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The universality of the statistics of small-scale motions within the turbulent/non-turbulent
interface (TNTI) layer that exists at the edges of turbulent free shear flows (i.e. mixing
layers) and in turbulent boundary layers is analysed using direct numerical simulations of
turbulent jets, wakes and in turbulent fronts evolving without mean shear. The Taylor based
Reynolds number of the simulations is Re, = 200 while the resolution is comparable to
the Kolmogorov micro-scale Ax & 7. It is shown that, when properly normalised by using
the local Kolmogorov velocity and length scales, the statistics of the vorticity, strain and
related quantities, such as the invariants of the velocity gradient tensor, are universal, i.e.
virtually equal for the same position within the TNTT layer, which implies the universality
of the small-scale ‘nibbling’ associated with the turbulent entrainment mechanism. The
results show that the small scales of motion near the TNTI layer are statistically very close
to homogeneous, except for a distance of about 10 Kolmogorov micro-scales from the
outer surface of the TNTI layer. The proposed normalisation allows for a much more clear
identification of the viscous superlayer and the turbulent sublayer within the TNTI layer.
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1. Introduction

The turbulent/non-turbulent interface (TNTI) layer is the sharp and highly contorted
interface that exists in jets, wakes, mixing layers and boundary layers, separating the flow
field into two distinct regions: a turbulent (T) region and a region of irrotational (IR) or
non-turbulent (NT) flow (da Silva et al. 2014). The flow dynamics within the TNTT layer
determines the turbulent entrainment (TE) mechanism, which is the process by which
fluid in the IR flow region is continually drawn into the T region, increasing its extent as
measured by the shear layer or boundary layer thickness. Turbulent entrainment is crucial
to many processes in engineering and the environment, such as the transport of passive
and active scalars, e.g. heat (da Silva et al. 2014), which motivates the investigation of the
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TNTI layer. The study of the flow dynamics near the TNTI layer starts with the seminal
work of Corrsin & Kistler (1955) who suggested that (i) the key quantity to analyse the
TE mechanism is the vorticity w; = €;;0u;/dx; (or the enstrophy w? = w;wj), where u;
is the velocity vector field, since the NT and T regions can be rigorously defined as
flow regions with w; = 0 and w; #0, respectively. Turbulent entrainment can then be
understood as the mechanism causing the increase of vorticity (or enstrophy) across a
separating layer between the NT and T regions. Corrsin & Kistler (1955) also hypothesised
that (ii) there must be a strong vorticity increase (jump) caused by viscous diffusion in this
separating layer, which they named the viscous superlayer. Finally, (iii) they estimated
that the thickness of the VSL (8,) should be equal to the Kolmogorov micro-scale (1),
ie. 8, ~n, where n = (V3 /e)l/4 ¢ = 2vS;;S;; is the viscous dissipation rate inside the
turbulent region, v is the kinematic viscosity of the fluid and S;; = (0u;/dx; + du;/dx;)/2
is the rate of strain tensor.

Recently, the analysis of the TNTI layer became more accessible due to the development
of new metrics such as the conditional statistics in relation to the TNTI position (Bisset,
Hunt & Rogers 2002; da Silva & Pereira 2008; Westerweel et al. 2009; Watanabe et al.
2014). It turns out that the TNTI has a two layer structure, comprising a viscous superlayer
(VSL) where the effects of vorticity diffusion dominate, and a turbulent sublayer (TSL)
where the enstrophy production dominates (Taveira et al. 2013; van Reeuwijk & Holzner
2014; Taveira & da Silva 2014), and that the strong vorticity jump bridging the IR and
T regions, previously hypothesised by Corrsin & Kistler (1955), actually fills the entire
TNTI layer, and not only the viscous dominated (VSL) region.

The VSL was directly observed and measured only recently, by using very fine direct
numerical simulation (DNS) (Taveira & da Silva 2014). It consists of a continuous layer
forming the outer layer of the TNTI (as seen from inside the T region), with a mean
thickness of (§,) &~ 4-5n, which is explained by the role of the intense vortices from the
T region in defining the shape of the TNTI layer. Indeed, the shape of the TNTI layer
is actually imposed by the ‘last row’ of eddies from the T region that are closest to the
IR region. The correct scaling of the VSL had been anticipated not only by Corrsin &
Kistler (1955), but more recently by Holzner & Luthi (2011) using dimensional analysis
considerations.

On the other hand, the TSL has a slightly larger width, with a mean thickness that was
recently shown to be (§,) =~ 107 (Silva, Zecchetto & da Silva 2018), which is again related
to the intense vortices in the vicinity of the TNTI layer (da Silva, dos Reis & Pereira 2011;
Watanabe et al. 2016b; Watanabe, da Silva & Nagata 2019), so that the total mean extent of
the TNTI layer is (§,) & (8,) + (85) & 15n. Thus, both sublayers within the TNTI layer
scale with the Kolmogorov micro-scale.

One of the most interesting observations described in many recents works consists in
the shape of the enstrophy (or vorticity magnitude) and of the enstrophy equation terms,
as a function of the distance from the TNTI layer position, using a procedure pioneered
by Bisset e al. (2002) and perfected in several subsequent works (Westerweel et al. 2005;
da Silva & Pereira 2008; Westerweel et al. 2009). This is typically observed by collecting
statistics at fixed distances within the TNTI layer (conditional profiles) and has been used
extensively to analyse the TNTI layer in many experimental and numerical works.

Experimental works include the results from Westerweel er al. (2002, 2009) who
analysed the out-of-plane vorticity component of a round submerged liquid jet, Chauhan
et al. (2014b) who studied the spanwise vorticity of a zero-pressure-gradient turbulent
boundary layer and Holzner et al. (2007) who investigated twice the enstrophy (w;w;) in a
turbulent flow without mean shear.
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Numerical works include Holzner et al. (2007) who studied conditional profiles of w;w;
from a temporal simulation of a turbulent front evolving without mean shear, Taveira
& da Silva (2013) who showed conditional profiles of all the absolute values of the
vorticity vector components, Attili, Cristancho & Bisetti (2014) who assessed the vorticity
magnitude in an incompressible spatially developing mixing layers and Watanabe et al.
(2014) who investigated the profiles of both the enstrophy (w;w;/2) and vorticity magnitude
in a spatially developing planar jet with chemical reactions.

The conditional profile of vorticity magnitude has been computed in temporally
developing plane wakes (Bisset et al. 2002), plane jets (da Silva et al. 2011), compressible
reacting mixing layers (Jahanbakhshi & Madnia 2018), compressible mixing layers
(Vaghefi & Madnia 2015; Jahanbakhshi & Madnia 2016), stably stratified mixing layers
(Watanabe et al. 2016a), boundary layers (Ishihara, Ogasawara & Hunt 2015; Borrell
& Jiménez 2016; Watanabe, Zhang & Nagata 2018), planar jets, shear-free turbulence
and mixing layers (Watanabe et al. 2019). Other examples of the conditional statistic of
vorticity (or related quantities) can be found as well in Silva et al. (2018), Breda & Buxton
(2019), Cimarelli et al. (2015).

All these works report a sharp jump in the vorticity (or enstrophy) across the TNTI
layer, but the way this jump is normalised, as well of its precise shape, present some
discrepancies. A comparison between the profiles of vorticity magnitude (or enstrophy)
across the TNTI layer obtained in several different flows is described in da Silva et al.
(2014), at a time where the mean thickness of this jump (at sufficiently high Reynolds
numbers) had not yet been established, which occurred only recently (Silva et al. 2018).
However, it is clear that the shape of these profiles is different.

Similarly, many authors have described the conditional enstrophy budgets near the TNTI
layer, e.g. Holzner et al. (2007), da Silva & Pereira (2008), Watanabe et al. (2014), Silva
et al. (2018). Typically, the enstrophy production and dissipation are balanced in the
turbulent core region of the flow, whereas within the TNTTI layer, the enstrophy diffusion
dominates the VSL and is overtaken by the enstrophy production in the TSL. Even though
all the published results of these quantities display a relatively similar qualitative shape,
the details of each profile are not equal, and exhibit clear differences when computed from
different flows and different Reynolds numbers.

However, since the vorticity (or the enstrophy) is associated with the smallest scales of
motion, and given that in fully developed turbulence the small scales tend to be universal,
one would expect the vorticity (or the enstrophy) to exhibit some sort of universality.
Indeed, our present understanding of the TE is that the entrainment rate is imposed by
the large scales of motion, while the smallest scales adjust to that rate and direct it through
the ‘nibbling” mechanism (Westerweel et al. 2005). In analogy with the energy cascade
mechanism, if the large-scale motions shape the TNTI such that the global entrainment is
independent of viscosity then the statistics of the small scales of motion responsible for
the entrainment should be universal, i.e. equal in TNTIs from different flows. For instance,
when properly normalised the mean profiles of these quantities across the TNTI layer, and
of other small-scale quantities, should be equal in jets, wakes and mixing layers.

Some results are consistent with this possibility. Watanabe ef al. (2019) showed that the
non-dimensional dissipation rate C, = ¢L/u’>, where L and u’ are the integral length scale
of turbulence and the streamwise velocity fluctuation, respectively, has three distinct power
laws C; ~ Re9, inside the VSL, TSL and T (core) regions (Re, is the turbulent Reynolds
number and « is the power law value), which are exactly the same (i.e. same « for the

same layer) for planar jets, mixing layers and free shear turbulence, where L, ¢ and ' are
locally computed inside each one of the sublayers.
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In the present paper we use DNS of three different flow types: planar jets, planar wakes
and shear-free turbulence (a turbulent front evolving without mean shear) to show that,
when properly normalised, all the small-scale statistics of the flow within the TNTT layer
collapse into the same curves/profiles. We focus the analysis into two small-scale variables:
the enstrophy (or vorticity magnitude) and strain, and related variables. The normalisation
consists of simply using the mean local Kolmogorov velocity and time scales of the flow,
computed at each location within the TNTI layer. The picture that emerges from all these
results is that indeed the statistics of the small-scale variables within the TNTI layer are
universal, i.e. equal in very different flows, and at different Reynolds numbers (provided
the Reynolds number is sufficiently high) and support the concept that the ‘nibbling’
eddy motions acting on the TNTI layer are indeed universal, i.e. equal in all flows. It
is important to clarify that in no way do we intend to claim any sort of universality for the
large scales of motion associated with the entrainment dynamics, e.g. itis well known that
the (large-scale) entrainment characteristics are very different between planar and round
jets.

This paper is organised as follows. The next section (§ 2) describes the DNS used in the
present work, together with the procedure used to obtain statistics in relation to the TNTI
layer position. Section 3 describes the universality of the small-scale flow variables within
the TNTI layer, as perceived from analysing several statistics of the enstrophy, strain and
the invariants of the velocity gradient tensor. The paper ends with § 4 with an overview of
the main results of the paper.

2. Direct numerical simulations

This section describes the Navier—Stokes solver and the physical and computational
parameters employed in all the simulations used in the present work. The new DNS of
wakes are validated against the existing experimental and numerical data and the procedure
to obtain conditional statistics, in relation to the distance from the TNTI position, is
reviewed.

2.1. Numerical methods and computational parameters

Direct numerical simulations of shear-free turbulence (SFT), turbulent planar jets (JET)
and turbulent planar wakes (WAKE) were carried out using an in-house code to solve the
Navier—Stokes equations. The solver uses classical pseudo-spectral methods (collocation
method) for spatial discretization (Canuto et al. 1987), and a three-step third-order explicit
Runge—Kutta scheme for the temporal advancement (Williamson 1980). The simulations
are fully de-aliased using the 2/3 rule and use an uniform and isotropic grid (Ax = Ay =
Az). This code has already been used by the authors and is described in detail in Silva et al.
(2018) and the references therein. The simulations essentially differ in the details of the
initial velocity fields and the main physical and computational parameters are summarized
in table 1.

One SFT (SFTyg,) simulation was carried out in a periodic box of size 27w x 27 X 21
with 1536 collocation points using a procedure similar to Perot & Moin (1995), da Silva &
Taveira (2010), Taveira & da Silva (2014), Cimarelli et al. (2015). The initial turbulent field
is issued from a previously run DNS of forced homogeneous isotropic turbulence (HIT),
using the forcing scheme proposed by Alvelius (1999), with a peak forcing concentrated
at the three wavenumbers centred at k;, = 2, and an initial Taylor-based Reynolds number
equal to Rey, = 405, for a resolution of k,,,n = 1.48. The initial turbulence integral scale
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Rey  (Rel)r Ny x Ny x N, Ly x Ly x L, A/
SFTa0» — 202 1536 x 1536 x 1536 27 x 27 x 27 1.1
JET 03 8000 193 1536 x 1536 x 768~ 7H x 7TH x 3.5H 1.0
JET276 12000 276 2048 x 2048 x 1024 7H x 7H x 3.5H 1.1

WAKE»s59 16 000 259 2048 x 2048 x 512 7H x TH x 1.75H 1.3
WAKE26 16 000 266 2048 x 2048 x 512 7H x TH x 1.75H 1.4
WAKE3ps 18 000 305 2048 x 2048 x 512 7H x TH x 1.75H 1.3

Table 1. Summary of the temporal simulations of shear free turbulence (SFT), planar jets (JET) and planar
wakes (WAKE). The data given in the table refer to the field/time instant used in the subsequent analysis.
Here (Ny x Ny x N,) is the number of collocation points used in the streamwise (x), normal (y) and spanwise
(z) directions, respectively; (Ly x Ly x L;) is the size of the computational domain in the same directions;
Rey is the initial Reynolds number for the temporal jet and wake simulations; (Re;)7 is the Reynolds number
based in the Taylor micro-scale in the turbulent core region of the flow computed from conditional statistics
(means) taken from an instantaneous field at the self-similar regime (see text for details); A, /n is the resolution
normalised by the Kolmogorov micro-scale, where 7 is taken from the centreline of the flow (at the middle
plane of the turbulent core region).

isequal to L = 1.2, which is roughly 5.2 times smaller than the computational domain size.
The SFT»(, simulation starts with an initial transient (intermediate) simulation, where the
velocity fields obtained from HIT are convoluted by a profile that essentially maintains the
velocity u;(x, t), of the HIT simulation in —7t/4 <y < +m/4, while artificially setting to
ui(x, 1) = 0 the velocity field in the region |y| > /4 (Silva et al. 2018). As in Cimarelli
et al. (2015), the convolution profile used here is similar to the hyperbolic tangent profile
used in the JET simulations (see below) so that the transition region between the velocity
field from HIT and the region with u;(x, f) = 0 is smooth. As in Perot & Moin (1995),
during this intermediate simulation, the time step is kept constant and very small, with
roughly 1/10 of that used in the HIT simulations. The true SFT5p; simulation is then
started from this initial condition, whereby the initial isotropic turbulence flow region
spreads into the IR (quiescent) region, in the absence of mean shear. Therefore, two distinct
(upper and lower) TNTTI layers develop within the computational domain, as the turbulence
slowly decays within the core of the turbulent region. The present analysis uses only a
single (one) instantaneous field from this simulation when the mean conditional Reynolds
number in the turbulent core region is equal to (Re )7 = 202 (see the next section for the
details on the computation of this Reynolds number), while the resolution is Ax/n = 1.13.
At this instantaneous time instant the mean position of the two (upper and lower) TNTIs is
lyi| & 7/2, by which time no influence of the periodicity can be observed in the statistics
far from the TNTTI layer. This SFT»p, simulation has been previously used in Silva et al.
(2018).

For the temporal planar jet (JET) and planar wake (WAKE) simulations, the initial mean
velocity is prescribed by a hyperbolic tangent profile, as in Stanley, Sarkar & Mellado
(2002), da Silva & Pereira (2008),

Ux,y, z) = (@) +« (w) tanh [% (1 - %)] , 2.1)
o

where x, y, z are the streamwise, normal and spanwise jet/wake directions, respectively,
0p is the initial momentum thickness, and U; and U, are the maximum and minimum
initial mean velocities, respectively. Planar jets are obtained by setting the constant o
equal to o = 1, whereas planar wakes are recovered with « = —1. A three-component
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velocity fluctuating ‘spectral noise’ (Lesieur, Ossia & Métais 1999) is superimposed by a
convolution function that restricts the initial velocity noise to the initial shear layer region
of the jet/wake.

The JET simulations used here correspond to two simulations described in Silva et al.
(2018). In the simulations U; = 1 and U, = 0, and the ratio between the initial momentum
thickness 6y and the jet initial width H is H /6y = 35. The several simulations essentially
differ in the initial Reynolds number Reyy = (U — Uz)H /v, which is equal to Rey = 8000
and 12 000 for JET 93 and JET>7¢, respectively, and on the number of collocation points
used in the three spatial directions (N, x Ny X N;), since the size of the computational
domain is equal to (7H x 7H x 3.5H) for both simulations, as well as the maximum
amplitude of initial velocity fluctuations which is fixed at 5 % of the maximum velocity.

A total of three new temporal simulations of planar turbulent wakes were carried out in
the present work (table 1), with an initial Reynolds number varying between Rey = (U1 —
Uz)H /v = 16 000 to 18 000, and with a computational domain extending to (Ly, Ly, L;) =
(7TH,7H, 1.75H), and using a total of (N, x Ny x N;) = (2048 x 2048 x 512) collocation
points. The maximum amplitude of the velocity fluctuations was the same as used in the
JET simulations, while the ratio H/6y was set to 25 (different values of H/6y have been
used for the JET and WAKE simulations because of the marked differences observed in
the evolution of these flows). The assessment of the new WAKE simulations is described
in appendix A.

Using the data presented in table 1, one can estimate the range of the Kolmogorov
micro-scales available from the present simulations, bearing in mind that some values
in the table have been rounded. This can be done by computing n = (Ax/ n)_l(Lx/Nx),
which leads to n = 0.0022 and n = 0.0041 for the higher and smaller Reynolds numbers,
respectively, so that the Kolmogorov micro-scale from the simulations used here vary by
a factor of ~ 2. We believe this range is enough to assess the scaling of the conditional
statistics, particularly since the flow types analysed here is also very different.

2.2. Conditional statistics in relation to the position of the TNTI

In the present work, in order to isolate samples/data collected at particular locations within
the TNTI layer, we use conditional statistics in relation to the distance from a specific
position within the TNTI layer. This procedure has been extensively used in many previous
works, and only a brief description will be given here.

The need to use these conditional statistics of course stems from the difficulty in
obtaining adequate information about the dynamics of the TNTT layer when using classical
statistics, i.e. computed at fixed locations within the flow domain. Because of the highly
convoluted shape of the TNTI layer, together with its intermittent position, any such
classical statistics will invariably contain samples corresponding both to IR and T flow
events, thus masking the detailed local dynamics of turbulence within the TNTT layer.

The procedure used to obtain these conditional statistics follows three steps and is
described in figure 1 (Silva et al. 2018): for obtaining conditional statistics in relation
to the envelope of the irrotational boundary (IB) (i) the outer surface of the TNTI layer —
the IB — which consists of an isosurface of very low vorticity magnitude w;;, = (w;w;) 172,
is detected by analysing a histogram of the turbulent flow fraction of the flow (Taveira &
da Silva 2013); (ii) the local enstrophy gradient is then used to define a three-dimensional
(3-D) normal at each point of the IB in the upper and lower shear layers that delimits
the interface envelope (Westerweel et al. 2009) for each of the N, x N, points from the
upper and lower TNTs; (iii) any flow quantity of interest is collected at fixed distances
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- . Irrotational boundary

Figure 1. (a) Sketch of the procedure used to compute the conditional statistics in relation to the position of
the IB or the interface enveloping the 1B, showing contours of enstrophy in a (x, y) plane for the simulation
JET 93, with an inset displaying a magnification of the region near the IB. The local axis at each point of the IB
is used to collect data at fixed distances from the IB, y;. The figure indicates also several points (B-D) involving
different problems (see text for details). (b) Sketch of the region near the IB for the simulation JET 193 showing
the ’true’ IB and the interface envelope.

y1, by trilinear interpolation, into a grid defined on this local 3-D normal, that points into
the interior of the turbulent core region, so that y; < 0 and y; > 0 correspond to the IR
and T regions, respectively (the IB is located at y; = 0). We denote the mean of a general
quantity ¢ computed with this procedure as (¢);. The conditional statistics in relation to
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Figure 2. Conditional mean profiles of enstrophy (w;w;); (a) and strain magnitude (S;S;); (b) for the
simulation WAKE3p5 at several time instants during the flow decay at the far field regime. The enstrophy
and strain magnitude are normalised by the initial free stream velocity U; and initial width of the wake H.
The IB is located at y; = 0, and the IR and T regions correspond to y; < 0 and y; > 0, respectively, and y; is
normalised by the thickness of the initial shear layer region H.

the local IB are obtained by simply replacing the envelope of the IB by the local IB in
step (ii).

As in virtually all works using conditional analysis of the TNTI layer, here we use
the interface envelope. Figure 1(a) shows the procedure used to compute the conditional
statistics in relation to the IB position and indicates also several points (B-D) involving
different problems. Following Westerweel et al. (2009), bubbles of IR flow inside the T
region are discarded from the statistical sample (e.g. near point B). The same happens with
islands of turbulent flow inside the NT region (e.g. near point D). Figure 1(b) shows the IB
and the interface envelope, that discards several re-entrances from the statistical sample. In
the present work and for each simulation, a single instantaneous field is used to compute
the conditional statistics corresponding to each individual simulation, which is sufficient
to obtain a good level of convergence of the desired quantities because of the large number
of grid points used in each simulation.

Figures 2(a) and 2(b) illustrates the application of this procedure by showing conditional
mean vorticity magnitude profiles (w;w;); and strain magnitude (S;;S;;);, respectively, for
WAKE3s5 at different time instants. The distance y; is normalised by the wake initial
slot-width H and the mean vorticity magnitude and strain magnitude are normalised
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by U;/H. For all instants, the vorticity magnitude is virtually zero in the IR region
and tends to a constant value inside the turbulent core region, after undergoing a very
sharp vorticity jump right after the IB position (0 < y;/H < 0.025). This sharp jump
occurs within the TNTT layer, whereas the smaller vorticity increase observed afterwards
(0.025 < y;/H < 0.3) is associated to large-scale inhomogeneities within the turbulent
core region (as will be discussed below). The decay of vorticity observed for increasing
times is concomitant with the classical decay of the wake in the fully developed turbulent
regime. The strain magnitude has a similar shape deep inside the T region, where
(wiwi)1 ~ 2(S;;S;)1. An important difference between the two quantities can be observed
in the IR region. Whereas the vorticity falls sharply to zero when approaching the IB
and is zero in the NT region, the strain falls much more slowly and has non-negligible
values inside this region (Holzner et al. 2007; Teixeira & da Silva 2012). The shape of
these conditional profiles has been reported in many different shear flows, including jets,
mixing layers and also in boundary layers (e.g. Bisset et al. 2002; Westerweel et al. 2005;
Holzner et al. 2007; Watanabe et al. 2019).

The conditional Reynolds number listed in table 1, (Re,)r, is computed in the
following way. We use conditional mean profiles of the viscous dissipation rate (g); =
2v(S;;S;j)1, and Taylor micro-scale (4); = / 15v(u'?);/(¢);, and with these we compute
the conditional mean Taylor-based Reynolds number (Re,); = +/(u/2);(4);/v. Note that
here (u?); = (u?); — (u)% since it has been shown that this is the correct way to compute
the conditional Reynolds stresses (Bisset ef al. 2002; Westerweel et al. 2005; Taveira &
da Silva 2013). The particular values listed in table 1 correspond to the turbulent core
region, far away from the TNTI layer, and were computed at a distance of y;/n &~ 250
for all simulations, i.e. (Re )T = (Rep);(yr/n = 250). Finally, we want to stress that in
the following text the instantaneous Kolmogorov length and velocity scales, which appear
often in the discussion, are never actually computed on a local and instantaneous basis.
When these scales are mentioned they imply a given averaging operation, i.e. u; = (uy),

where the brackets indicate some sort of averaging, e.g. u, = (uy)r = ((ve)VH .

3. Results and discussion

This section shows that the small-scale quantities of the flow within the TNTI layer,
as obtained from very different flow types (SFT, JET, WAKE), are universal when
plotted with the appropriate normalisation. Specifically, we show that the statistics of
the enstrophy and strain, and of their governing equation terms, as well as the invariants
of the velocity gradient tensor, such as the conditional means and joint probability
density functions, all collapse into the same curves when normalised by the mean local
Kolmogorov (velocity and length) scales.

3.1. Universality of the normalised conditional mean enstrophy profiles

When analysing the dynamics of the flow in the vicinity and within the TNTI layer, the
vorticity magnitude |@| = (w;w;)!'/? or, alternatively, the enstrophy o = w;w;/2 are key
important quantities since in the IR (or NT) region |@w| = @ = 0, whereas in the T region
|@| #0 (and w # 0), so that the evolution of these quantities is an important measure of
the transition of the flow from the NT into the T region, and can be used to quantify
the small-scale features of the entrainment process (‘nibbling’). In the present work,
enstrophy is defined by w = w;w;, instead of the definition w = w;w;/2 used by some
authors. Without loss of generality, the definition of enstrophy as w = w;w;/2 is only used
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in connection with the conditional budgets across the TNTI layer, which are analysed in
§3.2.

As described in the introduction, conditional mean profiles of both |@| and w, with
minor differences in the averaging procedure, have been obtained in many experimental
and numerical works, where the normalisation has been done in several different ways
(Silva et al. 2018). In earlier investigations of the TNTI layer the normalisation was
typically done using the flow parameters (e.g. initial/outer characteristic scales), as
in figure 2 of the present work, or using large-scale flow parameters (e.g. centreline
mean velocity, half-width, integral scale) (Bisset et al. 2002). However, it is difficult to
compare conditional mean profiles using these quantities and many authors have used
either the Taylor scale or the Kolmogorov micro-scale, computed at some suitable location,
to normalise the distances within the TNTI layer. In light of recent developments the
normalisation of the distances with the Kolmogorov micro-scale makes more sense, since
the thickness of the TNTI layer scales with this scale at high Reynolds numbers (Silva
et al. 2018), and this normalisation has been used in many recent works (e.g. Watanabe
et al. 2018; Breda & Buxton 2019). In these cases the reference Kolmogorov scales
are taken from a region inside the turbulent core region of the flow, adjacent to the
TNTI layer. Figures 3(a) and 3(b) show conditional mean profiles of the Kolmogorov
micro-scale 7 and of the Kolmogorov velocity u, = (ve)!/4, respectively, for all the
simulations used in the present work. It is clear that at a distance relatively close to the
TNTI layer (y;/(n)r = 60-70), both the Kolmogorov micro-scale and the Kolmogorov
velocity are virtually constant and equal to the value measured inside the turbulent core
region, i.e. (n);/(n)r = 1.0, for y;/(n)r >> 1 (recall that the thickness of the TNTI
layer is (8,)/(n)T = 15). The Kolmogorov scale has no meaning outside the T region
(y1/{n)r < 0) and, even within the VSL region of the TNTI layer (y;/(n)r < 5), changes
only slightly over the entirety of the flow, displaying a maximum at the IB (y;/(n)7 = 0)
of (n)1/(n)T =~ 1.5, the observed variation (50 %) happening only in the smallest possible
space, in a fraction of the VSL, which typically has a size of about &~ 57. Otherwise, the
Kolmogorov micro-scale (like the Kolmogorov velocity scale) is virtually constant in the
entirety of the turbulent region i.e. for y; > 0.

Thus, the normalisation of the conditional mean enstrophy profiles by the Kolmogorov
(velocity and length) scales is justified by the uniform value these quantities take in the
turbulent core region near the TNTI layer, and by the recently observed Kolmogorov
scaling of this interface and its sublayers at high Reynolds numbers.

Figure 4 compares the mean conditional enstrophy profiles normalised by the reference
(turbulent core) Kolmogorov velocity and length scales, (w;w;)1/({uy)1/ (n)T)z, for all the
simulations used in the present work. As in da Silva & Pereira (2008), Silva et al. (2018),
Holzner et al. (2008, 2009), Watanabe et al. (2018), the Kolmogorov scales used for the
normalisation are taken from deep inside the turbulent region (here the reference values
are taken at y;/(n); = 250).

This comparison between the conditional mean profiles of enstrophy has seldom been
done using data from completely different flow types. The compilation of conditional mean
vorticity and enstrophy profiles shown in figure 6 in da Silva et al. (2014) is not a fair
comparison because of differences in the data (enstrophy, spanwise vorticity, vorticity
magnitude) and the details of the procedure used to obtain the conditional statistics
(e.g. using a one-dimensional vertical line, two-dimensional normal, 3-D normal). More
importantly, the Reynolds numbers of some of these simulations were simply too
low, as the analysis of interface thickness scaling described in Silva et al. (2018) has
shown.

916 A9-10


https://doi.org/10.1017/jfm.2021.168

https://doi.org/10.1017/jfm.2021.168 Published online by Cambridge University Press

Universality of small-scale motions within TNTI

(a) 40 ‘ ; : :
| SFTy0y ~JET 93 —JETy76 —WAKEys9 —WAKEsq5 — WAKEss]

3.0 .
w~ 2.5F 4
~ 20F 4

1.5F E

1 1 1
50 0 50 100 150 200 250

®) 12

0.2 1 1 1 1 1
=50 0 50 100 150 200 250

yillmr

Figure 3. Conditional mean profiles of Kolmogorov micro-scale (n); (a) and Kolmogorov velocity (u,); (b)
for all the simulations considered in this work, normalised by their mean values at the turbulent core region of
the flow, (n)r and (u;)7, respectively. The distance from the IB (y;) is normalised with the mean Kolmogorov
micro-scale computed at the turbulent core region, (n)r. (a) Conditional mean Kolmogorov micro-scale (n)r
and () conditional mean Kolmogorov velocity (uy);.

The curves in Figure 4 are somehow similar, with a sharp enstrophy jump after the
IB position, followed by a slow rise into the turbulent core region. However, it is clear
that the conditional profiles do not collapse because of differences in the normalised
enstrophy magnitude and the way the enstrophy moves into the turbulent core region,
i.e. different magnitudes of the profiles at a given distance y;/(n)7 from the IB position.
The thickness of the vorticity jump is of course of the same order in all cases, with
(w)/{n)T ~ 10-20, in agreement with Silva et al. (2018). The different evolution of the
enstrophy for y;/(n)r > 20, i.e. large distances from the IB is connected with large-scale
inhomogeneities within the flow and not with the dynamics of the flow within the TNTI
layer (as will be shown below), as it is unlikely that the small-scale dynamics at the
interface can be affected by small-scale events taking place at distances of more than

200 Kolmogorov micro-scales away. The approach towards (w;w;);/((uy)7/ m7)? —1
for y;/(n)r > 1 is explained by kinematic constraints, since in the turbulent core region
(wiw;) [ {(uy/ n)z) = 1, as in homogeneous turbulence.

The non-collapsing nature of the profiles of conditional mean enstrophy for different
flows, or even for the same flow at different Reynolds numbers, when these profiles are
normalised by a reference Kolmogorov velocity and length scale, has been reported before
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Figure 4. Conditional mean enstrophy profile (w;w;); for all the simulations considered in this work,
normalised with the mean Kolmogorov velocity and length scale, computed at the turbulent core region of
the flow, (n)r and (u,)r, respectively. The inset shows the amplified region near the IB (y; = 0).

in several works; see, e.g. figures 5 and 16(b) of Watanabe, Nagata & da Silva (2017b),
Watanabe et al. (2018), respectively. The particular shape of these mean enstrophy profiles
can be justified by the simple arguments described in appendix B.

In light of the above discussion, since the Kolmogorov velocity, length (and, therefore,
time) scales are clearly the characteristic scales of the TNTI layer, it is natural to
normalise all small-scale quantities with the mean local Kolmogorov scales, i.e. to

plot (wjw;); normalised by ({uy);/ (77)1)2, as shown in figure 5. In contrast to figure 4,
here all the conditional enstrophy profiles collapse nicely into a single curve. That the
collapse is indeed perfect can be attested by the very small separation distance between
the individual curves, which is comparable to the resolution of the simulations, of the
oder of one Kolmogorov micro-scale. As before, the normalised enstrophy tends to
(wiwi)/(un)i/{n) nF=1 away from the TNTI layer, but unlike in figure 4, here this value
is attained very quickly, at y7/(n); ~ 30, which is shortly after the end of the TNTI layer,
which extends at most until y;/(n); ~ 20. Inside the TNTT layer, again in marked contrast
to figure 4, the normalised enstrophy exhibits a peak that reaches (w;w;);/((uy)1/(n) N*~
1.3, and is located at y;/(n); & 15. Close to the IB the normalised enstrophy displays
a very sharp rise, as in figure 4. Note that the conditional profile of (w;w;/(uy/ n)?); is
theoretically ‘similar’ but is affected by considerably more intermittency, and, therefore,
would need more samples/instants to attain an equivalent degree of convergence. The use
of the local Kolmogorov scales to normalise the enstrophy can be questioned at first sight
because the definition of these scales arises from the classical description of the energy
cascade mechanism, which does not take place very close to the IB (Watanabe et al. 2019);
however, it can also be argued that the Kolmogorov scales are a natural definition of the
viscous scales at work within the flow, and in this sense, the variable Kolmogorov scales
near the IB have a clear physical meaning. Appendix C shows that the spatial or temporal
nature of the simulations/flow type does not affect the present results; Reynolds number
effects are discussed in appendix D.

The shape of the normalised enstrophy depicted in figure 5 and, in particular, the
deviation from the asymptotic value of 1 can be understood as a consequence of a deviation
of the flow from local homogeneity near the TNTTI layer. To see this, consider the expansion
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Figure 5. Conditional mean enstrophy profile (w;w;); for all the simulations considered in this work,
normalised with the mean local Kolmogorov velocity and length scale, computed at each coordinate y;, (n);
and (u,);, respectively. The inset shows the amplified region near the IB (y; = 0).

of the enstrophy and the normalising Kolmogorov velocity and length scale ratio, i.e.

ouy, ou ouy, 2 ouy ouj
Wiw; = €k €ilm—— = (—) - — (3.1
0x; ax; 0x; 0x; dx
and
Uy 2 ¢ 1 (Ou;  Ouj 2 ou; 2 ou; du;
— ) =—=25S8Si=z\—+—) =|\—) + ——. 3.2)
n v 2\ 0x; Ox; 0x; 0x; 0x;

Using the above relations, the conditional mean enstrophy normalised by the local
Kolmogorov scales can be written as

<8ui)2 <8ui 8uj>
(wiwi); 0x; ; dx;j dx; [,

= . (3.3)
M,27 ou; 2 n Ou; du;
n? , dxj ) [, \dxj oxif,

For an homogeneous incompressible flow,

ou; du; 0 ou;
— ) = —(y—L) =0, (3.4)
dxj dx; [,  0x; 0x; [;

and, therefore, the ratio in (3.3) is only different from 1 in flow regions where the flow is
not (locally) homogeneous. Figure 5 therefore shows that, for y;/(n); < 35, which already
covers a small region outside the TNTI layer, the flow is locally inhomogeneous. This
result is interesting because it shows that there is a length of about 107, outside the TNTI
layer, where the small-scale features of the flow are already characteristic of the turbulent
core region, i.e. the flow is still adjusting from the presence of the nearby TNTI layer.
The value of (coia)i)l/((un/n)z)l > 1 observed for 10 < y;/(n); <35 can be
explained by the bigger density of intense vortices here compared with inside the
turbulent core region of the flow, because the IB is defined around these structures
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(da Silva et al. 2011; Watanabe et al. 2017a). Indeed, (3.3) implies that a region with values
of the normalised conditional enstrophy with (w;w;)1/((uy/ n)?); > 1 is only possible if
((0u;/0x;)(du;j/0x;)); < 0 in those regions. This term can be related to the Laplacian of
conditional mean pressure (p)s, through the Poisson equation,

V2 (/) = —<8—”%> , 3.5)
1

0x; 0x;

where p is the (constant) flow density. Therefore, the observed maximum of
(wiwi) 1/ {(uy/ n)2)1 indicates the existence of a mean (local) pressure minimum. The
conditional mean profile of (V2p); can be also connected with the second invariant of
the velocity gradient tensor Q = }‘(a)iwi — 28;S;i), since Vzp = 20 (Davidson 2004).
Conditional mean profiles of (Q);, normalised with the Kolmogorov micro-scales at the
turbulent core region, are shown in figure 6(a) for all the simulations used in the present
work. These profiles are similar to that shown in da Silva & Pereira (2008, 2009), and show
the existence of double (positive/negative) peaks of Q associated with a predominance of
enstrophy/strain near the IB position in the T and NT regions, respectively. The mean value
of (Q);r = 0 observed in the turbulent core and irrotational core regions is again explained
by the homogeneity of the flow in these regions.

Figure 6(b) shows the same profiles normalised with the local mean Kolmogorov scales,
again showing a better collapse of all the curves and the emergence of the universal shape
of the conditional Q in the TNTI layer. The maximum is (Q);/{(uy/ n)?); ~ 0.06 and
is located at the same location corresponding to the maximum of (w;w;);/{(u,/ n)2)1,
while the value of < Q >; /((u,,/n)z)[ ~ —1/4 observed in the IR region is simply
a consequence of the definition of Q in a region of zero enstrophy, and of the
scaling of strain S;S;; ~ (uy/ n)%. The conditional mean profiles of the third invariant
of the velocity gradient R = —1/3(S;SjSkxi — 3/4w;w;S;) (not shown) display similar
trends, i.e. while the conditional mean profiles of (R); obtained from the several
simulations normalised with the Kolmogorov scales from the turbulent core region display
considerable differences, the same profiles normalised with the local Kolmogorov scales
exhibit the same universal profile in all the simulations used in the present work.

It is clear that the particular shape of (w;w;)r/((uy/n)?)1 and (Q)1/{(uy/n)*)1 is a
consequence of the local low pressure associated with the presence of a large number
of eddies, because the IB is defined by the flow eddies bounding the TNTI layer, and by
their particular alignment (tangential to this layer), as shown in numerous works, e.g. da
Silva et al. (2011), Mistry, Philip & Dawson (2019).

The results presented so far are related, totally or in part, to the vorticity (or the
enstrophy), but it is important to show that the observed universality is also present in the
rate-of-strain tensor, which is another important small-scale turbulence quantity. Figure 7
shows the conditional mean rate-of-strain magnitude (S;;S;;);, normalised in the usual way,
i.e. with the reference Kolmogorov velocity and length scales from the turbulent core
region. Clearly with this normalisation no universality can be observed, as the several
profiles are different within the TNTI layer and beyond, even for y;/(n)7 = 250. That this
fact is associated with the effects of the large-scale inhomogeneities of the flow near the
TNTI layer is easily shown by writing

1 [Cou
(SiiSii); = _< > , (3.6)
§joij o ,
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Figure 6. Normalised conditional mean profiles of the second invariant of the velocity gradient tensor (Q);
for all the simulations used in the present work, normalised with the reference Kolmogorov scales (a) and with
the local Kolmogorov scales (b).

—0.25

where the non-dimensional dissipation C, = ¢L/u’> is defined with the integral scale of
turbulence L and the root mean square of the velocity fluctuations u’. Since, as shown by
Watanabe et al. (2019), both C, and L are approximately constant for y;/(n)r = 15, the
continuous rise of (S;;S;;); observed in figure 7 must be explained by variations of the
Reynolds stresses when moving away from the IB position. However, the universality or
the rate-of-strain magnitude, S;;S;;, (and of the viscous dissipation rate ¢£) when using the
local normalisation is trivially demonstrated from (3.2),

(SpSyht - _ 1
(uy/m)7 2

for all y; (including the NT region), i.e. the mathematical definition of the Kolmogorov
velocity and length scales implies the similarity of the rate-of-strain magnitude, when
normalised with the local mean Kolmogorov scales. This has been confirmed for all the
simulations used in the present work (not shown), and explains also why (S;;S;;); in figure 7
(normalised with the turbulent core Kolmogorov scales) is seen approaching the constant
1/2 as y;/(n)T increases.

It is noteworthy that the perfect collapse observed above for the conditional means of
the vorticity and strain (and related small-scale quantities — see below) is not observed
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Figure 7. Normalised conditional mean profiles of the rate-of-strain magnitude (S;;S;;); for all the simulations
used in the present work, normalised with the mean Kolmogorov velocity and length scale, computed at the
turbulent core region of the flow, (n)7 and (u,)r, respectively.

for typical large-scale quantities. As expected, the conditional Reynolds stresses (when
normalised with the local Kolmogorov scales) do not collapse into the same curve. On the
contrary, very different curves are obtained for these statistics, even for different instants
of the same flow, except right at the IB (not shown).

The degree to which the small scales of turbulence can satisfy the classical isotropic
turbulence statistics can be appreciated by analysing the skewness of the longitudinal
velocity gradient, So, defined by Davidson (2004),

) o

where the averaging is performed in the homogenous directions of the flow, and is strongly
linked to the production of enstrophy,

7
615

Clearly, a negative value of Sy is necessary for the mean of the enstrophy production to
be positive, as is always the case in fully developed turbulence (Davidson 2004). Ishihara
et al. (2007) showed that Sy is approximately constant, with only a mild-Reynolds-number
dependence (0.51 < —Sp < 0.67 for 200 < Re, < 300).

Figure 8 shows the mean conditional Sy for all the simulations used in the present work,
computed as

(wiw;Si) = — So(wjw;) /2. (3.9)

6+/15 (wiw;Si)1

3/2

(3.10)
7 (a)kwk>1

(So)r = —

Here (Sp); is constant in the turbulent core and has the same value moving into the TNTI
layer until about y;/(n); & 20-30 where it displays a small increase. The inset shows that
values of (Sp); are between 0.52 < —Sp < 0.62, in good agreement with the isotropic
values given the degree of convergence of the profiles. These profiles contrast with some
conclusions of Breda & Buxton (2019) and show that the small scales of the flow can be
represented by classical isotropic relations impressively close to the IB.
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Figure 8. Conditional mean profile of the skewness of the velocity gradient (Sp); for all the simulations
considered in this work, where the distance to the IB (y; = 0) is normalised by the mean local Kolmogorov
scale y7/(n)s, and the inset shows the amplified region near the IB.
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Figure 9. The self-similar conditional mean enstrophy profile (w;w;); normalised with the local Kolmogorov
velocity and length scale, (n); and (u,);, respectively, obtained by averaging all the curves displayed in figure 5.
The inset shows the amplified region near the IB (y; = 0).

Finally, in order to document the universal shape of the normalised conditional mean
enstrophy displayed in figure 5, we have averaged all the profiles in this figure. Figure 9
shows the resulting ‘averaged’ mean profile, and table 2 lists some of its coordinates
for future reference. This profile of normalised conditional mean enstrophy is possibly
a self-similar solution of a (locally) normalised enstrophy equation budget. Since this
profile is virtually equal for the three very different flow types analysed here, a similar
mean conditional enstrophy profile should be observed in virtually all Newtonian and
incompressible TNTT layers. For completeness, appendix E discusses the small differences
one gets when using the interface defined by the local IB introduced in § 2.2, instead of
the envelope that is used throughout the present work.

We end this section with a small consideration on the importance of the results described
above. Indeed, all the results convincingly show that the (mean) local Kolmogorov velocity
and length scales are the natural scales characterising the conditional profiles of several
small-scale quantities within the TNTTI layer. At first sight one might be tempted to think
that this is a trivial result since (i) it is well known that in fully developed turbulence the

916 A9-17


https://doi.org/10.1017/jfm.2021.168

https://doi.org/10.1017/jfm.2021.168 Published online by Cambridge University Press

M. Zecchetto and C. B. da Silva

yi/{ni 3 6 9 11 13 15 18 21 24 30 40
(wiwid1/(ug/m)? 0317 0785 1103 1217 1248 1237 1195 1147 1116 1.080 1.038

Table 2. Coordinates of the self-similar conditional enstrophy profile (w;w;);/(u,/ n)?, obtained by averaging
over all the conditional enstrophy profiles in figure 5.

characteristics of the small scales of motion can be linked to the Kolmogorov micro-scale,
e.g. the production of enstrophy can be estimated as w;w;S; ~ (uy,/ )3, and (ii) it has
recently been shown, in agreement with (i), that the thickness of the TNTI layer scales
with the Kolmogorov micro-scale at sufficiently high Reynolds numbers.

However, we believe this is not a trivial result for two main reasons. First, the very
definition of the Kolmogorov scales arises from the concept of an ongoing energy cascade,
which is clearly atypical within the TNTI layer, as recently shown in Watanabe et al.
(2019). In short, the small scales are strongly depleted in a big part of the TNTI layer,
and are strongly unbalanced (in relation to the energy flux they receive from the large
scales). Moreover, the non-dimensional dissipation C, displays anomalous power laws
Ce ~ Ref] within the TNTI layer (Watanabe ef al. 2019). Furthermore, the flow within
the VSL is clearly not characteristic of fully developed turbulence, because viscosity
strongly dominates this flow region no matter how high the Reynolds number may be.
The second reason has to do with the supposed link between enstrophy — velocity
gradients — viscous dissipation. Although this link certainly exists in a statistical sense
in homogeneous turbulence, locally the relation between vorticity and strain is rather
complex, as described at length in Tsinober, Ortenberg & Shtilman (1999), Tsinober
(2019), and, moreover, the TNTTI layer has distinct regions where it cannot be considered
to be homogeneous. In short, enstrophy and strain are locally quite different, and this is
even more so within the TNTI layer, where the flow is not statistically homogeneous.

To summarise, one should remember that the thickness of the TNTI layer is associated
with just one feature of the conditional enstrophy profile in the TNTI layer (the length of
the vorticity jump or the location of its peak), while present analysis of the conditional
enstrophy profile focuses on the Kolmogorov scaling along the entirety of this profile. In
this sense, the recent results demonstrating the Kolmogorov scaling of the TNTI thickness
can be seen as a particular result encompassed in the present results on the shape of the
conditional enstrophy profiles.

3.2. Universality of conditional mean enstrophy budgets
We now move into the analysis of the conditional mean enstrophy budgets. Applying
a conditional mean at the enstrophy transport equation, the conditional mean enstrophy
budget is written as

Dw*/2 2,2
= (wiw;Sij)1 + vV (07/2))— (vVw; - Vo), (3.11)
Dt I —— e —
— Production, P, Diffusion, D,, Dissipation, E,,

Total variation, T,

where the left-hand side represents the total variation of enstrophy (7,,), whereas the
terms on the right-hand side represent the production (P,,), viscous diffusion (D) and
viscous dissipation (E,), respectively. Note that the application of this averaging procedure

916 A9-18


https://doi.org/10.1017/jfm.2021.168

https://doi.org/10.1017/jfm.2021.168 Published online by Cambridge University Press

Universality of small-scale motions within TNTI

0.3 \

..... IR CTNTI TR — w2
s /___,//—gm
0.2 : o |
: —E,
0.1+ i ,
0 !
VSL i  TSL
-0.1 L L 1 1
“10 0 10 20 30 40
yi/imr

Figure 10. Conditional mean enstrophy budgets (3.11) for WAKE3s9, normalised with the mean Kolmogorov
velocity and length scale, computed at the turbulent core region of the flow, (n)7 and (u,)7, respectively:
enstrophy production (P,,), enstrophy diffusion (D,,) and enstrophy dissipation (E,,). The figure also displays
the location of the VSL and the TSL, which comprise the TNTI layer, separating the NT (or IR) and the
turbulent core (TR) regions.

assumes that the IB moves at constant speed, otherwise, new terms would have to be
added to this conditionally averaged equation, as discussed in Westerweel et al. (2009).
This assumption is somehow consistent with the very small values observed for the local
IB velocity (Holzner et al. 2009; Watanabe et al. 2014). The shape of these terms within
the TNTI layer has been analysed in detail in numerous works (e.g. Bisset et al. 2002;
Holzner et al. 2008; Taveira & da Silva 2014; Watanabe et al. 2016b). Figure 10 shows the
conditional mean terms for WAKE359 normalised in the usual way, i.e. using the reference
Kolmogorov variables taken from the turbulence core region (very far from the IB) to
normalise the whole conditional profiles.

The VSL consists of a subregion where viscous diffusion D, dominates the enstrophy
growth within the TNTI layer (D, > P,), while in the TSL the enstrophy growth is
dominated by the enstrophy production (D, < P,). The total extent of the TNTI layer
(sum of the VSL and TSL) goes from the IB (y;/n = 0) until the point at which enstrophy
ceases to grow steeply (y;/(n) ~ 15), and separates the IR region from the turbulent core
region. Clearly, the enstrophy production, diffusion and dissipation are all still slowly
evolving (increasing) outside the TNTI layer because the enstrophy is still adjusting to
large-scale inhomogeneities within the flow. Similar conditional enstrophy budgets have
been observed in TNTIs from very different flow types such as mixing layers (Watanabe
et al. 2016D), plane wakes (Bisset et al. 2002), SFT (Holzner et al. 2007, 2008), boundary
layers (Chauhan, Philip & Marusic 2014a; Borrell & Jiménez 2016; Watanabe et al. 2018)
and plane jets (Silva & da Silva 2017; Silva et al. 2018; Taveira & da Silva 2014; Watanabe
et al. 2014).

The next two figures show the conditional mean enstrophy budgets for all the simulations
used in the present work, normalised by the turbulent core (figure 11a) and by the
local (figure 11b) Kolmogorov velocity and length scales. It is clear that the curves in
figure 11(a) show the same trend observed above, and do not collapse, while the curves
in figure 11(b) not only collapse nicely into the same profiles, but are also constant for
yi/{n)r Z 25, i.e. shortly after the end of the TNTI layer.

In order to assess the detailed shape of each one of the conditional mean enstrophy
terms obtained with the new normalisation, figure 12 shows these profiles for WAKE»s9
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Figure 11. Normalised conditional mean profiles of the governing enstrophy equation terms (3.11) for all the
simulations used in the present work, normalised with the Kolmogorov velocity and length scales, computed
at the turbulent core region of the flow, ()7 and (u;,)r (a), and with the local Kolmogorov velocity and
length scale, computed at the turbulent core region of the flow, (17); and (u,); (b): enstrophy production (P,,),
enstrophy diffusion (D,,) and enstrophy dissipation (E).

near the TNTI layer. The evolution of enstrophy dynamics can be qualitatively interpreted
in a similar manner as before with an initial part where enstrophy viscous diffusion is the
leading term (VSL), followed by a region where enstrophy production takes over (TSL),
until, moving further into the turbulent core, the viscous diffusion becomes negligible and
production balances dissipation (turbulent core). Figure 12 also indicates the location of
the VSL and TSL within the TNTI layer, and it is instructive to compare this figure with
figure 10 that shows the same profiles with the standard normalisation. In short, incipient
peaks of several quantities in the classical normalisation (figure 10) become much more
clearly observed in the new normalisation (figure 12), which allows for a much more clear
identification of the two sublayers within the TNTT layer.

In order to detect the end of the TSL (and of the TNTI layer) Silva et al
(2018) used a procedure based on the local maximum enstrophy, while Watanabe,
Riley & Nagata (2017¢) developed a method based on the derivative of (|wl);, in
respect to the distance from the IB, where the end of the TNTI layer is defined
by d{|wl|);/dy; = 0.25Max(d(|w|);/dy;, with the two methods giving similar results.
Figure 12 shows that using the new normalisation with the mean local Kolmogorov
scales, this point simply coincides with the mean (normalised) enstrophy peak, which
is located at y;/(n); &~ 13. The new normalisation thus allows for a much easier
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Figure 12. Conditional mean enstrophy budgets (3.11) for WAKEjs59, normalised with the local Kolmogorov
velocity and length scale, computed at the turbulent core region of the flow, (); and (u;);, respectively:
enstrophy production (P,), enstrophy diffusion (D,,) and enstrophy dissipation (E,). The figure also displays
the location of the VSL and the TSL, which comprise the TNTI layer, separating the NT (or IR) and the
turbulent core (TR) regions.

Max[P,] Max[D,) Min[D,,] Loc.Min[E,] Loc.Max|E,] MinlE,]

SFTa0 020(8.3)  0.222.0) —0.0256.5  —0.21(2.7) —0.18(4.5)  —0.24(12.6)
JET103 021(7.6)  021(2.4) —0.024(7.1)  —0.20(3.2) —0.18(5.0)  —0.23(14.5)
JET76 0.21(9.8)  0.192.7) —0.01309.0)  —0.19(3.2) —0.17(5.0)  —0.22(12.3)
WAKE»so  0.22(8.0)  0.17(2.0)  —0.038(5.4)  —0.202.7) —0.16(5.1)  —0.22(12.1)
WAKE»s  0.22(9.3)  0.16(2.0)  —0.036(6.1)  —0.19(3.0) —0.16(5.3)  —0.21(12.1)
WAKE3s  0.24(12.3)  0.202.6) —0.031(6.3)  —0.20(3.5) ~0.16(5.9)  —0.21(11.4)

Table 3. Details of the values and coordinates at several key points of the locally normalised enstrophy
equation terms (3.11) in all the simulations used in the present work: enstrophy production (P,,), enstrophy
diffusion (D) and enstrophy dissipation (E,). The terms are normalised with the local conditional mean
Kolmogorov velocity and length scales, (u;); and (n);, respectively (e.g. (Pw>1/((un)1/(n)1)3), while
the corresponding coordinates (indicated inside brackets) are normalised by the local mean Kolmogorov
micro-scale, y;/(n);.

detection of this point and also a more direct estimation of the size of the TNTI layer.
Table 3 lists the values and coordinates of the enstrophy governing terms at several key
points in the new (local) normalisation, showing a small variation for these quantities for
all the simulations used in the present work.

As in the ‘classical’ normalisation the peak of enstrophy production (P,,) also appears
during the fast increase of (|w|); in the TSL (y;/(n); ~ 8.0), however, in contrast to
figure 10, in figure 12 the enstrophy production (P,) quickly attains a constant value
once the turbulent core region is reached. The magnitude of the normalised production
in the turbulent core region (P})); = (Py,)1/{(uy/ 1n)3)7, which by inspection of figure 12 is
(P} )1 ~ 0.17, can again be easily explained by the isotropic relations mentioned above, by
remarking that normalising with (u;/n) is equivalent to normalising with the Kolmogorov

time scale 7, = (v/ £)1/2, which is equal to =1/ (w,-wi)ll/ 2 using the homogeneous flow
relation (25;S;) = (wjw;). Therefore, (P4); = (Po)1{t))1 = (Pu)1/{wiwy);' >, which by

using (3.9) with a constant value of Sy = —0.55 yields (P} ); = 0.166.
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The enstrophy diffusion D, exhibits a profile which is similar in both normalisations
(compare figures 10 and 12), however, in figure 12 the maximum of D, and P, is now
comparable, and the maximum of D, is attained a bit sooner, by y;/(n); ~ 2.0. The
crossing between the enstrophy production and diffusion (D, = P,,), which marks the
end of the VSL, is located at y;/(n); = 4.0 in both cases, consistently with the direct
measurements of this layer undertaken by Taveira & da Silva (2014), with the smaller
value obtained for the local normalisation (y;/(n)7 = 4.2 and y;/(n); = 3.1).

The enstrophy dissipation term (E,,) is the only term that displays a very different shape
compared with the usual normalised profile (compare E, in figures 10 and 12). The profile
also displays a constant value once the end of the TNTI layer is approached, roughly
coinciding with a second minimum at y;/(n); &~ 12.1, however, the profile also exhibits
another minimum very close to the IB, at y;/(n); ~ 2.7, coinciding with the end of the
VSL, and a local maximum within the TSL at y;/(n); = 5.1, i.e. slightly before (but very
close to) the point of maximum enstrophy production and minimum of enstrophy diffusion.
This local maximum in E,, roughly coincides with the minimum of enstrophy diffusion D,,
and indicates that these two viscous effects are interrelated. The JPDF between these two
variables shows indeed a very strong (anti)correlation between the two variables at this
location (not shown).

To summarise, the new normalisation of the enstrophy transport equation terms using
the local mean Kolmogorov velocity and length scales shows that the conditional mean
profiles of these terms exhibit a universal shape, with very small variations in the
simulations used in the present work, and allows for a much more clear assessment of
the position of the several sublayers within the TNTI layer, as well as the limits of this
layer.

This fact has an important implication on the statistics of the small-scale ‘nibbling’
mechanism as measured in different flow types. The ‘nibbling’ mechanism, as defined by
Corrsin & Kistler (1955), consists of the small-scale diffusion of vorticity (or enstrophy)
into the NT flow region, which occurs mainly at the VSL, where the enstrophy diffusion
D,, dominates the enstrophy dynamics. The total amount of this effect can be computed in
several different ways, e.g. by computing a ‘flux’ of D,, across the edge of the VSL, or by
integrating D,, over the entire VSL. Whatever the definition used, the fact that the mean
profile of D,, normalised with the local mean Kolmogorov velocity and length scales,
is equal in very different flow types strongly suggests that the statistics of the ‘nibbling’
mechanism are universal, i.e. equal in jets, wakes and mixing layers.

The next section will show how the instantaneous values associated with the small-scale
turbulence dynamics, as observed by the shape of the probability density functions, also
collapse nicely into the same contours, provided these quantities are properly normalised.

3.3. Probability density functions at several locations within the TNTI layer

In order to assess the degree of collapse provided by the new normalisation we now analyse
joint probability density functions (JPDFs) of several quantities at fixed coordinates within
the TNTI layer. These JPDFs were computed by using the values of several flow variables
taken at the same (fixed) distance y; from the IB position, using the same procedure
described in § 2.2. Thus, the approach used to obtain these JPDFs is quite different to
that developed in Pope (1985), which to the authors knowledge has never been used in
the context of TNTIs. Figure 13 shows the JPDF of the total enstrophy variation T,
and enstrophy viscous diffusion D,, at four locations inside the TNTI layer. The two
variables are again normalised with the local, i.e. conditional mean Kolmogorov velocity
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) 3

d) 3

Figure 13. Joint probability density function of total enstrophy variation 7, and enstrophy diffusion, D,,,
normalised with the (mean) local Kolmogorov velocity and length scale, for three different flow types (SFT202 —
dash/blue, JET 93 — dash—dot/magenta, WAKEj¢ — solid line/red) at several locations within the TNTI layer:
(a) peak of enstrophy diffusion Max[D,,]; (b) peak of enstrophy production Max[P,]; (¢) peak of enstrophy
Max[w? /2]; (d) turbulent core region (y;/(n); = 250). In all cases the isolines correspond to the same levels
(1.0, 0.1, 0.01 and 0.001).

and micro-scale. In agreement with Taveira et al. (2013), the correlation between T,, and
D,, is very strong inside the VSL at the point of maximum D,, (figure 13a) and decreases
inside the TSL and beyond (figure 136—d). The universality of the enstrophy dynamics
within the TNTTI layer can be confirmed by the strong near collapse of the isolines of the
JPDFs for three very different flow types, particularly for the contours associated with
the most frequent values of the variables. The smaller degree of collapse observed for
high values of T, and D,, in the first location (figure 13a) can be explained by the very
fast evolution of the small-scale characteristics at this point of Max[D,,], and the smaller
collapse between the curves for the contours associated with less frequent events may
also be affected by the use of the interface envelope, instead of the interface itself, in the
procedure of the conditional statistics used in the present work.

Figure 14 shows the JPDF of the total enstrophy variation T, and enstrophy production
P, at the same four locations of the TNTI layer as in figure 13. Again, and in agreement
with Taveira et al. (2013), we see that the correlation between T, and P, is strong in
the entire TSL and in the turbulent core region (figure 13H6—d) but is somehow much
smaller inside the VSL (figure 14a). Again the collapse between the isolines of the JPDF
of T, and P, is very impressive, particularly for the contours associated with the most
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Figure 14. Joint probability density function of total enstrophy variation 7,,, and enstrophy production, P,
normalised with the (mean) local Kolmogorov velocity and length scale, for three different flow types (SFT202 —
dash/blue, JET 93 — dash—dot/magenta, WAKEj4 — solid line/red) at several locations within the TNTI layer:
(a) peak of enstrophy diffusion Max[D,,]; (b) peak of enstrophy production Max[P,]; (c) peak of enstrophy
Max[w?/2]; (d) turbulent core region (y;/(n); = 250). In all cases the isolines correspond to the same levels
(1.0, 0.1, 0.01 and 0.001).

frequent values, and the fact that these are obtained from very different flows underscores
the universality of the enstrophy dynamics within the TNTT layer.

The evolution of small scales of turbulence inside the TNTI layer is further explored
by analysing the JPDFs for the second Q, and third R, invariants of the velocity gradient
tensor, du;/dx;. The invariants are interesting variables to analyse in this context because
they characterise many of the well-know universal features of the small-scale dynamics
of turbulence, including the geometry of the small-scale straining motions as well as
the small-scale details of the strain and vorticity generation (Cantwell 1993; Davidson
2004). This universality is manifested in the well-know ‘tear-drop’ shape of the JPDF of
Q and R that has been observed in virtually all turbulent flows, such as in experimental
turbulent boundary layers (Elsinga & Marusic 2010), round jets (Breda & Buxton
2019) and turbulence generated by fractal grids (Gomes-Fernandes, Ganapathisubramani
& Vassilicos 2014), and in numerical simulations of turbulent mixing layers (Soria
et al. 1994), turbulent channel flows (Blackburn, Mansour & Cantwell 1996), turbulent
boundary layers (Chong et al. 1998), forced and decaying isotropic turbulence (Ooi et al.
1999), shear-free turbulence (Watanabe et al. 2017a) and turbulent plane jets (da Silva &
Pereira 2008).
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Figure 15. Joint probability density function of the second Q and third R invariants of the velocity gradient
tensor, normalised with the (mean) local Kolmogorov velocity and length scale, for three different flow types
(SFTy0y — dash/blue, JET 93 — dash—dot/magenta, WAKEje — solid line/red) at several locations within the

TNTI layer: (a) IB (y;/(n)1); (b) peak of enstrophy production Max[P,]; (c¢) peak of enstrophy Max[a)2 /21;
(d) turbulent core region (y7/(n)r = 250). In all cases the isolines correspond to the same levels (1.0, 0.1, 0.01

and 0.001). The lines represent the zero discriminant 4Q3 + 27R? = 0 (Cantwell 1993; Davidson 2004) (note
that the line is actually plotted for each case but are indistinguishable due to the collapsing).

However, the so-called ‘tear-drop’ shape is not completely formed in the IR (or NT)
region and the build-up of this shape across the TNTI layer has been analysed in detail by
da Silva & Pereira (2008) and, more recently, by Watanabe et al. (2017a). Figure 15 shows
the evolution of the JPDF of Q and R from the IB to the turbulent core region for the
three different flow configurations analysed in figures 13 and 14. The invariants are again
normalised using the local (conditional mean) Kolmogorov velocity and length scales. As
in da Silva & Pereira (2008), Watanabe et al. (2017a), the tear-drop starts forming in the
fourth quadrant, inside the VSL (figure 154), and expands later in the second quadrant
when crossing the TSL (figure 15b), and is completely formed and virtually equal to deep
inside the turbulent region by the time the end of the TNTI layer is reached (figure 15¢,d).
Recall that using the classical ‘normalisation’ differences in these maps can be observed
while moving away from the IB (for the same flow), e.g. da Silva & Pereira (2008), and this
is clearly not the case here. On the contrary, the almost perfect collapse observed for these
JPDFs at three radically different flow configurations, and at different locations, even for
the most frequent events, again demonstrates the universality of the small-scale geometry,
and of the dynamics of strain and vorticity within the TNTT layer.
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4. Conclusions

The universality of the statistics of the small-scale motions is the cornerstone of the
theory of turbulence and can take many different forms in fully developed turbulence
(Davidson 2004). The goal of the present work is to investigate the evidence of a similar
universality in the small-scale statistics near the TNTI layer that exists at the edges of
many flows such as turbulent jets, wakes and mixing layers, and also in turbulent boundary
layers. The small-scale variables analysed here are the basic variables typically considered
when assessing the small scales of motion in turbulent flows: vorticity and strain (and
related quantities).

For this purpose, we carried out DNS of three different temporally evolving free shear
flows: JET, WAKE and SFT (i.e. a turbulent front evolving without mean shear (SFT). The
DNS of JET and SFT have been documented before, and the new DNS of WAKE have
been validated against available data from experiments and DNS. In all the data banks
the resolution is comparable to the Kolmogorov micro-scale, and the Reynolds number
(based in the Taylor scale) is greater than (Re,); 2 200, which is required to obtain the
asymptotic solutions of the TNTI dynamics (Silva et al. 2018).

A series of conditional mean profiles were obtained as a function of the distance from
the 1B, which marks the outer surface of the TNTI layer. These profiles showed that the
Kolmogorov velocity and length scale are approximately constant, and equal to the values
deep inside the turbulent core of the flow for the entirety of the TNTI layer, changing only
close to the IB, at the VSL region, i.e. for distances of less than & 5n from the IB position.

For all the flow types and Reynolds numbers analysed in the present work, the
conditional mean enstrophy profiles normalised by the turbulent core Kolmogorov velocity
and length scales exhibit a sharp entrophy jump near the IB, followed by a slower increase
moving into the turbulent core region, with different profiles for the different cases. In
contrast, the normalisation of the same quantity using the local Kolmogorov velocity and
length scales shows that all the mean enstrophy profiles collapse into a single curve. The
peculiar ‘bump’ observed in these profiles at a distance of &~ 105 from the IB, representing
a deviation of the flow from a state of local homogeneity in that region, can be explained
by the existence of regions of low pressure caused by a row of intense (tube-like) vorticity
structures, with axis aligned with tangent to the isosurface defining the IB. The skewness
of the longitudinal velocity gradient also confirms that the smallest scales of motion
exhibit approximately local isotropic statistics except very close to the IB position (for
distances from the IB smaller than = 107).

Other small-scale quantities such as the second invariant of the velocity gradient tensor
and strain magnitude, and of the individual terms governing the evolution of the enstrophy
inside the TNTTI layer, also collapse into single mean profiles when normalised by the
local Kolmogorov velocity and length scales. These mean profiles also allow for a better
identification of the VSL and the TSL within the TNTTI layer, because of clearly identifiable
maxima and minima in the mean profiles of the enstrophy governing terms. Finally, the
JPDFs of the total enstrophy variation, viscous diffusion and production, together with
the second and third invariants of the velocity gradient tensor, show an approximate
collapse of the statistics of instantaneous values of these variables in the three flow types
and at the same positions inside the TNTI layer when these are normalised by the local
Kolmogorov velocity and length scales. The results confirm that the statistics of the small
scales of motion within the TNTI layer are universal, i.e. are equal for different flow types
at different Reynolds numbers, provided the Reynolds number is sufficiently high, and
suggest that the statistics of the small-scale ‘nibbling’ mechanism, associated with the
mechanism of the TE, is universal.
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Appendix A. Assessment of the new DNS of WAKE

The transition scenario is similar in all the new DNS of temporal planar wakes. It typically
starts by the emergence of symmetrical pairs of spanwise large-scale rollers at the upper
and lower shear layer region, and is followed by the appearance of pairs of streamwise
vortices connecting each two consecutive pairs of the rollers, making up the classical Von
Karman street. Shortly after, the streamwise vortices break up into smaller-scale structures,
with no clear preferential direction, which is a sign of the flow having attained a fully
developed turbulent stage.

An interesting feature well known to wakes is that, in contrast to jets, very different
outlines of the shear layer can be observed in different wakes. This is illustrated in
figure 16 which shows the contours of vorticity magnitude from two of the new planar wake
simulations, WAKE»>59 and WAKE¢¢. Whereas the shear layer is generally extended along
the streamwise direction in WAKEys9, it is much more ‘twisted’ in WAKEjg6. Moser,
Rogers & Ewing (1998) also observed that different initial conditions could originate
wakes in the fully developed turbulent region, with dramatically different pictures,
although with somehow not too different classical statistics. The difference between jets
and wakes in this respect may be connected with the way jets/wakes ‘forget’/‘do not forget’
the particular initial or inlet velocity characteristics during the transition to turbulence.
Figures 17(a) and 17(b) show the temporal evolution of the centreline velocity deficit
Us(t) = Uso — (u(y =0, 1)), where Uy is the free stream velocity, and of the wake
half-width o5 (7), for the three wakes used in the present work, respectively. The brackets
({) = ()x.;) represents a (spatial) average in the streamwise (x) and spanwise (z) directions
(the centreline of the wake is at y = 0). As described in Moser et al. (1998), these variables
should evolve as

Uy(t) ~ (t — 1)~/ (A1)
and
805 (1) ~ (t — 10) /2, (A2)

respectively, where 7o is a ‘virtual’ time origin. Only a few instants are available for the
computation of these quantities in the simulated wakes reported here, but figures 17(a) and
17(b) show that 835 (¢) and 1/Uq(r)? display an approximately linear evolution with time,
although with different slopes, which agrees with the temporal wakes simulated in Moser
et al. (1998) and indicates that at the instants considered the three wakes are evolving as
in the self-similar in the equilibrium region.
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(@) (b)

Figure 16. Contours of vorticity magnitude in a (x, y) plane for two DNS of planar wakes: WAKE>s59 and
WAKE26, at the fully developed turbulent regime. The figures show the total extent of the computational
domain in the streamwise (x) and normal (y) directions. (@) WAKEjs9 and (b) WAKE¢.
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Figure 17. Temporal evolution of the mean velocity deficit Uy (a) and half-width &os (b) for the three wakes
considered in this study. Only a few instants marked (by the symbols) are available for these plots (g is a
‘virtual® initial time).

Since the temporally evolving plane wake is statistically homogeneous in the streamwise
and spanwise directions, the streamwise momentum equation can be used to derive the
equation governing the mean velocity deficit AU(y, ),

/! 2
8AU=8(uv)+v8 AU’ (A3)
ot ay ay?
where AU(y,t) = Uso — (u(y,t)) is the profile of the mean velocity deficit and
u'(x,y,z,t) and v'(x, y, z, 1) are the velocity fluctuations in the streamwise and normal
directions, respectively, i.e. the instantaneous velocity is u(x,y,z, 1) = (u(y,t)) +
u'(x,y, z, t) according to the Reynolds decomposition.
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The classical theory for the far field of fully developed turbulent shear flows establishes
the existence of a self-similar state, which is reached when all the properly normalised
turbulence statistics attain universal distributions that are independent of streamwise
location (Townsend 1976). This assumption relies on the idea that during the transition
to turbulence the different initial details (inlet conditions) from different wakes are lost, so
that a universal asymptotic self-similar condition is attained.

For the particular case of planar turbulent wakes, similarity solutions for the velocity
deficit and shear stresses are given by (Townsend 1976; George 1989; Moser et al. 1998),

AU(y,t) = =Us()f (§) (A4)
and
W' (y, 1) = Rs(1)g(§), (AS)

where & = y/80s5(¢) is a similarity coordinate defined with the half-width of the wake and
f(&) the normalised velocity defect profile. Similarly, the normalised Reynolds stresses
g(&) are defined with the help of a normalisation function R, (¢), usually taken as Ry(¢) =
UZ(1).

By neglecting the viscous term in (A3) and by assuming a constant turbulent viscosity,
one arrives at the self-similar velocity defect profile (e.g. Pope 2000),

f(&) = exp(—at?), (A6)

with o =In(2) ~ 0.693. Wygnanski, Champagne & Marasli (1986) carried out
experiments in two-dimensional small-deficit wakes using various wake generators,
including circular cylinders, a symmetrical airfoil, a flat plate and an assortment of screens
of varying solidity. They showed that using the similarity coordinates the (normalised)
mean velocity profiles of all the wake generators collapsed into a single curve described
by the function

(&) = exp(—0.6375% — 0.056&™), (A7)

where the fourth-order term was added to correct the overestimate of (A6) observed near
the wake edges. Moser et al. (1998) carried out DNS of temporal planar wakes using as
an initial condition three different realisations of previously simulated turbulent boundary
layers. The boundary layers only differ in the magnitude of the initial perturbations, and
originate three very distinct wakes (unforced, weakly forced, strongly forced).

Figure 18 shows the normalised velocity defect profile f(£) from the present wake
simulations (at the far field regime) compared with the experimental data obtained by
Wygnanski et al. (1986) and by Ramaprian et al. (1984), and two of the available DNS
profiles generated by Moser et al. (1998). The figure also shows the functions described
by (A6) and (A7). The degree of convergence of the numerical results is not perfect and
is typical of similar results obtained in other temporal numerical simulations, where the
averaging procedure is carried out using a single instantaneous field (e.g. Rogers & Moser
1994). However, all the profiles, including the present wake simulations, exhibit a good
collapse into the same curve. The slight deviation of the profile maximum of the simulation
WAKE3p5 from y/§p5 = 0 is caused by the asymmetry of the large-scale motions at the
instant used for the analysis.

Figure 19 shows the profiles of the normal Reynolds stresses in the streamwise direction,
from several experimental and numerical results, compared with the profiles from present
wake simulations. The scatter between the several curves is substantial, unlike with the
mean velocity deficit. This is a well-known consequence of the strong dependence of
the turbulent wake characteristics from the details of the initial conditions. Indeed, it has
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Figure 18. Normalised velocity defect profiles from several experimental and numerical results, compared
with the present wake simulations: (solid lines) wakes in table 1; (solid lines with symbols) unforced wake and
weakly forced wake obtained by DNS in Moser er al. (1998); (dash—dotted line) constant turbulent viscosity
solution, (A6) in Pope (2000); (dashed line) (A7) from Wygnanski er al. (1986); (LJ) experimental data from
Wygnanski et al. (1986); (o) experimental data from Ramaprian ez al. (1984).

0.25
— WAKE,¢¢ —— Moser weak (1998)
— WAKE,s9 * Wygnanski (1986)
0.20 WAKEj;5 Weygandt (1995)
Y| = Moser un. (1998) 4 Zhou (1995)
N
D 015
=
=
N
= 0.10

0.05

V/dps

Figure 19. Normalised longitudinal component of the Reynolds stresses from several experimental and
numerical results, compared with the present wake simulations: (solid lines) wakes in table 1; (solid lines
with symbols) unforced wake and weakly forced wake obtained by DNS in Moser et al. (1998); (dark symbols)
experimental data from Wygnanski ef al. (1986); (o) experimental data from Weygandt & Mehta (1995); (red
triangles) experimental data from Zhou & Antonia (1995).

been frequently shown that, unlike as predicted from the classical theory, the Reynolds
stresses from wakes originated from different generators do not collapse into the same
scaling curve (Wygnanski et al. 1986; Weygandt & Mehta 1995; Zhou & Antonia 1995).
Nevertheless, the agreement between the several profiles is reasonable, since all Reynolds
stresses profiles exhibit a similar double-peaked shape, with a maximum of roughly
u?)/ Us2 ~ 0.05 — 0.06. The other Reynolds stresses components (not shown) display a
similar agreement. Thus, the large scales of the flow are characteristic of the far field of
WAKE.
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Figure 20. Three-dimensional kinetic energy spectra (a) and enstrophy spectra (b) for the simulations
WAKE259, WAKE266 and WAKE3ps. The spectra are normalised with the Kolmogorov quantities and are
computed using the entire flow domain.

The resolution of the small scales of motion in the new planar wakes simulations can
be appreciated in figures 20(a) and 20(b), which show the 3-D kinetic energy spectra,
and enstrophy spectra, for all the simulations. In all cases the kinetic energy spectrum
displays a reasonable —5/3 inertial range region, followed by a smooth decay at high
wavenumbers, and the resolution is always above ;.0 = 1.3. All the enstrophy spectra
peak at kn = 0.13, which marks the start of the dissipation region (Donzis & Sreenivasan
2010) and are also followed by a smooth decay at high wavenumbers. Thus, the small
scales of motion are well resolved for all the simulations which completes the validation
of the new temporal wake simulations.

Appendix B. Analytical description of the profiles of conditional mean enstrophy

The shape of the profiles of conditional mean enstrophy, normalised by the reference
Kolmogorov velocity and length scale from the turbulent core region, as depicted in
figure 4, can be justified by analysing the enstrophy transport (3.11). In this analysis we
denote the enstrophy by £2(z) = (w;w;);/2 and the distance from the IB normalised by the
reference Kolmogorov length scale by z = y;/(n)7. By supposing that the total enstrophy
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variation T,, occurs at a much smaller time scale than the sum of the other terms, which
is well supported by the present data and virtually all existing data of similar enstrophy
budgets, we can write (3.11) as

P,+D,—E, 0. (Bl)

In the initial part of the VSL region, when the production is still inactive, the diffusion and
dissipation roughly balance, so that (B1) can be written as

Dy — E,» ~ 0. (B2)

The enstrophy diffusion is composed of many terms but, arguably, at the start of the VSL
region the leading order term involves the second derivative of the enstrophy in relation to
the normal of the IB position,

2. 2
D, =<V3 (w,wl/2)> ~ g5
1

) B3
8)CjaxJ' dZ2 ( )

where B is a constant of order O(1). On the other hand, the dissipation term can be
approximated by considering that each one of the vorticity derivatives involved in its
definition can be approximated considering local isotropic turbulence, i.e. dw;/dx; ~
wi/{n)T, so that

£2(2)
E, = (vVa)i . Va),'>1 ~ VC—Z’ (B4)
(nr)
where C is a constant of order one. Thus, the conditional mean enstrophy is the solution

of the equation

@2 CR2=0 (B5)
dz? o
where C' = C/B(n)%, whose solution is
2(2) = crexp(+c32) + crexp(—c32), (B6)

with ¢3 = +/(’, and where ¢; and ¢y are constants. Since the enstrophy is zero at the IB,
£2(0) =0, ¢1 + ¢ = 0. So that (B6) can be written as

£2(2) = crexp(+c3z) — crexp(—c3z) = 2c; sinh(c3z). (B7)

This solution is consistent with the initial growth of enstrophy in the first few Kolmogorov
micro-scales of the VSL (before P, starts to rise).

Further inside the TNTTI layer, in the early part of the TSL, when the production and
dissipation roughly balance while diffusion is still D, #0, (B1) simplifies to

D, ~0, (B8)
and can be approximated by

<o =0 (BY)

dzz2

whose solution is £2(z) = b1z + b, where by and b, are constants. Thus, the conditional
mean enstrophy evolves linearly with the normal direction at some subregion of the TSL.

Finally, towards the end of the TSL, the enstrophy approaches a saturation before the
flow attains the turbulent core region. This maximum enstrophy (saturation) value is
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Figure 21. Conditional mean enstrophy profile (w;w;);, shown in figure 5 together with the results for the

DNS of a spatially evolving turbulent planar jet (SPJ29). All the profiles are normalised with the local mean

Kolmogorov velocity and length scale, computed at each coordinate yy, (17); and (uy);, respectively. The inset
shows the amplified region near the IB (y; = 0).

naturally imposed by the large scales of the flow, since in the turbulent core region the
dissipation law implies that §2(z) ~ u”®/vL, where «’ and L are the root-mean-square
velocity and the turbulent integral scale, respectively. After this saturation region the
enstrophy increases slowly moving into the flow centreline, while the production and
dissipation approximately balance, P, ~ E,,, while the diffusion is close to zero D, ~ 0,
which is consistent with a roughly constant conditional mean enstrophy.

Appendix C. Effects of the temporal vs spatial flow type in the conditional
enstrophy profiles

In order to assess whether the spatial or temporal nature of the simulations/flow type
can affect the present results we have added results from a DNS of a spatially evolving
flow. In the present case a turbulent planar jet has been used. The code used for these
spatial simulations has been described more recently in Guimaraes et al. (2020). The code
uses a number of Ny x Ny x N, = 1536 x 1536 x 256 grid points along the streamwise,
normal and spanwise directions, respectively, and the computational domain extends to
(Ly x Ly x L;) = (24H x 24H x 4H) in the same directions, respectively, as in da Silva,
Lopes & Raman (2015). The ratio of the inlet slot-width to the inlet momentum thickness
was H/6 = 30, and the inlet Reynolds number was Rey = 3500. The pictures of this
simulation, e.g. the contours of vorticity magnitude, are similar to those observed in JET,
such as in da Silva et al. (2015) and, more recently, in Guimaraes et al. (2020). The flow
is in the fully developed turbulent region for x/H 2 10 and for the present work, a total
of 50 instantaneous fields were taken from the region between 21 < x/H < 22, where the
Taylor-based Reynolds number is estimated as Rey = 120.

The conditional mean profiles of enstrophy for this flow are shown in figure 21, where
the new curve is added to the results of figure 5. It is clear that the results for the spatial jet
(SPJ120) are similar to the curves obtained for the other simulations extensibly discussed in
§ 3.1, which shows that the temporal or spatial nature of the simulations does not affect the
results in the present paper. The agreement would be even better had the Reynolds number
for this simulation been a bit higher, as discussed in Appendix D.
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Figure 22. Conditional mean enstrophy profiles (w;w;); for three temporally evolving JET: JET 93, JET276
(already in the core of the paper) and a new case with JETos. All the profiles are normalised with the local
mean Kolmogorov velocity and length scale, computed at each coordinate yy, (n); and (uy);, respectively. The
inset shows the amplified region near the IB (y; = 0).

Appendix D. Effects of the Reynolds number in the conditional enstrophy profiles

In order to assess the effect of the Reynolds number in the shape of the conditional mean
enstrophy profiles we have compiled the results obtained from three different DNS of
temporal planar jets. Two of these DNS (JET 93 and JET»7¢) are already used in the core
of the present paper and have been used in many figures. To these cases we have added a
new simulation with (JET o) the same planar jet configuration, but using a much lower
Reynolds number. All the parameters of this simulation are equal to JET193 (e.g. same grid
size and computational box), but the initial Reynolds number is set to Rep; = 3000. We use
an instantaneous field taken from the far field region of this DNS where the Taylor-based
Reynolds number is equal to Re; = 106.

The conditional mean profiles of enstrophy for the three simulations are shown in
figure 22, where the new curve is added to the results of this configuration already
shown in figure 5. The differences between the two curves with the highest Reynolds
numbers are very small, as the collapse is only imperfect due to very small oscillations
clearly connected with the imperfect convergence of the curves. However, for the smaller
Reynolds number the observed peak is a bit higher, with Max{(w;w;);/{(uy /)2 )~
1.47, compared with Max{(wia)i)l/((un/n)z)[} ~ 1.23 and 1.27 for JET 93 and JET>7,
respectively. The location of this peak is also somehow a bit close to the IB for JET g
with 5Max|a)| ~ 11.6, compared with SMax\a)l ~ 14.1 and 14.9 for JET 93 and JET»>7,
respectively.

Thus, the Reynolds number has a small effect (of slightly increasing the peak of the
conditional enstrophy) for low Reynolds numbers that, however, ceases to be observed
for sufficiently high Reynolds numbers. This result is not surprising since a threshold of
Re, 2 200 has been shown to be needed in order to observe the correct scaling of the
TNTI thickness (Silva et al. 2018), and this Reynolds number threshold is far from being
attained for JET 6.

Appendix E. Conditional enstrophy profiles for the IB and the envelope of the IB

The great majority of works devoted to the analysis of TNTIs use conditional statistics
based on the envelope of the IB instead of the IB, and it may be useful to show what
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Figure 23. Comparison between the conditional mean enstrophy profiles (w;w;); using the IB and the interface
enveloping the IB (described in § 2.2). The averaged profiles were obtained with all the simulations used in the
present work (as shown in figure 5), where the profiles have been normalised with the local mean Kolmogorov
velocity and length scale, computed at each coordinate y;, (n); and (uy);, respectively. The inset shows the
amplified region near the IB (y; = 0).

happens to the normalised profiles of enstrophy when one uses the two metrics. For this
purpose, figure 23 shows the normalised conditional mean enstrophy profiles obtained by
using the envelope of the IB (as in all the figures of the present work) or the ’true’ IB.
Both profiles result from averaging the profiles of all the simulations used in the present
work (excluding those that are only in the appendices).

The curves are virtually equal except between 5 < y;/(n); < 30, the conditional
enstrophy obtained with the IB exhibiting a stronger peak, roughly 15 % higher, although
occurring at the same location. Thus, the difference between the two metrics is indeed
small and is only felt in the magnitude of the peak of enstrophy.
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