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We consider the flow of a viscous liquid along an unknown topography. A new
strategy is presented to reconstruct the topography and the free surface shape from
one component of the free surface velocity only. In contrast to the classical approach
in inverse problems based on optimization theory we derive an ordinary differential
equation which can be solved directly to obtain the inverse solution. This is achieved
by averaging the Navier–Stokes equation and coupling the function parameterizing
the flow domain with the free surface velocity. Even though we consider nonlinear
systems including inertia and surface tension, the inverse problem can be solved
analytically with a Fourier series approach. We test our method on a variety
of benchmark problems and show that the analytical solution can be applied to
reconstruct the flow domain from noisy input data. It is also demonstrated that the
asymptotic approach agrees very well with numerical results of the Navier–Stokes
equation. The results are finally confirmed with an experimental study where we
measure the free surface velocity for the film flow over a trench and compare the
reconstructed topography with the measured one.
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1. Introduction
The gravity-driven flow of a viscous liquid along curved or uneven substrates occurs

in many industrial and environmental systems. In industry, these kinds of flows can
be found in coating applications (Kistler & Schweizer 1997; Weinstein & Ruschak
2004), heat and mass exchangers (Webb 1994; Kanaris & Mouza 2006), and many
others. For such small-scale flows, capillary and wetting phenomena tend to prevail
and we refer to the review of Craster & Matar (2009) for an exhaustive treatment
of the underpinning mathematical models. In nature, gravity-driven film flows occur
at a larger scale and typically capillary and wetting phenomena are of secondary
importance. These flows are encountered in debris, glacier and lava flows, and
in avalanches (Hutter, Svendsen & Rickenmann 1994), to name a few examples.
Irrespective of the length scale, for Newtonian liquids, small Reynolds numbers
and flat inclines the film flow is steady and establishes a parabolic velocity profile
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Flow domain identification from free surface velocity in thin inertial films 339

(Spurk & Aksel 2008). If a critical Reynolds number is exceeded the free surface
becomes unstable with respect to a long-wave instability. The stability and the
transition to nonlinear, wavy regimes of the flow over a flat incline have been studied
extensively over the last decades, for a review we refer to Chang (1994). If the
incline is not flat but corrugated, undulated or modified with a topographic structure,
the steady configuration already shows a rich variety of phenomena. These effects
include the formation of hydraulic jumps (Wierschem & Aksel 2004), resonant states
(Wierschem et al. 2008; Heining et al. 2009) and the formation and suppression
of eddies (Wierschem et al. 2010). Furthermore, experimental results suggest that
corrugated topographies can stabilize film flows (Vlachogiannis & Bontozoglou 2002;
Wierschem, Lepski & Aksel 2005). This fact was confirmed numerically (Dávalos-
Orozco 2007) and recently it has been shown that surface tension can lead to a
destabilization of the system (D’Alessio, Pascal & Jasmine 2009; Häcker & Uecker
2009; Heining & Aksel 2010).

The numerous studies of the direct problem reveal that a topography can modify
the free surface shape and the flow structure in film flows. A systematic control
of the flow structure and the free surface shape leads to the corresponding inverse
problem. Instead of prescribing a fixed topography, another quantity for example
the free surface shape or the free surface velocity is prescribed but the topography
and the flow field are unknown. First results on the inverse problem for film flows
have been published by Sellier (2008), Sellier & Panda (2010) and Heining, Sellier
& Aksel (2012) who derived the inverse solution in the lubrication approximation
for creeping thin films. They studied the case where a target free-surface shape is
achieved by modifying the topography shape. Instead of solving the inverse problem
in the classical partial differential equation (PDE)-constrained optimization framework
the lubrication approximation is rearranged, leading to a direct solution. The same
approach was generalized by Heining & Aksel (2009) who considered inertial effects
for the inverse problem by studying a weighted-residual integral boundary-layer
model (Oron & Heining 2008). They also found that a steady wavy free surface
is more stable than the corresponding flat one. Gessese et al. (2011) and Gessese
& Sellier (2012) applied a similar method to reconstruct the river bed topography
from free surface data within the shallow-water framework. Furthermore, Heining
(2011) proposed an iterative numerical scheme to solve the inverse problem for the
full Navier–Stokes equation and a given free surface shape. We note that similar
inverse problems were solved by Lonyangapuo et al. (1999, 2001) but for inviscid and
irrotational flows.

The inverse problem in film flow has many applications in experimental systems.
The first is to reconstruct the flow field and the topography from the knowledge of free
surface data only. Applications can be found in coating systems, in sedimentation
flows with opaque liquids where the flow field and the underlying topographic
structures are unknown or in geophysical flows for example in glaciology where
the unknown basal glacier velocity is reconstructed from known data on the surface of
the glacier (Maxwell et al. 2008).

Most of the previous publications on the inverse problem in film flow have in
common that the flow field and the topography is reconstructed from the free surface
shape only. In some applications, however, it is more convenient to prescribe or
to measure the free surface velocity. Free surface velocity measurements can be
implemented with an optical particle tracking which is less elaborate compared with
measurements of the internal flow field. In some cases, for example for opaque liquids
it is even impossible to determine the internal flow field by optical measurements.
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FIGURE 1. Viscous film flowing down an incline with inclination angle α. The substrate
topography is b(x), the free surface position h(x) and the film thickness f (x), respectively. The
coordinate system is denoted by (x, y). The driving force is gravity g.

The same applies for glacier flows where the bedrock can only be inferred by
expensive radar measurements. The task is to reconstruct the flow domain and the
flow field from the knowledge of the free surface velocity only. In the following, we
derive a method which enables us to determine the flow domain including the free
surface shape and bottom topography from the given free surface velocity data in thin
films including inertia.

The outline of the article is as follows. First, we derive the governing equations for
the direct and the inverse problem. While the direct problem is solved numerically,
we find an analytical solution for the inverse problem. In § 3 the inverse solution
is studied in detail. We use the data of the direct problem to validate the inverse
solution procedure and to determine its sensitivity with respect to noisy input data.
Furthermore, the inverse solution is validated with data from the Navier–Stokes
equation. In addition, we perform a series of experiments to show how to reconstruct
the topography in applications. Finally, in § 4 we summarize our results and discuss
the main conclusions.

2. Mathematical formulation
2.1. Governing equations

The steady gravity-driven motion of a fluid with density ρ and kinematic viscosity ν is
governed by the Navier–Stokes equation and the continuity equation

(u ·∇)u=− 1
ρ
∇p+ g+ ν∇2u, ∇ ·u= 0, (2.1)

where u = (u, v) is the velocity vector, p the pressure, g = g(sinα,−cosα) the gravity
vector, g the gravitational constant and α the inclination angle. An overview of the
system is depicted in figure 1. At the solid wall y= b the fluid satisfies the no-slip and
the no-penetration boundary condition u = 0. At the free surface, located at y = h, we
have the kinematic boundary condition

v = uhx, (2.2)

where the subscript denotes differentiation with respect to the corresponding variable.
The dynamic boundary condition at the free surface reads in tensor notation

n ·T =−σκn, (2.3)
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Flow domain identification from free surface velocity in thin inertial films 341

where n, T , κ and σ are the unit outer normal vector of the free surface, the
stress tensor, the curvature of the free surface and surface tension, respectively. The
components of (2.3) read, after some algebraic manipulations and neglecting the
viscosity of the overlying air,

2hx(vy − ux)+ (1− h2
x)(uy + vx)= 0. (2.4)

η[hx(uy + vx)− 2vy] + p− p0 + σ hxx

(1+ h2
x)

3/2 = 0, (2.5)

where p0 denotes the pressure at the free surface and η the dynamic viscosity.
Since the flow is unperturbed far away from the topographical feature we can

assume that the flow is given there by the Nusselt velocity profile with

uN(y)= gd2 sinα
2ν

[
1−

(
1− y

d

)2]
, (2.6)

where d is the constant Nusselt film thickness which can be adjusted by changing the
flow rate q in the system. In (2.6) the (x, y) coordinate system is located at the flat
substrate. Applying the integral mass conservation to (2.6) yields a relation between
the flow rate and the Nusselt film thickness:

q=
∫ d

0
uN dy= d3g sinα

3ν
. (2.7)

In the following, we use the quantities of the Nusselt flow as a reference and scale
the velocities and lengths accordingly. We take the mean velocity ū = q/d of the
corresponding Nusselt flow as the characteristic scale of the velocity in the x-direction.
The Nusselt film thickness d serves as the characteristic length scale in the y-direction
while the x-direction is scaled with the channel length L. Summarizing, the scaling
reads

b= db∗, f = df ∗, h= dh∗ (2.8a)
x = Lx∗, y= dy∗, u= ūu∗ (2.8b)

v = εūv∗, p= ρū2p∗ (2.8c)

where variables with stars indicate dimensionless quantities. We furthermore
introduced the dimensionless film thickness parameter ε = d/L characterizing the ratio
of the vertical length scale compared with the horizontal length scale. It has to be
noted that ε could also be interpreted as a dimensionless slope, see Aksel (2000).
Substituting the scaling (2.8) into the field equations and the boundary conditions
and omitting the superscript, we obtain for the two components of the Navier–Stokes
equation and the continuity equation:

εRe(uux + vuy)=−εRepx + 3+ ε2uxx + uyy, (2.9a)

ε2Re(uvx + vvy)=−Repy − 3 cotα + ε3vxx + εvyy, (2.9b)

ux + vy = 0, (2.9c)

where we introduced the Reynolds number Re = ūd/ν. At the substrate y = b the no-
slip and no-penetration condition yield u= v = 0. The kinematic boundary condition at
y= h is given by v = uhx and the two components of the dynamic boundary condition
read

2ε2hx(vy − ux)+ (1− ε2h2
x)(uy + ε2vx)= 0, (2.10)
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Rep− Rep0 + εhx(uy + ε2vx)− 2εvy + 3Bo−1 hxx

(1+ ε2h2
x)

3/2 = 0, (2.11)

where we defined the inverse Bond number Bo−1 = σ/(L2ρg sinα), a dimensionless
measure for surface tension relative to gravity.

2.2. Thin-film approximation
The previous scaling and modelling is valid for general films. In the following, we
simplify the analysis by considering films where the length scale in the y-direction is
small compared with that in the x-direction which is equivalent to the assumption that
the dimensionless film thickness parameter ε is small. In order to take into account
inertia, surface tension and the hydrostatic pressure, we assume that εRe = O(1),
εBo−1 = O(1), ε cotα = O(1), and truncate terms of the order ε2 and higher. This
allows us to study inertial regimes with Reynolds numbers up to Re= O(100) as long
as the flow is steady and stable.

After applying the thin film approximation the field equations read

εRe(uux + vuy)=−εRepx + 3+ uyy, (2.12a)

0=−Repy − 3 cotα. (2.12b)

The continuity equation, the no-slip and no-penetration condition at the wall, and
the kinematic boundary condition remain unchanged. For the two components of the
dynamic boundary condition at the free surface y= h, we obtain

uy = 0, (2.13)

Rep− Rep0 + 3Bo−1hxx = 0. (2.14)

After integrating the second equation in (2.12) and substituting (2.14) we can solve for
the pressure

Rep= 3 cotα(h− y)+ Rep0 − 3Bo−1hxx. (2.15)

Inserting this expression into the Navier–Stokes equation in the x-direction, we obtain

εRe(uux + vuy)=−3ε cotαhx + 3εBo−1hxxx + 3+ uyy. (2.16)

The dynamic boundary condition (2.14) and pressure have been eliminated.
Integrating the continuity equation from the topography y = b to the free surface

y = h and substituting the kinematic boundary condition yields an integral expression
of the continuity equation:

qx = 0, (2.17)

where we defined the flow rate in a cross-section in the x-direction

q=
∫ h

b
u dy. (2.18)

To obtain an integral expression for the Navier–Stokes equation we integrate (2.16)
from the substrate to the free surface which yields

εRe

(
d
dx

∫ h

b
u2 dy

)
= (−3ε cotαhx + 3εBo−1hxxx)f + 3f − uy|y=b, (2.19)

where we made use of the continuity equation to eliminate the velocity component v
and the dynamic boundary conditions (2.13).
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The averaged Navier–Stokes equation (2.19) and the integral continuity
equation (2.17) depend on the velocity u, the film thickness f and the free surface
position h. We note that the film thickness is related to the free surface position by
f = h− b. In order to close the system a specific velocity profile has to be imposed in
the following.

2.3. Integral boundary-layer model for the direct problem
In the case of the steady, unidirectional flow over a flat incline the parabolic velocity
profile is an exact analytical solution of the Navier–Stokes equation. For the two-
dimensional flow along a wavy wall, experiments by Wierschem, Scholle & Aksel
(2002) show that a parabolic velocity profile is an accurate approximation if the
bottom steepness is moderate. From the theoretical point of view it can be shown that
for the flow along a moderate topography the leading-order solution is governed by
a parabolic velocity profile (see Dávalos-Orozco 2007). Accordingly, we assume that
the velocity profile u(x, y) is coupled with the free surface position by a self-similar
parabolic profile of the form

u= 3
f

[
y− b

f
− 1

2

(
y− b

f

)2
]
. (2.20)

The velocity profile (2.20) fulfils: (i) the no-slip condition at the substrate; and (ii) the
remaining component of the dynamic boundary condition (2.13). Furthermore, we find
that (2.20) conserves the mass which can easily be confirmed by (2.17). Substituting
(2.20) into the integral momentum balance yields (see also Trifonov 1998)

εRe
6
5

d
dx

(
1
f

)
= [−3ε cotα (b+ f )x+3εBo−1 (b+ f )xxx

]
f + 3f − 3

f 2
, (2.21)

which is a nonlinear ordinary differential equation for the film thickness f (x). For a
given topography function b(x), equation (2.21) can be solved numerically, assuming
periodic boundary conditions.

2.4. Integral boundary-layer model for the inverse problem
The velocity profile for the direct problem (2.20) is coupled with the film thickness
only. In the following we reparameterize u(x, y) and write the velocity profile as a
function of the film thickness and the free surface velocity.

We assume that the velocity fulfils

u= 2uS

[
y− b

f
− 1

2

(
y− b

f

)2
]
, (2.22)

where uS(x) is the free surface velocity. It has to be noted that the v-component can
be obtained by integrating the continuity equation but is not needed for the further
calculations. The form of (2.22) is chosen such that: (i) the no-slip condition at
the substrate; and (ii) the remaining component of the dynamic boundary condition
(2.13) are fulfilled. Choosing a parabolic velocity profile is furthermore motivated
by three observations: (i) the flow field far away from the topography is parabolic;
(ii) the leading-order velocity profile in the lubrication limit is parabolic. Häcker &
Uecker (2009) have shown that this is also valid in the presence of inertia as long
as the topography modulation is moderate; (iii) for the same problem Wierschem
et al. (2005) demonstrated by a series of experiments that the velocity profile is
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locally parabolic. Also, Veremieiev et al. (2010) performed an exhaustive comparative
study of the error induced in a depth-averaged formulation based on a parabolic
velocity profile, analogous to that used here, relative to full Navier–Stokes solutions
for thin film flows over steps up or down. As expected, this error is largest for larger
Reynolds numbers and higher topographies (relative to the undisturbed film thickness).
The maximum reported error between the depth-averaged formulation and the full
Navier–Stokes solution is around 5.5 % for a step-up and 12 % for a step-down for a
Reynolds number of the order of 30 and a step height as high as the asymptotic film
thickness. On that basis, we hence expect reasonable results, as long as the depth and
the curvature of the topography are moderate.

Substituting (2.22) into (2.19) yields

εRe
d
dx

(
8
15

u2
Sf

)
= (−3ε cotαhx + 3εBo−1hxxx

)
f + 3f − 2uS

f
, (2.23)

which is the integral momentum balance written in terms of uS. Substituting (2.22) into
(2.18) we find that q = (2/3)uSf . After integrating the mass balance (2.17) and setting
the integration constant to one we can relate the film thickness with the free surface
velocity

f = 3
2uS

. (2.24)

We note that a similar expression was found by Aksel (2000) for the creeping film
flow down an inclined plane with an edge. The dependence uS ∼ 1/f is not obvious
at first glance since the dimensional velocity field (2.6) yields the relation uS ∼ d3.
However, the mass conservation proposes a constant volume flux which has the
consequence that a smaller film thickness implies a larger free surface velocity, see
(2.24).

We can now eliminate the film thickness from (2.23) and obtain

−3ε cotαhx + 3εBo−1hxxx = 2
3

[
2
5
εRe

d
dx
(u2

S)−
9
2
+ 4u3

S

3

]
, (2.25)

which is an inhomogeneous linear ordinary differential equation with constant
coefficients for the free surface shape h with the inhomogeneous forcing coming
from the free surface velocity. Equation (2.25) is complemented by periodic boundary
conditions. Equation (2.21) and (2.25) will be referred to as integral boundary-layer
model (IBL) for the direct and the inverse problem, respectively.

Solving (2.25) enables us to determine the position of the free surface with the
knowledge of the free surface velocity uS. Once the free surface position is solved the
topography shape can be determined by b = h − f where the film thickness f is given
by (2.24). It is worth mentioning that only the component of the free surface velocity
in the mean plane of motion is necessary to reconstruct the flow domain. Furthermore,
we note that for applications with noisy input data (2.25) can be integrated once
to eliminate the derivative of u2

S. Compared with previous approaches (Sellier 2008;
Heining & Aksel 2009; Sellier & Panda 2010; Heining 2011), the present method
can be formulated without higher derivatives of the input data. This is an immense
advantage since the input data contains possible noise which is amplified by taking the
derivative up to the third-order (see Heining & Aksel 2009).

In the following, we solve (2.25) by a Fourier series approach. The right-hand side
of (2.25) is represented as a Fourier series

∑N
k=−Nrkeikx where the coefficients rk
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are determined with a standard fast Fourier routine. We also represent the free
surface position as a Fourier series h =∑N

k=−Nhkeikx with unknown coefficients hk.
Equation (2.25) then reduces to a set of 2N + 1 algebraic equations of the form
rk = [−3ε cotα(ik)+ 3εBo−1 (ik)3]hk, k =−N, . . . ,N which has the simple solution

hk = rk [−3ε cotαik + 3εBo−1 (ik)3]−1
for k ∈ {−N, . . . ,N}/{0}. (2.26)

The zeroth Fourier coefficient h0 corresponds to a constant offset and is yet
undetermined but can be chosen arbitrarily. We remark that the solution (2.26)
depends on ε, cotα, Bo−1; the influence of inertia is implicitly included in the Fourier
coefficients rk.

3. Solution of the inverse problem
3.1. Comparison of the inverse solution to the direct solution

To test our method we solve the inverse problem for free surface data which is already
known from the direct problem. We obtain the free surface velocity profiles by first
solving the direct problem (2.21) for a given topography and subsequently solving the
inverse problem for the free surface velocity determined by evaluating (2.20) at y= h.

As a first test case we consider the flow over a trench topography given by the
non-dimensional expression

b= ξ
2

{
tanh

(
x− x2

δ

)
− tanh

(
x− x1

δ

)}
(3.1)

where δ (typical value 0.001) is a measure for the smoothness of the edges, x1, x2

the coordinates of the edges of the trench and ξ = a/d its non-dimensional height.
We choose the geometry parameters L = 0.1 m, a = 5 × 10−3 m, trench width 0.01 m,
inclination angle α = 8◦ and fluid parameters ν = 1.158×10−5 m2 s−1, ρ = 924 kg m−3

and σ = 18.9× 10−3 N m−1. We note that the fluid corresponds to a silicone oil which
was also used in the experimental study by Wierschem et al. (2010). For Re = 10
this yields the dimensionless parameters ε = 0.0143, cotα = 7.1154, Bo−1 = 0.001499
and ξ = 3.4876. The trench has a dimensionless width of 0.1. For this configuration
we first solve the direct problem by solving the integral boundary-layer model (2.21)
numerically with a finite-difference scheme and periodic boundary conditions. After
solving for the film thickness we can determine the velocity field which is coupled
with the film thickness, according to (2.20). It is then possible to compute the free
surface velocity by uS = 3/(2f ). From this expression we note that the system has
a singularity if the film thickness tends to zero which is a consequence of mass
conservation (Aksel 2000). However, this case is excluded since the film thickness
is assumed to have non-negative values (f > 0) everywhere, assuming fully wetting
conditions.

The numerical results of the direct problem are shown in figure 2. We find that the
free surface shows a ridge before entering in the trough. This was already pointed out
in previous theoretical (Kalliadasis, Bielarz & Homsy 2000) and experimental studies
(Decré & Baret 2004). In addition, the free surface velocity increases considerably
at the inflow into the trough, compare also with Aksel (2000). In what follows we
take the free surface velocity data of the direct problem, see figure 2, as input data
for the inverse problem. In other words we determine the topography and the free
surface shape for the given free surface velocity. The solution of the direct problem is
a benchmark for the inverse problem which allows us to test the method. In the ideal
case both solutions should exactly coincide if the accuracy is sufficient.
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FIGURE 2. (Colour online) Numerical solution of the direct problem (2.21). The parameters
are given in the text.
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FIGURE 3. (Colour online) (a) The reconstruction of the free surface profile and the
topography shape for the free surface velocity given in figure 2. (b) The L2-norm of the
error for increasing number of Fourier modes.

We compute the Fourier decomposition of the right-hand side of (2.25) with the
Matlab fft routine. Subsequently, the series solution (2.26) is evaluated for different
values of N. In figure 3(a) we show the inverse solution for N = 10 and N = 50.
We find that even though the free surface velocity has steep gradients which could
produce oscillations in a Fourier analysis, the original topography and free surface
shape is already predicted accurately for N = 10. For N = 50 the direct solution and
the reconstructed solution show a perfect agreement with no visible deviation. To
visualize the influence of the number of Fourier modes on the reconstruction we plot
in figure 3(b) the L2-norm of the error of the free surface shape and the topography for
increasing N. As expected the error decreases and takes for example the value 0.0039
for N = 50.

Finally, we compare the results of the present analysis which includes the
influence of inertia to previous studies in the low-Reynolds-number limit based on
the lubrication approximation. For the following example we fix the dimensionless
parameters δ = 0.01, Bo−1 = 0.001, cotα = 3, ξ = 0.2 and change the Reynolds
number from Re = 5 to Re = 20 to focus on the influence of inertia. The results
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FIGURE 4. (Colour online) (a,b) Comparison of the lubrication approximation and the
present approach for Re = 5 and Re = 20. The solid lines represent the exact topography
and free surface shape, circles and diamonds the inverse solution with the present analytical
approach and dashed and dashed dotted lines show the inverse solution based on the
lubrication approximation. For the sake of clarity we only show data close to the trench.

are shown in figure 4 where we compare the results of the lubrication approximation
which is valid for Re = O(1) with the present approach with the validity up to
δRe = O(1). As can be seen in figure 4(a) the results agree well for Re = 5. For the
example in figure 4(b) the lubrication approximation is not valid and yields results
which are not useable compared to the results of the analytical solution including the
influence of inertia.

3.2. Sensitivity with respect to noisy input data
In real systems, however, for example in applications where the free surface velocity
is measured experimentally, the input data for the inverse problem is not smooth but
contains measurement inaccuracies. We test such a case by superimposing artificial
noise to the free surface velocity in figure 2. Therefore, we define the new free
surface velocity ũs = us + ε̃µ(x) where ε̃ is the magnitude of the disturbance and µ(x)
is a random variable distributed uniformly between −0.5 and 0.5 which leads to a
maximum deviation between uS and ũs of max(ũs/uS) = 1 + 0.5ε̃/min(uS). Figure 5
shows two examples for ε̃ = 0.1 and ε̃ = 0.5 with maximum deviation between uS and
ũs of 14.4 and 72.2 %.

We find that in both cases, figure 5(a,b), the free surface shape can be reconstructed
with more success than the topography shape. The reason for the good agreement lies
in the Fourier approach. Since the Fourier series is truncated at a finite wavenumber
we simultaneously truncate higher frequencies which is equivalent to a filtering of
the noisy input signal. The asymptotic approach automatically leads to a smoothing
of the solution. The inverse solution is hence robust with respect to high-frequency
disturbances of the input data. This is a major benefit since many inverse problems are
ill-posed in the sense that the solution does not depend continuously on the input data
with the consequence that small changes in the input data create significant changes
in the solution (Engl, Hanke & Neubauer 2000). In many cases this requires explicit
regularization techniques.

3.3. Reconstruction of the flow domain from data obtained by the Navier–Stokes equation
The previous results present the reconstruction of the flow geometry from free surface
data achieved by the integral boundary-layer model. Now, we verify our approach by
comparing the results to numerical calculations of the full Navier–Stokes equation.
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FIGURE 5. (Colour online) Reconstruction of the free surface profile and the topography
shape for the disturbed free surface velocity ũs = us + ε̃µ(x) for N = 60: (a) ε̃ = 0.1;
(b) ε̃ = 0.5.

In the following, the free surface velocity uS comes from numerical results of the
Navier–Stokes equation throughout the whole section. The data for the direct problem
is taken from the literature and the study is completed with our own numerical
computations. To begin with, we consider the film flow of a viscous liquid along
a wavy incline (Wierschem et al. 2010). Wierschem et al. (2010) investigated the
corresponding direct problem. We now take that free surface velocity calculated by a
finite element analysis of the Navier–Stokes equation to determine the corresponding
free surface and topography shape by the present asymptotic solution of the inverse
problem. The solution is shown in figure 6.

It is found that the reconstructed free surface shape is in good agreement with the
original free surface data from the Navier–Stokes equation. The reconstructed bottom
shows a deviation in the form of a phase shift with respect to the original data;
however, the qualitative agreement is still acceptable.

The results in figure 6 suggest that the analytical reconstruction based on the free
surface velocity from the Navier–Stokes equation is possible for smoothly varying
topographies. In the following we pick up the examples from the beginning and study
again a trench topography. There are several publications considering the flow over
a trench experimentally (e.g. Decré & Baret 2004) and numerically (e.g. Kalliadasis
et al. 2000). However, none of these publications study the free surface velocity
which is necessary to reconstruct the topography with the present method. As a
way out, we now solve the Navier–Stokes equation numerically and determine the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

14
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.14


Flow domain identification from free surface velocity in thin inertial films 349

Reconstructed free surface

Original free surface

Reconstructed topography

Original topography

Free surface velocity

0

1

2

3

0.4 0.6 0.80.2
x

0

y

–1

4

us

0

1

2

3

–1

4

1.0

FIGURE 6. (Colour online) Solution of the inverse problem for the data in Wierschem
et al. (2010). The dimensionless parameters are Re = 5, cotα = 7.1154, Bo−1 = 0.15 and
ε = 0.1138. The dimensionless amplitude of the topography is 0.8788. The free surface
velocity is shifted upwards by two for the sake of clarity.

free surface velocity. We consider water as a working liquid with kinematic viscosity
ν = 1×10−6m2 s−1, density ρ = 1000 kg m−3 and surface tension σ = 72×10−3 N m−1.
The inclination angle is chosen as α = 5.05◦, the trench width is 6 mm and the length
of the domain is L = 12 mm. The Reynolds number is set to Re = 10 which yields
a Nusselt film thickness d = 0.326 mm. The depth of the trench is set to 0.326 mm.
This leads to the following dimensionless parameters: Bo−1 = 0.5864, cotα = 11.3163,
ε = 0.0272 and ξ = 1.

We solve the Navier–Stokes equation numerically with the VOF method
implemented in the OpenFOAM package. Details can be found in Pak & Hu (2011)
and the references therein. The results of the direct problem are shown in figure 7(a).
We observe that the free surface is smoothly undulated and the flow field shows
a separation behind the step down. It has to be noted that recirculation cannot be
captured by the integral boundary-layer model because the specific choice of the
velocity profile (see (2.20) and (2.22)) does not take flow reversal into account. For
the reconstruction of the flow domain in figure 7(a) it is necessary to determine the
free surface velocity. The results are given in figure 7(b), where we compare the free
surface velocity of the numerical results of the Navier–Stokes equation (VOF) with
the numerical results of the direct integral boundary-layer equation (2.21). Except for
the steep gradients both results show a good qualitative agreement. It is intuitively
clear that the quality of the inverse reconstruction depends on the agreement of
the direct VOF and the direct IBL solution. The better the direct IBL solution
approximates the VOF solution the better the flow geometry is reconstructed in the
inverse problem. From the shapes of the free surface velocity obtained by the VOF
and the IBL in figure 7(b) we conclude that the reconstruction might be inaccurate
at the sides of the topography. Figure 7(c) shows the original data of the VOF
method together with the analytical reconstruction with N = 15 modes. It is found
that the shape of the reconstructed free surface agrees well with the original one;
increasing the number of modes does not yield an improvement. The topography is
reconstructed at the flat parts but shows deviations at the step-down and the step
up. The reconstructed topography is much smoother than the rectangular original.
Nevertheless, the reconstruction predicts well the depth of the trench even though the
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FIGURE 7. (Colour online) (a) The solution of the direct problem. The solid lines indicate
the free surface, the streamlines and the topography. (b) The free surface velocities from the
VOF method and from the IBL-equation. (c) The solution of the direct problem (solid lines),
the reconstructed free surface (line with circles) and the reconstructed topography (line with
boxes). The inverse solution is obtained for N = 15.

flow field shows a recirculation which is strictly speaking beyond the applicability of
the IBL model. Even though our theory does not account for flow reversal and the
parameters in this example are out of the domain of validity we find a reasonable
agreement in the free surface shape.

In figure 7 the depth of the trench has the same magnitude as the Nusselt film
thickness. In the following, we decrease the depth of the trench and study the
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FIGURE 8. (Colour online) Reconstruction of the topography and the free surface shape for
trenches with depth d/2 (a) and d/4 (b), the other dimensionless parameters are identical to
figure 7. The inverse solution is obtained for N = 15. Lines indicate the streamlines of the
VOF solution while the inverse free surface and topography is labelled with dots and boxes,
respectively.

behaviour of the inverse solution while the other parameters are kept constant. In
figure 8(a) the trench has a depth of d/2 and only a very small flow separation
can be observed after the step down. As in the previous example the free surface is
reconstructed successfully, while the reconstructed topography matches the flat parts
but shows some deviations near the sharp edges. Similar results are obtained for
the reconstruction of the flow over a trench with height d/4, see figure 8(b). The
inverse solution recovers again the free surface shape but smoothes the edges of
the topography. We remark that increasing the number of modes does not improve
the solution significantly. Summarizing, we can derive an a posteriori estimate of
the quality of the reconstruction. Since the parabolic velocity profile is only valid
for smooth topographies with ξ � 1 we can estimate whether the reconstruction
is reasonable. After solving the inverse problem, an inverse steepness parameter is
determined by taking ξi = (amplitude of topography)/(film thickness). The smaller the
parameter is, the better the reconstruction. This can also be observed in figures 7 and 8
where the inverse steepness parameter is gradually reduced from ξi ≈ 1 to ξi ≈ 0.25. In
all cases, the free surface shape is well reconstructed which is an important new result
in itself.

3.4. Reconstruction of experimental data
To verify the applicability of our proposed method we carry out experiments and
compare the reconstruction of the topography with the actual measured geometry.
The experiments have been carried out in a channel of 170 mm width which is
inclined by an angle of α = 9.7 ± 0.05◦ with respect to the horizontal. The underlying
topography is of the trench type used in §§ 3.2 and 3.3, see also (3.1), with a depth
of a = 0.96 ± 0.01 mm and a length of L = 30.04 ± 0.01 mm. An eccentric pump
type AFJ 15.2 B from Jöhstadt provides an adjustable volume flux q from a large
liquid reservoir into a smaller inflow tank on top of the channel. Driven by gravity the
liquid flows from the small inflow tank down the channel through the test section as
illustrated in figure 9(a).

The thickness of the corresponding Nusselt film is measured with an accuracy of
5 µm with a micrometre screw far downstream of the trench feature in a flat region
of the channel. The liquid properties density, kinematic viscosity and surface tension
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FIGURE 9. (Colour online) (a) Experimental setup. (b) The free surface velocity distribution
us(x, y) over a 80 mm broad patch. The flow direction is from left to right.

d (mm) T (◦ C) ρ (g cm−3) η (mPa s) σ (mN m−1)

1.480 23.7 0.9512 50.97 19.80
1.745 23.7 0.9512 50.97 19.80
2.025 23.9 0.9511 53.36 19.78

TABLE 1. Physical properties of the silicone oil and Nusselt film thickness of the three
experimental runs.

of the silicone oil we used as a test liquid are given in table 1. Furthermore, table 1
shows the Nusselt film thickness of the three experiments. During each experimental
run the temperature of the liquid was constant within 0.1 ◦C.

The free surface velocity of the liquid is measured in a patch of approximately
100 mm in downstream (x-) direction and approximately 80 mm in crosswise (z-)
direction, including the topography feature, in the middle of the channel, using a
monochrome CCD high-speed camera which is installed above the channel. As tracer
particles we use an active carbon powder which is strewed on the free surface of the
liquid far upstream of the recorded patch. Owing to surface tension the vast majority
of these particles remain at the free surface of the liquid and float passively with
the liquid without sinking into the bulk fluid. Images of the particles are captured at
125 or 250 fps at the camera’s full resolution of 1280 × 1024 pixels. The projection
of the velocity field into the (x, z)-plane can be computed from these images using
a particle tracking algorithm based on polyparticletracker (Rogers et al. 2007). After
the evaluation of at least 1000 frames per experimental run we could interpolate the
velocity field. A typical result of the interpolated free surface velocity is plotted in
figure 9(b). We also refer to Heining, Pollak & Aksel (2012) who applied a similar
experimental technique to measure the two-dimensional velocity field. In the present
case, it is not the whole two-dimensional velocity field us(x, z) that is required but
only the component in the downstream direction. Since the particle tracking yields the
velocity field in many cross-sections we can use the averaging to enhance the velocity
field’s quality and to remove noise.
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FIGURE 10. (Colour online) (a) The experimental free surface velocity for three different
flow rates. In (b) we take this velocity as input to reconstruct the topography and the
corresponding free surface shape. The inverse topography for all three film thicknesses does
not show any distinguishable difference.

After averaging we obtain a smooth velocity component in the x-direction which,
for the three Nusselt film thicknesses, is shown in figure 10(a). The Reynolds number
for the three experiments is Re= 0.58, 0.94, 1.48. For a flow along a flat incline these
values guarantee stable flow, however, inertia is of the order of O(1) and not negligible.
We now apply the analytical reconstruction technique to this velocity to reconstruct
the flow domain. The results of the analysis is shown in figure 10(b). Similar to the
reconstruction of the Navier–Stokes data in § 3.3 the reconstruction of the flat parts
of the topography shows a good agreement. For all three Nusselt film thicknesses, the
topography has an identical shape. Only the sharp corners of the topography and the
level of the trench show some deviations from the actual trench.

In addition to the results in § 3.2 where we demonstrated that the inverse solution is
robust with respect to high-frequency disturbances we show that the method is robust
with respect to other, non-statistical error sources, as they also occur in experiments.
To summarize, we show that our analytical solution enables us to reconstruct the flow
domain. Even for opaque liquids where information about the topography is covered
by the liquid we can determine the flow geometry only by measurements of the free
surface velocity.

4. Discussion and conclusion
A method has been derived to reconstruct the flow domain from a known free

surface velocity in thin inertial gravity-driven film flow. It is shown that only one
velocity component is sufficient to solve the inverse problem. Instead of solving
the inverse problem in the conventional optimization framework, we derive a model
which couples the flow domain, namely the free surface and bottom shape, with
one component of the free surface velocity. This is achieved by averaging the
Navier–Stokes equation over the flow domain and introducing a specific velocity
profile. As a consequence the inverse problem can be solved with similar methods
compared with the direct problem. Although the direct problem is nonlinear and
has to be solved numerically we find analytical solutions of the inverse problem.
By assuming periodic boundary conditions a Fourier series approach is applied to
determine the flow domain. Compared with previous inverse approaches the present
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method can be written without higher derivatives of the input data which makes the
inverse problem robust with respect to noisy input data.

The inverse problem is tested with solutions of the corresponding direct problem.
First, we prescribe a topography, solve the direct problem and determine the free
surface velocity. Subsequently, the inverse problem is solved analytically for this given
free surface velocity. Adding artificial noise to the free surface velocity shows that
the inverse problem is robust with respect to statistical errors. The reason therefore
lies in the analytical solution which is represented as a truncated Fourier series. High-
frequency noise is smoothed by truncating the Fourier series.

Furthermore, we show that the flow reconstruction based on one component of
the free surface velocity agrees well with data from the Navier–Stokes equation. We
therefore consider a case in the literature where the direct problem is studied for
a wavy topography. We take the given free surface velocity to reconstruct the flow
domain. It is shown that both the free surface and the topography can be reconstructed
using the simple analytical Fourier series approach.

We also demonstrate that the reconstruction yields reasonable results for flows with
flow recirculations and sharp topographies. The flow field and the free surface velocity
are obtained with a VOF method for the full Navier–Stokes equation. We choose a
case where the flow separates and establishes an eddy in the trench. Subsequently, the
original free surface shape and the topography is reconstructed based on the analytical
solution of the IBL equation. It is found that the free surface shape is successfully
recovered while the topography is smoothed out but the qualitative agreement is
still acceptable. A study on the trench depth reveals that the agreement between the
numerical simulation of the direct problem and the analytical approximation of the
inverse problem increases with decreasing trench depth. Deviations can be found only
near sharp edges.

The validity of the reconstruction is finally underpinned with an experimental study.
With an optical particle tracking method we are able to find the projected free surface
velocity of the flow over a trench geometry. Since the experimental free surface
velocity and the measurements are two-dimensional we can average the data to obtain
a smooth velocity profile. After reconstructing the topography for different flow rates
we find that, similar to the previous numerical results, the computed and the actual
topography show a good agreement. This proves that the algorithm yields an effective
tool to reconstruct the flow domain in typical applications where only the free surface
velocity is accessible or available.
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