Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2006), 20, 95-103. Printed in the USA.

Copyright © 2006 Cambridge University Press 0890-0604/06 $16.00
DOI: 10.1017/S0890060406060082

RESPONSE TO KEYNOTE
Explicit design space?

RAMESH KRISHNAMURTI

School of Architecture, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

(RECEIVED March 16, 2005; AccEPTED December 13, 2005)

Abstract

This paper examines the need for explicit representations of the design space, in response to Woodbury and Burrow.
Specifically, their proposal for a particular search strategy, by means of which one can reuse past experiences explicitly
represented by previously traversed paths, is examined. This is done by exploring issues with respect to design search
and representation in general, while relating these to specific issues raised by Woodbury and Burrow. The paper
concludes by suggesting that their arguments essentially point to devising an appropriate “programming language” for

design.

Keywords: Data Types; Design Space; Grammars; Representation; Search

1. INTRODUCTION

Proof of evidence is not necessarily evidence of proof. Rob
Woodbury and Andrew Burrow in a virtual tour de force
have critically analyzed and elicited characteristics, some
familiar, others perhaps less so, which are vital to a success-
ful exploration of the design space. Their arguments lead
them to propose that an explicit representation of the design
space, along with an explicit representation of a particular
search strategy, is essential for the success of this explora-
tion. It is this conclusion that I principally wish to examine.
The Woodbury and Burrow paper is multifaceted, and any
adequate response requires more than a single thought. In
this essay, I have attempted, within the space limitations
set, to lay out a train of thought, mostly in sequence, occa-
sionally digressive but related and without trying to com-
partmentalize my response. In doing so, I have taken the
liberty of dispensing with section headings, avoiding any
distractions that they may engender.

Design proceeds from requirement toward goal. Require-
ment usually comprises several, possibly conflicting, con-
straints. Likewise, the singular goal, the object of the design,
may comprise various outcomes, some perhaps contradic-
tory. Designers do not seek to ascertain truths, to establish

Reprint requests to: Ramesh Krishnamurti, School of Architecture, Car-
negie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213-
3890, USA. E-mail: ramesh@cmu.edu

https://doi.org/10.1017/50890060406060082 Published online by Cambridge University Press

95

dogmas, or to proclaim manifestos; although, if one were to
read what designers say of their own work one might con-
clude otherwise. Designers seek answers to problems refined
over many iterations. Through this iterative process, the
specification of the design problem and its solution becomes
less and less abstract and more and more concrete —real,
so to speak.

It is not surprising that a design may respond to an
altogether different problem from the one with which
the designer started. We express this by the following
relationship:

design space = problem space + solution space

+ design process.

Importantly, the design process binds a design problem,
selected from a world of possible related problems, to its
solution, selected from a world of possible designs.
Search is instrumental in this process. Designers search
for solutions (and in the process search for the problem that
the solution responds to). In this respect, Woodbury and
Burrow are correct: design space exploration deserves seri-
ous study for the following reasons they cite. Search is a
compelling model for design and designer action; it is
a basis for computation, and, as such, results in effective
design algorithms. Omer Akin, who has written extensively

https://doi.org/10.1017/S0890060406060082

96

on this subject, has found empirical evidence for problem
restructuring, generate and test, and heuristic search (Akin,
1986). In a recent article (Akin, 2001), he revisits the role
of representation in this process—in fact, a multiplicity of
representations—and examines their importance. On archi-
tectural design, Akin has this to say:

Architecture, like these, accommodates the user along
many dimensions: functional, psychological, cognitive,
ergonomic, climatic, economical, and so on. Humans live
around architecture but also in and on them. The behav-
ior of the users is an integral part of the functionality of
the object. Living in a building means that there is a
cognitive, ergonomic, psychological and economic inter-
action with it on a continuous basis. No other artifact of
human design can claim a similar range, scope, and direct-
ness of use by human . . .

Architects then are faced with handling situated, multi-
faceted, and multi-media driven representations that tend
to persist throughout the entire design process . . . Thus
architecture is a representation saturated problem domain,
more so than any other with which T am familiar. (p. 4)

Following Akin we have the following equation:
design process = design knowledge + strategy.

Strategy incorporates search; design knowledge refers to
the multiplicity of representations that designers both need
and find useful. Design representations are manifold: prod-
uct, metaphors, designer actions, process, design states, and
so forth. Woodbury and Burrow concentrate on amplifica-
tion of designer action as the basis for developing a com-
putational strategy. They list the following ingredients: the
qualitative prowess of design representations, codification,
explicit space, implicature, speed, backup, recall, and replay.
I will not enter into detail, but, with one exception, I am
content in stating that they make a strong argument for their
inclusion. Notwithstanding, the Woodbury—Burrow case for
the explicit representation of the design space needs further
examination.

Many factors affect decision making in design, for
instance, social interaction, rational choice, advent of tech-
nology, and computational support.

Design involves stakeholders, experts, and the designer,
in interaction and dialog. Each influences the problem and
the solution, and thus, design search. The relationship
between social interaction and design search seems to me
the most difficult to pinpoint except, perhaps, with respect
to designer mediation, which, at least, can be classified in
operational terms from a computational standpoint. In other
words, each computational design support tool specifies a
set of designer actions, although not necessarily the moti-
vation that precedes any particular designer act. In design,
such mediation defines the metaphors by which, according

https://doi.org/10.1017/50890060406060082 Published online by Cambridge University Press

R. Krishnamurti

to Bruton and Radford (in press), designers contingently
bend the rules.

Design is typically ill-structured. In general, designers
demonstrate a seemingly rational attitude: one that is delib-
erate, conscious, and explicable. Herb Simon’s way of deal-
ing with ill-structured problems rationally was “satisficing,”
which has been empirically shown to be a reasonable ingre-
dient of the human decision process (Simon, 1973).

Rubenstein (1998) quotes Simon, who suggests that, in
his version of bounded rationality the following are basic
questions for which answers are sought. Although Ruben-
stein writes about economic models of bounded rationality,
Simon’s remarks apply equally to design:

What are the kinds of reasoning procedures that people
actually use, and why (in terms of knowledge of their
psychological makeup)? What are the effects of social
environment and social history on the procedures used?
To what extent are other procedures used? In what way
does the introduction of computers into [design] change
these procedures?!

What are the consequences of their using these proce-
dures and not others? In what respects are current design
models deficient in the assumptions they make about rea-
soning procedures? (p. 192)

Simon posits that inquiry into design deserves no less atten-
tion than scientific inquiry, and must be subject to the rigors
of establishing empirical evidence.

One factor that must be considered in (the analysis of)
any decision making process for design is the sunk cost
fallacy (Hastie & Dawes, 2001); it is the time, effort, or
choices invested by a designer, which are essentially
nonrefundable, that are honored in subsequent design deci-
sions. Rationally, sunk cost should not affect outcomes; in
reality, it does. There are obvious instances of sunk costs,
for example, the time and effort of learning new computer-
aided design software, choice of conventions and meta-
phors used, in-house rules, and so forth. In time, such efforts
desist from being sunk costs, and instead acquire utility
value. There are sunk cost considerations for software design-
ers also; this is reflected in the design of updates to their
products. Indirectly, consideration of potential sunk cost
affects design aesthetics, which seem to be reflected in the
aesthetics of the output of design support tools. How else
can one explain, if one ignores logo and grille, that, on a
few models, a Honda and BMW 3 series are indistinguish-
able?? T would wager that both companies, at one time,
worked with the same design software. Every AutoStation

I'The word economic was used instead of design in Simon’s original
writing.
2I am sure one of the car manufacturers is flattered by the comparison.

https://doi.org/10.1017/S0890060406060082

Explicit design space?

design looks as if it was produced in AutoStation.> Even
noted designers are not immune.

However, considerations of sunk cost in investigations of
design search, design representation, or design process in
general, are nontrivial. I am convinced that sunk cost plays
an implicit role in the breadth first, depth next strategy
practiced by experienced designers (Akin, 1999). Sunk cost
considerations have implications for computational design
research and teaching in general. On the one hand, for “high-
brow” research or methods to succeed, to have a utility
value, these techniques have to find implementation in “low-
brow” commercial software in use in practice. On the other
hand, rationality might prevail.

Last, but not least, there is no simple way of character-
izing design knowledge. It falls into constraints and con-
ventions that a designer has to adopt as well as the constraints
and rules that the designer chooses to adopt. There is no
general way of establishing which is which, or when. In
architectural design, cost constraint typically serves as a
guide to designers: pricing, change orders, and so forth all
have cost implications; the rejection to a change in the design
by a design decision support tool, based on cost consider-
ation, is generally overridden. A stakeholder on a limited
budget might not be as accommodating. In contrast, no
designer would ever deny a law of physics; instead, she
would find ways of working around it.

One way of looking at design is as a game played by the
designer with a design system wherein the designer always
wins. This does not necessarily imply that the designs are
good or work well. Almost 20 years ago, I investigated such
a paradigm where designs are the outcome of dialog between
the designer and the design support medium (essentially, its
knowledge base; Krishnamurti, 1986). I wrote the follow-
ing (p. 187):

If the knowledge base represents statements in some first-
order logic, then dialogue theory for design is simply a
theorem prover for deduction in that logic. However, in
real design, any new assertion about a design may have
the effect of invalidating any previous assertion about
the design. In other words, designing is essentially non-
monotonic. Consequently, dialogue theory for design must
be equipped with decision procedures based on rules that
allow new assertions and invalidate old deductions.

The fact that the design process involves problem redef-
inition implies a declarative approach to design spaces: one
can conceivably argue that this requires an explicit repre-
sentation of the design space. In that paper, I go on to sug-
gest that “. . . dialogue can be supported by a common
representation for the description of the spatial and non-
spatial elements in design.”

3For the reader who might be somewhat puzzled, I believe in the Michael
Jordan philosophy on endorsing products that are updated, renewed, or
even replaced every so often.

https://doi.org/10.1017/50890060406060082 Published online by Cambridge University Press

97

Furthermore (Krishnamurti, 1986),

. .. design support rules are essential if we are to verify
the validity of design descriptions against some model of
the world. Moreover, design rules should have some form
of flexibility built into them. (p. 188)

Rules may be weak or strong. Weak rules serve as guides,
for example, where cost constraint is not a maximum; a
change introduced by the designer may have the effect of
an acceptable design increase in cost that would otherwise
be rejected by the decision procedure that handles costs.
Structural consistency is an example of a strong rule that
has the power to invalidate changes that yield physically
unsupportable designs. This differs from Woodbury and Bur-
row’s notion of strong and weak representations. If we accept
their classification, rules become doubly weak, doubly
strong, weakly strong, or strongly weak, depending on
whether the rules are cognitive (or situationist), enforce-
able or not. Weak or strong, as Woodbury and Burrow rightly
point out, design rules and representations require exog-
enous properties.

Rudi Stouffs and I have been collaborating on an
approach to design descriptions, termed sorts. The prem-
ise here is that whenever individuals are confronted with
information, they naturally classify it according to their
own needs and understanding: sort it out, so to speak.
“Sortal” descriptions may be shared. These descriptions
have implications for information transfer, information cov-
erage, and information loss. They also have implications
for problem solving.

To illustrate an instance of sortally solving a problem
using exogenous properties, imagine designing a new util-
ity network amidst other existing utility networks (Stouffs
& Krishnamurti, 1996a). Further assume that these net-
works belong to different utility firms, and that the infor-
mation made public is kept to a minimum—at best, center
line data and bounding radii. Figure 1 shows, in plan, the
case for networks belonging to utilities, m and n. For con-
venience, each straight line length of pipe is identified by
its network utility name, and numbered 1, 2, 3, . . . Gray
circles indicate pipe intersections; of these, the darker cir-
cles signify possible interference.

An easy way to solve the design problem is to define,
exogenously, a “view” of labeled points of intersection as
follows: each such point is associated with labels identify-
ing the pipes’ network whenever the pipes do intersect. In
this view, these “sorted” intersection points are labeled by
one or both networks (i.e., labeled in the special way).
Clearly, checking for pipe interference reduces to counting
doubly labeled points of intersection in this created view.
This information is used in the search, but is not needed
again once a valid design has been found.

The preceding example also illustrates another feature of
exogenous properties, namely, of only utilizing just those
aspects necessary for the problem on hand. In another paper

https://doi.org/10.1017/S0890060406060082

98

R. Krishnamurti

Fig. 1. Two pipe networks with possible interference.

(Stouffs & Krishnamurti, 19965), we discuss this through
the sortal layering of features. Figure 2 illustrates this nicely
when we need the ability to represent geometries of differ-
ent dimensionalities.

In building construction, a design is realized as a com-
position of building components (essentially solid ele-
ments). However, in the design and/or evaluation process,
the dimensionality of the individual components are not
always essential; indeed, an abstraction is often more use-
ful. For instance, in a structural evaluation of a design, a
wall may be represented as a plane with simple attributes;

[

\‘/\\"
/\

unless approximated, its true three-dimensional model may
be too complicated. In general, each building component
may be multiply represented as elements of different dimen-
sionalities, each projecting information for a specific appli-
cation such as structural or performance evaluation. Sortal
views can be further dealt with sortally. Figure 3 illustrates
that the joint condition on two composite walls needs to be
dealt with sortally.

This trait of including exogenous properties in knowl-
edge representations to solve design problems, indeed, for
any search based problem, seems fairly common.

T~
e

Fig. 2. A wall represented at once as a volume, plane, or line.

https://doi.org/10.1017/50890060406060082 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060082

Explicit design space?

99

el

/

>

Fig. 3. A solid composition of walls as layers with different material properties.

The idea for sorts originated from a concern about infor-
mation coverage and data loss between design representa-
tions (Stouffs et al., 1996). Using a subsumption relation
defined on well-known solid models—boundary solid rep-
resentations (Baumgart, 1975; Mintyld, 1988; Paoluzzi et al.,
1989) and the maximal element representation (Krishna-
murti, 1992)—we were able to show that information loss
between some of these solid models is inevitable. What is
true for nonequivalent solid representations also holds for our
alter egos, those computer programs we write that employ
such models. No amount of syntactic or semantic sugaring
can alter this. The idea for subsumption, in turn, derives
from partial order and lattice theory, which seem natural for
knowledge representation (Scott, 1976; Cardelli, 1984).

Design representation is about formal semantics; for our
purpose, these are meanings associated with design arti-
facts and processes. Historically, I would credit the first
formalization to Scott—Strachey’s theory of denotational
semantics (Stoy, 1977), which applies to programming lan-
guage design. Scott’s work directly influenced Chris Carl-
son’s dissertation, which is perhaps the finest attempt to
date at providing a functional semantics for rule-based design
space exploration (Carlson, 1993). Unfortunately, symptom-
atic of such work, is the difficulty in realizing a practical,
workable, usable programming language for design. None-
theless, Carlson’s endeavor is a step in the right direction,
and represents a goal that we must achieve. Scott’s work
has influenced numerous others, for example, Ait-Kaci
(1984), on a calculus of partially ordered types (attribute/
value pairs) and subtype inheritance, whose work, in turn,
influenced Carpenter (1992) on type feature structures. Bur-

https://doi.org/10.1017/50890060406060082 Published online by Cambridge University Press

row (2006) follows in this fine tradition through his disser-
tation in applying type feature structures to design space
exploration through the reuse of design experience, that is,
through a record of designer actions, and reasoning from
design history.

Typed feature structures present a particular formaliza-
tion of feature structures, which are a recordlike data struc-
ture for representing partial information that can be expressed
in terms of features and their values. Key to typed feature
structures is the notion of partial information structures and
the existence of a unification procedure that determines if
two partial information structures are consistent, and if so,
combines them into a single, new (partial) information struc-
ture. Typed feature structures further consider a type hier-
archy and a description language, where each type defines a
corresponding description. Then, the generating procedure
relates feature structures with a description (or type) these
satisfy, and the subsumption relation between feature struc-
tures extends the subsumption ordering on types inherent to
the type hierarchy. The fact that the generating procedure
monotonically generates more complete information struc-
tures could be interpreted as excluding the possibility for
information loss and thus making design states reversible.
Typed feature structures formalism allows for the specifi-
cation of an efficient design space, a generating procedure
that incrementally generates more complete design struc-
tures, and of a subsumption relation that enables a richer
form of exploration than ordinarily found in generative sys-
tems (Woodbury et al., 1999).

Subsumption is a powerful mechanism for comparing
alternative representations. If a representation is subsumed

https://doi.org/10.1017/S0890060406060082

100

by another, all designs represented using the former repre-
sentation can also be represented using the latter represen-
tation, without any data loss. Typed feature structures, like
most logic-based formalisms, link subsumption directly to
information specificity, that is, a structure is subsumed by
another, if this structure contains strictly more information
than the other. One consequence of (logical) subsumption
is that the absence of information in a design representation
does not necessarily imply the absence of this information
in the design, that is, representations are automatically con-
sidered to be incomplete. As a result, when searching for a
design (representation) that satisfies certain information,
less specific representations cannot automatically be ex-
cluded (Baader et al., 2003).

semantics = syntax + behavior.

In functional semantics, if two functions exhibit the same
behavior they are the same. In type feature structures, if
two paths exhibit analogous properties, they represent anal-
ogous design (or reuse) cases. However, difficulties arise
when dealing with information of different types in a uni-
form way. For instance, at the representational level, oper-
ations that may otherwise seem trivial, such as adding or
removing data elements or figures, become resolutely non-
trivial; for instance, the addition of two numbers when these
represent cardinal values (e.g., a number of columns that is
increased) and when these represent ordinal values [e.g.,
for a given space, determining the minimum distance to a
fire exit or the (maximum) amount of ventilation required
given a variety of activities]. Similarly, additive versus sub-
tractive colors, depending on whether these refer to the
mixing of surface paints or colors of light, respectively.

Of course, there is more than one approach to formally
modeling design knowledge. Stouffs and I have taken a
slightly different tack. Sorts too are based on a part rela-
tionship that specifies a partial order; in this case, it gives
rise to a semiconstructive algebraic formulation (Stouffs &
Krishnamurti, 2002). An important ingredient of sorts is
behavioral specification.

Behavioral specification is a prerequisite for the effec-
tive exchange of data between various representations. For-
tunately, it is reasonably limited to the common arithmetic
operations of addition, subtraction, and product. It turns
out that the more common computer-aided design opera-
tions of creation and deletion, and selection and deselec-
tion, can all be expressed as some combination of addition
and subtraction from one design space (sort) to another.
The complex operations of grouping and layering can be
treated likewise.

The simplest specification of a part relationship corre-
sponds to the subset relationship on mathematical sets. This
part relationship particularly applies to points and labels;
for example, a point is part of another point only if the two
are identical, and a label is a part of a collection of labels
only if it is identical to one of the labels in the collection.

https://doi.org/10.1017/50890060406060082 Published online by Cambridge University Press

R. Krishnamurti

Then, operations of addition (combining elements), subtrac-
tion, and product (intersecting elements) correspond to set
union, difference, and intersection, respectively. Explicit
designer action is required to alter any data element. Only
when two elements are identical can these combine as one.

Another kind of behavior arises when we consider the
part relationship on line segments. A line segment is an
interval on an infinite line carrier; in general, one-
dimensional quantities such as time may be considered as
intervals. An interval is a part of another interval if it is
embedded in this interval; intervals on the same carrier that
are adjacent or overlap combine into a single interval. Spe-
cifically, interval behavior can be expressed in terms of the
behavior of the boundaries of intervals (Krishnamurti &
Stouffs, 2004). This behavior also applies to infinite inter-
vals, provided there is an appropriate representation of both
(infinite) ends of its carrier.

Behaviors also apply to composite sorts, that is, a part
relationship can be defined for its component data elements
belonging to a composite sort defined under a conjunction
(attribute operator) or disjunction. The composite inherits
its behavior from its components in a manner that depends
on the compositional relationship.

The disjunctive operator distinguishes all operand sorts
such that each data element belongs explicitly to one of
these sorts. For example, a sort of points and lines distin-
guishes each data element as either a point or a line. Con-
sequently, a data element is part of a disjunctive data
collection if it is a part of the partial data collection of
elements from the same component sort. In other words,
data collections from different component sorts, under the
disjunctive operator, never interact; the resulting data col-
lection is the set of collections from all component sorts.
When the operation of addition, subtraction, or product is
applied to two data collections of the same disjunctive sort,
the operation instead applies to the respective component
collections.

Under the attribute operator a data element is part of a
data collection if it is a part of the data elements of the first
component sort, and if it has an attribute collection that is a
part of the respective attribute collection(s) of the data ele-
ment(s) of the first component sort it is a part of. When
data collections of the same composite sort (under the
attribute operator) are pairwise summed (differenced or inter-
sected), identical data elements merge, and their attribute
collections combine, under this operation. Elements with
empty attributes are removed and the composite behavior is
that, in the first instance, of the first component sort.

When reorganizing the composition of components sorts
under the attribute operator, the corresponding behavior may
be altered in such a way as to trigger data loss. Consider a
behavior for weights (e.g., line thickness or surface tones;
Stiny, 1992) as becomes apparent from drawings on paper:
a single line drawn multiple times, each time with a differ-
ent thickness, appears as if it were drawn once with the
largest thickness, even though it assumes the same line with

https://doi.org/10.1017/S0890060406060082

Explicit design space?

other thickness. When using numeric values to represent
weights, the part relation on weights corresponds to the less
than or equal relation on numeric values. Thus, weights can
combine into a single weight, which has as its value the
least upper bound of all the respective weight values, that
is, their maximum value. Similarly, the common value (inter-
section) of a collection of weights is the greatest lower
bound of all the individual weights, that is, their minimum
value. The result of subtracting one weight from another is
either a weight that equals the numeric difference of their
values or zero (i.e., no weight), and this depends on their
relative values.

Now consider a sort of weighted entities, say points, that
is, a sort of points with attribute weights, and a sort of
pointed weights, that is, a sort of weights with attribute
points. A collection of weighted points defines a set of non-
identical points, each having a single weight assigned (pos-
sibly the maximum value of various weights assigned to the
same point). These weights may be different for different
points. The behavior of the collection is, at first instance,
the behavior for points. On the other hand, a collection of
pointed weights, which is defined as a single weight (which
is the maximum of all weights considered) with an attribute
collection of points, adheres, at first instance, to the behav-
ior for weights. In both cases, points are associated with
weights. However, in the first case, different points may be
associated with different weights, whereas in the second
case, all points are associated with the same weight. In a
conversion from the first to the second sort, data loss is
inevitable. An understanding of when and where exact trans-
lation of data between different sorts, or representations, is
or is not possible, becomes important for assessing data
integrity and controlling data flow (Stouffs & Krishna-
murti, 1996a).

Behavioral specification is a prerequisite for a uniform
handling of different and a priori unknown data structures.
The behavior of such data can be expressed through a num-
ber of operations chosen to match the expected behavior.
When an application receives data along with its behavioral
specification, the application can then correctly interpret,
manipulate, and represent this information without un-
expected data loss. The part relationship that underlies the
behavioral specification for a sort enables matching to be
implemented for this sort; because composite sorts inherit
their behavior and part relationship from their component
sorts, any technical difficulties in implementing matching
apply just once, for each primitive sort.

Logic-based models essentially represent knowledge; in
contrast, sorts represent data; any reasoning is based purely
on present or emergent information. Recognizing informa-
tion, especially of the emergent kind, is invaluable, rather,
necessary, should the information be, subsequently, the sub-
ject of action. From a creativity standpoint, design relies on
an ability to restructure emergent information. Data recog-
nition and subsequent manipulation can be considered part
of a single computation:

https://doi.org/10.1017/50890060406060082 Published online by Cambridge University Press

101
s = f(a) + f(b).

Here, s is a data collection; a is a representation of the data
pattern; f is a transformation under which a is a part of s;
f(b) is the data replacing f(a) in s; and s — f(a) + f(b) is an
expression of computational change, which can be written
as a design rule a — b. We have yet another equivalence:

design change = design rule + rule application.

Rule application consists of replacing the emergent data
corresponding to a, under some allowable transformation,
by b, under the same transformation.

Formally, rules may be grouped as a grammar; a device
for specifying the set of all designs generated by the rules
collectively. Each generation of a design in the language
starts from an initial design, and uses the rules to create a
design that contains elements from a given terminal vocab-
ulary. Rules and grammars specified as such, lead naturally
to the generation and exploration of possible designs. Accord-
ing to Mitchell (1993) and Stiny (1993), in the case of cre-
ative spatial design, spatial elements that emerge under a
part relation are highly enticing to design search. Wood-
bury and Burrow (section 1) echo this sentiment as well.

However, Woodbury and Burrow argue that standard
notions of grammars hamper navigation in the design space.
They state the following in section 4:

A flaw in standard rule-based accounts of design space
exploration in implicit space is that the usual formulation
of rules cast navigation solely in terms of derivation;
thus putting the landscape of the explicit space forever
beyond the sight of the navigator.

They go on to add:

Recasting the devices of navigation from rules to opera-
tions that make explicit reference to underlying structure
permits us navigators to know more about the paths we
have taken.

At this juncture, it is important to point out that the con-
cept of search is fundamentally greater than any genera-
tional form alone might imply. A mutation of a data collection
into another, or parts of others, constitutes an action of
search. As such, a rule may be considered to specify a par-
ticular composition of operations and/or transformations
that is recognized as a new, single, operation and applied as
such. Rules can serve to facilitate common operations, for
example, for the changing of one data collection into another
or for the creation of new design information based on exist-
ing information in combination with a rule. Likewise, a
grammar is more than a framework for generation; it is a
tool that permits the structuring of a collection of rules or
operations that have proven their applicability in the cre-
ation of a certain set (or language) of designs or in the

https://doi.org/10.1017/S0890060406060082

102

derivation of certain information. In this sense, a grammar
encapsulates explicitly a representation of the design space.
However, a grammar does not inherently provide an explicit
representation of the paths traversed in the design space,
although it is not difficult to envisage any implementation
of grammars maintaining a history of derivations. In this
respect, Woodbury and Burrow’s notion of replay needs
further examination.

According to Woodbury and Burrow, replay invokes
recombination, which in their notion is cognizant of the
memory of past actions influencing future search. They have
developed a resolution mechanism by means of which one
can reuse past experiences explicitly represented by previ-
ously traversed paths. However, replay also involves designer
mediation, which, in turn, involves memory of possibly
restructured descriptions. As Earl (1999, p. 285) remarks:

Generative systems change designs and descriptions. Gen-
erative history of a design provides the constraints and
context for descriptive history of evolving structure and
meaning. Descriptions are woven through the generative
history of a design; created, composed and discarded.

Paths in the design space represent sequences of changes.
Each change is a change to the design state, that is, a change
to component, feature and assembly description, more pre-
cisely, an update of the design representation.

Partial ordering allows us to treat a design representation
as a discrete topology (see, e.g., Kuratowski, 1972, for stan-
dard definitions in the mathematical literature). Informally,
atopology is a hierarchical division of a structure (set, shape,
etc.) under a closure relation. Closed structures are closed
under meet and join. Every substructure is contained in a
smallest closed structure. For our purpose, closed struc-
tures serve as identifiable types or objects. Then, as Stiny
(1994) has so shown, it is possible to retroactively restruc-
ture descriptions along a path in the design space in such a
way that continuity of change is maintained. An alternative
way of stating this is that design rationale can be main-
tained by retroactive restructuring of design descriptions.
Each such change applies to a known entity (or collection
of entities) in the design description. If this retroactive
restructuring can be effected, then true replay is possible.
As it stands, if one employs an object-oriented approach to
design representation, then such replay does not take into
account changes that were made to emergent forms (or
objects). Moreover, Stouffs and I showed that by taking an
object-oriented approach to design representation, for con-
tinuity of change to be preserved, the representation must
anticipate a priori all emergent forms (and objects) that are
so changed (Krishnamurti & Stouffs, 1997).

Ultimately, design search is about the gelling together of
syntax and semantics. Design is storytelling. More impor-
tantly, any design strategy (in which search is central) should
reify the process as a viable design tool. The telling is syn-
tactic whereas search imbues the story with meaning. A

https://doi.org/10.1017/50890060406060082 Published online by Cambridge University Press

R. Krishnamurti

generative mechanism is simply a means to an end. Design
search directs that means towards a “proper” end. Design
search exploration, as Woodbury and Burrow (sections 3.2,
4, and 5) seem to imply, as Carlson (1993) demonstrated in
his dissertation, is about devising an appropriate “program-
ming language” for design. This is no easy task.

It is popularly said (in all probability, by Kierkegaard)
that, “If it is edifying, it isn’t scholarly. If it is erudite, it
isn’t understandable.” Design remains both an intellectual
challenge and a practical enterprise and will continue to be
so. On the one hand, design conjures up theories of form,
function, and esthetics; on the other hand, it offers up a real
ability to create artifacts of beauty, functionality, and inge-
nuity. Through all of this, search remains the one true com-
mon thread that binds the dreamer to her dream. Woodbury
and Burrow should be commended for exploring a new
kind of navigation, a renewed look at search, while at the
same time creating a practical forum to channel debate among
kindred spirits.

ACKNOWLEDGMENTS

The author gratefully acknowledges the support from the National
Science Foundation through Grant CMS 0121549. Any opinions,
findings, conclusions, or recommendations presented in this paper
are those of the author and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES

Ait-Kaéi, H. (1984). A lattice theoretic approach to computation based
on a calculus of partially ordered type structures (property inheri-
tance, semantic nets, graph unification). PhD Thesis. University of
Pennsylvania.

Akin, O. (1986). A formalism for problem structuring and resolution. Envi-
ronment and Planning B: Planning and Design 13(2), 223-232.

Akin, O. (1999). Variants of design cognition. In Knowing and Learning
to Design Conference (Eastman, C., McCracken, M., & Newstetter,
W., Eds.). New York: Elsevier. Accessed at www.andrew.cmu.edu/
user/0a04 /Papers/Variants.pdf on June 14, 2005.

Akin, O. (2001). “Simon Says”: Design is representation. Arredamento,
July. Accessed at www.andrew.cmu.edu /user/0a04/Papers/AradSimon.
pdf. on June 14, 2005.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider,
P. (2003). The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge: Cambridge University Press.

Baumgart, B.C. (1975). A polyhedron representation for computer vision.
In National Computer Conference 1975, pp. 589-596. Montvale, NJ:
AFIPS Press.

Bruton, D., & Radford, A.D. (in press). Bending Rules: Grammar, Con-
tingency, Art and Design. San Francisco, CA: Morgan Kaufmann.
Burrow, A. (2006). Type feature structure and design exploration. PhD

Thesis. University of Adelaide.

Cardelli, L. (1984). A semantics of multiple inheritances. Proc. Int. Symp.
Semantics of Data Types (Kahn, G., MacQueen, D., & Plotkin, G.,
Eds.). Lecture Notes in Computer Science 173. Berlin: Springer—Verlag.

Carlson, C. (1993). Grammatical programming: an algebraic approach to
the description of design spaces. PhD Dissertation. Carnegie Mellon
University.

Carpenter, B. (1992). The logic of typed feature structures with applica-
tions to unification grammars, logic programs and constraint resolu-
tion. In Cambridge Tracts in Theoretical Computer Science. Cambridge:
Cambridge University Press.

https://doi.org/10.1017/S0890060406060082

Explicit design space?

Earl, C.F. (1999). Generated designs: structure and composition. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 13(4),
277-285.

Hastie, R., & Dawes, R.M. (2001). Rational Choice in an Uncertain World.
Thousand Oaks, CA: Sage.

Krishnamurti, R. (1986). The MOLE picture book: on a logic for design.
In Design Computing, vol. 1, pp. 171-188. New York: Wiley.

Krishnamurti, R. (1992). The maximal representation of a shape. Environ-
ment and Planning B: Planning and Design 19(3), 267-288.

Krishnamurti, R., & Stouffs, R. (1997). Spatial change: continuity, revers-
ibility and emergent shapes. Environment and Planning B: Planning
and Design 24(3), 359-384.

Krishnamurti, R., & Stouffs, R. (2004). The boundary of a shape and its
classification. The Journal of Design Research, 4(1). Accessed at http://
jdr.tudelft.nl/articles/issue2004.01/stouffs.pdf on June 14, 2005.

Kuratowski, K. (1972). Introduction to Set Theory and Topology. Oxford:
Pergamon.

Mintyld, M. (1988). An Introduction to Solid Modeling. Rockville, MD:
Computer Science Press.

Mitchell, W.J. (1993). A computational view of design creativity. In Mod-
eling Creativity and Knowledge-Based Creative Design (Gero, J.S., &
Maher, M.L., Eds.). Hillsdale, NJ: Erlbaum.

Paoluzzi, A., Ramella, M., & Santarelli, A. (1989). Boolean algebra over
linear polyhedra. Computer Aided Design 21, 474—484.

Rubenstein, A. (1998). Modeling Bounded Rationality. Cambridge, MA:
MIT Press.

Scott, D. (1976). Data types as lattices. SIAM Journal of Computing 5(3),
522-587.

Simon, H. (1973). The structure of ill-structured problems. Artificial Intel-
ligence 4(2), 181-200.

Stiny, G. (1992). Weights. Environment and Planning B: Planning and
Design 19(4), 413—430.

Stiny, G. (1993). Emergence and continuity in shape grammars. In CAAD
Futures *93 (Flemming, U., & Van Wyk, S., Eds.), pp. 37-54. Amster-
dam: North-Holland.

Stiny, G. (1994). Shape rules: Closure, continuity, and emergence. Envi-
ronment and Planning B: Planning and Design 21(1), s49—s78.

Stouffs, R., & Krishnamurti, R. (1996a). On a query language for weighted
geometries. Third Canadian Conf. Computing in Civil and Building
Engineering (Moselhi, O., Bedard, C., & Alkass, S., Eds.), pp. 783—
793, Montreal, Canada, August 26-28.

Stouffs, R., & Krishnamurti, R. (1996b). The extensibility and applicabil-
ity of geometric representations. 3rd Design and Decision Support

https://doi.org/10.1017/50890060406060082 Published online by Cambridge University Press

103

Systems in Architecture and Urban Planning Conf., Architecture Proc.,
pp- 436—452, Eindhoven University of Technology, Eindhoven, The
Netherlands, August 18-21.

Stouffs, R., & Krishnamurti, R. (2002). Representational flexibility for
design. In Artificial Intelligence in Design '02 (Gero, J., Ed.), pp. 105—
128. Dordrecht: Kluwer Academic.

Stouffs, R., Krishnamurti, R., & Eastman, C.M. (1996). A formal structure
for nonequivalent solid representations. Proc. IFIP WG 5.2 Workshop
on Knowledge Intensive CAD II (Finger, S., Méntyld, M., & Tomiyama,
T., Eds.), International Federation for Information Processing, Work-
ing Group 5.2, pp. 269-289, Pittsburgh, PA, September 16—18.

Stoy, J. (1977). Denotational Semantics. Cambridge, MA: MIT Press.

Woodbury, R., Burrow, A., Datta, S., & Chang, T-W. (1999). Typed feature
structures and design space exploration. Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing, 13(4), 287-302.

Ramesh Krishnamurti has a BE (Honors) in electrical
engineering from the University of Madras, a BA in com-
puter science from the University of Canberra, and Masters
and PhD in systems design from the University of Water-
loo. He has previously taught and worked in Canada and
the United Kingdom and is currently a Professor in the
School of Architecture at Carnegie Mellon University in
the Graduate Program in Computational Design. His research
focuses on the formal, semantic, generative, and algorith-
mic issues in computational design. Dr. Krishnamurti’s past
research activities have a multidisciplinary flavor and include
spatial grammars, spatial algorithms, geometrical model-
ing, analyses of design styles, knowledge-based design
systems, integration of graphical and natural language, inter-
activity and user interfaces, graphic environments, com-
puter simulation, and war games. His current research
projects deal with sensor-based modeling and recognition,
smart building information models, and shape grammar
implementations.

https://doi.org/10.1017/S0890060406060082

