched over R[�]. Thus we may consider the 2-periodic R-linear

triangulated category D+
μp

(Xμp , R)[�−1], which is enriched over

R⊗LZ (Z[�]/p�)[�−1] ∼= R⊗LZ Fp[�±1].

The degree 0 component of this ring is R/p, and the natural map from R to here is the modular
reduction map. In particular, there is a Frobenius map of rings

F : R→ R⊗LZ Fp[�±1]

In this way, it makes sense to ask whether a functor from a triangulated category enriched over
R to one enriched over R⊗L

Z
Fp[�±1] is Frobenius-linear.

Proposition 2.7. The composition

St′D : D+(X,R) StD−−→ D+
μp

(Xμp , R)→ D+
μp

(Xμp , R)[�−1]

is exact, Frobenius-linear and preserves direct sums.

Proof. First, we prove that St′D preserves direct sums. Let A•, B• be complexes in D+(X,R).
We argue as in the proof of Proposition 2.4 that we have

StD(A•⊕B•) ∼= StD(A•)⊕ StD(B•)⊕ Indμp

1 C•

for some complex C• in Db(Xμp , R). Here Indμp

1 is the averaging functor

Indμp

1 : D+(Xμp , R)→ D+
μp

(Xμp , R)

bi-adjoint to the restriction functor Resμp

1 . Therefore, it suffices to prove that the composition

D+(Xμp , R)
Ind

µp
1−−−→ D+

μp
(Xμp , R)→ D+

μp
(Xμp , R)[�−1]

is isomorphic to 0. This follows by adjunction from the fact that Resμp

1 (�) = 0.
Next, we prove Frobenius-linearity. By Proposition 2.5, it suffices to prove that St′D respects

addition of parallel morphisms. By Proposition 2.4, it is enough to see that the image of an
induced morphism in D+

μp
(Xμp , R) in the localized category D+

μp
(Xμp , R)[�−1] is 0. This we have

shown in the previous paragraph.
Finally, we prove exactness. First we must specify an exact structure, that is, an isomorphism

e : ΣSt′D ∼= St′DΣ, which makes the image under St′D of any triangle a triangle. Note that since
p is odd, there is a morphism in D+

μp
(Xμp , R) of functors �

(p−1)/2 : Σ −→ Σp which becomes
an isomorphism when � is inverted. Already on the level of complexes we have a canonical
isomorphism ΣpStC ∼= StCΣ. The exact structure is taken to be the composition

e : ΣSt′D
((p−1)/2)!�(p−1)/2

−−−−−−−−−−−→ ΣpSt′D ∼= St′DΣ.

This is indeed an isomorphism since the localized category is enriched over Fp. The reason for
the factor ((p− 1)/2)! will be explained shortly. Thus, given a triangle

B• g−→ C• h−→ ΣA• −Σf−−−→ ΣB•
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in D+(X,R), we have a triangle

St′D(B•)
St′D(g)−−−−→ St′D(C•)

St′D(h)−−−−→ St′D(ΣA•)
St′D(−Σf)=−St′D(Σf)−−−−−−−−−−−−−−→ St′D(ΣB•)⏐⏐� ∼= e−1

ΣSt′D(B•)

in D+
μp

(Xμp , R)[�−1]. We must show that this is exact whenever the original triangle is. Since
any exact triangle in a derived category is isomorphic to a semi-split one, we may assume that
f is a chain map and C• is the usual mapping cone satisfying

Cn = An+1 ⊕Bn

with differential (
−d 0
f d

)
.

So we have

StC(C•) =
( ⊕
i1+···+ip=•

(Ai1+1 ⊕Bi1) � · · ·� (Aip+1 ⊕Bip)
)•

with some differential (whose precise form is not important). This complex has a (p+ 1)-step
equivariant increasing filtration

StC(B•) = F0StC(C•) ⊂ · · · ⊂ FpStC(C•) = StC(C•)

where FiStC(C•) consists of the subcomplex of StC(C•) in which at most i summands A? are
taken in the expansion of the external tensor product. The inclusion of the zeroth piece of this
filtration is equal to StC(g), while the quotient map

StC(C•) � StC(C•)/Fp−1StC(C•) ∼= StC(ΣA•)

is equal to StC(h). Furthermore, arguing as in Proposition 2.4, we see that FiStC(C•)/Fi−1StC(C•)
is an induced complex for each 1 ≤ i ≤ p− 1. Therefore, the map

StC(C•)/StC(B•) � StC(ΣA•)

becomes an isomorphism in Db
μp

(Xμp , R)[�−1]. Consider now the commutative diagram

StC(B•)
StC(g)−−−−→ StC(C•) α−−−−→ StC(C•)/StC(B•)

β−−−−−−−−−−−−−−→ ΣStC(B•)⏐⏐�= ⏐⏐� = ⏐⏐�γ
StC(B•)

StC(g)−−−−→ StC(C•)
StC(h)−−−−→ ΣpStC(A•)

−ΣpStC(f)−−−−−−−−−−−−−−→ ΣpStC(B•)

of equivariant chain complexes. Here α, β are the usual chain maps which make the image of the
top row in D+

μp
(X,R) an exact triangle, γ is the quotient map, whose image in D+

μp
(X,R)[�−1]

is an isomorphism, and StCΣ has been identified with ΣpStC . Comparing with the definition of
the triangle obtained by applying St′D to B• g−→ C• h−→ ΣA• −Σf−−−→ ΣB•, we see that it is enough
to prove that the diagram

StD(C•)/StD(B•)
β−−−−−−−−−−−−−−→ ΣStD(B•)⏐⏐�γ ⏐⏐�((p− 1)/2)!�(p−1)/2

ΣpStD(A•)
−ΣpStD(f)−−−−−−−−−−−−−−→ ΣpStD(B•)
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commutes in D+
μp

(X,R)[�−1]. Here we have written β, γ for their own images in D+
μp

(X,R). Let

D• be the cocone of A• id−→ A•, so that f induces a map D• → C•. We have a commutative
diagram

StC(D•)/StC(A•) ε−→ ΣStC(A•)⏐⏐�δ ⏐⏐�ΣStC(f)

StC(C•)/StC(B•)
β−→ ΣStC(B•)

where ε is the standard boundary map, and the vertical arrows are induced by f (no signs
necessary). Now γδ becomes an isomorphism in Db

μp
(Xμp , R) for the same reason that γ does;

therefore so does δ. So it is enough to show that the composition of these two diagrams is
commutative. By functoriality of �, the resulting composition equals

StD(D•)/StD(A•) ε−→ ΣStD(A•)⏐⏐�γδ ⏐⏐�ΣpStD(f) ◦ ((p− 1)/2)!�(p−1)/2

ΣpStD(A•)
−ΣpStD(f)−−−−−−−−−−−−−−→ ΣpStD(B•)

Let
p = (R→ R[μp]

σ−1−−→ R[μp]
N−→ · · · σ−1−−→ R[μp])

be the equivariant resolution of the trivial R[μp]-module supported in degrees (1− p), . . . , 0.
Here N is the norm element as defined in Definition 2.3. We have the standard chain maps
p→ R, which is an isomorphism in the equivariant derived category, and p→ Σp−1R, which
equals �

(p−1)/2 by definition. Now ε is a chain map, which is an isomorphism in the equivariant
derived category but not in the equivariant complex category. However, there is a chain map

p⊗ ΣStC(A•)
ζ−→ StC(D•)/StC(A•)

such that εζ is induced by the standard chain map p→ R (i.e. counit in degree 0). To see this,
it is enough to do the case A• = R and then tensor on the right with StC(A•). In that case, we
are looking for an equivariant chain map from the complex

R→ R[μp]
σ−1−−→ R[μp]

N−→ · · · σ−1−−→ R[μp]

supported in degrees −p, . . . ,−1 to the complex E• satisfying

Ei =
⊕
S⊂[p]
|S|=−i

RS

where RS is a copy of R, and with differential sending RS to
⊕

s∈S RS−{s} by (1,−1, 1, . . .). Let
us write 1S for the canonical generator of RS . One example of such a map is the map which
sends the element 1 in the degree −(2i+ 1) copy of R[μp] to the term

−i!
∑

T⊂{2,...,p}
|T |=2i

even block lengths

1{1}∪T

and sends the element 1 in the degree −(2i+ 2) copy of R[μp] to the term

−i!
∑

T⊂{3,...,p}
|T |=2i

even block lengths

1{1}∪{2}∪T .
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The sign is chosen so that εζ is induced by the standard chain map p→ R. We compute

γδζ = −((p− 1)/2)!�(p−1)/2.

Therefore, the two paths StD(D•)/StD(A•)→ ΣpStD(B•) in this composed diagram are equal-
ized by ζ. Since ζ is an isomorphism in D+

μp
(Xμp , R)[�−1], they coincide in the localized category

as required. �
Corollary 2.8. Suppose R = k is a field of characteristic p. Then we have a triangulated
k-linear functor

St′D : F ∗D+(X, k)→ D+
μp

(Xμp , k)[�−1].

2.4 Six functors
We shall henceforth restrict ourselves to the geometric context of [BL06]. Thus from now on
every topological space X will be the Borel quotient EG×

GY of a complex algebraic variety Y
by the action of some affine algebraic group G, every coefficient ring R will be a Noetherian ring
of finite homological dimension, and we will restrict attention to the full subcategory

D+
G(Y,R) ⊂ D+(X,R)

spanned by those objects which descend from Y .
For the rest of this paper, we will cut down our scope even further (perhaps unnecessarily)

to the constructible equivariant derived category

Db
C(c,G)(Y,R).

This is the full subcategory of D+
G(Y,R) spanned by those complexes F which have only finitely

many non-zero cohomology sheaves, and all of them are algebraically constructible, that is,
locally constant along every stratum of some algebraic stratification of Y (depending on F).

The constructions of the previous section preserve constructibility, so we have a Steenrod
construction

StD : Db
c,G(Y,R)→ Db

c,Gµp�μp
(Y μp , R).

Recall that we have the deep ‘six-functor formalism’ for constructible derived categories; see
Bernstein and Lunts [BL06]. We assume that the reader is familiar with this material, but
remind him/her of the standard notation: for a G-equivariant algebraic map f : Y → Y ′, we
have the adjoint pairs of exact functors

f∗ : Db
c,G(Y ′, R) Õ Db

c,G(Y,R) :f∗,

f! : Db
c,G(Y,R) Õ Db

c,G(Y ′, R) :f !

and also a pair of bi-exact bifunctors

(−)⊗ (−) : Db
c,G(Y,R)×Db

c,G(Y,R)→ Db
c,G(Y,R),

Hom(−,−) : Db
c,G(Y,R)op ×Db

c,G(Y,R)→ Db
c,G(Y,R)

related by a tensor-hom adjunction. There is also a Verdier duality functor D, and an excep-
tional tensor product ⊗!, which can be written in terms of the other functors, as can the
external tensor product �. We call the collection of all of these functors the six plus func-
tors. Notice that Gμp � μp is also an affine algebraic group, so the six-functor formalism exists
for the target category of StD. Also if f : Y → Y ′ is G-equivariant then fμp : Y μp → (Y ′)μp is
Gμp � μp-equivariant. The following fact is essentially a consequence of the same fact for �p:
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Proposition 2.9. Steenrod’s construction is compatible with the six-functor formalism. That
is, we have canonical isomorphisms

(fμp)∗StD ∼= StDf
∗,

(fμp)∗StD ∼= StDf∗,

(fμp)!StD ∼= StDf!,

(fμp)!StD ∼= StDf
!,

StD(−)⊗ StD(−) ∼= StD(−⊗−),

StD(−)⊗! StD(−) ∼= StD(−⊗!−),

StD(−) � StD(−) ∼= StD(−�−),

Hom(StD(−), StD(−)) ∼= StDHom(−,−)

commuting with any and all adjunction morphisms of the six-functor formalism.

We have the same compatibilities with functors St′D.

Remark 2.10. The four functors f∗, f∗, f!, f ! and the three tensor product functors may all be
extended to the bounded-below equivariant derived category, and are also compatible with StD
there, in the same way. However, the internal hom (and its special case, Verdier duality) do not
make sense there, so we prefer to confine ourselves to the constructible case going forward.

Proof. That the claim for St′D follows from the claim for StD, is a direct consequence of the
H∗
μp

(∗)-linearity of the six functors in the μp-equivariant context. So let us focus on StD. It is
known (cf. [BL06]) that the six functors intertwine with external tensor product, so it is just
a matter of showing that the μp-equivariant structures are carried along. This is easy for f∗:
it is defined on the cochain level, and strictly intertwines with StC on that level (no homotopy
involved). It follows by adjointness that we have a canonical map

StDf∗ → (fμp)∗StD

which is an isomorphism upon forgetting equivariance, hence itself an isomorphism.
We may argue similarly for f!, f !. Indeed, the thrust of the argument for f∗ was to lift

both f∗ and StD to the concrete model of bounded-below cochain complexes and observe strict
intertwining there. There is an alternative concrete model which works just as well for the
purposes of defining StD, namely the category of bounded-below cochain complexes of soft
sheaves. But f! is defined on the level of the soft model, and the intertwining holds strictly there.
We deduce the desired claim for f ! in the same way we deduced it for f∗ from f∗.

The canonical isomorphism

StD(−) � StD(−) ∼= StD(−�−)

is a tautological consequence of the cochain-level construction of StD, and intertwining for the
other two tensors follows by composing with ∗- and !- restriction along the diagonal. Finally, the
canonical isomorphism

Hom(StD(−), StD(−)) ∼= StDHom(−,−)

can be deduced using the hom-tensor adjunction. �
Corollary 2.11. Let R denote the constant sheaf and ωR denote the dualizing complex (see
[CG97] for details and evidence of its ubiquity in geometric representation theory). We have
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canonical isomorphisms

StDR ∼= R

and

StDωR ∼= ωR.

Proof. The result is easy over the point ∗: we have ωR ∼= R and the construction of StD is
degenerate. For general Y , apply the intertwining relation between StD and f∗, f ! where f is
the constant map Y → ∗. �

2.5 Tate’s construction
Note that the object StD(ΣnR) is canonically isomorphic to ΣpnR with its trivial μp-equivariant
structure. Here R is the constant sheaf. Since a degree n cohomology class is just a morphism
R→ ΣnR in Db(X,R), we thus obtain a Frobenius-multiplicative map of multiplicative R-sets:

StH : Hn(X,R)→ Hpn
μp

(Xμp , R).

This map is not Frobenius-linear, but as in Proposition 2.4, its deviation from additivity is by a
class induced from Hpn(Xμp , R). To see how these maps interact with multiplication, we make
the following definition.

Definition 2.12. Let (C, ∗,1, e, a, s) be a symmetric monoidal abelian category enriched over
some commutative ring R, that is, C is an abelian category, ∗ is a bi-exact R-linear functor
C × C → C, 1 is an object of C, e is a pair of equivalences 1 ∗ id ∼= id ∼= id ∗ 1, a is an associativity
constraint for ∗ and s is a commutativity constraint for ∗, satisfying natural compatibilities. Let
A be an object of C. Then s determines an action of μp on A∗μp , and we define

A(1) := Ĥ0
μp

(Aμp) := kerA∗ µp (1− σ)/ imA∗ µp (N).

Here N is the norm element defined in Definition 2.3. This is the so-called Tate construction;
see [CE99] for more details. For a morphism f : A→ B the morphism f∗μp : A∗μp → B∗μp is
μp-equivariant and so induces a morphism A(1) → B(1), so that (−)(1) becomes a functor.

Lemma 2.13. (−)(1) is additive over Z.

Proof. We essentially rehash the proof of Propositions 2.4 and 2.7. First we show that (−)(1) is
linear over Z. Suppose f, g : A→ B are two parallel morphisms in C. Let f, g denote the constant
functions μp → {f, g} with respective values f, g. Then μp acts freely on {f, g}μp − {f, g}; choose
a set {h1, . . . , hn} of orbit representatives (n = (2p − 2)/p). Then each hi determines a non-
equivariant map A∗μp → B∗μp , and we have

(f + g)∗μp − f∗μp − g∗μp =
∑
x∈μp

n∑
i=1

xhix
−1.

Restricting to kerA∗ µp (1− σ), this becomes

((f + g)∗μp − f∗μp − g∗μp)kerA∗ µp (1−σ) =
∑
x∈μp

n∑
i=1

xhi = N
n∑
i=1

hi

which factors through imB∗ µp (N) as required.
Next we show that (−)(1) preserves direct sums. Let A,B denote the constant functions

μp → {A,B} with respective values A,B. Then μp acts freely on {A,B}μp − {A,B}; choose a
set {C1, . . . , Cn} of orbit representatives. Then each Ci determines an object of C, and as a
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μp-module in C we have

(A⊕B)∗μp ∼= A∗μp ⊕B∗μp ⊕
n⊕
i=1

Ci[μp].

The result then follows from the fact that Ĥ0
μp

(k[μp]) = 0 in R -mod. �
Let SVectk denote the symmetric monoidal category of Z/2-super-graded k-vector spaces.

Lemma 2.14. Suppose that R = k is a field of characteristic p and that C admits a super-fiber
functor C → SVectk. Then (−)(1) is exact, monoidal and Frobenius-linear over k. In the case
C = SVectk, (−)(1) is equivalent to the functor k⊗F (-) which tensors the k-linear structure along
the Frobenius map F : k → k.

Proof. Since Tate’s construction commutes with the fiber functor, it is enough to take C =
SVectk, where it is a simple calculation using bases. �

Now suppose that A,B are objects of C. We have a μp-equivariant isomorphism (A ∗B)∗μp ∼=
(A∗μp ∗B∗μp). We have also the natural inclusions

kerA∗ µp (1− σ) ∗ kerB∗ µp (1− σ)→ kerA∗ µp∗B∗ µp (1− σ),

imA∗ µp (N) ∗ kerB∗ µp (1− σ)→ imA∗ µp∗B∗ µp (N),

kerA∗ µp (1− σ) ∗ imA∗ µp (N)→ imA∗ µp∗B∗ µp (N)

which induce a map A(1) ∗B(1) → (A ∗B)(1). Suppose that (A,1A,mA) is a unital ring in C.
Then A(1) still has a multiplication

mA(1) : A(1) ∗A(1) → (A ∗A)(1) m
(1)
A−−−→ A(1).

Also, there is a canonical isomorphism ker1∗ µp (1− σ) ∼= 1, hence a canonical surjection 1→ 1(1)

which determines a map

1A(1) : 1→ 1(1) 1
(1)
A−−→ A(1).

One may check that this makes A(1) into a ring, and, moreover, that A(1) is associative or
commutative if A is. The following lemma explains how this looks in the main example.

Lemma 2.15. Suppose A =
⊕

i∈Z/2Ai is a unital ring in C = SVectk. Then the ring structure on

A(1) corresponds under the identification A(1) = k ⊗F A to the ring structure with unit 1⊗F 1A
and multiplication

mA(1)(r ⊗ a, r′ ⊗ a′) = (−1)ij(
p
2)rr′ ⊗mA(a, a′)

for a ∈ Ai, a′ ∈ Aj and r, r′ ∈ k.
Proof. The isomorphism of k ⊗F Ai with (A(1))i sends the element r ⊗ a to the class of
r. a⊗ · · · ⊗ a︸ ︷︷ ︸

p times

. The natural map

(A(1))i ⊗ (A(1))j ∼= Ĥ0
μp

((Ai)∗μp)⊗ Ĥ0
μp

((Aj)∗μp)→ Ĥ0
μp

((Ai ⊗Aj)∗μp)

sends the class of a⊗ · · · ⊗ a︸ ︷︷ ︸
p times

⊗ a′ ⊗ · · · ⊗ a′︸ ︷︷ ︸
p times

to the class of (−1)ij(
p
2) (a⊗ a′)⊗ · · · ⊗ (a⊗ a′)︸ ︷︷ ︸

p times

, since

it entails permuting the xth copy of Ai with the yth copy of Aj for every p ≥ x > y ≥ 1. �
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Arguing the same way, we have the following proposition.

Proposition 2.16. Let A be a Hopf algebra in SVectk. Then A(1) is naturally a Hopf alge-
bra in SVectk. It has multiplication and unit given as in Lemma 2.15, comultiplication given
by

ΔA(1)(r ⊗ a) = r ⊗ (−1)(
p
2)deg⊗ degΔA(a),

counit given by εA(1)(r ⊗ a) = r(εA(a))p and antipode given by SA(1)(r ⊗ a) = r ⊗ SA(a). More-
over, the functor (−)(1) on SVectk upgrades to functor

(−)(1) : A -comod→ A(1) -comod .

For an A-comodule M , the A(1)-comodule structure on M (1) is given by

ΔM(1)(r ⊗m) = r ⊗ (−1)(
p
2)deg⊗ degΔM (m).

Example 2.17. Suppose O is a commutative Hopf algebra in SVectk. Then the monoidal category
C of O-comodules is symmetric. Taking pth powers gives a (Frobenius) map of Hopf algebras
FO : O(1) → O. Then Tate’s construction on C factors as

O -comod
(−)(1)−−−−→ O(1) -comod

F ∗
O−−→ O -comod .

For instance, we could take O to be the ring of functions O(Gm) on the multiplicative group Gm

over k, concentrated in degree 0 ∈ Z/2. Then O(Gm) -comod contains as a full subcategory over
SVectk the category of Z-super-graded vector spaces, and Tate’s construction there is isomorphic
to the functor which applies k ⊗F (−) and multiplies degrees by p.

Recall we have the Frobenius-multiplicative maps of multiplicative k-sets

StH : Hn(X, k)→ Hpn
μp

(Xμp , k).

We view cohomology rings as commutative ring objects of Z-super-graded vector spaces; in
particular, we can apply functor (−)(1) to them. By Lemma 2.6, if k is perfect then it gives a
map of Z-super-graded k-sets

Stex : H∗(X, k)(1) → H∗
μp

(Xμp , k).

The following fact is immediate from the constructions.

Proposition 2.18. Stex respects the multiplicative k-monoidal structures.

Remark 2.19. If k is not perfect, then the mapH∗(X, k)→ H∗
μp

(Xμp , k) of Z/2-super-graded sets
respects the multiplicative monoidal structures up to the sign change of Lemma 2.15. There is
presumably an appropriate nonlinear version of Tate’s construction which would allow us to
say that we really have a certain Z-super-graded k-monoid H∗(X, k)(1)

nl and a map of monoids
H∗(X, k)(1)

nl → H∗
μp

(Xμp , k), but we prefer for simplicity not to do so.

2.6 Borel–Moore homology
We return to the setting of § 2.4. By Corollary 2.11, we have a canonical isomorphism

StD(ω) ∼= ω.

Here the ω on the left-hand side denotes the G-equivariant dualizing complex on Y with coef-
ficients in R, while the ω on the left-hand side denotes the Gμp � μp-equivariant dualizing
complex on Y μp with coefficients in R. By definition, the G-equivariant Borel–Moore homology
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of Y is

HBM,G
n (Y,R) := HomDb

G(Y,R)(R,Σ
nω).

See § 3.10 for more about this. AltogetherHBM,G
n (Y,R) form a Z-super-graded H∗

G(Y,R)-module;
in particular, it is a module for H∗

G(∗, R). By functoriality we have the nonlinear maps

StBM : HBM,G
n (Y,R)→ H

BM,Gµp�μp
pn (Y μp , R).

This is a map of StH -monoids. Its discrepancy from additivity it averaged fromHBM,Gµp

pn (Y μp , R).
If R is a perfect field k of characteristic p, we can say that we have a nonlinear graded map of
Stex-monoids:

StBM
ex : HBM,G

∗ (Y, k)(1) → H
BM,Gµp�μp
∗ (Y μp , k).

2.7 Steenrod operations
For simplicity let us assume k to be perfect from now on. Let us compose Stex with the restriction
map to the diagonal:

Stin : H∗(X, k)(1) Stex−−→ H∗
μp

(Xμp , k) Δ∗
−−→ H∗

μp
(X, k) ∼= H∗(X, k)[a, �].

This is again a map of multiplicative k-monoids. Tautologically we have Stin(x) = xp mod (a, �).
Also Stin is compatible with pullback maps in cohomology in the natural way. Since induc-
tion commutes with restriction, the difference between Stin(x+ y) and Stin(x) + Stin(y) is
induced from a cohomology class z ∈ H•(X; k). Since μp acts trivially on X, that means
that it is equal to pz = 0, so Stin is linear. That is, we have a map of super-commutative
k-algebras

Stin : H∗(X, k)(1) → H∗(X, k)[a, �].

Remark 2.20. The coefficients of �
m, a�m in Stin are not the Steenrod operations. More precisely,

they are the Steenrod operations only up to some non-zero scalars. Even more precisely, let
x ∈ Hn(X, k) and let p = 2q + 1. Consider

(−1)qn(n−1)/2(q!)−nStin(x).

where x is viewed as a degree pn element of H∗(X, k)(1). The coefficient of �
m in this expression

vanishes unless m = 1
2(p− 1)(n− 2s) for some s such that 2s ≤ n, in which case that coefficient

is equal to (−1)sP s(x) where P s is the sth Steenrod operation. Similarly, the coefficient of
a�m in that expression vanishes unless m = 1

2(p− 1)(n− 2s)− 1 for some s such that 2s ≤ n,
in which case that coefficient is equal to (−1)s+1βP s(x) where β is the Bockstein operation.
A careful comparison of Stin with the sum of Steenrod operations as defined in [SE62] shows the
constructions are indeed identical except that N. Steenrod deliberately inserted exactly these
invertible ‘correction factors’. For him, as far as we can tell, the purpose was to ensure that

(i) P 0 = id, and
(ii) the total Steenrod,

∑∞
s=0 P

s, is a ring endomorphism of H∗(X).

On the one hand, from the perspective of the results of this paper, these two constraints are pure
obfuscation; the latter denies the reality that the natural source of the algebra homomorphism
is the Tate construction H∗(X)(1) rather than H∗(X), while the former masks the resemblance
(not a coincidence!) to the Artin–Schreier morphism. On the other hand, from the perspective
of the author, it is rather fortunate as the core innovation of this work would surely have been
discovered sooner otherwise.
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2.8 Artin–Schreier
We indicate how the Artin–Schreier map comes naturally out of the above considerations. First
note that if n is even then the number

(−1)qn(n−1)/2(q!)−n

boils down to (−1)n/2. It is a standard fact that on a degree 2 class x we have P 0(x) = x, P 1(x) =
xp, and higher powers vanish. Therefore

Stin(x) = xp − �
p−1x+ �

p−2β(x).

Let X = BT for some compact torus T . Since its cohomology is supported in even degrees,
the Bockstein operator acts as zero and Stin, on the level of k-cohomology, is exactly the
�-Artin–Schreier map

O(tk)(1) AS�−−→ O(tk)[�] ⊂ O(tk)[a, �]

as defined in Fact 2.1.
Recall that if G is a compact Lie group with maximal torus T , and p is large enough with

respect to the Weyl group of G, then the projection BT → BG induces an inclusion

H∗(BG, k)→ H∗(BT, k)

which is identified with
O(tk//W )→ O(tk).

The �-Artin–Schreier map induces a map on subspaces

O(tk//W )(1) AS�−−→ O(tk//W )[�]

which is also important in the theory of Frobenius-constant quantization. The point is that this
map is also induced by Stin, since it is compatible with pullbacks.

It is entertaining to show more directly how AS� arises, without relying on any outside
facts about Steenrod operations. We can reduce to the rank 1 case T = S1. Let b denote the
degree 2 generator (first Chern class of tautological line bundle) of BS1; we need to show that
Stin(b) = bp − �

p−1b. Let Cp ⊂ S1 denote the cyclic group of order p, considered as distinct from
μp. Consider the projection

BCp → BS1.

It induces an injective map
k[b]→ k[s, b]

in cohomology, where s is a degree 1 generator. By functoriality it is enough to prove the equality
when b is regarded as a cohomology class of BCp. Note that amongst degree 2p elements of k[b, �],
the desired element bp − �

p−1b is the unique one which gives 0 when we set b to any multiple in
Fp of �, and gives bp when we set � = 0. The latter statement is automatic, so we have to check
the former. So fix some t ∈ Fp. Having chosen an isomorphism μp ∼= Cp, t determines a group
homomorphism μp → Cp.

The constant sheaf Σnk of BCp is contained in the full subcategory

Db(k[Cp] -mod) = DCp(∗) ⊂ D(BCp).

Our coefficients are k, which we drop from the notation. It is easier for our purpose to work in
Db(k[Cp] -mod). Compatible with the functor StD out of D(BCp) we have the functor

StD : Db(k[Cp] -mod)→ Db(k[μp � (Cp)×p] -mod).
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This is then composed with the diagonal restriction

Db(k[μp � (Cp)×p] -mod) Δ∗
−−→ Db(k[μp × Cp] -mod).

By definition Stin(b) is given by applying that composition to the morphism k
b−→ k[2], where k

is the trivial Cp-module. We want further to set b = t�; this corresponds to restricting along the
map

μp
id×t−−−→ μp × Cp.

Write
(id× t)∗ : Db(k[μp × Cp] -mod)→ Db(k[μp] -mod)

for the corresponding restriction map. We need to show that (id× t)∗ ◦Δ∗ ◦ St(b) = 0. But
actually there is an isomorphism of functors

(id× t)∗ ◦Δ∗ ◦ StD ∼= StD ◦ i∗

where i∗ is the forgetful functor Db(k[Cp] -mod) = DCp(∗)→ D(∗). Indeed, for an object A• of
Db(k[Cp] -mod), the underlying complex of both functors is (A•)⊗μp , and the automorphism
which sends each summand

Ai1 ⊗ · · · ⊗Aip

to itself by 1⊗ σt ⊗ σ2t ⊗ · · · ⊗ σ(p−1)t intertwines the two actions of μp. Here σ is some generator
of μp. But the functor St ◦ i∗ kills b, since i∗ does.

3. Coulomb branch

3.1 Prelude: Frobenius-constant quantizations
Let k be a field of characteristic p and let C be a symmetric monoidal category over k. The reader
may assume that C is the category of comodules of some commutative Hopf algebra in SVectk.
Let A be a commutative (and associative) algebra in C. Let

F : A(1) → A

be the Frobenius map. Let Q be an augmented commutative algebra in C with augmentation
ε : Q→ k. Following [BK08], we make the following definition.

Definition 3.1.

(i) A Q-quantization of A is a flat associative Q-algebra AQ in C such that AQ ⊗Q k = A.
(ii) A Frobenius-constant Q-quantization of A is a Q-quantization AQ of A together with a map

FQ : A(1) → Z(AQ)

of algebras which lifts the Frobenius map, that is, such that ε ◦ FQ ≡ F . Here Z(AQ) denotes
the center of AQ.

The main example for us is as follow. We take K to be some Gm-equivariant algebraic group
in Vectk, and view O := O(K � Gm) as a Hopf algebra in SVectk concentrated in degree 0. We
take C = O -comod. Let � be a basis vector of the one-dimensional representation of K � Gm

in which K acts trivially and Gm acts with weight 2. Let Q = k[�]. In this case, we will call a
Q-quantization simply an �-quantization, or just a quantization if the meaning is clear.

Fact 3.2. (i) Let X be a smooth affine algebraic variety over k. Then the ring of asymptotic
crystalline differential operators, D�(X), is a canonical �-quantization of O(T ∗X). Here Gm acts
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trivially on O(X) and on vector field with weight 2. Let ∂ be a vector field on X. Then ∂p acts
as a derivation on O(X), so that ∂p − ∂[p] annihilates O(X) for a unique vector field ∂[p]. Then
D�(X) has a canonical Frobenius-constant structure determined by

F� : x �→ xp x ∈ O(X)
∂ �→ ∂p − �

p−1∂[p] ∂ ∈Vect(X).

(ii) Let J be a smooth algebraic group over k. Then F� as above is K = J × J-equivariant
(induced by left and right regular actions). In particular, if we take invariants for the left factor,
we obtain a Frobenius-constant structure for the quantization U�(J) of O(Lie(J)∗).

(iii) Let T be a complex torus and let T∨ be the Langlands dual split torus over k, that is,

T∨= Spec(k[X•(T )])

where X•(T ) is the cocharacter lattice of T and k[X•(T )] is its group algebra. We have canonical
identifications

O((t∨)∗) = O(tk),

U�(t∨) = O(tk ×Ga).

If we take Spec of the Frobenius-constant structure we recover the �-Artin–Schreier map

F� = AS� : tk ×Ga → t
(1)
k

of Fact 2.1.

Remark 3.3. If a commutative algebra and its quantization contain in a natural way H∗
G(∗, k) for

some complex reductive group G with maximal torus T , then when searching for a Frobenius-
constant structure it is natural to look for one which is compatible with the �-Artin–Schreier
map.

3.2 Interlude
The next eight subsections are intended to be a self-contained description of an extension of
the theory of Beilinson–Drinfeld Grassmannians, an amazing invention first described in the
canonical [BD91]. Our extension required a little more geometric machinery than was present in
[BD91], but we were fortunately able to find what was required in Raskin’s excellently concise
paper [Ras15] on placid ind-schemes. This was actually originally written with D-modules in
mind, but the underlying geometry is the same. These eight subsections are also intended to be
a self-contained account of the necessary details of [Ras15], and we have attempted to present
things in a slightly more geometric and less categorical way, but highly recommend reading the
paper. We have tried to make it clear in the text what is new and what is essentially to be found
in [BD91] and [Ras15]. What follows is an overview.

We give the following very brief and incomplete overview of the purpose of Beilinson–Drinfeld
Grassmannians.

(i) If G is a complex algebraic group, its affine Grassmannian Gr1 is the algebro-geometric
incarnation of the E2-group Ω1K of based loops in a compact form K of G.

(ii) Gr1 comes naturally equipped with a ‘convolution diagram’ which is the algebro-geometric
incarnation of the pointwise multiplication structure on Ω1K.

(iii) The Beilinson–Drinfeld Grassmannian Gr2 of G is both a deformation of Gr1 and the
algebro-geometric incarnation of the loop-concatenation structure on Ω1K.
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(iv) The Beilinson–Drinfeld Grassmannian fits inside a deformation of the aforementioned ‘con-
volution diagram’, called the ‘global convolution diagram’ (see [BD91, MV07]), which is the
algebro-geometric incarnation of the Eckmann–Hilton argument.

Now we review in similar terms what we do that is new. (i) We construct a ‘global convolution
diagram’ in the context of the ‘variety of triples’ (which is the geometric basis of the quantum
Coulomb branch; see [BFN16]). This construction is also summarized in the appendix to [BFN17].
The Beilinson–Drinfeld Grassmannian was already constructed in this wider context in [BFN16],
but the global convolution diagram (and hence the Eckmann–Hilton argument) had proved
elusive.

(ii) We construct a geometric analogue of the Kudo–Araki–Dyer–Lashof operations, in the
same way that the Beilinson–Drinfeld Grassmannian itself is a geometric analogue of the loop-
concatenation structure of loop groups. We do this for the variety of triples,but it is new even
for the ordinary Grassmannian.

(iii) We produce a gadget that is to our geometric analogue of the Kudo–Araki–Dyer–Lashof
operations as the global convolution diagram is to the Beilinson–Drinfeld Grassmannian (for the
variety of triples as well as the basic Grassmannian case). This provides the geometric incarnation
of a principle which is similar in spirit to the Eckmann–Hilton argument, but hitherto unknown,
namely, that any S1-framed E3-algebra over Fp defines a Frobenius-constant quantization (to be
elucidated in a forthcoming work; the topological insight is that one can move a ball past – or
rather, through – a donut in an S1-equivariant way).

3.3 Formal neighborhoods
Let X be a smooth complex curve and let S be a finite set. Given a commutative ring R and an
R-point x of XS , we denote the coordinates of x by xs (s ∈ S), write Γ(xs) for the graph of xs
in XR and write I(xs) for its ideal. We write ΔS(x) for the formal neighborhood of the union of
the graphs of xs (s ∈ S). That is, ΔS(x) is the direct limit in affine schemes over X:

ΔS(x) = colim−−−→
i

ΔS,i(x)

where

ΔS,i(x) = Spec
(
OXR

/∏
s∈S

I(xs)i
)
.

Given a subset S′ ⊂ S and an R-point x of XS , we will write

ΔS′
S (x)

for the S′-punctured formal neighborhood, that is, the complement of the union of the graphs of
xs (s ∈ S′) in ΔS(x). As a sheaf of algebras on ΔS(x), O(ΔS′

S (x)) has an exhaustive increasing
filtration:

F jO(ΔS′
S (x)) = O(ΔS(x)).

∏
s∈S′

I(xs)−j .

Suppose we have S′′ ⊂ S′ ⊂ S and x ∈ XS(R). The inclusion S′ ⊂ S defines a projection f :
XS → XS′

, and we will occasionally write

ΔS′′
S′ (x)

for ΔS′′
S′ (f(x)). We have a closed embedding ΔS′′

S′ (x)→ ΔS′′
S (x). Note, however, that this is in a

sense non-uniform in x: for instance, if for every s ∈ S there exists an s′ ∈ S′ such that xs = xs′ ,
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then the embedding is an isomorphism; and conversely. This is essentially the fact underlying
Beilinson and Drinfeld’s ‘fusion’ Grassmannian [BD91]. We will make more of this when we
discuss co-placid morphisms; see Example 3.15.

For notational simplicity, we frequently remove commas and braces from S, S′, and also drop
the part (x), when it is clear which point we refer to. So, for example, the expression

Δ{1}
{1,2}(x)

becomes

Δ1
12.

Remark 3.4. Exponential objects such as XΔS′
S will form the building blocks of our geometric

objects. This is not really a new idea. For example, GΔ∅

S is the ‘global group’ of [BD91]; moreover,
it acts on GΔS

S and the quotient is the Beilinson–Drinfeld Grassmannian of degree |S|. However,
the idea to let S′ lie somewhere between ∅ and S does seem to be new, and is the essential
insight in constructing the global convolution diagram for the variety of triples.

3.4 Global groups; pro-smoothness
Now fix an affine algebraic group G over C. Consider the following functor from commutative
rings to groups over XS :

GS(R) := {(x, f)|x ∈ XS(R), f : ΔS(x)→ G}.

Then GS is represented by the limit of an inverse system of smooth affine group schemes over
XS ,

GS = lim←−
i

GS,i,

such that each transition morphism is a smooth homomorphism. Here GS,i may be taken to
represent the functor

GS,i(R) = {(x, f)|x ∈ XS(R), f : ΔS,i(x)→ G}.

Later, the notation GS,i may represent a piece of some other cofiltered system presenting GS ; we
will refer to the specific group above as Map(ΔS,i, G). The fact that each transition morphism
is smooth is directly verified using the valuative criterion. Indeed, let Spec(R̃) be a square-zero
thickening of Spec(R). A commutative diagram

Spec(R) → GS,i+1

↓ ↓
Spec(R̃) → GS,i

is the same thing as a point x̃ ∈ XS(R̃), with residue x ∈ XS(R), and a commutative diagram

ΔS,i(x) → ΔS,i+1(x)
↓ ↓

ΔS,i(x̃) → G.

This determines a morphism P → G where P is the appropriate pushout in affine schemes. Since
ΔS,i(x) is equal to the intersection of ΔS,i+1(x) with ΔS,i(x̃) inside ΔS,i+1(x̃), and ΔS,i+1(x̃) is
a square-zero thickening of ΔS,i+1(x), it follows that ΔS,i+1(x̃) is a square-zero thickening of P .
Therefore since G is smooth we can extend P → G to ΔS,i+1(x̃)→ G, as required. Note that
GS,0 = XS so, in particular, each GS,i is smooth over XS .
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Now fix x ∈ XS(C). It partitions S into subsets S1, . . . , Sn according to coincidence amongst
the coordinates. Write ym for the coordinate xs for any s ∈ Sm, and zm for the C-point of XSm

with coordinates ym. We have

ΔS,i(x) = Spec
(
OX/

∏n
m=1 I(ym)i|Sm|)

=
∐n
m=1 Spec

(
OX/I(ym)i|Sm|).

Therefore we have

GS,i ×XS {x} =
n∏

m=1

GSm,i ×XSm {zm} =
n∏

m=1

G{m},i|Sm| ×X{m} {ym}.

The smooth transition map G{m},(i+1)|Sm| ×X{m} {ym} → G{m},i|Sm| ×X{m} {ym} is surjective for
all i ≥ 0 and has a unipotent kernel for all i ≥ 1. It follows that GS,i+1 → GS,i has the same
property. Thus GS is a prosaic affine group scheme over XS in the following sense.

Definition 3.5.

(i) A scheme T over B is said to be pro-smooth over B if it can be written as the limit of an
inverse system of schemes Ti smooth over B and with smooth transition morphisms. If T is
pro-smooth then it is formally smooth (in particular, flat) over T .

(ii) An affine groupoid scheme G over B is pro-smooth over B if it can be written as the limit
of an inverse system of affine groupoid schemes Gi over B whose structure maps to B are
both smooth, and which has smooth transition homomorphisms.

(iii) The scheme T (respectively, affine groupoid scheme G) over B is said to be a pro-
smooth cover if it is pro-smooth and the transition (respectively, transition and structure)
morphisms of (i) (respectively, (ii)) are coverings (in addition to being smooth).

(iv) Let the affine groupoid scheme G = limi∈Z
op
≥0
Gi over B be a pro-smooth cover. Then each

Gi is the fpqc quotient over B of G by some pro-smooth affine subgroup Ki. We say that G
is prosaic if the Ki can be chosen to be also pro-unipotent.

(v) Let G be an affine group scheme over the same base B. Then G is said to be pro-smooth, a
pro-smooth cover, prosaic over B if it is so when regarded as a groupoid.

From now on, ‘groupoid’ will mean ‘affine pro-smooth covering groupoid’, unless it is clear
from the context that this is not the case. All examples of groupoids will actually be prosaic.

Remark 3.6. Recall the construction of GS . If the affine algebraic group G is replaced by an
arbitrary smooth affine variety T over C, we get a pro-smooth affine variety TS over XS in
exactly the same way.

3.5 Beilinson–Drinfeld Grassmannians; reasonableness
We also consider the functor

GS
′

S (R) := {(x, f)|x ∈ XS(R), f : ΔS′
S → G}.

Then GS
′

S is represented by an ind-affine ind-scheme, formally smooth over XS . It is a group in
ind-schemes over XS , but not an inductive limit of group schemes. It is a reasonable ind-scheme
in the following sense (taken from [Dri06]).

Definition 3.7.

(i) An ind-scheme T is reasonable if it admits a reasonable presentation, that is, an expression

T = colim−−−→
j∈J

T j
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where J is some (countable) filtered indexing category, and the transition morphisms in
the filtered system of schemes (T j)j∈J are all finitely presented (f.p.) closed embeddings
(that is, they have finitely generated ideal sheaves). Note that any two reasonable presenta-
tions admit a common refinement, so that the category of reasonable presentations of T is
filtered.

(ii) A closed subscheme of a reasonable ind-scheme T is reasonable if it is a term in some
reasonable presentation of T .

(iii) A morphism U → T of reasonable ind-schemes is co-reasonable if for some (equivalently, any)
reasonable presentation T = colim−−−→j∈J T

j of T , the presentation U = colim−−−→j∈J U ×T T
j of

U as an ind-scheme is reasonable. Warning: this is not a relative version of reasonableness
for ind-schemes.

Example 3.8. (i) Let T be a reasonable ind-scheme and let U → T be either ind-f.p. or an ind-flat
cover. Then U → T is co-reasonable.

(ii) In the case of GS
′

S , one reasonable presentation is given as follows. Fix a finite set
{a1, . . . , an} of generators of O(G). Then set J = Z≥0 and set GS

′,j
S to be the closed subscheme

of GS
′

S which on the level of R-points is given by

GS
′,j

S (R) = {(x, f)|x ∈ XS(R), f : ΔS′
S → G, ak ◦ f ∈ H0F jO(ΔS′

S )}.

Here we have taken GS
′,0

S = GS . The left- and right-regular actions of the subgroup GS pre-
serve the inductive structure, meaning that each GS

′,j
S has a free action on both sides by

GS over XS , even though it is not itself a group. Moreover, the fpqc quotient GS
′,j

S /GS is
of finite type over XS , and flat, although generally quite singular. The result is that the fpqc
quotient

GS
′

S /GS

has the structure of ind-finite-type ind-flat ind-scheme over XS . In particular, it is reasonable,
and GS

′
S → GS is an ind-flat cover and thus co-reasonable.

On R-points, we may identify

GS
′

S /GS(R) =

⎧⎨
⎩(x, E , f)

∣∣∣∣∣∣
x ∈ XS(R)
E a principal G-bundle over ΔS(x)
f a trivialization of E over ΔS′

S (x)

⎫⎬
⎭ /∼.

Here the symbol ‘/ ∼’ means ‘taken up to isomorphism’, that is, we identify two R-points

(x, E , f) ∼ (x′, E ′, f ′)

if x = x′ and there exists an isomorphism of E with E ′ which intertwines f, f ′. Such an
isomorphism is unique if it exists. The following fact is due to [BD91].

Lemma 3.9.

(i) GS
′

S /GS is ind-projective over XS if and only if G is reductive.
(ii) GS

′
S /GS is ind-reduced if and only if G has no non-trivial characters.

Remark 3.10. Ultimately we are concerned only with the analytifications of these ind-schemes,
so point (ii) appears merely for interest’s sake. But point (i) is crucial for the definition of
convolution in Borel–Moore homology.
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We may reidentify the R-points of GS
′

S in a way more compatible with the above identification
of GS

′
S /GS(R):

GS
′

S (R) =

⎧⎪⎪⎨
⎪⎪⎩(x, E , f, g)

∣∣∣∣∣∣∣∣
x ∈ XS(R)
E a principal G-bundle over ΔS(x)
f a trivialization of E over ΔS′

S (x)
g a trivialization of E over ΔS(x)

⎫⎪⎪⎬
⎪⎪⎭ /∼.

Notice that the inclusion S′ ⊂ S induces a closed embedding ΔS′′
S′ → ΔS′′

S for any S′′ ⊂ S′. This
in turn induces restriction homomorphisms

GS
′′

S → GS
′′

S′ .

These maps are co-reasonable. One readily checks by looking at points that the induced
maps

GS
′′

S /GS → XS ×S′ GS
′′

S′ /GS′

are isomorphisms. In particular, we have GS
′′

S /GS
∼−→ XS ×S′′ GS

′′
S′′/GS′′ .

Remark 3.11. GSS/GS is known as the Beilinson–Drinfeld Grassmannian GrS (on |S| points).
In particular, the fibers of GS

′
S /GS over XS are products of copies of the ordinary affine

Grassmannian GrG of G.

3.6 Jet bundles; placidity
We will use the following notion, due to Raskin [Ras15].

Definition 3.12.

(i) A scheme T is called placid if it admits a placid presentation, that is, an expression

T = lim←−
i∈Iop

(Ti)

for some filtered (countable) indexing category I, such that each Ti is of finite type over
C and each transition morphism Ti → Ti′ is a smooth affine covering. We will denote this
placid presentation by TI .

(ii) An ind-scheme T is called placid if it admits a placid presentation, that is, an expression

T = colim−−−→
j∈J

lim←−
i∈(Ij)op

(T ji ).

Here J , Ij are filtered (countable) indexing categories, T jIj is a placid presentation of
its limit scheme T j := lim←−i∈(Ij)op(T

j
i ), and the transition morphisms T j → T j

′
are ind-f.p.

closed embeddings.

Remark 3.13. (i) If the placid ind-scheme T maps to some base B of finite type over C, then the
placid presentation may be taken over B.

(ii) Let T be a placid ind-scheme and let T = colim−−−→j∈J (Tj) be a reasonable presentation
of T . Then each Tj is a placid scheme, so that this reasonable presentation can be extended to
a placid presentation.

(iii) Any two placid presentations of the placid ind-scheme T admit a common refinement
(which is again a placid presentation). Thus the collection of placid presentations of T forms a
filtered category P(T ).
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(iv) Suppose that T is a placid ind-scheme and U is an ind-scheme with an ind-f.p. map
f : U → T . Then U is automatically placid. The short explanation is ‘by Noetherian approxima-
tion’. We spell it out: given any reasonable presentation

T = colim−−−→
j∈J

(T j)

of T , we set Uj := U ×T Tj and obtain the reasonable presentation

U = colim−−−→
j∈J

(U j)

of U . Then, given any placid presentation

T j = lim←−
i∈(Ij)op

T ji

of T j , there exists some index a of Ij such that there is a T ja -scheme U ja fitting into a Cartesian
diagram

U j → T j

↓ ↓
U ja → T ja .

Moreover, since T j → T ja is a covering, the choice of T ja -scheme U ja is unique. Thus if we replace
Ij by its final subcategory based at a, we can present U j → T j as the limit of a cofiltered system
of f.p. morphisms

(U ji → T ji )i∈(Ij)op

such that for each i→ i′ in I, the square

U ji′ → T ji′
↓ ↓
U ji → T ji

is Cartesian. Placid presentations of this form will be called Cartesian.
(v)The product (over B) of placid ind-schemes is placid.
(vi) Consider placid presentations

T = colim−−−→
j∈Z≥0

lim←−
i∈(Z≥j)op

(T ji )

of T with the property that T ji is formed out of T j
′
i as in point (iv) whenever i ≥ j′ ≥ j. We

call such placid presentations neat. This is possibly a technically useless notion. But every placid
presentation admits a refinement which is neat up to replacing the indexing categories J , Ij by
final subcategories. Thus many constructions on placid ind-schemes can be phrased in terms of
neat presentations.

Note that for any morphism f : U → T of placid schemes and any placid presentations U =
lim←−iIop

U

Ui, T = lim←−iIop
T

Ti, for any i ∈ IT there exist i′ ∈ IU and a unique map Ui′ → Ti making
the square

U → T
↓ ↓
Ui′ → Ti

commutative. Thus, by changing the indexing sets appropriately we can choose placid presenta-
tions of U , T with a common indexing set I and write f = lim←−i∈I(Ui → Ti). Such a presentation
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will be called compatible. This notion extends immediately to morphisms of placid ind-schemes.
A Cartesian presentation is a compatible presentation in which all appropriate squares are
Cartesian. If G is an affine groupoid scheme over some base B of finite type over C and f
is G-equivariant (over B), then we can find a G-equivariant compatible presentation. If in addi-
tion f is f.p. so that it admits a Cartesian presentation, then this can also be chosen to be
G-equivariant.

Definition 3.14.

(i) A morphism f : U → T between placid schemes is called co-placid if for some (equiva-
lently, every) pair of placid presentations UIU

, TIT
of U , T and for every index i ∈ IT ,

then for some (equivalently, every) index i′ ∈ IU such that we have a commutative
square

U
f−→ T

↓ ↓
Ui′

f ′−→ Ti,

the morphism f ′ is a smooth covering.
(ii) A morphism f : U → T between placid ind-schemes is called co-placid if it is co-reasonable

and for some (equivalently, every) reasonable presentation T = colim−−−→j∈J T
j of T , the map

of placid schemes U ×T T j → T j is co-placid.

The notion of a co-placid morphism has been defined previously in the literature: see [Ras15],
where they are called simply ‘placid’. As noted in [Ras15], it is not a relative version of placidity
for ind-schemes. This is the reason for the present renaming.

Example 3.15. (i) Let T be a placid ind-scheme. Let U → T be either ind-smooth or an ind-pro-
smooth cover. Then it is co-placid.

(ii) GS
′

S is a placid ind-scheme, and the fpqc quotient map

GS
′

S → GS
′

S /GS

is an ind-pro-smooth ind-affine affine cover of a placid (indeed, ind-finite type) ind-scheme, so is
co-placid.

(iii) Given S′′ ⊂ S′ ⊂ S, the morphism

f : GS
′′

S → XS ×XS′ GS
′′

S′

is co-placid. Indeed, consider GS,i := Map(ΔS,i, G). We have GS = lim←−i∈Z≥0
GS,i and XS ×XS′

GS′ = lim←−i∈Z≥0
XS ×XS′ GS,i and the morphism

GS,i → XS ×XS′ GS′,i

induced by the closed embeddings ΔS′,i(x) ⊂ ΔS,i(x) for any x ∈ XS(R). This is a smooth
covering, by the same argument of § 3.4 for the prosaicness of GS . This shows that

g : GS → XS ×XS′ GS′

is co-placid. To conclude, note that the morphism f is an ind-locally trivial g-bundle over the
ind-finite type ind-scheme GS

′′
S /GS = XS ×XS′ GS

′′
S′ /GS′ .

Warning 3.16. Morphism g is not a pro-smooth cover, and f is not an ind-pro-smooth cover. It
is tempting to imagine that it is the quotient map by some group scheme ker(GS → XS ×XS′
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GS′), but there is no such group scheme. To see this, fix some section S → S′ and consider
the corresponding ‘multi-diagonal’ embedding XS′ → XS . Then g is an isomorphism over XS′

.
However, over a generic point of XS , g is a non-trivial projection from G(O)S → G(O)S

′
; see

§ 3.9 for the notation.

(iv) Fix a representation N of G of dimension d. Let N := Spec(Sym(N∗)) be the corre-
sponding G-module, that is, vector space in the category of schemes over C with G-action. Then
NS is a GS-module; indeed, each Map(ΔS,i,N) is a Map(ΔS,i, G)-module and the transition
maps are GS-equivariant. We have the placid ind-scheme

T̃ S′
S := GS

′
S ×XS NS .

This is an ind-pro-smooth covering of its fpqc quotient (relative to XS) ind-scheme

T S′
S := GS

′
S

×XS

GS
NS .

This is an infinite-dimensional vector bundle over GS
′

S /GS . On the level of R-points we
identify

T S′
S (R) =

⎧⎪⎪⎨
⎪⎪⎩(x, E , f, ṽ)

∣∣∣∣∣∣∣∣
x ∈ XS(R)
E a principal G-bundle over ΔS(x)
f a trivialization of E over ΔS′

S (x)
ṽ an N-section of E

⎫⎪⎪⎬
⎪⎪⎭ /∼.

Here by ‘an N-section of E ’ we mean a section of the associated N-bundle. Of course T S′
S is the

inverse limit of vector bundles over GS
′

S /GS ,

T S′
S = lim←−

i

T S′
S,i ,

where T S′
S,i is the associated bundle of NS,i, a vector bundle of rank di|S|. In particular, T S′

S is

a placid ind-scheme, with T S
′,j

S being the infinite-dimensional vector bundle T S′
S |GS′,j

S /GS
over

GS
′,j

S /GS . We identify the R-points of T̃ S′
S compatibly as follows:

T̃ S′
S (R) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x, E , f, g, ṽ)

∣∣∣∣∣∣∣∣∣∣

x ∈ XS(R)
E a principal G-bundle over ΔS(x)
f a trivialization of E over ΔS′

S (x)
g a trivialization of E over ΔS(x)
ṽ an N-section of E

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
/∼.

(v) NS′
S is a GS

′
S -module (in ind-schemes). Therefore multiplication gives a map between the

placid ind-schemes

T S′
S → NS′

S .

We define RS′
S to be the fiber product

RS′
S := T S′

S ×NS′
S

NS .

This is an ind-scheme over GS
′

S /GS , with RS
′,j

S := T S
′,j

S ×
NS′

S
NS = RS′

S |GS′,j
S /GS

. Moreover, RS′
S

is a vector space over GS
′

S /GS , but unlike T S′
S it is not a vector bundle because the fibers jump.

Furthermore, RS
′,j

S contains ker(T S
′,j

S → T S
′,j

S,i ) for i large enough (depending on j), that is, we
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have a diagram

ker(T S
′,j

S → T S
′,j

S,i ) ⊂ RS
′,j

S ⊂ T S
′,j

S

of vector spaces over GS
′,j

S /GS . Therefore RS′
S is placid: we may take RS

′,j
S,i to be the image in

T S
′,j

S,i of RS
′,j

S , for i large enough. Also, RS′
S is of ind-finite codimension in T S′

S , that is, it is an
ind-f.p. closed sub-ind-scheme. On the level of R-points, we have

RS′
S (R) =

⎧⎪⎪⎨
⎪⎪⎩(x, E , f, v)

∣∣∣∣∣∣∣∣
x ∈ XS(R)
E a principal G-bundle over ΔS(x)
f a trivialization of E over ΔS′

S (x)
v an N-section of E such that f(v) extends to ΔS(x)

⎫⎪⎪⎬
⎪⎪⎭ /∼.

Here f(v) is a section of the trivial N-bundle on ΔS′
S (x), and we require that it extends to a

section of the trivial N-bundle over ΔS(x). Such an extension is unique if it exists. We denote the
preimage of RS′

S in T̃ S′
S as R̃S′

S . It is an ind-f.p. closed sub-ind-scheme of T̃ S′
S , an ind-pro-smooth

cover of RS′
S , its fpqc quotient (locally on XS) by GS , and on R-points we identify

R̃S′
S (R) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(x, E , f, g, v)

∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ XS(R)
E a principal G-bundle over ΔS(x)
f a trivialization of E over ΔS′

S (x)
g a trivialization of E over ΔS(x)
v a section of the trivial N-bundle on ΔS(x)

such that fg−1(v) extends to ΔS(x)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
/∼.

(vi) The product (over B) of co-placid maps is co-placid.

Remark 3.17. (i) Suppose X = Ga with parameter t. Then I(xs) is trivialized by t− txs . There
is an isomorphism from T S′

S to the kernel of the covering T S′
S → T S

′
S,i , given on R-points by

(x, f, E , ṽ) �→
(
x, f, E ,

∏
s∈S

(t− txs)ṽ
)
.

We call this isomorphism the fiberwise shift map of T .
(ii) The placid ind-scheme T = GS

′
S /GS , T S

′
S ,RS′

S is special in that one may take the smooth
affine covering maps T ji → T ji′ to be vector bundles. But placidity seems to be the more flexible
definition; for instance, I do not know if point (iii) of Remark 3.13 holds if we replace ‘placid’
by ‘special’.

3.7 Equivariance
(i) Note that GS

′
S /GS , T S

′
S ,RS′

S are all acted on by GS , and the various maps between them are
GS-equivariant. In fact, each ‘approximation’ GS

′,j
S /GS , T ji , Rji is acted on by some quotient

GS,i′ of GS , and the transition morphisms are all GS-equivariant.
(ii) Suppose that X = Ga. Then we have the action of Gm on X by multiplication. It also

acts diagonally on XS . Therefore we may consider C
∗ ×XS as a smooth groupoid over XS . The

group GS
′

S over XS is C
∗ ×XS-equivariant, so we may form the semidirect product

GS
′

S � C
∗,

a placid affine groupoid ind-scheme over XS . The special case, GS � C
∗, is a prosaic affine

groupoid scheme over XS . Then the GS-equivariant structures of GS
′

S /GS , T S
′

S ,RS′
S and

their above approximations upgrade to GS � C
∗-equivariant structures (over XS). Again all

morphisms, transition or otherwise, of the previous subsection are GS � C
∗-equivariant.
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Remark 3.18. (i) Let T be a placid ind-scheme over some base B and G be a groupoid scheme
over B which acts on T . Then we can always choose a G-equivariant placid presentation of T ,
simply by ‘smoothing out’ any placid presentation by the action of G. The category PG(T ) of
G-equivariant placid presentations of T is filtered.

(ii) Now suppose that T is special. I do not know whether we can choose the special presen-
tation of T to be G-equivariant. However, if T is special by virtue of being a placid vector space
over some intermediate G-equivariant ind-scheme U of ind-finite type, T → U → B, and G acts
linearly, then we can do it. This is what happens for GS

′
S , T S

′
S ,RS′

S . In the latter two cases, we
can take U = GS

′
S /GS . In the former case, we can take U to be the quotient of GS

′
S by the kernel

of the surjection GS → Map(ΔS,1, G).

3.8 Dimension theories
The following definitions can be found in [Ras15], and essentially in the earlier work [Dri06], and
probably in many other texts.

Definition 3.19. (i) Let T be a placid scheme, with a placid presentation T = lim←−i∈(I)op(Ti).
A dimension theory on TI is a function d : I → Z, whose value on i ∈ I will be written d(Ti),
satisfying the condition

d(Ti′)− d(Ti) = dim(Ti′)− dim(Ti)

whenever i→ i′ in I. The set of dimension theories on TI is denoted

dimth(TI).

(ii) Take a placid presentation T = lim←−i∈(I)op(Ti) of the scheme T and a finer placid presen-
tation T = lim←−i1∈(I1)op(Ti1), I ⊂ I1. We may extend a dimension theory d on TI to a unique
dimension theory, denoted d, on TI1 by setting

d(Ti1) := d(Ti′)− dim(Ti′) + dim(Ti)

for any i′ ∈ I such that i1 → i′ in I1. We have thus constructed a filtered system

({dimension theories on TI})TI∈P
indexed by the filtered category P of placid presentations of T .

(iii) A dimension theory on T is an element of the colimit of the above filtered system. The
set of dimension theories on TI is denoted

dimth(T ).

Now let f : U → T be an f.p. map of placid schemes and choose Cartesian placid presentations
indexed by I as in Remark 3.13. In this presentation, a dimension theory d on TI defines one
on UI , denoted f∗d and given by the formula

f∗d(Ui) := d(Ti).

That is, we have a map dimth(TI)→ dimth(UI). The composition of this with the map
dimth(UI)→ dimth(U) factors through the map dimth(TI)→ dimth(T ), yielding a map

f∗ : dimth(T )→ dimth(U)

independent of any choices of presentation. If context prevents confusion, we may denote f∗d
by d.
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Similarly, suppose f : U → T is a co-placid map of placid schemes and fix a compatible
presentation f = lim←−i∈Iop(Ui → Ti). The dimension theory d on TI defines one on UI , denoted
f !d and given by the formula

f !(d)(Ui) := d(Ti) + dim(Ui)− dim(Ti).

This procedure again determines a map

f ! : dimth(T )→ dimth(U)

independent of any choices of presentation.

Definition 3.20. (i) Let T be a placid ind-scheme. Fix a reasonable presentation

T = colim−−−→
j∈J

T j .

We write this as TJ . A dimension theory on T is an element of the limit of the cofiltered system

(dimth(T j))j∈J op

with transition morphisms given by the ∗-pullback. For different reasonable presentations these
limits are canonically isomorphic.

(ii) Given an ind-f.p. map f : U → T of placid ind-schemes, we get a map

f∗ : dimth(T )→ dimth(U)

determined by the condition that the square

dimth(T )
f∗−→ dimth(U)

↓ ↓
dimth(Tj)

(fj)∗−−−→ dimth(U ×T Tj)
commutes for every reasonable closed subscheme Tj of T .

(iii) Given a co-placid map f : U → T of placid ind-schemes, we get a map

f ! : dimth(T )→ dimth(U)

determined by the condition that the square

dimth(T )
f !

−→ dimth(U)
↓ ↓

dimth(Tj)
(fj)!−−−→ dimth(U ×T Tj)

commutes for every reasonable closed subscheme Tj of T .
(iv) Given placid ind-schemes U , T over B, we get a map

(−) +B (−) : dimth(U)× dimth(T )→ dimth(U ×B T ).

Indeed, if U = colim−−−→j∈JU
lim←−i∈(Ij

U )op U
j
i , T = colim−−−→j∈JT

lim←−i∈(Ij
T )op T

j
i are placid presentations

over B and dU , dT are dimension theories on U , T then

U ×B T = colim−−−→
(jU ,jT )∈JU×JT

lim←−
(iU ,iT )∈(IjU

U )op×(IjT
T )op

U jUiU ×B T
jT
iT

is a placid presentation and we define

(dU + dT )(U jUiU ×B T
jT
iT

) := dU (U jUiU ) + dT (T jTiT ).
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If f : U ×B T → U ×B is the ind-f.p. closed embedding, then we have (−) +B (−) =
f∗((−) +SpecC (−)). We will usually write (−) +B (−) simply as (−) + (−).

Remark 3.21. (i) The set of dimension theories on a connected placid ind-scheme T is a Z-torsor.
Thus the set of dimension theories on a general placid ind-scheme T is a Z

π0(T )-torsor. For an
ind-f.p. (respectively, co-placid) map f : U → T of placid ind-schemes, f∗ (respectively, f !) is a
map of Z

π0(T )-sets.
(ii) In fact, there is a sheaf (in an appropriate sense) of Z-torsors on any placid ind-scheme

T whose set of global sections equals the set of dimension theories on T . We do not need to
consider it since in every example of this paper, this sheaf is trivial.

Example 3.22. (i) Recall that T S′
S is an infinite-dimensional vector bundle over GS

′
S /GS , with

‘approximations’ T S
′,j

S,i for j ∈ Z≥0 and i ∈ Z≥? for some positive integer ? depending on j (see

Example 3.15). The approximation T S
′,j

S,i is a vector bundle over GS
′,j

S /GS of rank di|S|. Thus
f : T S′

S → GS
′

S /GS is co-placid, and since GS
′

S /GS is ind-finite type it has a dimension theory d0

with constant value 0. We will denote the dimension theory f !d0 on T S′
S by rank(T S′

S ). We have

rank(T S′
S )(T S

′,j
S,i ) := di|S|.

It would perhaps be safer to call this rank
GS′

S /GS
(T S′
S ), but the notation becomes too unwieldy.

The reader should bear this in mind.
(ii) Let f : RS′

S → T S
′

S be the defining ind-f.p. closed embedding. Then we have the dimension
theory f∗ rank(T S′

S ) on RS′
S . We will call this simply rank(T S′

S ).
(iii) We also have the dimension theory on T̃ S′

S obtained as the !-pullback of rank(T S′
S ) (or of

d0 directly). Its ∗-pullback to R̃S
′

S coincides with the !-pullback of the dimension theory rank(T S′
S )

on RS′
S . These dimension theories on T̃ S′

S , R̃S′
S will both be denoted rank(T̃ S′

S ).
(iv) We will denote the !-pullback to GS

′
S of the constantly 0 dimension theory on GS

′
S /GS

by rank(GS
′

S ). It satisfies

rank(GS
′

S )(GS
′,j

S,i ) := dimXS (GS,i) = dim(GS,i)− |S|.

3.9 Notational remark
We will use the same notational simplification for GS

′
S , T S′

S , RS′
S , T̃ S′

S , R̃S′
S as for formal

neighborhoods: for instance,

R{1}
{1,2}

may be written as
R1

12.

Fix a C-point x ∈ X and a local parameter t at x. This determines isomorphisms Δ1(x) =
Spec(O), Δ1

1(x) = Spec(K) where O = C[[t]], K = C((t)). The groups of C-points of (G1)x, (G1
1)x

are put in isomorphism with G(O), G(K). Note that since G1 is pro-smooth over X, we have

(G1
1/G1)x = (G1

1)x/(G1)x.

We will write informally

(G1)x = G(O),

(G1
1)x = G(K),

(G1
1/G1)x = GrG.
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We will write (T 1
1 )x, (R1

1)x as T ,R. Since these are ind-f.p. sub-ind-schemes of T 1
1 , they have

dimension theories given by pulling back rank(T 1
1 ). We will write the resulting dimension theories

both as rank(T ). These dimension theories correspond to the dimN(O) of [BFN16] (although
dimension theories are not explicitly used in [BFN16]).

3.10 Borel–Moore homology
Rather than recall the general formalism of equivariant constructible derived categories on placid
ind-schemes (see [Ras15]), we content ourselves with the following definition.

Definition 3.23. (i) Let R be a commutative ring. Let T be a scheme of finite type over the
base B of finite type over C with an action of the affine algebraic groupoid G over B. Then T an

has a Gan-equivariant constant sheaf R and dualizing complex ω with coefficients in R, and we
will write

Hn
G (T,R) := Hn

Gan(T an, R) = HomDb
Gan (Tan)(R,Σ

nR),

HBM,G
n (T,R) := Hn

Gan(T an, ω) = HomDb
Gan (Tan)(R,Σ

nω).

(ii) Now suppose that G is an affine groupoid scheme over B. We may write G as the limit
of its fpqc quotient affine algebraic groupoids (Gi)i∈Iop . We may assume that action of G on T
factors through each Gi. We set

H∗
G(T,R) := colim−−−→

i∈I
H∗

Gi
(T,R)

and

HBM,G
∗ (T,R) := colim−−−→

i∈I
HBM,Gi

∗ (T,R).

Here we have used the fact that for any i→ i′ in I, the Gi′-equivariant complexes obtained from
the Gi-equivariant constant sheaf (respectively, dualizing complex) are canonically isomorphic
to their Gi′-equivariant counterparts. Thus these restriction functors determine the maps of
equivariant cohomology (respectively, Borel–Moore homology) which we take colimits over.

(iii) Let T be a placid scheme over some base B of finite type over C and let G be an
affine algebraic groupoid over B which acts on T . Let d be a dimension theory on T . Then the
2d-shifted G-equivariant Borel–Moore homology of T , HBM,G

∗−2d (T,R), is defined as follows. Let
T = lim←−i∈(I)op(Ti) be a G-equivariant placid presentation of T . Observe that pullback defines a
graded map of R-modules

HBM,G
∗−2d(Ti)

(Ti, R)→ HBM,G
∗−2d(Ti′ )

(Ti′ , R)

whenever i→ i′ in I, since Ti′ → Ti is a (d(Ti′)− d(Ti))-dimensional smooth covering. We then
set

HBM,G
∗−2d (T,R) := colim−−−→

i∈I
HBM,G

∗−2d(Ti)
(Ti, R).

For different choices of placid presentation, we get canonically isomorphic answers, which justifies
the definition.

(iv) Let f : T 0 → T 1 be a G-equivariant ind-f.p. embedding of placid ind-schemes over B.
Let d be a dimension theory on T 1. Then there is a pushforward map

f∗ : HBM,G
∗−2f∗d(T

0, R)→ HBM,G
∗−2d (T 1, R)
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defined by choosing Cartesian placid presentations of T 0, T 1 indexed by I and observing that
for each i ∈ I the diagram

HBM,G
∗−2d(T 0

i′ )
(T 0
i′ , R)

f∗−→ HBM,G
∗−2d(T 1

i′ )
(T 1
i′ , R)

↑ ↑
HBM,G

∗−2d(T 0
i )

(T 0
i , R)

f∗−→ HBM,G
∗−2d(T 0

i )
(T 1
i , R)

commutes. Here the horizontal maps are pushforwards maps along the closed embeddings T 0
i →

T 1
i , while the vertical maps are the pullback maps of point (1). The resulting map is independent

of any choices we have made.
(v) Now let T be a placid ind-scheme over some base B of finite type over C and let G be an

affine algebraic groupoid over B which acts on T . Let d be a dimension theory on T . Then we
set

HBM,G
∗−2d (T,R) := colim−−−→

j∈J
HBM,G

∗−2f∗d(T
j , R)

using the pushforward maps of point (ii) of this definition, for any choice T = colim−−−→j∈J (T j)
of G-equivariant reasonable presentation of T . For different presentations we get canonically
isomorphic colimits. Here we have written d for the unique dimension theory on T j compatible
with the dimension d on T .

Remark 3.24. (i) Since G is a pro-smooth covering groupoid, its action on any finite-type approx-
imation T ji to the placid ind-scheme factors through the quotient H by some (pro-smooth
covering) subgroup. We then have

HBM,G
∗−2d(T j

i )
(T ji , R) = H∗

G(B,R)⊗H∗
H(B,R) H

BM,H
∗−2d(T j

i )
(T ji , R).

(ii) If, moreover, G is prosaic, then we can choose the subgroup in question to be also
pro-unipotent, in which case we have H∗

G(B,R) ∼= H∗
H(B,R) so that

HBM,G
∗−2d(T j

i )
(T ji , R) = HBM,H

∗−2d(T j
i )

(T ji , R).

(iii) It may even happen that we can choose a section H → G. Take, for example, X = Ga,
G = G1 � C

∗, H = G× C
∗ ×X where G embeds in G1 as the subgroup of constant functions.

In this case, H acts on all of T , and we have

HBM,G
∗−2d (T,R) = HBM,H

∗−2d (T,R).

Though it may give a psychological advantage since H is an actual smooth algebraic groupoid,
this reduction is usually technically unhelpful.

The following procedures in ordinary equivariant Borel–Moore homology are also defined in
the world of placid ind-schemes. Fix a G-equivariant placid ind-scheme T over B (of finite type
over C) and a dimension theory d on T .

(i) Change of groupoid base. Suppose that we have some finite-type G-space A over B. Then
there exists a semi-direct groupoid scheme G �B A, affine pro-smooth over A. Suppose that
T → B factors through A. Then T is also G �B A-equivariant (over A) and we have a canonical
isomorphism

HBM,G
∗−2d (T,R) ∼−→ HBM,G �BA

∗−2d (T,R).
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(ii) Open restriction. Let A ⊂ B be a G-equivariant open subscheme and let j : T |A → T be the
G-equivariant ind-f.p. ind-open embedding of placid ind-schemes over A. The restriction to A of
a G-equivariant placid presentation of T is a G|A-equivariant placid presentation of T |A, and,
applying the ordinary open restriction in Borel–Moore homology, one obtains a map

j! : HBM,G
∗−2d (T,R)→ HBM,G

∗−2j∗d(T |A, R).

One usually goes on to compose this map with the isomorphism

HBM,G
∗−2j∗d(T |A, R) ∼= HBM,G �BA

∗−2j∗d (T |A, R).

(iii) Proper pushforward. Let f : U → T be a G-equivariant ind-proper (in particular, ind-f.p.)
map of placid ind-schemes over B. By choosing a G-equivariant Cartesian placid presenta-
tion and applying the ordinary proper pushforward in Borel–Moore homology, one obtains
a map

f∗ : HBM,G
∗−2f∗d(U,R)→ HBM,G

∗−2d (T,R).

(iv) Restriction of equivariance. Let H → G be a morphism of groupoid schemes over B. Then
we have ‘restriction of equivariance’ maps

HBM,G
∗−2d (T,R)→ HBM,H

∗−2d (T,R).

(v) Co-placid restriction. Let f : U → T be a G-equivariant co-placid map of placid ind-schemes
over B. By choosing a G-equivariant compatible presentation of f and applying the ordinary
smooth pullback in Borel–Moore homology, one obtains a map

f ! : HBM,G
∗−2d (T,R)→ HBM,G

∗−2f !d
(U,R).

(vi) Restriction with supports. Let p : T ′ → U ′ be a G-equivariant co-placid map of placid ind-
schemes over B, and let f ′ : U ′ → T ′ be a G-equivariant section of p. Let g : T → T ′ be ind-f.p.
and let U = T ×T ′ U ′, so that we have a Cartesian square

U
f−→ T

↓ g′ ↓ g
U ′ f ′−→ T ′

Suppose we have a dimension theory d′ on U ′ such that g∗p!d′ = d, and set dg := (g′)∗d′. We can
choose a G-equivariant compatible presentation of this Cartesian square, that is, write it as

colim−−−→
j∈J

lim←−
i∈Ij

⎛
⎜⎜⎝

U ji
fj

i−→ T ji
↓ ↓

(U ′)ji
(f ′)j

i−−−→ (T ′)ji

⎞
⎟⎟⎠

such that the induced presentations of the vertical morphisms U → U ′, T → T ′ are Carte-

sian, and such that there exists a G-equivariant presentation colim−−−→j∈J lim←−i∈Ij ((T
′)ji

pj
i−→ (U ′)ji )

of p. Then pji is a smooth covering and (f ′)ji is its section, and we have a ‘restriction
with supports’ morphism (f ji )

! : HBM,G
∗ (T ji , R)→ HBM,G

∗−2 dim(pj
i )

(U ji , R), which assembles to give a

morphism

f ! : HBM,G
∗−2d (T,R)→ HBM,G

∗−2dg(U,R).
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(vii) Averaging. Suppose that H ⊂ G is a normal subgroup over B of finite index. Then we have
the averaging maps

HBM,H
∗−2d (T,R)→ HBM,G

∗−2d (T,R).

(viii) Specialization. Suppose now that B = Ga and G is a group scheme over B = Ga. We have
the closed subscheme i : {0} → Ga, and the complementary open subscheme j : Gm → Ga. Let
us write T ∗,G∗ for the restrictions to Gm and T |0,G|0 for the restrictions to {0}. Choose a
G-equivariant placid presentation

T = colim−−−→
j∈J

lim←−
i∈(Ij)op

T ji

of T over Ga. Then by restriction we obtain a G∗-equivariant placid presentation

T ∗ = colim−−−→
j∈J

lim←−
i∈(Ij)op

(T ji )
∗

of T ∗ over Ga and a G|0-equivariant placid presentation

T |0 = colim−−−→
j∈J

lim←−
i∈(Ij)op

(T ji )|0

of T |0 over {0}, both of which are Cartesian with the original placid presentation. Since G is
pro-smooth covering, we have specialization maps

sji : HBM,G∗
∗ ((T ji )

∗, R)→ H
BM,G|0
∗+2 ((T ji )|0, R)

which are compatible, so yield

s : HBM,G∗
∗−2j∗d(T

∗, R)→ H
BM,G|0
∗+2−2i∗d(T |0, R).

We will write d∗ := j∗d, d|0 := i∗d.

(ix) Steenrod’s construction. Let G be an affine algebraic group and B = ∗ (we will not need the
relative situation). Write pd for the dimension theory d+ · · ·+ d︸ ︷︷ ︸

p times

on the Gμp � μp-equivariant

placid ind-scheme Tμp . We have nonlinear maps

StBM : HBM,G
n−2d (T,R)→ H

BM,Gµp�μp

pn−2pd (Tμp , R)

which are monoidal with respect to the map StH : Hn
G (∗, R)→ Hpn

Gµp�μp
(∗, R) and whose discrep-

ancy from additivity is averaged from HBM,Gµp

pn−2pd (Tμp , R). If R is a perfect field k of characteristic
p, we have the nonlinear graded Stex-monoidal maps

StBM
ex : HBM,G

∗ (T, k)(1) → H
BM,Gµp�μp
∗ (Tμp , k).

The following facts carry over from the ordinary case.
(i) Descent.

(a) Suppose that H is a normal (pro-smooth covering) subgroup of G over B, and that the
fpqc quotient group G/H exists as a pro-smooth covering group over B. The main example
here is G = H×B L for pro-smooth covering groups H, L over B. Suppose that H acts
freely on T , so that, in particular, the fpqc quotient (relative to B) T/H exists as a G/H-
equivariant placid ind-scheme over B. So the quotient map f : T → T/H is G-equivariant
and co-placid. Suppose that there exists a dimension theory d′ on T/H satisfying f !d′ = d.
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Then the composition

H
BM,G/H
∗−2d′ (T/H, R) −→ HBM,G

∗−2d′ (T/H, R)
f !

−→ HBM,G
∗−2d (T,R)

is an isomorphism.
(b) Suppose that Q is an algebraic group acting regularly on B in the sense that the stabilizer

groupoid QB := B ×B (Q�B) is smooth over B, and L is a Q-equivariant pro-smooth
covering group over B. Set G = L�Q. Thus the maximal subgroup H = L�B QB is a
pro-smooth covering group over B, and the quotient groupoid P := G/H = (Q�B)/QB
is smooth over B. Let A = B/P , π : B → A. Suppose that we are given a slice i : A ⊂ B.
Consider the placid G ×B π∗(H|A)-equivariant ind-scheme

G|A ×A T |A.
On the one hand, the normal subgroup π∗(H|A) acts freely and the quotient is T , giving

HBM,G
∗−2d (T,R) ∼−→ H

BM,G ×A H|A
∗−2d′ (G|A ×A T |A, R)

where d′ is the !-pullback of d. On the other hand, the normal subgroup L acts freely, and
the quotient is Q× T |A with its residual action of (Q�B)×B π∗(H|A) = (Q×H|A) �A B,
where H|A acts trivially on B over A. Thus we have the isomorphisms

H
BM,H|A
∗−2d′′ (T |A, R) ∼−→ H

Q×H|A
∗−2d′′−2 dimQ(Q× T |A, R)

↓ ∼

H
BM,G ×A H|A
∗−2d′ (G|A ×A T |A, R) ∼←− H

(Q×H|A)�AB
∗−2d′′−2 dimQ(Q× T |A, R)

if d′′ is a dimension theory whose !-pullback along G|A ×A T |A → Q× T |A → T |A equals d′.
Thus we obtain an isomorphism

H
BM,H|A
∗−2d′′ (T |A, R) ∼−→ HBM,G

∗−2d (T,R).

(ii) Compatibilities. These various maps between Borel–Moore homology groups all commute
with each other, whenever this makes sense. Consider the following examples.

(a) If f : U → T (resp. p : V → T ) is an ind-proper (resp. co-placid) G-equivariant map, so that
we have a G-equivariant Cartesian square

W
f ′−→ V

↓ p′ ↓ p
U

f−→ T

then we have p!f∗ = f ′∗(p
′)!.

(b) Specialization commutes with proper pushforward, restriction of equivariance, co-placid
restriction and averaging. To spell this out in the most complicated case, take a ‘restriction
with supports framework’ as in (vi) above with B = Ga and G a group. We may restrict all
the data over {0} or over Ga − {0}, and obtain again ‘restriction with supports frameworks’.
We therefore obtain a square

HBM,G∗
∗−2d∗ (T ∗, R) sT−→ H

BM,G|0
∗−2d|0 (T |0, R)

↓ (f |Ga−{0})! ↓ (f |{0})!

HBM,G∗
∗−2(dg)∗(U

∗, R) sU−→ H
BM,G|0
∗−2(dg)|0(U |0, R)

which is commutative.
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(c) Averaging commutes with change of groupoid base, open restriction, proper pushforward,
co-placid restriction. It also commutes with restriction of equivariance in the following sense.
If H ⊂ G is of finite index over B and G′ → G is a map, the fiber product H×G G′ is of finite
index in G′, and the two possible maps from the H-equivariant Borel–Moore homology to
the G′-equivariant homology coincide. For some reason, we have steadfastly avoided using
quotient stacks. If we had used them, this would be an example of proper base change.

3.11 The branch
We assume from now on thatX = Ga with global parameter t. Thus the 0-fibers G(O) of G1,R of
R1

1, etc., have actions of C
∗. We assume also that G is reductive, so that GS

′
S /GS is ind-projective

over XS . We recall the definitions of [BFN16] with respect to our notation.

Definition 3.25.

(i) The Coulomb branch (over R) is the graded H∗
G(O)(∗, R)-module

A∗ := H
BM,G(O)
∗−2 rank(T )(R, R).

(ii) The quantum Coulomb branch (over R) is the graded H∗
G(O)�C∗(∗, R) = H∗

G(O)(∗, R)[�]-
module

A∗
� := H

BM,G(O)�C∗
∗−2 rank(T ) (R, R).

Here � has degree 2.
(iii) We will often write A∗, A∗

�
as simply A,A�.

Lemma 3.26. A∗, A∗
�

are evenly graded and free over H∗
G(O)(∗, R), H∗

G(O)(∗, R)[�]. We have a

canonical isomorphism A∗
�
/� ∼= A�.

Proof. The proof in [BFN16] in the case R = C works for any R. The essential point is that
the equivariant parameters are in even degrees, and an equivariant placid presentation may be
chosen such that each ‘approximation’ has a complex cell decomposition. �

We will also consider A∗ := H
BM,G(O)�μp

∗−2 rank(T ) (R, R). The same proof shows that the natural map

H∗
μp

(∗, R)⊗R[�] A
∗
�→ A∗

is an isomorphism. In particular, in the case R = Fp we have A∗ = A∗
�
[a]. We have an averaging

map A∗ → A∗, which after identifying A∗ = R⊗R[�] A
∗
�
, A∗ = H∗

μp
(∗, R)⊗R[�] A

∗
�

is induced by
the averaging map of R[�]-modules R→ H∗

μ(∗, R). This is the map which multiplies by p in
degree 0. Therefore in the case R = Fp, the averaging map equals 0.

Remark 3.27. (i) In [BFN16] A∗, A∗
�

are given ring structures by a form of convolution in
Borel–Moore homology; A∗ is also a ring in the same way. They show that A∗ is commuta-
tive and A∗

�
is an �-quantization of A∗. We will recall the construction in the course of the proof

of our main theorem. The idea (due originally to Beilinson and Drinfeld [BD91]) is to express
the multiplication in A∗ by a manifestly commutative specialization map.

(ii) Recall that T is the fpqc quotient G(K) ×
G(O) N(O) of the placid ind-scheme T̃ := G(K)×

N(O). Both are ind-pro-smooth covers of (in fact, ind-pro-smooth ind-fiber bundles over) GrG,
and have respective dimension theories rank(T ), rank(T̃ ) given by their ranks over GrG. Let
us denote by R̃ the corresponding G(O)-bundle over R; it has a compatible dimension theory
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rank(T̃ ). By descent, we have the isomorphism

A∗
� = H

BM,G(O)�C∗
∗−2 rank(T ) (R, R) ∼−→ H

BM,(G(O)×G(O))�C∗

∗−2 rank(T̃ )
(R̃, R),

and similarly for A∗. This shows that A∗, A∗
�

have two module structures over H∗
G(O)(∗, R). In

fact, these module structures coincide with the left- and right-multiplication by a subalgebra
H∗
G(O)(∗, R) ⊂ A∗, A∗

�
. Since A∗ is commutative, these two module structures coincide every-

where. However, H∗
G(O)(∗, R) is not in the center of A∗

�
, so these two module structures are

different there.

3.12 The ‘large center’ map
We will set R = Fp from now on. The rest of this section is devoted to the proof (and explanation)
of the following theorem.

Theorem 3.28. A� is a Frobenius-constant quantization of A.

We will construct the requisite map F� using Steenrod’s construction and a specialization
map. First we introduce some new notation. We will fix X = Ga, with parameter t. We will
use another base curve Y = Ga with parameter tp. We have Y = X//μp, where μp ⊂ C

∗ acts
on X through the character χ given by restricting the weight 1 action of C

∗. Let π : X → Y
be the quotient map; under the identifications X = Ga = Y , π is the pth-power map, and is
C
∗-equivariant when C

∗ acts on Y with weight p. For y ∈ Y S(R), we will use tp to identify the
coordinates ys with elements of R. Then, for y ∈ Y S(R), we have the affine scheme

π∗ΔS′
S (y) = Spec

(
R[t]
[[∏

s∈S
(tp − ys)

]][ ∏
s∈S′

(tp − ys′)−1

])
.

Now χ determines a ‘twisted-diagonal’ embedding X ⊂ Xμp as the χ-eigenline for the cyclic
action of μp. Let α be one of the symbols G, N, T , R, T̃ , R̃. Then we will set

α(p) := αμp//χμp,

α
(p)
(p) := α

μp
μp//χμp.

Here the symbol ‘//χμp’ means ‘restrict along the twisted-diagonal then take categorical quotient
by μp’. The action of μp in question is the one that does not involve loop rotation, that is, that
which scales x ∈ X(R) but does not change any of the data E , f, v etc. These are all placid
ind-schemes over Y , and behave in essentially the same way as their earlier counterparts: G(p)

is an affine pro-smooth covering group scheme over Y , Gr(p) := G
(p)
(p)/G(p) is an ind-projective

ind-scheme over Y , T (p)
(p) is an infinite-dimensional vector bundle over Gr(p), R

(p)
(p) is its sub-vector

space of ind-finite codimension over Gr(p). They are all G(p) � C
∗-equivariant. They also have

chosen dimension theories, denoted rank(G(p)
(p)), rank(T (p)

(p) ), rank(T̃ (p)
(p) ) etc., which are compatible

with each other in the same way as for the αS
′

S , and compatible with the dimension theories on αμp
μp

in the natural way. That is, the ∗- (or !-)pullback along the μp-fppf quotient map of the chosen
dimension theory on α

(p)
(p) coincides with the ∗-pullback along the ind-f.p. closed embedding

X ×Xµp α
μp
μp → α

μp
μp of the chosen dimension theory on α

μp
μp . Unlike αS

′
S which is globally trivial

over the coincidence-free open subset of XS , these spaces α(p), α
(p)
(p) are only locally trivial away

from {0}. On the level of R-points, they admit similar interpretations to αS
′

S , only involving

2535

https://doi.org/10.1112/S0010437X21007569 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007569


G. Lonergan

π∗Δ1(y), π∗Δ1
1(y). For example, we have

R(p)
(p)(R) :=

⎧⎪⎪⎨
⎪⎪⎩(y, E , f, v)

∣∣∣∣∣∣∣∣
y ∈ Y (R)
E a principal G-bundle over π∗Δ1(y)
f a trivialization of E over π∗Δ1

1(y)
v an N-section of E such that f(v) extends to π∗Δ1(y)

⎫⎪⎪⎬
⎪⎪⎭ /∼.

The fiber of this space over {0} is a copy of R, while the fibers over Y − {0} := Y ∗ are copies of
Rp. Another example is

G(p)(R) :=
{

(y, g)
∣∣∣∣ y ∈ Y (R)
g : π∗Δ1(y)→ G

}
.

The action of G(p) � C
∗ on R(p)

(p) is given as

(y, g).(y, E , f, v) = (y, E , g ◦ f, v),
z.(y, E , f, v) = (zpy, z∗E , z∗f, z∗v)

where for z ∈ R×, z∗ denotes the pushforward along the multiplication-by-z endomorphism of
XR, t �→ zt, which transforms π∗Δ1(y) into π∗Δ1(zpy). The key new feature is that G(p) � μp
is a subgroup of G(p) � C

∗. In fact, G(p) � μp is one component of the maximal subgroup of
G(p) � C

∗, the other being {0} × C
∗. Contrast with GS � C

∗, whose maximal subgroup is GS ∪
({0} × C

∗).
Note that the 0-fiber of G(p) � C

∗ ýR(p)
(p) is identified with G(O) � C

∗ ýR (C∗ acting in

the usual way, that is, with weight 1 on t ∈ O). Meanwhile, the 1-fiber of G(p) � μp ýR(p)
(p) is

identified with G(O)μp � μp ýRμp , where now μp acts in the usual cyclic way of § 2 (without
any loop rotation). The latter identification comes from the defining identification of π∗{1}
with μp.

Warning 3.29. The notation Rμp means Map(μp,R). This μp superscript is not to be confused
with the μp superscript in Rμp

μp , where it indicates a set of allowed poles as in RS′
S .

Consider the following composition F ′
�

: An → Apn.

(3.1)

For degree reasons it factors through the inclusion A∗
�
⊂ A∗

�
[a] = A∗. We may form the graded

H∗
G(O)(∗,Fp)(1)-module (A∗)(1), and we have a map of Z-graded multiplicative Fp-sets

F� : (A∗)(1) → A∗
�.

3.13 Linearity
We have the following proposition.
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Proposition 3.30. F� is Stin-linear. That is, it is linear and transports multiplication by r ∈
Hm
G(O)(∗,Fp) to multiplication by Stin(r) ∈ Hpm

G(O)�C∗(∗,Fp) ⊂ Hpm
G(O)�C∗(∗,Fp).

Proof. First we show that F� is Stin-multiplicative. Recall that restriction of equivariance com-
mutes with specialization. We have a closed embedding from the Y -version of G{1} to G(p)

determined by the formula

(y, g : Δ{1}(y)→ G) �→ (y, g ◦ π : π∗Δ{1}(y)→ G).

Over 0, this is identified with the embedding G(O)→ G(O), t �→ t. Over 1 this is identified with
the diagonal embedding G(O)→ G(O)μp . Since the restriction of equivariance along the former
embedding,

H
BM,G(O)�μp

∗−2 rank(T ) (R,Fp)→ H
BM,G(O)�μp

∗−2 rank(T ) (R,Fp),

is an isomorphism, it follows that the map H
BM,G∗

(p)
�μp

∗−2−2p rank(T (p)
(p)

)∗
((R(p)

(p))
∗,Fp)→ A∗ factors as

H
BM,G∗

(p)
�μp

∗−2−2p rank(T (p)
(p)

)∗
((R(p)

(p))
∗,Fp)

Restrict−−−−−→ H
BM,G∗

{1}�μp

∗−2−2p rank(T (p)
(p)

)∗
((R(p)

(p))
∗,Fp)

Specialize−−−−−−→ A∗.

Since G{1} � μp is a constant group over Y with fibers G(O) � μp, the latter specialization
map is H∗

G(O)�μp
(∗,Fp)-linear. Certainly the descent isomorphism (b) and the restriction of

equivariance from C
∗ to μp in the diagram defining F ′

�
commute with restriction of equivariance

from G(p) to G{1}. It follows that F� is Stin-multiplicative, by definition of Stin.
Now we show linearity. Averaging (over μp) commutes with the descent isomorphism (b) and

restriction of equivariance in that we have the following commutative diagram.

Here for the second two averaging maps we have identified H
BM,G∗

(p)
�?

pn−2−2 rank(T (p)
(p)

)∗
((R(p)

(p))
∗,Fp) with

H
BM,(π∗G∗

(p)
)�(?×μp)

pn−2−2π∗ rank(T (p)
(p)

)∗
(π∗(R(p)

(p))
∗,Fp) for ? = C

∗,μp.

Since averaging commutes also with specialization, it follows that the discrepancy from
additivity lies in the image of the averaging map A∗ → A∗. But this map is equal to 0. �

3.14 Centrality
We have the following proposition.

Proposition 3.31. F� maps into the center of A∗
�
.

Proof. The idea is to adapt the proof of commutativity of A∗ given in the Appendix to [BFN17] to
the present setup. That proof is itself an adaptation of the construction, using Beilinson–Drinfeld
Grassmannians, of the commutativity constraint on the Satake category; see [MV07].
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Consider the following diagram.

Let α be as before, that is, any of the symbols G, N, T , R, T̃ , R̃. We set

α
(p)0
(p)0 :=

(
X ×(Xµp∪{0}) α

μp∪{0}
μp∪{0}

)
//μp.

Here the fiber product is taken using the map X → Xμp∪{0} given by the product of the
‘twisted-diagonal’ embedding X → Xμp determined χ and the inclusion of {0} in Ga under
the identification Xμp∪{0} = Xμp ×X{0} = Xμp ×Ga. The action of μp is again the one which
does not involve any loop rotation. Removing the superscript (p) (respectively, 0, (p)0) from
α

(p)0
(p)0 corresponds to removing the superscript μp∪ (respectively, ∪{0}, μp ∪ {0}) from α

μp∪{0}
μp∪{0}

in its defining equation. We may write the spaces of the ‘left path’ as follows:

R(p)
(p) ×R(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y, E , f, v,
E0, f0, v0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y ∈ Y (R)
E a principal G-bundle over π∗Δ1(y)
f a trivialization of E over π∗Δ1

1(y)
v an N-section of E such that f(v) extends

to π∗Δ1(y)
E0 a principal G-bundle over Δ1({0})
f0 a trivialization of E0 over Δ1

1({0})
v0 an N-section of E0 such that f0(v0) extends

to Δ1({0})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

/∼,

R(p)
(p)0 ×Y R

0
(p)0(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y, E , f, v,
E0, f0, v0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y ∈ Y (R)
E a principal G-bundle over π∗Δ1(y) ∪Δ1({0})
f a trivialization of E over π∗Δ1

1(y) ∪Δ1({0})
v an N-section of E such that f(v) extends

to π∗Δ1(y) ∪Δ1({0})
E0 a principal G-bundle over π∗Δ1(y) ∪Δ1({0})
f0 a trivialization of E0 over π∗Δ1(y) ∪Δ1

1({0})
v0 an N-section of E0 such that f0(v0) extends

to π∗Δ1(y) ∪Δ1({0})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

/∼,

2538

https://doi.org/10.1112/S0010437X21007569 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007569


Steenrod operators

R̃(p)
(p)0 ×N(p)0

R0
(p)0(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y, E , f,
g, v, E0,
f0, v0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y ∈ Y (R)
E a principal G-bundle over π∗Δ1(y) ∪Δ1({0})
f a trivialization of E over π∗Δ1

1(y) ∪Δ1({0})
g a trivialization of E over π∗Δ1(y) ∪Δ1({0})
v an N-section of E such that f(v) extends

to π∗Δ1(y) ∪Δ1({0})
E0 a principal G-bundle over π∗Δ1(y) ∪Δ1({0})
f0 a trivialization of E0 over π∗Δ1(y) ∪Δ1

1({0})
v0 an N-section of E0 such that f0(v0) = g(v)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

/∼,

R̃(p)
(p)0

×N(p)0

G(p)0
R0

(p)0(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y, E , f, v,
E0, h0, v0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y ∈ Y (R)
E a principal G-bundle over π∗Δ1(y) ∪Δ1({0})
f a trivialization of E over π∗Δ1

1(y) ∪Δ1({0})
v an N-section of E such that f(v) extends

to π∗Δ1(y) ∪Δ1({0})
E0 a principal G-bundle over π∗Δ1(y) ∪Δ1({0})
h0 an isomorphism of E0 with E

over π∗Δ1(y) ∪Δ1
1({0})

v0 an N-section of E0 such that h0(v0) = v

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

/∼

and

R(p)0
(p)0(R) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(y,F , e, w)

∣∣∣∣∣∣∣∣∣∣

y ∈ Y (R)
F a principal G-bundle over π∗Δ1(y) ∪Δ1({0})
e a trivialization of F over π∗Δ1

1(y) ∪Δ1
1({0})

w an N-section of F such that e(w) extends
to π∗Δ1(y) ∪Δ1({0})

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
/∼.

Here the {0} of Δ?
1({0}) denotes the fixed R-point {0} of X. By definition, β is the product of the

co-placid map R(p)
(p)0 → R

(p)
(p) induced by the embedding π∗Δ1

1(y)→ π∗Δ1
1(y) ∪Δ1({0}), and the

co-placid map R0
(p)0 → Y ×R induced by the embedding Δ1

1({0})→ π∗Δ1(y) ∪Δ1
1({0}). The

map γl factors as

R̃(p)
(p)0 ×N(p)0

R0
(p)0

ul−→ R̃(p)
(p)0 ×Y R

0
(p)0

vl−→ R(p)
(p)0 ×Y R

0
(p)0

where vl is a G(p)0-torsor and ul fits into a ‘restriction with supports framework’: a Cartesian
diagram

R̃(p)
(p)0 ×N(p)0

R0
(p)0

ul−→ R̃(p)
(p)0 ×Y R0

(p)0

↓ ↓
T̃ (p)

(p)0 ×N(p)0
R0

(p)0

u′l−→ T̃ (p)
(p)0 ×Y R0

(p)0

such that u′l is a section of a vector bundle map

T̃ (p)
(p)0 ×Y R

0
(p)0 = G

(p)
(p)0/G(p)0 ×Y N(p)0 ×Y R0

(p)0 → G
(p)
(p)0/G(p)0 ×Y R0

(p)0

and whose vertical arrows are ind-f.p closed embeddings. The map δl is a G(p)0-torsor, defined
by

(y, E , f, g, v, E0, f0, v0) �→ (y, E , f, v, E0, h0 = g−1f0, v0).
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The map εl is ind-proper, defined by

(y, E , f, v, E0, h0, v0) �→ (y,F = E0, e = hf0, w = v0).

This describes the ‘left path’. The ‘right path’ exactly mirrors it and has all the same properties:
just exchange superscripts μp, 0, and on the level of points exchange E with E0, f with f0, v with
v0, g with g0, h with h0, etc. We have labeled our data F , e, w in R(p)0

(p)0 because in the ‘left path’

we have (F , e, w) = (E0, fg−1f0, v0) while in the ‘right path’ we have (F , e, w) = (E , f0g
−1
0 f, v).

If we restrict our diagram to Y ∗, then the subscripts (p), 0 ‘split apart’, and the result is rather
degenerate. That is, it coincides with the restriction to Y ∗ of

Here the maps from the fourth row to the top are the obvious projection maps, while the
maps from the fourth row to the bottom are the obvious action maps. If instead we restrict our
diagram to {0} ⊂ Y , the subscripts (p), 0 ‘fuse’ and the result is again degenerate: we get

We leave it to the reader to write out the appropriate equivariant structures implicit in
the following chain of maps, and to check that the quoted dimension theories are appropriately
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compatible:

Here we have dropped the homological coefficients ‘Fp’ for brevity. This is called the ‘homo-
logical left path over Y ’. Similarly, there is a ‘homological right path over Y ’. Moreover, we have
versions of both ‘homological paths’ for the restrictions of our original diagram to Y ∗, {0}, and
specialization map of paths

‘homological left path over Y ∗’→ ‘homological left path over {0}’,
‘homological right path over Y ∗’→ ‘homological right path over {0}’

since every step of both paths is compatible with specialization. One the one hand, both
‘homological paths over Y ∗’ give as their composition the identity map

H
BM,G(p)�μp

∗−2−2 rank(T (p)
(p)

)∗
((R(p)

(p))
∗)⊗Fp[a,�] A

∗
�[a]→ H

BM,G(p)�μp

∗−2−2 rank(T (p)
(p)

)∗
((R(p)

(p))
∗)⊗Fp[a,�] A

∗
�[a].

On the other hand, the ‘left homological path over {0}’ gives as its composition the multiplication
map (indeed, this is the definition of convolution from [BFN16])

A∗
�[a]⊗Fp[a,�] A

∗
�[a]

‘convolution’−−−−−−−−→ A∗
�[a],

while the ‘right homological path over {0}’ gives as its composition the twisted multiplication
map

A∗
�[a]⊗Fp[a,�] A

∗
�[a]

‘convolution’◦twist−−−−−−−−−−−→ A∗
�[a].

It follows that in fact the image of the specialization map

H
BM,G(p)�μp

∗−2−2 rank(T (p)
(p)

)∗
((R(p)

(p))
∗)⊗Fp[a,�] A

∗
�[a]→ A∗

�[a]

is in the center of A∗
�
[a]. By its very definition, F� factors through this map. �

3.15 Completion of the proof
(i) F� is multiplicative. The proof is essentially the same as the proof of centrality, but instead
of keeping one copy of R fixed and allowing the other to deform to Rμp with its cyclic μp-action,
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we allow both copies of R to deform in that way. In fact it is easier because we only need one
‘path’. We will content ourselves with drawing the defining diagram; the conscientious reader
can plug in the method of specialization:

R(p)
(p) ×R

(p)
(p) ←− R̃

(p)
(p) ×N(p)

R(p)
(p) → R̃

(p)
(p)

×N(p)

G(p)
R(p)

(p) →R
(p)
(p).

(ii) F� sends 1 to 1. Note that 1 ∈ A∗ is the fundamental class of the fiber N(O) of R over the
base point of Gr. Certainly Steenrod’s construction sends this to the fundamental class of the
fiber N(O)μp of Rμp over the base point of Grμp , and this is sent by the ‘descent isomorphism
(b)’ construction to the fundamental class of the fiber N∗

(p) of (R(p)
(p))

∗ over the base section of
Gr∗(p). But this section extends to a base section of Gr(p), namely, the trivial G-bundle with the

trivial trivialization. The fiber of R(p)
(p) over this section is N(p). Since this is a vector bundle over

Y , specialization sends its fundamental class to the fundamental class of its 0-fiber N(O), as
required.

(iii) F� mod � is the Frobenius map. This is essentially clear from the construction. It amounts
to showing that the specialization (over Y ) of the class b in

H
BM,G(p)

∗−2 rank(T (p)
(p)

)∗

(
(R(p)

(p))
∗)

obtained by applying Steenrod’s construction to a ∈ (A∗)(1), then applying descent isomorphism
(b) and then restricting all the way to G(p)-equivariance, equals xp (recall diagram (3.1)). But
by a general property of specialization, it is equal to the specialization over X of the class π∗(b)
in

H
BM,π∗G∗

(p)

∗−2π∗ rank(T (p)
(p)

)∗

(
π∗(R(p)

(p))
∗).

Under the identifications π∗(R(p)
(p))

∗ = Rμp × Y ∗, π∗G∗
(p) = G(O)μp × Y ∗, π∗(b) is just the pull-

back of a�p along the projection away from Y ∗. Thus it is enough to prove the more general
statement that for a1, . . . , ap ∈ A∗, the convolution product a1 . . . ap is equal to the specializa-
tion in π∗R(p)

(p) of a1 � · · ·� ap. That is achieved by choosing an enumeration μp = {1, . . . , p}
and considering the restriction along the ‘twisted-diagonal’ embedding X → Xμp of the global
convolution diagram (see the Appendix to [BFN17]):

3.16 Closing remarks
(i) There is a closed embedding

R1
1 → R(p)

(p)

(y, E , f, v) �→ (y, π∗E , π∗f, π∗v)
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and similarly compatible closed embeddings α1
1 → α

(p)
(p) for any symbol α (see § 3.12). We also

have the compatible closed embeddings of groups G1 → G(p), N1 → N(p). In fact we have already
used one of these to prove linearity of F� in § 3.13.

(ii) For large p, the N = 0 version of A� has a name: it is the quantum Toda lattice, denoted
Toda� and given as the two-sided quantum Hamiltonian reduction N∨

ψ \\D�(G∨)//ψ of the Rees
algebra of crystalline differential operators, D�(G∨), of the Langlands dual group G∨ over Fp,
with respect to a regular character ψ of a maximal unipotent N∨ ⊂ G∨. As a quantum Hamilto-
nian reduction of a ring of differential operators, it has a canonical Frobenius-constant structure.
It follows from a torus localization argument that this Frobenius-constant structure coincides
with the one we have produced in this paper. The ind-f.p. closed embedding R → T induces a
pushforward map of H∗

G×C∗(∗,Fp)-algebras

A∗
�→ HBM,G×C∗

∗−2 rank T (T ,Fp) ∼= HBM,G×C∗
∗ (Gr,Fp).

For all p, this map is compatible with the Frobenius-constant structure. For large p this map is
an embedding. So for large p, Theorem 3.28 can be understood as saying that the subalgebra A∗

�

of the quantum Toda lattice contains the image of A∗ ⊂ Toda := Toda�/� under the canonical
Frobenius-constancy map Toda(1) → Toda�.

(iii) An example. Let G = C
∗, N = C−r, r ≥ 0. Then on C-points we identify:

(a) Gr = Z;
(b) T = Z× C−r[[t]];
(c) R = Z≤0 × C−r[[t]] ∪ {1} × trC−r[[t]] ∪ {2} × t2rC−r[[t]] ∪ . . . .

For N = 0, A� is the Weyl algebra Fp[�]〈x±, ∂〉/([∂, x] = �). The equivariant Borel–Moore
homology of a point n ∈ Z is identified with Fp[�, x∂].xn. It is a direct calculation that F� is the
map

x(1) �→ xp,

y(1) �→ ∂p,

(xy)(1) �→ xp∂p =
p−1∏
i=0

(x∂ − i�) = (x∂)p − �
p−1x∂ = AS�(x∂).

Here y = ∂ mod �. For N = C−r with r ≥ 0, A� is the reduction modulo p of the subalgebra of
the integral Weyl algebra Z[�]〈x±, ∂〉/([∂, x] = �) with Fp[�, x∂]-basis

. . . x−2, x−1, 1,
( r∏
i=1

(rx∂ − i�)
)
x,

( 2r∏
i=1

(rx∂ − i�)
)
x2, . . . .

It satisfies (
∏nr
i=1(rx∂ − i�)xn)(

∏mr
i=1(rx∂ − i�)xm) =

∏(m+n)r
i=1 (rx∂ − i�)xm+n. Note that this is

a subalgebra of the mod p Weyl algebra if and only if p does not divide r. It is again a direct
computation that F� is the map

(x−1)(1) �→ x−p,

((rxy)rx)(1) �→
pr∏
i=1

(rx∂ − i�)xp,

(xy)(1) �→
p−1∏
i=0

(x∂ − i�).
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It is an interesting exercise to check that these are really central (of course their images in the
mod p Weyl algebra are).

(iv) For large p one can prove the centrality and multiplicativity of the map F�, constructed
in § 3.12, via torus localization in conjunction with the above example. But Theorem 3.28 is true
for all odd primes p. In fact, the same construction works for p = 2 but one has to be a little
careful to account for the fact that a2 = � in that case.

(v) Suppose that the action of G on N extends to an action of a normalizing supergroup G̃
of G. Then the same proof shows that the corresponding flavor deformation is also a Frobenius-
constant quantization.

(vi) In [BFN17], an algebra ind-object Ω� of the Satake category Db
G(O)�C∗(Gr,C) is con-

structed; its cohomology algebra is the quantum Coulomb branch. The commutativity of the
Coulomb branch corresponds to commutativity of the image algebra Ω of Ω� in Db

G(O)(Gr,C).
It is also possible, by essentially the same method given in the Appendix to [BFN17], to tell the
same story with Fp coefficients.

4. K-theoretic version

4.1 K-theory and K-homology
Let X be a scheme over some base B over C and let G be an (affine, pro-smooth) groupoid
scheme over B acting on X. We have the G-equivariant K-homology of X,

KG(X) := K0(Db
G Coh(X)),

which is by definition the Grothendieck group of Db
G Coh(X), the G-equivariant derived category

of complexes of sheaves on X with bounded, coherent cohomology sheaves. We have also the
G-equivariant K-theory of X,

KG(X) := K0(PerfG(X)),

which is by definition the Grothendieck group of the full subcategory PerfG(X) of Db
G Coh(X)

consisting of perfect complexes. We recall some basic facts (see [CG97]).
(i) KG(X) forms a ring, since PerfG(X) is monoidal. The unit element is given by the class

of the structure sheaf.
(ii) KG(X) is a module over KG(X), since Db

G Coh(X) is a module category over PerfG(X).
Under suitable conditions, for instance, if X is smooth and G is a connected linear algebraic
group, every equivariant coherent sheaf has a bounded equivariant resolution by vector bundles,
so that the defining functor PerfG(X)→ Db

G(X) is an equivalence, and in particular the map
from KG(X) to KG(X) is an isomorphism. But this will certainly not be the case in most of our
examples.

(iii) Let f : X → Y be a G-equivariant map of schemes over B. We have a monoidal pullback
map

f∗ : PerfG(Y )→ PerfG(X)

hence the ring map f∗ : KG(Y )→ KG(X). If the derived functor f∗ : Db
G QCoh(Y )→

Db
G QCoh(X) sends Db

G Coh(Y ) to Db
G Coh(X) (e.g. if f may be flat or is a regular closed

embedding), then we also get a map

f∗ : KG(Y )→ KG(X)

of KG(Y )-modules.
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(iv) If instead the derived functor f∗ : D+
G Sh(X)→ D+

G Sh(Y ) sends Db
G Coh(X) to

Db
G Coh(Y ) (e.g., if f is proper and Y is of finite type), then we have a map

f∗ : KG(X)→ KG(Y )

of KG(Y )-modules.
(v) There is also a version of specialization in equivariant K-homology, due to [VV03]. Let

f : X → B ×Ga be a G-equivariant map, where the factor Ga is a ‘multiplicity space’ ignored
by the action of G. Let i : X0 → X denote the inclusion of the fiber of B × {0}, and j : Xo → X
denote the inclusion of the complement. Assume that i is a regular embedding. Then the map
i∗i∗ on K-homology vanishes, and so we get a map

KG(X)/i∗KG(X0)→ KG(X0).

Note that the restriction map j∗ : KG(X)→ KG(Xo) has kernel i∗KG(X0), so we get an injection
KG(X)/i∗KG(X0)→ KG(Xo). Assume that this injection is also a surjection (e.g. if X is quasi-
projective). Then we have obtained a map

s : KG(Xo)→ KG(X0)

which is the promised specialization map.
(vi) There is also a version of restriction with supports. Suppose f : X → Y is a G-equivariant

regular closed embedding, and g : Z → Y is an arbitrary G-equivariant map. Then f∗OX is
isomorphic to an object of PerfG(Y ), so that g∗f∗OX is isomorphic to an object of PerfG(Z).
Moreover, this perfect complex is set-theoretically supported onW := X ×Y Z, that is, its restric-
tion to the complement of W in Z is isomorphic to 0. Thus tensoring with g∗f∗OX gives an exact
functor:

(−)⊗L
OZ

g∗f∗OX : Db
G Coh(Z)→ Db

G Coh(Z)W .

The right-hand side is the full subcategory ofDb
G Coh(Z) consisting of complexes set-theoretically

supported on W ; the pushforward functor Db
G Coh(W )→ Db

G Coh(Z) factors through this cate-
gory. Since the embedding W → Z is f.p., being the base change of the f.p. embedding X → Y ,
the resulting functor Db

G Coh(W )→ Db
G Coh(Z)W induces an isomorphism in K-homology:

KG(W ) ∼−→ K0(Db
G Coh(Z)W ).

Thus, we have produced a map

KG(Z)→ KG(W )

which is the promised restriction with supports.
(vii) Change of groupoid base, restriction of equivariance, and averaging work exactly as for

equivariant Borel–Moore homology; see § 3.10.
The same compatibilities which were used in the previous section to extend the analogous

procedures in equivariant Borel–Moore homology to the case of ind-schemes hold just as well for
equivariant K-homology. Thus we are able to define the K-theoretic versions of the Coulomb
branch and the quantum Coulomb branch by using precisely the same underlying geometry: we
have rings (under convolution)

KA := KG(O)(R)

and

KAq := KG(O)�C∗
(R)
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which receive ring maps from respectively

KG(O)(∗) = KG(∗) = R(G)

and

KG(O) �C∗(∗) = KG×C∗(∗) = R(G)[q, q−1].

Here R(G) is the (integral) representation ring of G. For a maximal torus T of G, we have
R(G) = Z[X•(T )]W where W is the Weyl group. Moreover, the various compatibilities between
specialization and the other procedures hold here as in the case of Borel–Moore homology (see
§ 3.10), so that the ring structure on KA may also be defined using specialization on the appro-
priate Beilinson–Drinfeld Grassmannian, and is commutative. Also, KA is free over R(G), KAq
is free over R(G)[q, q−1] with respect to both left and right multiplication, q is in the center
Z(KAq) of KAq, and KA = KA1 := KAq|q=1. We will show the following theorem.

Theorem 4.1. Fix a positive integer n and a primitive nth root of unity ζ. Then there is an
injective map of algebras

KA→ Z(KAζ).

Here KAζ := KAq/Φn(q) where Φn is the nth cyclotomic polynomial. Equivalently, since KAq
is free over Z[q, q−1], this is the same as the subalgebra 1⊗KAq of Cζ ⊗Z[q,q−1] KAq, where Cζ

is the Z[q, q−1]-algebra whose underlying ring is C and in which q acts as ζ.

The proof is essentially the same as for the quantum Coulomb branch, except for the following
observation.

Remark 4.2. We must generalize from Rμp , R(p)
(p) etc. to Rμn , R(n)

(n), which are defined exactly
as before by replacing any instance of p with n. Indeed, we never used that p was prime in any
of our previous constructions, nor in any of our proofs except for questions of linearity. So, for
instance, it is true that we have maps from the mod n rings

F�;n : A∗ → Z(A∗
�)

which lift the nth power map A∗ → A∗; to linearize these maps, we have to kill all non-unit
factors of n. If n is not a prime power, this means we have to kill everything, so we do not
obtain an interesting linear map. If n = pd is a prime power, it amounts to killing p, and the
resulting map F�;pd mod p is the composition of F�;p with the (d− 1)th power of the Frobenius
endomorphism of A mod p, so gives nothing new. However, the map of Theorem 4.1 is a linear
map between algebras free over Z, and is something genuinely different for all q.

4.2 Adams operations
Let X, B, G be as in the previous subsection, and n be a positive integer. We have a monoidal
(nonlinear) functor

St : Db
GCoh(X)→ Db

Gµn�μn
Coh(Xμn)

whose composition with the functor Db
Gµn�μn

Coh(Xμn)→ Db
GµnCoh(Xμn) which forgets the

μn-equivariant structure coincides with the nth external tensor power functor. The construction
is exactly the same as Steenrod’s construction of § 2.2, except we work with coherent complexes
rather than constructible ones (and with n rather than p). Proposition 2.4 also holds in this
situation with the sole caveat that by ‘is an induced map’ we mean ‘is a sum of maps induced
from various proper subgroups of μn’ (rather than only from the trivial subgroup). The analogous
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fact holds also for objects, so we get linear maps

Adn : KG(X)→ KGµn�μn(Xμn)/I

where I is the subgroup of KGµn�μn(Xμn) spanned by all classes of Gμn � μn-equivariant
complexes induced from Gμn � Γ-equivariant complexes, for some proper subgroup Γ of μn.
Furthermore, the functor St preserves perfectness: we have

St : PerfG(X)→ PerfGµn�μn(Xμn)

and thus linear maps
Adn : KG(X)→ KGµn�μn(Xμn)/J

where J is the subgroup of KGµn�μn(Xμn) spanned by all classes of Gμn � μn-equivariant com-
plexes induced from Gμn � Γ-equivariant perfect complexes, for some proper subgroup Γ of μn.
In fact, J is an ideal (by the projection formula), I is a J-stable submodule for the same reason,
Adn is a map of rings, and Adn is a map of Adn-modules.

Remark 4.3 (True Adams operations). Induction commutes with restriction, so we have a ring
map

KG(X) Adn−−→ KGµn�μn(Xμn)/J Δ∗
−−→ KG×μn(X)/J ′ = KG(X)[q, q−1]/Φn(q).

Here J ′ is the subgroup of KG×μn(X) = KG(X)[q, q−1]/(qn − 1) spanned by induced classes. This
equals the ideal generated by the elements

∑d
j=1 q

nj/d for all d > 1 dividing n; and the lowest
common factor of these is Φn(q). By the splitting principle, the image of this map is contained
in

KG(X) ⊂ KG(X)[q, q−1]/Φn(q).

The resulting ring endomorphism of KG(X) is the nth Adams operation. The relevant example
for us is with G = G(O), X = ∗. Fix a maximal torus T of G; then the nth Adams operation is
identified with the ring map

Z[X•(T )]W → Z[X•(T )]W

which sends a W -invariant sum
∑

i χi of characters χi to the W -invariant sum
∑

i χ
n
i .

4.3 Proof of Theorem 4.1
The map in question is constructed as in (3.1), as the composition

(4.1)

where:

(i) I is the ideal of KG(O)µn�μn(Rμn) spanned by all classes induced from KG(O)µn�μn/d(Rμn),
for some d > 1 dividing n.

(ii) I ′ is the ideal of KG∗
(n)

�C∗
((R(n)

(n))
∗) corresponding to I under the descent isomorphism. It is

equal to the ideal spanned by all classes pushed forward from K
C×CG

∗
(n)

�C∗
((C×C R(n)

(n))
∗),

2547

https://doi.org/10.1112/S0010437X21007569 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007569


G. Lonergan

for some non-trivial C
∗-equivariant cover C→ C. Recall that in this situation, the base copy

of C has the action of C
∗ of weight n, so a C

∗-equivariant non-trivial cover C→ C is the
dth-power map for some d > 1 dividing n.

(iii) I ′′ is the image of I ′ under restriction. It is the ideal of KG∗
(n)

�μn((R(n)
(n))

∗) spanned by all
classes pushed forward from

K
C×CG

∗
(n)

�μn((C×C R(n)
(n))

∗)

for some non-trivial C
∗-equivariant cover C→ C. Note that for the degree d equivariant

cover we have K
C×CG

∗
(n)

�μn((C×C R(n)
(n))

∗) = K
G∗

(n)
�μn/d((R(n)

(n))
∗), and pushing forward

along C→ C corresponds to inducing from μn/d-equivariance to μn-equivariance.
(iv) I ′′′ is the image of I ′′ under specialization. Using the second description of I ′′ given above, we

see that this is the ideal ofKG(O)�μn(R) spanned by all classes induced fromKG(O)�μn/d(R)
for some d > 1 dividing n.

Now on the one hand, by the projection formula we see that the composition

KG(O)�μn(R) restriction−−−−−−→ KG(O)�μn/d(R) induction−−−−−−→ KG(O)�μn(R)

coincides with multiplication by the class
∑d

j=1 q
nj/d. On the other hand, it is a consequence

of the ‘cellularity’ of R that the restriction of equivariance KG(O)�μn(R)→ KG(O)�μn/d(R) is
surjective; so the ideal I ′′′ coincides with the ideal generated by the sums

∑d
j=1 q

nj/d, whose
lowest common factor is Φn(q). For the same reason, the restriction

KG(O)�C∗
(R)→ KG(O)�μn(R)

is also surjective, and realizes KG(O)�μn(R) ∼= KG(O)�C∗
(R)/(qn − 1). Therefore we have

produced the map
KA→ KAq/Φn(q) = KAζ .

This map is linear by construction. The proof that it is a map of Adn-algebras, and lands in the
center, is just as for the Borel–Moore homology.

Example 4.4. We return to the situation of the example in § 3.16, Example (iii). We have R(G) =
Z[y, y−1] and, for N = 0, KAq is the Z[y, y−1, q, q−1]-algebra

O(T∨∨)#qO(T∨) := Z[y, y−1, q, q−1]〈x, x−1〉/(yx = qxy).

For N = C−r, r ≥ 0, KAq is given instead by the subalgebra with basis

. . . , x−2, x−1, 1,
( r−1∏
i=0

(1− yr/qi)
)
x,

( 2r−1∏
i=0

(1− yr/qi)
)
x2, . . .

as a left (or right) Z[y, y−1, q, q−1]-module. The map of Theorem 4.1 sends

x �→ xn,
y �→ yn,

which are central when qn = 1, in particular when q = ζ is a primitive nth root of unity. It sends
(1− yr)rx to

(1− ynr)rxn =
( n−1∏
i=0

(1− yr/ζi)r
)
xn =

( nr−1∏
i=0

(1− yr/ζi)
)
xn,

which is indeed an element of the appropriate subalgebra.
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5. The Frobenius twist

In this short section we use the previous considerations to give a geometric construction of the
Frobenius twist functor. First recall the notation of § 3.12: we have an ind-projective flat complex
ind-scheme

Gr(p)

over A
1, which is the moduli space of triples (y, E , f) where y ∈ A

1, E is a principal G-bundle on
the formal neighborhood of the set π−1{y} of pth roots of y, and f is a trivialization of E away
from π−1{y}. There is a pro-smooth algebraic group

G(p)

over A
1, which is the moduli space of pairs (y, g) where y ∈ A

1 and g is a map from the formal
neighborhood on π−1{y} to G, and G(p) acts on Gr(p) by changing the trivialization f . The
group C

∗ acts on Gr(p) by
z.(y, E , f) = (zpy, z∗E , z∗f)

and on G(p) (as a group) by
z.(y, g) = (zpy, z∗g).

Thus we have an action of the pro-smooth algebraic groupoid G(p) � C
∗ over C

∗ on Gr(p). Now
we have an equivalence

Db
G(p)�C∗(Gr(p)|A1−{0},Fp) ∼= Db

G(O)µp�μp
(Grμp ,Fp)

where by the bounded derived category of an ind-scheme we mean simply the 2-colimit of the
bounded derived categories of its closed subschemes. Thus by applying the Steenrod functor StD
we have a functor

St′D : Db
G(O)(Gr,Fp)→ Db

G(p)�C∗(Gr(p)|A1−{0},Fp).

Now note that St′D is exact for the perverse t-structure, up to a homological shift of degree 1.
Thus we consider the shifted functor

F : PervG(O)(Gr,Fp)→ PervG(p)�C∗(Gr(p)|A1−{0},Fp).

We will compose this functor with the IC functor, and so get

IC ◦ F : PervG(O)(Gr,Fp)→ PervG(p)�C∗(Gr(p),Fp).

Now let i : Gr → Gr(p) denote the embedding of the fiber at 0. There is a ‘Thom homomorphism’

Th : i∗[−1]→ i![1],

so called because in the case where i is the section of a smooth fibration, Th is an isomorphism
on the constant sheaf, and the consequence in cohomology is the Thom isomorphism theorem.
But i∗[−1], i![1] send IC sheaves to perverse sheaves, and so we may take the image of Th.

Theorem 5.1. The functor

im(Th) ◦ IC ◦ F : PervG(O)(Gr,Fp)→ PervG(O)�C∗(Gr,Fp)

corresponds under geometric Satake to the Frobenius twist. In particular, it is linear in spite of
the nonlinearity of F .

Proof. Since we are working with perverse sheaves, we are free to work non-equivariantly, and
we will do so for the entire proof; in particular, the functor St′D secretly means the composition
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of usual St′D with the functor which forgets the equivariance. Let us put ourselves in the general
situation of a variety X with a proper map f : X → A

1. We recall some general facts; see [SGA7,
Bĕı87] for detailed discussions.

(i) The Thom homomorphism factors as

i∗[−1]→ ψ → i![1].

Here ψ = ψf is the nearby cycles functor, the map i∗[−1]→ ψ is the adjunction map, and the
map ψ → i![1] comes from the defining map by self-duality of ψ. Recall that ψ is perverse t-exact,
and that it is equipped with a monodromy automorphism T = Tf . Now let F be a perverse sheaf
on X|A1−{0}. Then i∗IC(F)[−1] and i!IC(F)[1] are also perverse, and indeed we have

i∗IC(F)[−1] ∼= ψ(F)T ,

i!IC(F)[1] ∼= ψ(F)T ,

and the Thom homomorphism is simply the natural map.
(ii) Let π : A

1 → A
1 be the pth power map. Then we consider π∗X := A

1 ×A1 X as mapping
to the copy of A

1 which is the source of π, via the morphism π∗f . Then we have a canonical
isomorphism

(ψπ∗f ◦ π∗, Tπ∗f ) ∼= (ψf , T
p
f ).

The same is true with p replaced by an arbitrary integer.
Now let us write S for the geometric Satake equivalence. Then it suffices to identify ψ ◦ St′D ◦

S(V ) with S(V ⊗p), and T with its usual cyclic automorphism of order p. The identification of
ψ ◦ St′D ◦ S(V ) with S(V ⊗p) is essentially by definition after applying point (ii) above. Finally, let
H denote the global (non-equivariant) cohomology functor PervG(O)(Gr,Fp)→ Vect. By the geo-
metric Satake equivalence, it suffices to show that the action of T on H(ψ ◦ St′D ◦ S(V )) ∼= V ⊗p

is by the usual cyclic automorphism of order p. Since nearby cycles (and associated monodromy)
commute with proper pushforward, it suffices to show it for

ψ ◦ f∗ ◦ St′D ◦ S(V )

where f : Gr(p)|A1−{0} → A
1 − {0} is the structure map. But f∗ commutes with St′D, so we need

to show it for
ψ ◦ St′D ◦ f∗ ◦ S(V ) = ψ ◦ St′D ◦ V.

The result now follows from the definition of St′D and the (tautological) fact that for a local
system L on C

∗ with fiber (say, at 1) V and monodromy T , we have

(ψidL, Tid) ∼= (V, T ).

The proof is complete. �
Remark 5.2. In fact, it is possible to show that the composition of St′D with

ψ′ : Db
G(p)�C∗(Gr(p)|A1−{0},Fp)→ Db

G(p)�μp
(Gr(p)|A1−{0},Fp)

ψ−→ Db
G(O)�μp

(Gr,Fp)

may be equipped with a central structure for the convolution monoidal structures. That is, we
can give ψ′ ◦ St′D a monoidal structure, and can give an isomorphism

(ψ′ ◦ St′D) ∗ id ∼= (id ∗ (ψ′ ◦ St′D)) ◦ (twist)

as functors
Db
G(O)(Gr,Fp) �Db

G(O)�μp
(Gr,Fp)→ Db

G(O)�μp
(Gr,Fp)
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which is compatible with this monoidal structure. It will also be compatible with the commuta-
tivity constraint for the convolution monoidal structure on Db

G(O)(Gr,Fp) constructed in [MV07]
(using similar considerations).

This functor has the advantage of making sense on the entire derived category, not just for
perverse sheaves. However, it has the disadvantages of being nonlinear and involving a loss of
equivariance from C

∗ to μp. The former disadvantage can be forcibly removed by inverting �; we
are left with a central monoidal triangulated functor

ψ′ ◦ St′D[�−1] : Db
G(O)(Gr,Fp)→ Db

G(O)�μp
(Gr,Fp)[�−1]

which is compatible with the Artin–Schreier map on the level of equivariant parameters. It also
corresponds to the Frobenius twist functor for perverse sheaves, in the sense that when applied
to a perverse sheaf, it yields the image of our functor im(Th) ◦ IC ◦ F under the operation of
demoting equivariance from C

∗ to μp and inverting �. Indeed, in our analysis of im(Th) ◦ IC ◦ F
we saw that it differs from ψ′ ◦ St′D only by μp-induced objects, which are killed off by inverting �.

In Conjecture 1.6, we attempt to describe this functor in terms of representations of the
Langlands dual group and the p-center of its universal enveloping algebra. Our conjecture is
predicated on a characteristic p version of the derived geometric Satake theorem of [BF08],
which at the time of writing is unproven. Therefore we do not prove it here. Additionally, we
foresee a complication arising from the loss of equivariance from C

∗ to μp. We hope very much
that it will prove possible to remove this, but do not yet know how to go about it.
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MA, 1997).
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