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Abstract

In computational cognitive science, the cognitive architecture ACT-R is very popular. It de-

scribes a model of cognition that is amenable to computer implementation, paving the way for

computational psychology. Its underlying psychological theory has been investigated in many

psychological experiments, but ACT-R lacks a formal definition of its underlying concepts

from a mathematical-computational point of view. Although the canonical implementation

of ACT-R is now modularized, this production rule system is still hard to adapt and extend

in central components like the conflict resolution mechanism (which decides which of the

applicable rules to apply next).

In this work, we present a concise implementation of ACT-R based on Constraint Handling

Rules which has been derived from a formalization in prior work. To show the adaptability

of our approach, we implement several different conflict resolution mechanisms discussed in

the ACT-R literature. This results in the first implementation of one such mechanism. For

the other mechanisms, we empirically evaluate if our implementation matches the results of

reference implementations of ACT-R.

KEYWORDS: computational cognitive modeling, computational psychology, ACT-R, Con-

straint Handling Rules, production rule systems, conflict resolution

1 Introduction

Computational cognitive modeling is an approach in cognitive sciences which

explores human cognition by implementing detailed computational models. This

enables researchers to execute their models and simulate human behavior (Sun

2008). Due to their executability, computational models have to be defined precisely.

Thereby ambiguities appearing in verbal-conceptual models can be eliminated. By

conducting the same experiments with humans and an executable cognitive model,

the plausibility of a model can be verified and gradually improved.

To implement cognitive models, it is helpful to introduce cognitive architectures

which bundle well-investigated research results from several disciplines of psychology

to a unified theory. On the basis of such an architecture, researchers are able to

implement domain-specific computational models without having to deal with the

https://doi.org/10.1017/S1471068414000180 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000180


526 D. Gall and T. Frühwirth

remodeling of fundamental psychological results. Additionally, cognitive architec-

tures ideally constrain modeling to plausible models which facilitates the modeling

process (Taatgen et al. 2006).

One of the most popular cognitive architectures is Adaptive Control of Thought

– Rational (ACT-R), a production rule system introduced by John R. Anderson

(Anderson and Lebiere 1998; Anderson et al. 2004). It has been used to model

cognitive tasks like learning the past tense (Taatgen and Anderson 2002), but is

also used in human-computer interaction or to improve educational software by

simulating human students (Anderson et al. 2004, p. 1045 sqq.). Although providing

a theory of the psychological foundations, ACT-R lacks a formal definition of its

underlying concepts from a mathematical-computational point of view. This led to

a reference implementation full of assumptions and technical artifacts beyond the

theory making it difficult to overlook and inhibiting adaptability and extensibility.

The situation improved with the modularization of the psychological theory, but it

is still difficult to exchange more central parts of the implementation like conflict

resolution (Stewart and West 2007).

To overcome these drawbacks, we have formalized parts of the implementation

closing the gap between the psychological theory and the technical implementation.

We describe an implementation of ACT-R which has been derived from our

formalization using Constraint Handling Rules (CHR). Due to the power of logic

programming, our implementation is very close to the formalization and leads to

short and concise code covering the fundamental parts of the ACT-R theory. For the

compilation of ACT-R models to CHR programs, source-to-source transformation

is used. Our implementation is highly adaptable. In this paper, this is demonstrated

by integrating four different conflict resolution strategies. Despite its proximity to the

theory, the implementation can reproduce the results of the original implementation

as exemplified in the evaluation of our work. The formalization may support the

understanding of the details of our implementation, hence we refer to (Gall 2013)

and the online appendix (Appendix A).

In section 2, we give an overview of the fundamental concepts of ACT-R and

shortly describe their implementation in CHR. Section 3 describes the general

conflict resolution process of ACT-R. Then the implementation of four different

conflict resolution strategies proposed in the literature is presented. To evaluate our

implementations, we use an example to compare the results of our implementation

with those of the reference implementations where available in section 4. Eventually,

in section 5 some related work is presented and a conclusion is given in section 6.

2 A CHR implementation of ACT-R

In the following, a short overview of the fundamental concepts of the ACT-R theory

and their transfer to CHR is given. For reasons of space, we refer to the literature

for an introduction to CHR (Frühwirth 2009). For a more detailed introduction

to ACT-R, see (Anderson et al. 2004) and (Taatgen et al. 2006). The reference

implementation of ACT-R is written in Lisp and can be obtained from the ACT-R

website (ACT-R 2014). Details of our implementation including the formalization it
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is based on can be found in (Gall 2013). Parts of the formalization are located in

the online appendix (Appendix A).

2.1 Architecture

ACT-R is a production rule system which distinguishes two types of knowledge:

declarative knowledge holding static facts and procedural knowledge representing

processes controlling human cognition. For example, in a model of the game rock,

paper, scissors, a declarative fact could be “The opponent played scissors”, whereas

a procedural information could be that a round is won, if we played rock and

the opponent played scissors. Declarative knowledge is represented as chunks. Each

chunk consists of a symbolic name and labeled slots which hold symbolic values.

The values can refer to other chunk names, i.e. chunks can be connected. Chunks are

typed, i.e. the number and names of the slots provided by a chunk are determined by

a type. As usual for production rule systems, procedural knowledge is represented as

rules of the form IF conditions THEN actions. Conditions match values of chunks,

actions modify them.

The psychological theory of ACT-R is modular: There are modules for each func-

tion of the human mind like a declarative module holding the declarative facts, a goal

module taking track of the current goal of a task and buffering information and a

procedural module holding the procedural information and controlling the cognitive

process. There are also modules to interact with the environment like a visual module

perceiving the visual field. The modules are independent from each other, i.e. there is

no direct communication between them. Each module has a fixed number of buffers

associated with it. The buffers can hold at most one single piece of information a

time, i.e. one chunk. Modules can put chunks into their associated buffers.

The core of the system is the procedural module which can access the buffers

of all other modules but does not have an own buffer. It consists of a procedural

memory with a set of production rules. The conditions of a production rule refer to

the contents of the buffers, i.e. they match the values of the chunk’s slots. The formal

applicability condition of rules can be found in the online appendix (Appendix A).

There are three types of actions whose arguments are encoded as chunks as well:

First of all, buffer modifications change the content of a buffer, i.e. the values of some

of the slots of a chunk in a buffer. Secondly, the procedural module can state requests

to other modules which then change the contents of their buffers. Eventually, buffer

clearings remove the chunk from a buffer. Although our implementation can handle

requests and clearings, we only regard buffer modifications in this work for the sake

of simplicity.

Example 1

Consider the following rule:

(p recognize-win

=goal> isa game me rock opponent scissors

==>

=goal> result win)
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It recognizes a win situation in the game rock, paper, scissors if the model has

realized that the opponent played scissors and the agent played rock (which could

be accomplished by a corresponding production rule interacting with the visual

module). The situation is represented by a chunk of type game providing the slots

me, opponent and result. As a result, it adds the information that the round has

been won by modifying the result-slot of the goal buffer.

Furthermore, the procedural module controls the match-select-apply cycle of the

production rule system. It searches for matching rules. As soon as a matching rule

has been selected to fire, it takes 50 ms for the rule to fire based on theories of

human cognition (Anderson 2007, p. 54). During this time, the matching process is

inhibited and no other rule can be selected until the selected rule is applied. Hence,

the productions are executed serially. The production system is called free, if no rule

is selected and waiting for execution. As long as the procedural module is free, it

searches for matching rules.

The modules act in parallel. When a request is sent to a module by a production,

the procedural module becomes free while the request is completed. Hence, new

production rules can match while other modules might be busy with requests.

ACT-R can be extended by arbitrary modules communicating through buffers

with the procedural system. However, to exchange more fundamental parts of the

architecture it needs more than only architectural modules as shown in section 3.

2.2 The Procedural Module in CHR

The procedural module is the core of ACT-R’s production rule system. Our

implementation is based on the translation of production rule systems to CHR

as presented in (Frühwirth 2009, chapter 6.1). However, we have to account for

the concepts of chunks and buffers, since ACT-R differs in those particular points

from other production systems. Details of the implementation can be found in (Gall

2013).

The set of chunks can be represented in CHR by a constraint chunk(C,T), where

C is the name of the chunk and T its type. The slots provided by this chunk and their

values can be stored in constraints chunk_has_slot(C,S,V) denoting that chunk C

has the value V in slot S. With special consistency rules it can be assured, that no

chunk has two values in its slots and that it only provides the slots allowed by its

type. Analogously, a buffer is represented by a constraint buffer(B,M,C) denoting

that the buffer B is affiliated with the module M and holds chunk C. The formal

definitions of chunks and buffers can be found in the online appendix (Appendix A).

A production rule can now match and modify the information of the buffer

system. The actions are implemented by trigger constraints buffer_action(B,C)

which get the name of the buffer B and a chunk description C represented by a

term chunk(C,T,[(S,V),...]) which describes a chunk with name C, type T and

a list of slot-value pairs representing the values of the chunk’s slots. Note that such

chunk descriptions can be incomplete in some arguments by simply letting them

unspecified.

https://doi.org/10.1017/S1471068414000180 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000180


Theory and Practice of Logic Programming 529

Example 2

The rule from example 1 can be translated to the following CHR rule:

buffer(goal,_,C), chunk(C,game),

chunk_has_slot(C,me,rock), chunk_has_slot(C,opponent,scissors)

==> buffer_modification(goal,chunk(_,_,[(result,win)])).

The name and type of the chunk in the modification are not specified in the original

rule and therefore left blank as well as the me and opponent slots.

2.3 Timing and Phases

As mentioned before, the production system of ACT-R is occupied for 50 ms after a

rule has been selected. To model such latencies, an event queue has to be added. It

keeps track of the current time and holds an ordered set of events which can be de-

queued one after another according to their scheduled times. In our implementation,

the event queue is implemented as a priority queue sorting its elements after the time

and a priority determining the order of application for simultaneous events. Events

are arbitrary Prolog goals and can be added by add_q(Time,Priority,Event).

The current time can be queried by get_time(Now).

To ensure that a production rule only matches when the module is free, we replace

each CHR rule of the form C ==> A according to the following scheme consisting

of two rules:

C \ match <=> add_q(Now + 0.05,0,apply_rule(rule(r,C))).

C \ apply_rule(rule(r,C)) <=> A, get_time(Now), add_q(Now,-10,match).

The constraint match indicates that the procedural module is free and searches for a

matching rule. For the matching rule, an apply_rule event is scheduled 50 ms from

the current time. This event will actually fire the rule. The actions A schedule their

effects on the buffers at the current time with different priorities. Requests are only

sent to the corresponding module. Its effects on the requested buffer are scheduled

at a later time. Finally, a new match event is scheduled at the current time Now but

with low priority of −10. This ensures that all current actions are performed before

the next rule is scheduled to fire.

Otherwise, if no rule matches and the procedural module is free (i.e. a match

constraint is present), a rule can only become matching if the content of the buffers

change. Hence, a new match constraint is added directly after the next event in the

queue. This models the fact that the procedural module is searching permanently

for matching rules when it is free without adding unnecessary match events.

3 Conflict Resolution

Only one matching production rule can fire at a time. Hence, if there are multiple

applicable productions, the system has to decide which to fire. This process is

called conflict resolution (McDermott and Forgy 1977). In most implementations,

CHR simply chooses the rule to fire by textual order, which is a valid conflict
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resolution mechanism. However, in ACT-R a more advanced approach using

subsymbolic concepts is needed to faithfully model human cognition.

3.1 General Conflict Resolution Process

In (Frühwirth 2009, p. 151) a general method to implement different conflict

resolution mechanisms in CHR is given. This method is adapted to our CHR

implementation of ACT-R. The first rule of each CHR rule pair from section 2.3

can be replaced by:

match, C ==> G | conflict_set(rule(r,C)).

Hence, the application of a matching production is delayed by adding the rule to the

conflict set instead of choosing the first matching rule to be applied by scheduling

apply_rule/1 as explained in section 2.3. Thereby all matching rules are collected

in conflict_set/1 constraints which then can be reduced to one single constraint

containing only the rule to be applied according to an arbitrary strategy.

As a last production rule, the rule match <=> select. occurs in the program. This

rule will always be applied last (since rules are applied in textual order in CHR).

It removes the remaining match constraint and adds a constraint select which

triggers the selection process. This means that the conflict resolution is performed

by choosing one rule from the conflict set constraints and removing all other such

constraints. If no rule matches, a new match constraint is scheduled after the next

event.

With the introduction of the select constraint, the system commits to the rule

to be applied by scheduling the corresponding apply_rule/1 event as explained in

section 2.3. This leads the chosen production to perform its actions since its second

CHR rule is applicable. After the actions are performed, the next matching phase is

scheduled.

The strategy of how the conflict set is eliminated to one single rule which will be

applied may vary and is exchangeable. In the following section, several strategies

are presented and implemented.

3.2 Conflict Resolution Strategies

There have been several conflict resolution strategies proposed for ACT-R over time.

To demonstrate the adaptability of our CHR implementation, we implement some

of those strategies. In the reference implementation of ACT-R, such adaptations

might need a lot of knowledge about its internal structures (Stewart and West 2007).

In general, ACT-R conflict resolution strategies usually use the subsymbolic

concept of production utilities. The production utility for a production i is the

function Ui : � → � which expresses the value of utility of a particular production

at its nth application which may be adapted according to a learning strategy. In the

conflict resolution process, the current utility values are compared for all matching

functions and the production with the highest utility is chosen. The production

utility can therefore be seen as a dynamic rule priority which is adapted according

to a certain strategy.

https://doi.org/10.1017/S1471068414000180 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000180


Theory and Practice of Logic Programming 531

In the following, we present some different learning strategies to adapt the utility

of a production. Eventually, the concept of rule refraction is introduced, which is

a general conflict resolution concept and can be applied for all of the presented

learning strategies.

3.2.1 Reinforcement-Learning-Based Utility Learning

The current implementation of ACT-R 6.0 uses a conflict resolution mechanism

which is motivated by the Rescorla-Wagner learning equation (Rescorla and Wagner

1972). The basic concept is that there are special production rules which recognize

a successful state (by some model-specific definition) and then trigger a certain

amount of reward measured in units of time as a representation of the effort a

person is willing to spend to receive a certain reward (Anderson 2007, p. 161). All

productions which lead to the successful state, i.e. all productions which have been

applied, receive a part of the triggered amount of reward which demounts the more

time lies between the application of the production rule and the triggering of the

reward. The utility Ui of a production i then is adapted as follows:

Ui(n) = Ui(n − 1) + α(Ri(n) − Ui(n − 1)) (1)

The reward Ri(n) for the nth application of the rule i is the difference of the

external reward and the time between the selection of the rule and the triggering of

the reward. The utility adapts gradually to the average reward a rule receives. Its

calculation can be extended by noise to enable rules with initally low utilities to fire.

This then may boost their utility values.

In CHR, this strategy can be implemented as follows: For each production rule, a

utility/2 constraint is stored holding its current utility value. For rules marked with

a reward, a reward/2 constraint holds the amount of reward. When a production

rule is applied, this information is stored with the application time in a constraint by

the rule apply_rule(rule(P,_,_)) ==> get_time(Now), applied([(P,Now)]).

With a corresponding rule, the applied/1 constraints are merged respecting the

application time of the rules, since the adaptation strategy depends on the last

utility value of a rule and rules might be applied more than once until they receive

a reward. This leads to one applied/1 constraint containing a sorted list of rules

and their application time.

If a rule which is marked with a reward is going to be applied, the reward can be

triggered by apply_rule(rule(P,_)), reward(P,R) ==> trigger_reward(R).

The triggering of the reward simply adapts the utilities according to equation 1

for all productions which have been applied indicated by the applied/1 constraint

respecting the order of application. Afterwards, this constraint is deleted because

after a reward has been received, the rule is not considered in the next adaptation.

3.2.2 Success-/Cost-Based Utility Learning

In prior implementations of ACT-R, the utility learning is based on a success-/cost

approach (Anderson et al. 2004; Taatgen et al. 2006). A detailed description can
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be found in (ACT-R Tutorial 2004, unit 6). Each production rule i is associated to

the values Pi denoting the success probability of the production and Ci denoting its

costs. In this approach, the utility of a production rule is defined as:

Ui(n) = Pi(n)G − Ci(n) (2)

Note that the current utility does not depend on the value of the last utility, but can

be calculated by the current values of the parameters instead. Hence, the order of

application does not play a role. Usually, Ci is measured in units of time to achieve

a goal whereas G – the goal value – is an architectural parameter and usually set to

20 s. The parameters P and C are obtained by the following equations:

Pi(n) =
#sucessesi

#successesi + #failuresi
Ci(n) =

effortsi

#successesi + #failuresi
(3)

The values #sucesses and #failures count all applications of a rule which have been

identified as a success or a failure respectively. Similarly to the reinforcement-based

learning, some productions which identify a success or failure trigger an event which

adapts the counters of successes or failures of all production rules which have been

applied since the last triggering. The efforts are estimated by the difference of the

time of the triggering and the selection of a rule. The values are initialized with

#sucesses = 1,#failures = 0 and efforts = 0.05 s which is the selection time of one

firing. Analogously to the reward-based strategy, utilities can be extended by noise.

Similarly to the implementation of the reinforcement learning rule, the triggering

of a success or failure can be achieved by a constraint success(P) or failure(P),

which encode that a production P is marked as success or failure respectively.

Combined with the apply_rule/2 constraint, a success/0 or failure/0 constraint

can be propagated which trigger the utility adaptation. The following rules show

the adaptation of #successesi and effortsi when a success is triggered and rule i has

been applied before:

success \ applied(P,T), efforts(P,E), successes(P,S) <=>

get_time(Now), efforts(P,E+Now-T), successes(P,S+1).

success <=> true.

The number of successes or failures are stored in the respective binary constraints

and if a success is triggered, they are incremented for all applied production rules

and efforts are adjusted. The rules for failures are analogous. The adaptation of

one of those parameters triggers the rules which replace the constraints holding the

old Pi and Ci values by new values. When a Pi or Ci constraint is replaced, the

calculation of the new utility value is triggered. To ensure that only one utility value

is in the store, a destructive update rule is used.

3.2.3 Random Estimated Costs

In (Belavkin and Ritter 2004), a conflict resolution strategy motivated by research

results in decision-making is presented. The current implementation varies slightly

from this description (Belavkin 2005) and we stick to this most recent approach for a
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better comparability of the results. The strategy is based on the success-/cost-based

utility learning from section 3.2.2 and uses the same subsymbolic information (the

counts of successes and failures and the efforts). However, instead of calculating the

average cost Ci, the expected costs θi of achieving a success by a rule are estimated:

θi := E(Ci) ≈ effortsi

#sucessesi
(4)

From the expected costs θi of a rule i, the random estimated costs ζi are derived by

by drawing a random number ri from a uniform distribution U(0, 1) and setting

ζi = −θi · log(1−ri). Eventually, production utilities are calculated analogously to the

success-/cost-based strategy: Ui = PiG − ζi. The influence of the random estimated

costs can be varied by adapting the parameter G. If G = 0, the production rule with

minimal random estimated costs will be fired (as suggested in (Belavkin and Ritter

2004)).

Since this method uses the same parameters as the success-/cost-based variant,

almost all of the code can be reused for an implementation. However, instead of the

costs, the expected costs θi are computed and saved in a constraint whenever the

success/failure ratio changes. Additionally, the random costs must be calculated in

every conflict resolution step and not only when the parameters change since they

vary each time due to randomization. Hence, a rule must be added which calculates

the utility value as soon as a production rule enters the conflict set:

conflict_set(rule(P,_)), theta(P,T), succ_prob(P,SP) ==>

random(R), Z is -T * log(1 - R), U is SP*20-Z,

set_utility(P,U).

The rest of the implementation like the calculation of the success/failure counters,

efforts or the pruning of the conflict set is identical to the success-/cost-based

strategy.

3.2.4 Production Rule Refraction

In contrast to the previous strategies which only exchange the utility learning part,

production rule refraction adapts the general conflict resolution mechanism and can

be combined with all of the other presented strategies. It was first suggested in

(Young 2003) to avoid over-programming of models in the sense that the order of

application of a set of rules is fixed in advance by adding artificial signals to ensure

the desired order. Rule refraction can avoid such operational concepts by inhibiting

the application of the same rule instantiation more than once. To the best of our

knowledge, our implementation is the first of its kind for ACT-R.

Refraction can be implemented by saving the instantiation of each applied

production using the rule apply_rule(R) ==> instantiation(R). When building

the conflict set, the following rule eliminates all productions which already have

been applied from the set: instantiation(R) \ conflict_set(R) <=> true.

This pruning rule must be performed before the rule selection process, so that such

productions are never considered as fire candidates.
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4 Evaluation

After having implemented some different conflict resolution strategies, we test their

validity with an example model of the game rock, paper, scissors. The idea is that the

model simulates a player playing against three opponents with different preferences

on the three choices in the game. We then want to observe, how the model adapts

its strategy under the different conflict resolution mechanisms and test if the results

of the ACT-R implementation and our CHR implementation match.

4.1 Setup

The player is basically modeled by the production rules play-rock, play-paper

and play-scissors standing for the three choices a player has in the game. At

the beginning, the production rules have equal utilities which are then adapted by

the utility learning mechanisms of the three conflict resolution strategies. Since we

only want to test our conflict resolution implementations, we try to rule out all

other factors which could influence the behavior of our model. Hence, we only use

the procedural module with the goal buffer and do not simulate any declarative

knowledge or even perceptual and motor modules. I.e. the model is not a realistic

psychological hypothesis of the game play, but only a test of our implementation.

Furthermore, we disable noise where possible to better compare our results. In

ACT-R, the canonical parameter setting is not recommended to change without

justification (Stewart and West 2007, sec. 1.1). For our experiment, we used this

setting.

The moves of the opponents are randomly generated in advance according to

their defined preferences: Player 1 simply chooses rock for every move, player 2

chooses only between rock and paper and player 3 chooses equally between all

three possibilities. For each player, we produced 20 samples of 20 moves (except for

player 1 with only one sample of 20 moves). Their choices are put into the goal

buffer one after another by host-language instructions (Lisp and Prolog/CHR). The

game is played for 20 rounds until a restart with a new sample which corresponds

to 2 s simulation time. Finally, the utility values U{r,p,s} at the end of each run (for

rock, paper and scissors respectively) are collected and compared to the reference

implementation. We use the notation U{r,p,s} to denote the average of those values

over all 20 samples. In the following the implementation of the production rule

play-rock:

(p play-rock

=goal> isa game me nil opponent nil

==>

=goal> me rock opponent =x !output! (rock =x) )

This rule simply puts the symbol rock into the goal buffer indicating that the model

chose rock. The variable =x is set by built-in functions of the host language (omitted

in the listing) modeling the choice of the opponent derived from a given list of

moves. The rules for paper and scissors can be defined analogously. The model has

https://doi.org/10.1017/S1471068414000180 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000180


Theory and Practice of Logic Programming 535

been translated to CHR by our compiler. We performed the translation of Lisp

built-ins to Prolog built-ins by hand.

Furthermore, the model contains production rules detecting a win, draw or defeat

situation (similar to example 1) and resetting the choices of the two players in the

goal buffer to indicate that the next round begins. Those rules are marked with

a reward (positive or negative) or as a success/failure respectively. In the case of

a draw, no reward, success or failure will be triggered. Hence, the utility learning

algorithms will adapt the values of the fired rules depending on their success.

If the highest utilities in the conflict set are equal, the strategy of ACT-R is

undocumented. It depends on the order of the rules in the source code and may

vary between the implementations (e.g. the strategy of ACT-R 6.0 differs from

ACT-R 5.0 as we found in our experiments). We adapted the order of rules in our

translated CHR model to match the strategy of ACT-R. Usually, noise would rule

out such differences.

For the reference implementations, we used Clozure Common Lisp version 1.9-

r15757. The CHR implementation has been run on SWI-Prolog version 6.2.6. The

relevant data collected in our experiments can be found in the online appendix

(Appendix B).

4.2 Availability of the Strategies

Our approach enables the user to exchange the complete conflict resolution strategy

without relying on provided interfaces and hooks except for the very basic informa-

tion that a rule is part of the conflict set or about to be applied. This information

relies on the fundamental concept of the match-select-apply cycle of ACT-R. In

the reference implementations of the strategies, there are deeper dependencies and

assumptions on when and how subsymbolic information is adapted and stored.

This leads to incompatibilities: The reinforcement-learning-based strategy is only

available for ACT-R 6.0. Although the success-/cost-based strategy is shipped with

ACT-R 6.0, it was not executable for us and hence we had to use ACT-R 5.0

to run it. This leads to further incompatibility problems when using modules not

available for ACT-R 5.0 (which is in general difficult to extend due to the lack of

architectural modules). Since the method of random-estimated costs relies on the

success-/cost-based strategy, it is also only available for ACT-R 5.0.

Our implementation of the refraction-based method is to the best of our knowledge

the only existing implementation for ACT-R, although it has been suggested in

(Young 2003).

4.3 Reinforcement-Learning-Based Utility Learning

For the reinforcement-learning-based strategy, we marked the win-detecting pro-

duction rules with a reward of 2 and the defeat-detecting rules with 0 which leads

to negative rewards for all applied rules when a defeat is detected. Draws do not

lead to adjustments of the strategy in our configuration. We executed the model on

ACT-R 6.0 version 1.5-r1451 and our CHR implementation.
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Our implementation matches the results of the reference implementation exactly

when rounded to the same decimal precision (see online appendix B.2). Differences

of floating point precision did not influence the results, since ACT-R does round

the final results to the one-thousandths. As expected, the model usually rewards the

paper rule most when playing against player 1 and 2 (average utility at end of round

for player 1: (Ur,Up,Us) = (0, 1.87,−0.02); player 2: (0, 0.81, 0.49)). Exceptions are

rounds where the opponent chooses paper above average especially as first moves

(e.g. sample 10: 75% rate of paper; first 9 moves; Up = 0, Us = 1.329). In such

cases, scissors has the highest utility. This is reinforced by the relatively high reward

of successes compared to the punishment of defeats. However, the winning rate is

still very high (15 wins, 5 defeats, no draws). Overall, the behavior of the model is

very successful (average: 10.4 wins, 3.9 draws and 5.7 defeats in each sample). For

player 3 – as expected – no unique result can be learned; wins, draws and defeats

are very close in average (6.6 wins, 6.7 draws, 6.7 defeats).

4.4 Success-/Cost-Based Utility Learning

For the success-/cost-based strategy, the production rules recognizing a win situation

are marked as a success and analogously the production rules for the defeat situations

as a failure. We used ACT-R 5.0 to test our implementation against the reference

implementation, since it is not available for ACT-R 6.0. Again, noise is disabled for

better comparability. Because the selection mechanism for rules with same utility

differs from ACT-R 6.0, we adapted the order in which the rules appear in the

source code.

Our implementation matches the results of the reference implementation exactly

(see online appendix B.3). It can be seen that this strategy is not able to detect the

optimal moves for player 1. Analyses showed that due to the order of the rules, the

model first selects to play rock. This leads to a draw and hence no adaptation of

the utilities. Hence, rock is played repeatedly. In real-world models, noise would help

to overcome such problems. For player 2, the model correctly chose to play paper

in average even for the samples where the opponent chooses paper more often than

rock. However, in average, the model did only win 8.9 out of 20 rounds in a sample

and produced 9.1 draws. For each of the samples, only two rounds were lost.

4.5 Random Estimated Costs

Due to the randomness of this strategy, no exact matches of results can be expected.

Hence, we executed the models on 3 samples (the first of each opponent) with

50 runs for each sample. The reference implementation has been run on ACT-R 5.0.

The average utilities are close to the reference implementation (error squares of

average utilities player 1: (ΔUr
2
,ΔUp

2
,ΔUs

2
) = (0.145, 0.000, 0.000); player 2: (0.850,

0.000, 0.098); player 3: (2.823, 0.503, 0.003), see online appendix B.4 for details).

It can be seen that for most runs the production with the highest, medium and

lowest utility value coincide. For player 1, the random estimated costs overcome the

problem of the success-/cost-based implementation as discussed in section 4.4.
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5 Related Work

There are several implementations of the ACT-R theory in different programming

languages. First of all, there is the official ACT-R implementation in Lisp (ACT-

R 2014) which we used as a reference. There are a lot of extensions to this

implementation which partly have been included to the original package in later

versions like the ACT-R/PM extension included in ACT-R 6.0 (Bothell , p. 264).

The implementation comes with an experiment environment offering a graphical

user interface to load, execute and observe models.

In (Stewart and West 2006; Stewart and West 2007), a Python implementation is

presented which also has the aim to simplify and harmonize parts of the ACT-R

theory by finding the central components of the theory. The architecture has been

reduced to only the procedural and the declarative memory which are used to build

other models combining and adapting them in different ways. However, there is

no possibility to translate traditional ACT-R models automatically to Python code

since the way of modeling differs too much from the original implementation.

Furthermore, there are two different implementations in Java: jACT-R (jACT-R

b) and ACT-R: The Java Simulation & Development Environment (Salvucci b). The

latter one is capable of executing original ACT-R models and offers an advanced

graphical user interface. The focus of the project was to make ACT-R more portable

with the help of Java (Salvucci a). In jACT-R, the focus was to offer a clean and

exchangeable interface to all the components, so different versions of the ACT-R

theory can be mixed (jACT-R a) and models are defined using XML. There is

no compiler from original ACT-R models to XML models of jACT-R. Due to

the modular design defining various interfaces which can be exchanged, jACT-R

is highly adaptable to personal needs. However, both approaches are missing the

proximity to a formal representation.

6 Conclusion

In this work, we have presented an implementation of ACT-R using Constraint

Handling Rules which is capable of closing the gap between the theory of ACT-R and

its technical realization. Our implementation abstracts from technical artifacts and

is near to the theory but can reproduce the results of the reference implementation.

Furthermore, the formalization itself enables implementations to check against this

reference. The implementation of the different conflict resolution strategies has

shown the adaptability of our approach. Most of the implemented strategies are

not available for the current implementation of ACT-R and our implementation of

production rule refraction is unique.

For the future, the implementation can be extended by other modules like the

perceptive/motor modules provided by ACT-R. Currently, there is a running student

project on implementing a temporal module which may be used to investigate time

perception. The formalization and CHR translation pave the way to develop analysis

tools (e.g. a confluence test) on the basis of the results for CHR programs.
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Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/

10.1017/S1471068414000180.
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