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ESTIMATED THRESHOLDS IN THE
RESPONSE OF OUTPUT TO
MONETARY POLICY: ARE LARGE
POLICY CHANGES LESS EFFECTIVE?

LUIGGI DONAYRE
University of Minnesota–Duluth

This paper investigates the potential sources of the mixed evidence found in the empirical
literature studying asymmetries in the response of output to monetary policy shocks of
different magnitudes. Further, it argues that such mixed evidence is a consequence of the
exogenous imposition of the threshold that classifies monetary shocks as small or large.
To address this issue, I propose an unobserved-components model of output, augmented
by a monetary policy variable, which allows the threshold to be endogenously estimated.
The results show strong statistical evidence that the effect of monetary policy on output
varies disproportionately with the size of the monetary shock once the threshold is
estimated. Meanwhile, the estimates of the model are consistent with a key implication of
menu-cost models: smaller monetary shocks trigger a larger response on output.
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1. INTRODUCTION

An important area of research in the time series literature is the examination of
potential asymmetric effects of monetary policy on output [DeLong and Summers
(1988); Cover (1992); Teräsvirta and Anderson (1992); Beaudry and Koop (1993);
Thoma (1994); Weise (1999); Rothman et al. (2001); Garcia and Schaller (2002);
Lo and Piger (2005)]. Part of this interest has focused on asymmetries with respect
to the size of the monetary policy shock, but the empirical evidence is limited and

I am very thankful to James Morley for valuable insights and suggestions. Helpful comments from two anonymous
referees, Steven Fazzari, Kyu Ho Kang, Rody Manuelli, Werner Ploberger, Mark Vaughan, and the participants at
the Applied Time-Series Research Group at Washington University, the 3rd Annual Graduate Student Conference
at Washington University, the 45th Annual Meeting of the Missouri Valley Economic Association, the 9th Annual
Missouri Economic Conference, the 2009 Far East and South Asian Meeting of the Econometric Society, the 2009
Latin American Meeting of the Econometric Society, and the 2009 meeting of the Latin American and Caribbean
Economic Association are gratefully acknowledged. I also thank the Center for Research in Economics and Strategy
(CRES), in the Olin Business School, Washington University in St. Louis, for financial support. All remaining errors
are my own. Address correspondence to: Luiggi Donayre, Department of Economics, University of Minnesota–
Duluth, 1318 Kirby Drive, Duluth, MN 55812, USA; e-mail: adonayre@d.umn.edu.

c© 2013 Cambridge University Press 1365-1005/13 41

https://doi.org/10.1017/S1365100513000278 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100513000278


42 LUIGGI DONAYRE

mixed. In consideration of this fact, and given the important policy implications
of this type of asymmetry,1 this paper examines whether the effects of monetary
policy on output vary disproportionately with the size of the monetary shock and
aims to shed some light on the reasons behind the mixed evidence found in the
literature.

One of the first papers that addresses this type of asymmetry is Sensier (1996).
She uses a Markov-switching approach and finds little support for asymmetries in
the response of output to monetary policy shocks of different sizes in a study using
data from the United Kingdom. Weise (1999), in turn, tests for asymmetries in a
logistic smooth transition vector autoregression (LSTVAR) that includes U.S. out-
put, prices, and money growth, using an estimation strategy that is consistent with a
wide variety of structural macroeconomic models. Although his analysis includes
other types of asymmetries, his results show that small and large monetary policy
shocks have different effects on output, but which effects are larger depends on the
time horizon under consideration. When viewed over a three-year horizon, small
shocks have disporportionaly large effects on output, but over shorter horizons,
the effects are disproportionately small.

Ravn and Sola (2004) use a Markov-switching model to test for asymmetries
related to the size of monetary shocks that may arise in macroeconomic models
with menu costs. Although their broader work considers small and large monetary
policy shocks that can be expansive or contractive, they cannot reject that the
effects of monetary shocks of different magnitude on output are symmetric when
using M1 as the monetary instrument. They find strong evidence of this type of
asymmetries only in the case when the Federal Funds rate (FFR) is used to measure
monetary policy. Finally, Lo and Piger (2005) employ a time-varying Markov-
switching model and find weak evidence of asymmetry in terms of the size of a
policy shock when it is the only source of asymmetries in the model. However,
that evidence disappears when taken into account together with asymmetries with
respect to the state of the economy.

Although the findings of these studies are mixed, a common characteristic in
all of them is that the threshold that classifies monetary shocks as small or large
has been set exogenously, typically to one standard deviation. The appropriateness
of this approach is unclear, because there is no economic reasoning supporting
a particular threshold. This paper shows that the estimation of the threshold is
important in helping to detect a significant asymmetric response of output to
monetary shocks of different sizes. In particular, if the threshold is misspecified,
tests for asymmetry have low power, leading to an inability to reject the null
hypothesis of linearity. Thus, the main contribution of this paper is to establish an
econometric strategy that allows estimation of the threshold, instead of imposing
an ad hoc definition.

To do so, this paper proposes an approach that unifies various models that have
dealt with this type of asymmetry. It is similar in spirit to the model proposed by
Weise (1999), mentioned earlier, which tests for asymmetries using a multivariate
LSTVAR. Although Weise only considers money-based indicators of monetary
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TABLE 1. A summary of the empirical literature on asymmetries related to the
size of monetary shocks

Paper/author(s) Methodology Threshold Result

Sensier (1996) Markov switching One standard
deviation
(exogenous)

No evidence of asymmetry

Weise (1999) Logistic smooth
transition vector
autoregression

Mean or zero
(exogenous)

Weak evidence of asymmetry

Ravn and Sola
(2004)

Markov switching Variance of
shock
(exogenous)

Evidence for FFR case (not for
M1)

Lo and Piger
(2005)

Time-varying
Markow switching

One standard
deviation
(exogenous)

Weak evidence when it is the
only source of asymmetry; no
evidence when considered
together with state of economy

policy, an interest-rate measure of monetary policy is also used here. Further, his
multivariate setting makes estimation of the threshold infeasible, and he imposes
it arbitrarily at the mean of the threshold variable. Meanwhile, the model pro-
posed here has the advantage over Weise’s approach that it introduces a threshold
autoregressive (TAR) process within an unobserved-components (UC) model,
similar to what was considered in Lo and Piger (2005). Under this approach, the
monetary policy variable has only transitory effects on output, consistent with
the notion of money neutrality in the long run. This differs from the majority of
the literature, which generally proceeds by regressing output growth on measures
of policy actions. In contrast to Sensier (1996), Ravn and Sola (2004), and Lo
and Piger (2005), the TAR process in this paper implies observable, but estimated
thresholds, whereas they model the nonlinear relationship between money and
output as a Markov-switching process, where the state variable is not observable.
This, as explained previously, allows an estimate of the threshold that defines
which shocks are considered “small” and which are considered “large.” Table 1
summarizes and contrasts the methods used and the results found by the relevant
papers in the literature.

By estimating the threshold, the results from the nonlinear UC model can shed
light on the importance of the definition of size in determining the existence
of an asymmetric response of output to monetary shocks of different magnitude.
Furthermore, the results can be related to the implications of theoretical menu-cost
models. These models provide a motivation for distinguishing monetary shocks in
terms of their size (see Appendix A for a simple menu-cost model where the effect
on output depends on the magnitude of the monetary policy shock). For example,
Ball and Romer (1990) and Ball and Mankiw (1994) present standard menu-costs
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models in which only small monetary shocks have effects on output. In their
models, when monetary shocks are large, the menu cost becomes a second-order
cost and firms find it optimal to incur such cost and adjust their prices, leaving
real output unchanged. Meanwhile, even small menu costs may be sufficient to
generate aggregate nominal rigidity and large business cycle fluctuations [Mankiw
(1985); Blanchard and Kiyotaki (1987); Caplin and Leahy (1991); Golosov and
Lucas (2007)]. This paper, however, does not attempt to test the menu-cost theory
formally.

The results found show strong statistical evidence of an asymmetric response
of output to monetary shocks of different sizes when the threshold is estimated
from the data. In contrast, when linearity is tested imposing the threshold at an
ad hoc value—i.e., one standard deviation—instead of the estimated threshold,
the null hypothesis cannot be rejected. This supports the claim that the threshold
defining the size of shocks should be estimated from the data. Further, the results
from the estimated model suggest that the response of output to small monetary
policy shocks is larger than its response to large shocks. This is consistent with the
key implications of menu-costs models, although the finding that large shocks still
have effects on output is somewhat contrary to the simple version of the menu-cost
story.

The remainder of this paper is organized as follows. The second section formally
describes the nonlinear UC model, the empirical approach used to estimate it, and
the bootstrap procedure for performing the linearity test. The third section reports
the results for the empirical model and linearity tests. Some concluding remarks
are provided in the fourth section.

2. EMPIRICAL APPROACH

This section describes the empirical model, the estimation approach, and the
bootstrap procedure used to test whether the TAR-driven transitory component is
statistically significant when compared with a linear specification.

2.1. An Unobserved-Components Model

This paper proposes a model that builds on the UC framework considered by Lo
and Piger (2005). Previous studies testing for asymmetries have regressed output
growth on measures of large and small policy actions using different models
[Sensier (1996); Ravn and Sola (2004)]. Thus, the presence of asymmetries in
those studies involves determining whether the coefficients associated with such
policy measures are statistically different from each other. This latter approach is
potentially inconsistent with the notion of long-run money neutrality. Because an
UC model is employed in this paper, monetary shocks only affect the transitory
component of output (i.e., they are neutral in the long run).

Further, the main difference from the approach taken by Lo and Piger (2005)
is that, whereas they model the nonlinear relationship between money and output
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as a Markov-switching process, the regime switching here is driven by a TAR
process. This process implies estimated, but observable thresholds, more in line
with menu-cost theory. Thus, the model is given by

yt = yT
t + yC

t , (1)

yT
t = μ + yT

t−1 + νt , (2)

yC
t =

P∑
p=1

φpyC
t−p +

J∑
j=1

αS
j xt−j I [q(t) ≤ γ ] +

J∑
j=1

αL
j xt−j I [q(t) > γ ] + εt , (3)

where yt is a measure of output, yT
t is the permanent (or trend) component of

output, yC
t is the transitory (or cyclical) component of output, and xt is a measure

of monetary policy.
The system (1)–(3) is a modified version of the simple UC decomposition of real

output into permanent and transitory components, as in Watson (1986). Following
the original model, the permanent component of output, given in equation (2), is
modeled as a random walk with a drift term, μ.

Equation (3) describes the dynamics of the transitory component of output,
yC

t . It is modeled as an autoregressive distributed-lag (ADL) process, where the
independent variable is the monetary policy shock, xt ; I [.] denotes the indicator
function; q(t) is the threshold variable; and γ is the threshold parameter. When
q(t) ≤ γ , the response coefficients are captured by the J × 1 vector αS and
when q(t) > γ , they are given by the J × 1 vector αL. To be consistent with the
measures of monetary policy considered later, where the monetary variable does
not affect output contemporaneously, only lags of xt are allowed to enter equation
(3). Note that the coefficients φp, p = 1, . . . , P , are not state-dependent. Because
the question of interest is whether the response of output to monetary shocks varies
with the size of the shock, the autoregressive dynamics is assumed to be the same
in both regimes.

The innovations εt and νt have a joint normal distribution with mean zero
and variance–covariance matrix �. To identify the model, the UC literature has
traditionally assumed that the covariance between εt and νt is zero (i.e., that � is a
diagonal matrix). Nonetheless, Morley et al. (2003) show that, under certain con-
ditions, UC models can be estimated without imposing such a restriction.2 Thus,
to explore the possibility that the innovations from the transitory and permanent
components of output are correlated, the covariance term is estimated. Further,
the trend/cycle decomposition is interpreted here as an estimate of the unobserved
components [see Morley (2011) for more details].

An additional feature of the model estimated here is that it allows for a one-time
break in the variance–covariance matrix. The volatility of output, as well as that
of many other macroeconomic aggregates, declined substantially since the mid-
1980s. To account for this fact, an exogenous break date is set to the last quarter
of 1983 to split the sample accordingly.3
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2.2. Estimation Procedure

Following the approach to making inferences about TAR models discussed in
Hansen (1997), the estimation of the coefficients of the system (1)–(3) involves an
iterative procedure. The model is estimated sequentially for each possible value of
the threshold parameter, yielding a γ -dependent loglikelihood function logL(γ )

in each iteration. Thus, the maximum likelihood (ML) estimate of γ is the value
of this parameter that maximizes logL(γ )4. Formally, the ML estimate of γ is
defined as

γ̂ = argmax
γ∈�

[logL(γ )], (4)

where � = [γ , γ̄ ] is defined a priori to contain the middle 70% of all
possible threshold values to ensure that the model is well identified.5

The ML estimates of αS, αL, σε , σν , and σεν are thus given by the parameters
associated with logL(γ̂ ). That is, the vector of ML estimates is given by θ̂ = θ̂ (γ̂ ),
where θ=(αS′

, αL′
, σε, σν, σεν)

′.

2.3. Testing for a TAR-Driven Transitory Component

Computationally, estimation of the model is cumbersome because of the sequential
iteration of the threshold parameter. Letting |�| denote the cardinality of �, there
are |�| potential thresholds and, therefore, the same number of models to be
estimated. This estimation routine becomes even more time-intensive when it is
used to test whether the TAR-driven transitory component is statistically significant
relative to a linear one. In particular, as will be explained later, the linearity
test involves a bootstrap procedure in which data are generated under the null
hypothesis B times. For each bootstrap sample, a grid search across possible
threshold parameters is carried out. As a consequence, B × |�| potential models
need to be estimated.6

The procedure developed by Hansen (1996, 1997) to test TAR processes against
linear ones is modified to fit the UC framework (1)–(3). Considering these mod-
ifications, the relevant null hypothesis is given by H0 : αS=αL. Because this
problem is tainted by the existence of nuisance parameters (specifically, the thresh-
old γ is not identified under the null hypothesis), a test with near-optimal power
against a wide range of alternative hypotheses is given by the following likelihood
ratio (LR) statistic:

LR = sup
γ∈�

[LRn(γ )] , (5)

where
LRn(γ ) = 2

[
ˆlogL(γ ) − ˆlogL0

]
(6)

is the LR statistic against the alternative H1 : αS �= αL when γ is known. ˆlogL0

and ˆlogL(γ ) correspond to the values of the log likelihood functions under the
null hypothesis and under the alternative hypothesis for each γ , respectively.
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Because γ is not identified, the distribution of the LR statistic (5) is nonstandard.
However, its asymptotic distribution can be approximated through a bootstrap
procedure [see Hansen (1996, 1997) for further details]. Following his work, the
approach is modified to fit the system (1)–(3) and the asymptotic distribution of
(5) is approximated by a bootstrap experiment in which y∗

t = yNH
t , t = 1, . . . , n

where yNH
t is a new dependent variable generated under the null hypothesis. Using

yNH
t , a new LR statistic is calculated for this new dependent variable to form

LR∗ = sup
γ

{2[ ˆlogL∗
1(γ ) − ˆlogL∗

0]}.
The procedure described here is similar in spirit to the one detailed in Hansen

(1997). The asymptotical equivalence of the likelihood ratio statistic and the origi-
nal F -statistic in his paper guarantees that his results are carried over to this frame-
work. Moreover, because any UC model can be represented as an ARMA(p, q)

process for the first differences, the regularity conditions in Hansen (1997) are
satisfied and, therefore, the statistic (5) converges to the asymptotic distribution
derived by him (see Appendix B for further details). This also guarantees that the
bootstrap procedure is not invalidated because the permanent component of output
is modeled as a random walk process.

Two Monte Carlo experiments were also conducted to evaluate the size and
power of the bootstrap procedure in an UC setting. Regarding the size of the
test, data are generated under the null hypothesis for 500 Monte Carlo repetitions
and the size of the test is evaluated at the 1, 5, and 10% nominal levels. The
results of the Monte Carlo experiment yield true sizes of 0.012, 0.062, and 0.106,
respectively, suggesting that the test has relatively good size in all cases. Regarding
the power of the test, data are generated according to the system (1)–(3) and based
on the model estimates. Among the 500 Monte Carlo simulations, the test correctly
rejected the null hypothesis 494 times, suggesting that the test has good power at
the 5% significance level.

Concisely, the test to determine the significance of the UC model with a TAR-
driven transitory component against the null hypothesis of a linear transitory
component can be summarized in the following steps:

Step 1: Estimate the model under the null hypothesis H0 : αS=αL and obtain the log
likelihood function ˆlogL0.

Step 2: Estimate the model under the alternative hypothesis H1 : αS �= αL and obtain
the log likelihood function ˆlogL1(γ ).

Step 3: Form the LR statistic LR = sup
γ∈�

{2[ ˆlogL1(γ ) − ˆlogL0]}.
Step 4: Bootstrap distribution:

(a) Generate a new independent variable y∗
t = yNH

t under the null hypothesis.
(b) Estimate the model under H0 : αS=αL and obtain the log likelihood function

ˆlogL∗
0.

(c) Estimate the model under H1 : αS �= αL and obtain the log likelihood function
ˆlogL∗

1(γ ).
(d) Form the LR statistic LR∗ = sup

γ

{2[ ˆlogL∗
1(γ ) − ˆlogL∗

0]}.
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Step 5: Obtain the bootstrapped p-value as the percentage of bootstrap samples for which
LR∗ > LR.

3. RESULTS

The iterative procedure for obtaining the threshold parameter described in (4)
involves casting the model (1)–(3) in state-space form and applying the Kalman
filter (see Appendix C for a general state-space representation of the model). For
further details about the Kalman filter, refer to Hamilton (1994) and Kim and
Nelson (1999).

According to the specification of the model, monetary shocks only enter the
transitory component of output to be consistent with the notion of long-run money
neutrality. Moreover, the monetary shock is assumed to affect the transitory com-
ponent of output with a lag. This assumption is standard and well documented in
the literature [Christiano et al. (1996, 2005); Leeper et al. (1996); Sims and Zha
(1998); Thoma (2007)].

It is important to note that, because the interest of the paper is in the size
of monetary shocks, the threshold variable q(t) in equation (3) is the absolute
value of the monetary policy shock. Considering the absolute value of the vector
of monetary shocks implies a symmetric threshold around zero. To determine
whether this assumption is too restrictive (in the sense that the asymmetry found
could be driven by model misspecification), a model where the thresholds above
and below zero are different in magnitude was also considered. The improvement
in the likelihood, however, was not significant. In particular, the null hypothesis
that the additional threshold is equal to the negative of the absolute value yielded
a p-value of 0.862. Hence, only the symmetric threshold specification is reported.

The measure of monetary policy considered in this paper involves a shock where
the Federal Funds Rate (FFR) is the monetary instrument.7 All data are taken from
the Federal Reserve Economic Data (FRED) database and were deseasonalized
from the source. Output is measured as 100 times the natural logarithm of quarterly
real GDP. The FFR series considered is the monthly effective Federal Funds Rate,
converted to the quarterly frequency by computing a simple three-month arithmetic
mean. Finally, the measure of prices is given by the logarithm of the deflator of
quarterly real GDP. The sample period for the estimation of the model goes from
1954:Q3 through 2008:Q3, corresponding to 217 observations.

In the estimation of the model, the first 20 observations are used as a training
sample to avoid the effects of the starting values associated with the initialization of
the Kalman filter.8 The first 10 and 30 observations were also considered as training
samples, but the results were not very sensitive to these different specifications.

3.1. Results for the Federal Funds Rate Measure of Monetary Policy

An interest-rate-based monetary shock is constructed from the residuals of an
identified VAR that contains three variables: the FFR, the logarithm of real GDP,
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and the logarithm of the GDP deflator. To identify the shock, the policy variable
is ordered last in the VAR (i.e., monetary shocks do not affect output contempo-
raneously) and four lags of each variable are included.9

The identification of the policy shock is important to properly assess the effects
of changes in monetary policy on the economy. The approach followed in this
paper to identify such shocks is standard in the literature [Christiano et al. (1996,
1999, 2005)]. It is widely believed that a significant fraction of the variation in
the Fed policy actions reflects the monetary authorities’ systematic responses to
variations in the state of the economy. Nonetheless, not all variations in monetary
policy can be accounted for as reactions to the state of the economy. The fraction
of this variation not accounted for is defined as a monetary policy shock.

Christiano et al. (2005) claim that this monetary shock can be correctly identified
if one assumes that the policy shock is orthogonal to the Fed’s information set.
That is, time-t variables in the Fed’s information set do not respond to time-
t realizations of the monetary policy shock. Indeed, the authors argue that this
assumption justifies the widely used two-step approach: estimating policy shocks
as the fitted residuals of a VAR and using them to estimate the dynamic response
of a variable to a monetary policy shock.

Although this identification scheme is standard, there are certainly advantages
to abandoning the orthogonality assumption. However, there are also substantial
costs. In particular, a broader set of economic relations must be identified. For
example, Leeper et al. (1996) and Sims and Zha (1998, 2006) assume that the Fed
does not look at the contemporaneous price level or output when setting its policy
instrument. This assumption is clearly debatable.

Similarly, there are advantages to identifying the monetary policy shock within
the UC model instead of using the two-step approach. Nonetheless, the two-
step approach employed here allows a rich specification of the VAR to capture
monetary policy shocks in the first step, in a way that attempts to control for the
endogenous response of the FFR to output and inflation. Meanwhile, the relative
simplicity of the second-step UC model allows specification of the asymmetries,
together with estimation of the model and the bootstrap linearity test, which is
implemented more easily than the high-dimensional environment that would be
necessary to identify the monetary shock within the UC model. Furthermore, the
joint estimation also raises potential simultaneity, correlation, and misspecification
problems that could affect the estimates. For all of these reasons, and because the
identification assumption made here generates qualitative effects of a monetary
shock that are consistent with economic theory, the two-step approach is deemed
appropriate.

Once the monetary shock is identified, the number of autoregressive coefficients
for yT

t , P , and the number of lags for the monetary shock, J , are determined. To
do so, both the Akaike information criterion (AIC) and the Schwarz information
criterion (SIC) are considered to select among models with different numbers of
parameters. Given that quarterly data are used in the estimation, the maximum
number of lags for each coefficient is set to 4. Both criteria select the model
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TABLE 2. Parameter estimates: UC model with a TAR-driven transitory com-
ponent (σεν is estimated)

Parameter Estimate St. error Parameter Estimate St. error

φ1 0.690 0.097 σν 1.746 0.219
φ2 −0.119 0.033 σεν −1.576 0.323
αS

2 −0.222 0.090 λ 0.214 0.044
αL

2 −0.031 0.052 μ 0.747 0.074
σε 0.999 0.034 γ 0.157
Log likelihood −198.069 LR statistic 18.746

Note: This table reports estimated coefficients from the model given in (1)–(3) when the monetary instrument
is the FFR and σεν is estimated. The threshold variable, FFR-based monetary shock, was set to contain the
70% middle part of the observations to avoid overfitting. The sample period ranges from the third quarter of
1960 through the third quarter of 2008 after the first 20 observations are discarded to avoid distortions due to
the initialization of the Kalman filter.

in which P = J = 2. After the model is specified, the estimation approach
described in Section 2 is applied. It is important to mention that, when the model
was estimated, the αS

1 and αL
1 coefficients were not statistically significant and,

thus, they were removed from the final version of the model. Table 2 reports the
estimated coefficients of the model (1)–(3) when the monetary instrument is the
FFR.

In this table, regime S corresponds to the situation in which monetary shocks
are small, as defined by the estimated threshold, whereas regime L corresponds
to that in which monetary shocks are defined as large. The estimated coefficients
linking monetary policy to output suggest that the estimated threshold divides
policy shocks that have relatively small effects from those that have larger effects.
For instance, suppose the monetary authority increases the FFR by 0.10 percentage
points at time t . Given γ̂ , this corresponds to a situation in which regime S prevails.
As a consequence of this increase in the FFR, output falls by 0.022 percentage
points two quarters later. By contrast, suppose the monetary authority doubles the
increase in FFR to 0.20 percentage points at time t . Then, this situation corresponds
to regime L and implies a reduction in output by just 0.006 percentage points two
quarters later. That is, the response coefficient in regime S, αS

2 , is proportionally
larger than αL

2 (in absolute value). Note, also, that the response coefficient αL
2 is

not statistically significant. As discussed in Appendix A, this result is consistent
with the implications of the menu-costs models from Ball and Romer (1990) and
Ball and Mankiw (1994).

The estimated threshold is γ̂ = 0.157, obtained as in equation (4). The standard
deviation of the vector of shocks is 0.333, about two times larger than γ̂ . Thus,
the estimates suggest that using one standard deviation as the threshold would
classify some monetary shocks as being small when, in terms of their dynamic
effects, they should have been considered large.

From Table 2, the estimated coefficients suggest that the variance of output
is driven by changes in both the transitory and permanent components. Note,
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TABLE 3. Parameter estimates: UC model with a TAR-driven transitory
component (σεν imposed to zero)

Parameter Estimate St. error Parameter Estimate St. error

φ1 1.379 0.083 σν 0.902 0.090
φ2 −0.476 0.057 σεν 0
αS

2 −0.174 0.102 λ 0.256 0.058
αL

2 −0.069 0.046 μ 0.777 0.043
σε 0.367 0.130 γ 0.157

Log likelihood −207.442

Note: This table reports estimated coefficients from the model given in (1)–(3) when the monetary instrument
is the FFR and σεν is imposed to be zero. The threshold variable, FFR-based monetary shock, was set to
contain the 70% middle part of the observations to avoid overfitting. The sample period ranges from the
third quarter of 1960 through the third quarter of 2008 after the first 20 observations are discarded to avoid
distortions due to the initialization of the Kalman filter.

however, that σν is larger than σε , supporting the use of an UC framework instead
of simple growth rates, as discussed earlier. To account for the break in variance,
the variance–covariance matrix � was rescaled after the last quarter of 1983 by a
factor λ [Sinclair (2009); Morley and Piger (2012)]. Hence, the fact that this factor
is well below 1 and significant supports the notion that output growth volatility
has fallen substantially since the mid-1980s.

The covariance of the innovation terms, σεν , is negative and statistically sig-
nificant. Moreover, the correlation coefficient, ρ = −0.903, implies that the
permanent and transitory components of output are strongly negatively correlated,
consistent with the findings in the literature [Morley et al. (2003); Sinclair (2009)].
However, it is important to note that the estimates of the autoregressive coefficients
φ1 and φ2 are different from the results in Morley et al. (2003) in that the period
of the cycle implied by the AR parameters is even shorter. This difference is due
to the inclusion of the monetary policy variable.

Given that the covariance term has typically been set to zero in other previous
studies, it would be interesting to determine whether σεν is statistically different
from zero. To test this, the model is reestimated imposing σεν = 0. Using a simple
likelihood ratio test, the p-value for the null hypothesis that σεν = 0 is zero to the
fourth decimal. That is, the model where σεν �= 0 is preferred.

Even though this restriction is rejected, the model that imposes σεν = 0 is also
estimated, because it typically provides very different results. Table 3 reports the
coefficients of the model (1)–(3) when the errors of the permanent and transitory
components are not correlated. As can be observed from Table 3, the estimates
associated with the response coefficients αS

2 and αL
2 do not change much. In

particular, the magnitude of the response of output to a small monetary shock is
larger than that of its response to a large shock, as before. Note, however, that
the AR coefficients are now in line with typical UC models estimates, implying
persistent, periodic, and ample cycles. In general, the results are robust to σεν

being estimated or imposed to be zero.
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FIGURE 1. Estimated transitory component. Threshold variable: FFR-based monetary
shock. Estimated transitory component when the FFR is the monetary instrument. The
figure shows the estimated transitory component, yC

t , from equation (3).

An additional concern that arises in models where the covariance term σεν is
estimated refers to the magnitude of the transitory component. When the restriction
that σεν = 0 is relaxed, UC models cast in state-space form produce a trend-cycle
decomposition that is identical to the Beveridge–Nelson (BN) approach [Morley
et al. (2003); Sinclair (2009)]. The BN decomposition implies that a stochastic
trend accounts for most of the variation in output. Figure 1 shows the estimated
transitory component associated with the parameters from Table 2.

Consistent with the results found in Morley et al. (2003), the estimated cycle
is small in amplitude compared to the traditional cyclical components from UC
models where σεν = 0, and it is also much less persistent. However, the fact that the
estimated cycle is relatively small and less persistent does not mean that monetary
policy cannot play a role. Regardless of the size of the transitory component, the
monetary authority does change the FFR to affect the state of the economy and, if
the business cycle responds asymmetrically to those changes, it can have relevant
policy implications. In fact, the results of the model where σεν is estimated make
a strong case for the role of the monetary authority. For example, a positive real
shock that shifts the permanent component upward will leave actual output below
trend, given the large negative correlation coefficient ρ = −0.903. This generates
the need for a reduction in the FFR to close the gap.

A first test to determine whether the model with a threshold provides a significant
improvement over a linear model involves a diagnostic test over the residuals of
such models. This test produced evidence of remaining serial correlation in the
case of the linear model, but not in the case of the model with a threshold.

More formally, to test whether the TAR-driven transitory component is signifi-
cantly better than a linear one, the bootstrap procedure described in Section 2.3 is
applied using 99 bootstrap samples.10 The bootstrapped p-value that the procedure
yields is 0.02. Thus, linearity is rejected at the 5% level and equation (3) is favored
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over a simple linear specification. Moreover, when the same bootstrap procedure
is applied to test linearity after the threshold of one standard deviation of the
monetary shocks is imposed, linearity cannot be rejected. This result supports
the idea that previous failures to reject linearity are a consequence of imposing
the threshold in an ad hoc manner, instead of estimating it directly from the data.

If the Fed has to implement small changes in the FFR to have a large impact
on output, a natural question that arises in this context is whether such a change
must be carried out all at once or gradually. That is, does the size of the shock
matter relative to the frequency of the data? This question is closely related to
the interest-rate-smoothing literature and can have important policy implications.
To address this issue, the model in (1)–(3) is reestimated using annual data from
1955 through 2007. If the size matters relative to the frequency of the data, the
threshold estimated using annual data should be expected to be approximately four
times the threshold estimated using quarterly data. When annual data are used, the
estimated threshold is ˆγ A = 0.685, slightly more than four times the threshold
estimated using quarterly data, ˆγ Q = 0.157.

This result supports the notion that the Fed and other central banks seek to
smooth interest rates to obtain larger effects of policy by minimizing the volatility
of the policy interest rate. For instance, suppose the Fed implemented a one-time
increase in the FFR of 0.40 percentage points (40 basis points) in a given year.
This change would be above ˆγ Q = 0.157, and its effects on output would not be
very big. A better approach, however, would be to “smooth” the change in the FFR
and carry on four 0.1 percentage point increases in each quarter. In this way, each
of those changes would be smaller than ˆγ Q = 0.157, triggering a larger effect
on output. Hence, by smoothing interest rates, the size of the change in the FFR
required to reduce fluctuations in the economy can be smaller than it would be
necessary otherwise.

Even though the response coefficients are larger when small monetary shocks
hit the economy, it is important to evaluate these responses over time, given the
nonlinear nature of the model. Simple impulse-response functions (IRF) are a
convenient way to analyze the difference in the response of output to monetary
shocks of different sizes over time. However, when the model is nonlinear, such
as the one in equations (1)–(3), the IRFs are sensitive to the history of the system
and the future shocks assumed to hit it.

To address these problems, generalized impulse-response functions (GIRFs)
are constructed following Koop et al. (1996). The model is assumed to be known,
so model uncertainty is not taken into account. Moreover, attention is restricted
to the transitory component of output using the estimated parameters from Table
2. To compute the GIRFs, the following procedure is implemented (see Appendix
D for a detailed description): First, monetary shocks and idiosyncratic shocks for
periods 1 to q are drawn, with replacement, from the residuals of the identified
VAR and the estimated transitory component, respectively, and, for a given history
of the system, fed through equation (3) to produce a simulated data series.11 This
produces a forecast of the transitory component conditional on a particular history
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FIGURE 2. Generalized impulse-response functions. Threshold variable: FFR-based mon-
etary shock. Generalized impulse-response functions of yC

t to a positive shock to the
monetary policy variable when the FFR is the monetary instrument, computed as described
in Appendix D. The sizes of the shocks correspond to a standard deviation difference
between the small and large shocks, with the estimated threshold as the middle point.

and sequence of shocks (both monetary and idiosyncratic) for q periods ahead.
Second, the same procedure is carried out, given the same particular history and
sequence of shocks, with the exception that the monetary shock to the transitory
component of output in period 0 is fixed at a particular value. The shocks are fed
through equation (3) and a forecast is produced as explained previously. Third,
these steps are repeated 100 times and averaged out across individual Monte Carlo
repetitions. Fourth, given the arbitrary shock and particular history, the difference
between the averaged forecasts is taken to form a Monte Carlo estimate of the
GIRF.

For regimes S and L, respectively, positive small and large monetary shocks
to the transitory component of output are fixed in period zero so that they fall
below or above the estimated threshold γ̂ = 0.157.12 In particular, they are set
to 0.08 and 0.23. Figure 2 presents the GIRFs for the transitory component of
output when the FFR is the monetary instrument. Because each particular history
generates a given forecast of yT

t , the medians of these forecasts are reported, to-
gether with the 25th and 75th quantiles (dashed lines), which serve as bands for the
GIRFs.

The left panel of Figure 2 plots the response of yT
t for q = 10 periods ahead in

regime S, that is, when the monetary shock hitting the system is small, correspond-
ing to 26 possible histories. The right panel plots the response of yT

t for the same
number of periods ahead in regime L, corresponding to 161 possible histories.

It is important to mention that, because of outside lags of monetary policy,
the shock at t = 0 will affect yC

t at t = 2. As a consequence, the response of
the transitory component of output at t = 2 is a combination of the response
coefficient, αS

2 or αL
2 , depending on which regime prevails, and the effect of the

particular history of the system, captured by the autoregressive coefficients, φ1

and φ2.
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Given the estimated threshold, it is particularly interesting to note that most
monetary policy shocks fall under the large-shock regime (i.e., there are few
small-shock histories). Because the time distribution of those shocks does not
concentrate on a specific time period in the sample, we infer from this result
that the normal state of affairs in the U.S. economy is one of large monetary
policy shocks. This makes a strong case for the importance of the smoothing of
interest rates discussed previously. If most shocks are deemed relatively large by
the estimated threshold, then the monetary authority will obtain a larger effect of
policy by gradually carrying out smaller changes in the FFR.

From Figure 2, three observations can be made. First, the monetary shocks do not
have an effect on output on impact, because only lags of xt enter equation (3). When
there is an effect, however, the response of the transitory component of output to
“small” monetary shocks is much larger than its response to “large” monetary
shocks. Indeed, the transitory component of output falls by 0.32 percentage points
in regime S, when monetary shocks are “small,” whereas it falls by only 0.12
percentage points in regime L, when monetary shocks are “large.”

A second finding also supports the results found in Table 2. Over time, the
response of the transitory component of output in regime S (when small mon-
etary shocks hit the economy) is larger than that in regime L. Graphically, this
is easily seen by comparing the magnitude of the median response of the tran-
sitory component of output in each regime. Such median responses reach their
maxima in period 2 for both regimes (−0.32 in regime S and −0.12 in regime
L). The difference in the magnitude of the response of the transitory compo-
nent becomes even bigger if the 75th quantiles are considered. Their maxima
are reached again in period 2 for both regimes (−0.58 in regime S and −0.17
in regime L). Furthermore, the accumulated median response of the transitory
component of output in regime S is twice that in regime L (−0.48 and −0.24,
respectively). Based on this evidence, the transitory response of output exhibits
an overall larger response when small monetary shocks hit the economy, even
controlling for future monetary and idiosyncratic shocks and for the history of
the economic conditions. That is, they support the implications of menu-costs
models.

Nonetheless, not all implications of menu-costs models are supported. As can be
observed from Figure 2, a third finding shows that the response of output to large
monetary shocks is different than zero at least in the first four periods, contrary
to the predictions of menu costs. A potential explanation for this inconsistency
between theory and data resides in the implicit assumption behind the implications
of menu-costs models. According to these models, when large monetary shocks
disturb the economy, the menu cost becomes secondary and relatively small and,
thus, agents adjust their prices, leaving real balances and hence real output, unaf-
fected. However, this result assumes that all firms adjust their prices and that they
adjust them to the optimal price level. Neither of these assumptions seems to hold
true, as shown in the data. Firms may be heterogeneous in the way they interpret
monetary shocks. Moreover, they face imperfect information in the sense that,

https://doi.org/10.1017/S1365100513000278 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100513000278


56 LUIGGI DONAYRE

even when the menu cost is relatively low, their adjusted prices need not match
the optimal price level.

4. CONCLUDING REMARKS

This paper investigates the potential sources of the mixed evidence in the empirical
literature studying asymmetries in the response of output to monetary policy
shocks of different sizes. It argues that such mixed evidence is a consequence
of the exogenous imposition of the threshold that classifies monetary shocks as
small or large. To overcome this situation, an unobserved-components model that
allows estimation of the threshold parameter is proposed. Once this threshold is
estimated from the data, there is strong evidence of asymmetry in the real effects
of monetary policy shocks of different sizes. In contrast, when the bootstrap
procedure for testing linearity is carried out imposing one standard deviation as an
exogenous threshold, as is typical in the literature, linearity cannot be rejected. This
supports the idea that the optimal threshold should be estimated endogenously,
as the definition of size plays a crucial role in determining whether output varies
disproportionately with the size of the monetary shock.

The estimated coefficients are consistent with the implications of menu-costs
models. In particular, the response of the transitory component of output to small
monetary policy shocks is larger than its response to large monetary policy shocks.
Furthermore, the analysis of the GIRFs suggests that the difference in the response
coefficients persists for many quarters. The policy implications of this finding are
straightforward and significant. A reduction in the FFR always increases output,
but this effect is both larger and more persistent when the decrease in the FFR is
small, as defined by the endogenous threshold. As a consequence, during normal
times, the Fed would impact output more effectively by carrying out gradual
changes in the monetary instrument, a result that is consistent with the implications
of the interest-rate-smoothing literature.

Given the estimated threshold, it is particularly interesting to note that most
monetary policy shocks fall under the large-shock regime. Because the time distri-
bution of those shocks is not concentrated on a specific time period in the sample,
we infer from this result that the normal state of affairs in the U.S. economy,
prior to the Great Recession, is one of large monetary policy shocks. This has,
potentially, important policy implications. Given that the economy is typically in
a large-shock regime, monetary authorities should exercise caution in determining
the optimal size of policy changes to maximize their effects on the transitory
component of output.

Meanwhile, the dynamic response of output to large monetary shocks reveals
that such responses are significantly different from zero in the first few quarters
following a shock. This result is at odds with standard menu-costs models that im-
ply a neutral response of output to large monetary shocks. A potential explanation
for this fact arises from the assumptions implicit in these models. In particular,
they assume that when a shock is large, all firms adjust their prices. That is,
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it is assumed that all firms are homogeneous, which is debatable. Furthermore,
menu-costs models assume that when firms do adjust their prices, they do so
optimally (i.e., firms have perfect information). Along these lines, it would be
interesting to evaluate the response of output to monetary shocks of different size
when firms are allowed to be heterogeneous in their responses and face imperfect
information. This issue is left for future research.

NOTES

1. Nonlinearities in the relationship between monetary policy and output, in general, have important
implications for the way monetary policy is conducted. See, for example, Granger and Teräsvirta
(1993); Anderson and Vahid (2001); Franses and Teräsvirta (2001); and Morley (2009).

2. In a univariate ARMA(p, q) process, the identification condition for estimating a nonzero
covariance between the trend and transitory innovations is that p ≥ q + 2. See Morley et al. (2003)
for further details.

3. The focus of this paper is on thresholds, not break dates. Given that many authors have estimated
the Great Moderation to have begun in the mid-1980s, the break date is set to the last quarter of 1983,
broadly consistent with past findings.

4. Note that γ would be difficult to identify empirically if it were estimated simultaneously with
the other parameters. Because small changes in the threshold would not lead to changes in the value
of the likelihood function, the numerical optimization procedure would crash.

5. It is standard practice for TAR models to exclude 15% of the observations at each end of the
vector of ordered thresholds to avoid distortions in inference. If possible thresholds that are too close to
the beginning or the end of the ordered data were considered, there would not be enough observations
to identify the subsample parameters strongly.

6. With quarterly data, |�| = 138 and for B = 99 bootstrap samples, 13,662 potential models need
to be estimated using numerical optimization. Even if convergence for each model were achieved after
only 30 seconds, the bootstrap procedure would require, approximately, 114 hours.

7. To investigate the robustness of the results to an alternative measure of monetary policy, the
model is estimated considering M1 as the monetary instrument. The results, available from the author
upon request, were not very different and thus are omitted from the final version of the document.

8. Because there is no unconditional expectation to initialize the Kalman filter for this model, a high
variance is placed on the initial values. To avoid distortions arising from this initialization procedure,
and to prevent sensitivity of the model to the initial values, the first 20 observations are disregarded
when evaluating the likelihood. For further details about the initialization of the Kalman filter, refer to
Kim and Nelson (1999).

9. Some authors would argue in favor of a VARMA specification to identify the monetary shock
on the basis that, in their view, most macroeconomic time series follow an unknown ARMA process.
To the extent that any invertible VARMA process can be approximated by a finite long order VAR,
this is not a concern in this paper (see Athanasopoulos and Vahid (2008) for further details).

10. Given that a grid search over all possible values of the threshold parameters is necessary to
estimate the model, bootstrapping the p-value is very time-consuming. As a consequence, only 99
bootstrap samples are used to test linearity. Even though a small number of bootstrap samples weakens
power (but does not affect size), this is not a particular concern here because linearity is rejected.

11. The GIRFs are averaged over different histories taken from subsamples of the data. For instance,
the GIRFs for the “small” monetary shock regime are computed averaging out over histories (or initial
values for the first two lags of the transitory component) corresponding to all dates on which the given
monetary shock was smaller than γ̂ .

12. This guarantees that the “small” (“large”) shock is below (above) the estimated threshold,
triggering a response of output captured by the αS(αL) coefficients.

13. That is, all agents set the price to p∗
j = p0, for all j = 1, ..., N , so that their optimal price is

consistent with the price level, leaving relative prices, and thus output, unchanged.

https://doi.org/10.1017/S1365100513000278 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100513000278


58 LUIGGI DONAYRE

REFERENCES

Anderson, H.M. and F. Vahid (2001) Predicting the probability of a recession with nonlinear autore-
gressive leading-indicator models. Macroeconomic Dynamics 5, 482–505.

Athanasopoulos, G. and F. Vahid (2008) VARMA versus VAR for macroeconomic forecasting. Journal
of Business and Economic Statistics 26, 237–252.

Ball, Lawrence and N. Gregory Mankiw (1994) Asymmetric price-adjustment and economic fluctua-
tions. Economic Journal 423, 247–261.

Ball, Lawrence and David Romer (1990) Are prices too sticky? Quarterly Journal of Economics
104(3), 507–524.

Beaudry, Paul and Gary Koop (1993) Do recessions permanently change output? Journal of Monetary
Economics 31, 149–163.

Blanchard, Olivier and N. Kiyotaki (1987) Monopolistic competition and the effects of aggregate
demand. American Economic Review 77, 647–666.

Caplin, A.S. and J. Leahy (1991) State dependent pricing and the dynamics of money and output.
Quarterly Journal of Economics 102, 703–725.

Christiano, L., M. Eichenbaum, and C. Evans (1996) The effects of monetary policy shocks: Evidence
from the flow of funds. Review of Economics and Statistics 78(1), 16–34.

Christiano, L., M. Eichenbaum, and C. Evans (1999) Monetary policy shocks: What have we learned
and to what end? In J. Taylor and Michael Woodford (eds.), Handbook of Macroeconomics
vol. 1(2), pp. 65–148. Amsterdam: Elsevier.

Christiano, L., M. Eichenbaum, and C. Evans (2005) Nominal rigidities and the dynamic effects of a
shock to monetary policy. Journal of Political Economy 113(1), 1–45.

Cover, James P. (1992) Asymmetric effects of positive and negative money-supply shocks. Quarterly
Journal of Economics 107, 1261–1282.

DeLong, J.B. and Lawrence Summers (1988) How does macroeconomics policy affect output. Brook-
ings Papers on Economic Activity 2, 433–494.
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APPENDIX A: A MENU COST MODEL TO
DISTINGUISH BETWEEN SMALL

AND LARGE SHOCKS

Why should we expect a different response of real economic activity when the size of
monetary shocks differs? To motivate the distinction between small and large monetary
shocks and to make the empirical analysis clear, this section presents a standard menu-cost
model. The model implies that output responds differently, depending on whether monetary
shocks are below or above a certain threshold.

The model presented here follows Ball and Romer (1990) and Ravn and Sola (2004).
The economy consists of N producers–consumers, each of whom produces a differentiated
good. The price of each good is set by each firm and equals pj , j = 1, . . . , N . The
only friction in the model, which gives rise to nominal rigidities, is introduced through the
assumption that firms must pay a menu cost if their price is adjusted. After observing the
current price level p, each firm sets its price to pj . However, this price will not necessarily
prevail throughout the entire period. By paying a menu cost c > 0, firm j can adjust its
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price at any point in time. Firm j ’s profit function πj can be described according to

πj = V (m/p, pj/p) − cdj , (A.1)

where dj is a dummy variable that equals 1 if firm j adjusts its nominal price and
0 otherwise, V (.) is increasing in both arguments, and m is the money stock in the
economy.

In a symmetric equilibrium in which prices are not changed, the optimal price p∗
j for

firm j is implicitly defined by the first-order condition

∂πj

∂pj

≡ ∂V (m/p, p∗
j /p)

∂(pj/p)
= 0.

Because the equilibrium is symmetric, shocks to the stock of money m do not have real
effects.13 For simplicity, m is normalized to 1 and, thus, the equilibrium corresponds to the
situation in which m = p = p∗

j = 1.
To show how the size of the shock to the stock of money can matter, firm j ’s profit

function when its price is left unchanged is typically compared with its profit when
it decides to adjust its price and incur the menu cost c, given that all other firms do
not.

If the central bank unexpectedly changes the stock of money to m �= 1, then firms need
to evaluate whether it is optimal to leave their prices unchanged or adjust them. In the first
case, profit for firm j when prices are not changed (sticky prices) is given by πsp = V (m, 1).
However, if firm j decides to adjust its price, then it must pay the menu cost c and its profit
is given by πap = V (m, p∗

j /p) − c. Hence, firms will not adjust their prices if πap < πsp,
which is equivalent to

V (m, p∗
j /p) − V (m, 1) < c.

Ball and Romer (1990) show that, when a second-order Taylor expansion is performed
around m = 1, the range of money stock for which firms will not adjust their prices (that
is, the monetary shock is so small that incurring the menu cost c is not optimal) is given
by

m ∈ (1 − m̄, 1 + m̄), (A.2)

where m̄ = (−2cV22/V
2

12)
1/2 and V22(V12) represents the second (mixed) derivative of V (.)

with respect to the second argument (first and second arguments). Similarly, the range of
the money stock for which firms will adjust their prices (so that changes are neutral) is
given by

m ∈ (−∞, ¯̄m) ∪ ( ¯̄m, ∞), (A.3)

where ¯̄m = (−2c/V22)
1/2. Hence, equations (A.2) and (A.3) show that real economic

activity could behave differently if the size of the monetary shock differed. In particular,
“small” monetary shocks can have real effects if m ∈ (1 − m̄, 1 + m̄) and “large” monetary
shocks can be neutral if m ∈ (−∞, ¯̄m) ∪ ( ¯̄m, ∞).
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APPENDIX B: REGULARITY CONDITIONS
FOR THE UC MODEL

To guarantee that the statistic given in equation (5) converges to the asymptotic distribution
derived by Hansen (1997), it can be shown that the UC model considered in (1)–(3)
satisfies the regularity conditions he provides. For convenience, the model is reproduced
here:

yt = yT
t + yC

t , (B.1)

yT
t = μ + yT

t−1 + νt , (B.2)

yC
t =

P∑
p=1

φpyC
t−p +

J∑
j=1

αS
j xt−j I [q(t) ≤ γ ] +

J∑
j=1

αL
j xt−j I [q(t) > γ ] + εt . (B.3)

It is known that this UC model implies an equivalent ARIMA representation for {yt }. This
can easily be seen by substituting equations (B.2) and (B.3) into (B.1) and then taking first
differences:

(1 − L)yt = μ+ νt + (1 − L)φ−1
p (L)

⎧⎨
⎩

J∑
j=1

αS
j I [q(t) ≤ γ ] +

J∑
j=1

αL
j I [q(t) > γ ] + εt

⎫⎬
⎭ ,

(B.4)

where L is the lag operator and φp(L) is a polynomial of order p in the lag operator. Then,
from premultiplying the previous equation by φp(L) and rearranging terms, it follows
that

φp(L)�yt = μ∗ + ψt (B.5)

and ψt = θp(L)ζt , with ζt being a linear combination of the original innovations εt and
νt captured by the coefficients in the polynomial θp(L). For the specific case of the model
considered in the paper, p = 2, and then (B.5)—and, as a consequence, also the UC model
from (B.1)–(B.3)—becomes an ARMA(2,2) process:

�yt = μ∗ + φ1�yt−1 + φ2�yt−2 + ψt, (B.6)

where ψt = ζt + θ1ζt−1 + θ2ζt−2. It is straightforward to check that (B.5) satisfies the
regularity conditions provided in Hansen (1997). In particular,

1. E(ψt) = 0, E(ψ2
t ) < ∞, E|ψt |2+δ < ∞, and ψt has a density function f (.) that

is continuous and positive everywhere on R, because ψt is a function of εt and
νt .

2. Ergodicity is no longer required, because the regime switching occurs with respect
to the xt variable, which is exogenous, and not with respect to the autoregressive
terms.

3. To ensure the identification of the regimes, it is imposed that αS
j �= αL

j , for some j .
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APPENDIX C: STATE-SPACE REPRESENTATION
FOR THE UC MODEL WITH A TAR

TRANSITORY COMPONENT

The state-space representation for the general P = p and J = j system given in equations
(1)–(3) is provided here. The observation equation is given by

yt = [
1 01×(p−1) 1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

yC
t

yC
t−1
...

yC
t−p+1

yT
t

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The state equation is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yC
t

yC
t−1

...

yC
t−p+1

yT
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= F(p+1)×(p+1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yC
t−1

yC
t−2

...

yC
t−p

yT
t−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(p+1)×1

+
[

0p×1

μ

]
+ Gi

(p+1)×j

⎡
⎢⎢⎢⎣

xt−1

...

xt−j

⎤
⎥⎥⎥⎦

j×1

+

⎡
⎢⎢⎣

νt

0(p−1)×1

εt

⎤
⎥⎥⎦

(p+1)×1

for i = 1, 2,

where

F =

⎡
⎢⎢⎣

�1×p 0

Ip−1 0(p−1)×2

01×p 1

⎤
⎥⎥⎦ ,

with �1×p = [
φ1 · · · φp

]
, Ip−1 being the identity matrix of order (p − 1) and 0i×j being a

matrix with i rows and j columns of zeros, and

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

αS
1 · · · αS

j

0 0

. . .

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(p+1)×j
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and

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

αL
1 · · · αL

j

0 0

. . .

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(p+1)×j

.

The variance–covariance matrix of the transitory component is given by

Q = E

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

νt

0(p−1)×1

εt

⎤
⎥⎥⎦[

νt 01×(p−1) εt

]
⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
ν 0 · · · 0 σεν

0 0 0 0

. . .
...

σεν 0 · · · 0 σ 2
ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(p+1)×(p+1)

.

APPENDIX D: COMPUTATION OF GENERALIZED
IMPULSE-RESPONSE FUNCTIONS

The procedure to compute the generalized impulse-response functions (GIRFs) follows the
one described in Koop et al. (1996). The reader is referred there for further details.

A GIRF can be defined as the effect of a one-time shock on the forecast of variables in a
particular model, given a specific history. The response constructed must then be compared
to a benchmark “no shock” scenario. In this way, the GIRF can be expressed as follows:

GIY (q, νt , ωt ) = E
[
Yt+q , νt , ωt−1

] − E
[
Yt+q/ωt−1

]
,

where GIY is the generalized impulse-response function of a variable Y for period q, given
the specific history ωt−1 and initial shock νt , and E[ . ] is the expectations operator.

To compute the GIRF, the conditional expectations in the preceding equation are sim-
ulated. The nonlinear model is assumed to be known (i.e., model uncertainty is ignored).
The shock to Y , ν0, occurs in period 0, and responses are computed q periods ahead. Thus,
the GIY function is generated according to the following steps:

Step 1: Pick a history ωt−1. The history is the actual value of the lagged endogenous
variables at a particular date, or for a particular episode (e.g., those values of the
endogenous variables that fall under regime S).

Step 2: Pick a sequence of two-dimensional shocks νj,t+q , q = 0, 1, . . . , n . This vector
of shocks includes both monetary and idiosyncratic shocks. They are drawn with
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replacement from the vector of monetary shocks—the residuals from the identified
VAR—and from the estimated residuals of the transitory component of the model.

Step 3: Using ωi,t−1 and νj,t+q , simulate the path for yt+q over n periods according to
equation (3). This benchmark path is denoted as Yt+q(ωi,t−1, νj,t+q) for q = 1, . . . , n.

Step 4: Using the same history, ωi,t−1, and shocks, νj,t+q , as in the previous step, plus
an additional initial shock ν0 (the small or large monetary policy shock), simulate the
path for yt+q over n+1 periods according to the equation for the transitory component
of output. This profile path is denoted Yt+q(ν0, ωi,t−1, νj,t+q) for q = 0, 1, . . . , n.

Step 5: Repeat steps 2 to 4 B times.
Step 6: Repeat steps 1 to 5 R times and compute the quantiles of the difference between

the profile and benchmark paths Yt+q(ν0, ωi,t−1, νj,t+q) − Yt+q(ωi,t−1, νj,t+q).
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