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Abstract

In this paper, we extend the study of fixed point properties of semitopological semigroups of continuous
mappings in locally convex spaces to the setting of completely regular topological spaces. As
applications, we establish a general fixed point theorem, a convergence theorem and an application to
amenable locally compact groups.
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1. Introduction

Given a semitopological semigroup S and any translation-invariant closed subspace
(containing the real-valued constant functions) of Cb(S ), the Banach algebra of all
bounded continuous real-valued functions on S , we establish a characterisation of the
existence of a left invariant mean on it in terms of a nonlinear property for semigroups
of continuous mappings on a completely regular topological space. As applications,
we provide a general fixed point theorem for semigroups of continuous mappings on a
nonempty compact convex set in a separated locally convex space generalising many
known results (see, for example, [8, 10]). We also establish a convergence theorem
ensuring in certain conditions the existence of a common fixed point for a semigroup
of continuous mappings on a compact convex subset of a Hausdorff locally convex
space. Furthermore, we also show that an application of our results yields a new proof
of existence of a left Haar measure for the class of amenable locally compact groups.

2. Preliminaries and notation

A semigroup S together with a Hausdorff topology is termed semitopological if its
operation is separately continuous. We shall denote by Cb(S ) the Banach algebra of all
bounded continuous real-valued functions on S . Given s ∈ S and f ∈ Cb(S ), the left
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[2] Actions of semitopological semigroups on completely regular spaces 163

(respectively right) translate of f is denoted and defined by `s f (t) = f (st) (respectively
rs f (t) = f (ts)). Let Φ denote a closed subspace of Cb(S ) containing constants. The
subspace Φ is said to be translation invariant if it is both both left and right translation
invariant. In other words, if `s(Φ) ⊂ Φ and rs(Φ) ⊂ Φ for all s ∈ S . The subspace Φ is
called left amenable if there exists an element m ∈ Φ∗ (the continuous dual of Φ) such
that:

(1) m(e) = 1 = ‖m‖, where e : S → R stands for the constant 1 function;
(2) m(`s f ) = m( f ) for all s ∈ S and f ∈ Φ.

We shall write that Φ has a LIM (to stand for the subspace Φ has a left invariant mean).
An element m satisfying property (1) is called a mean; and if in addition it has property
(2), then it is said to be a left invariant mean. Given f ∈ Cb(S ), we shall assign the
map θ f : S → Cb(S ) defined by θ f (s) = `s f . Throughout this paper we shall deal with
the following subspaces of Cb(S ); see [1] for details.

• WLUC(S ) denotes the subspace of Cb(S ) of all f such that θ f is continuous when
Cb(S ) is given the weak topology. Members of this space are called weakly left
uniformly continuous functions on S .

• LMC(S ) is the collection of all f ∈ Cb(S ) such that θ f is continuous with respect
to the topology induced by βS on Cb(S ). Here βS stands for the set of all means
m on Cb(S ) that are multiplicative in the sense that m( f g) = m( f )m(g) whenever
f , g ∈ Cb(S ) (such means are commonly called multiplicative means). Functions
in LMC(S ) are called left multiplicatively continuous functions on S .

• LUC(S ) is the subspace of Cb(S ) of those f for which θ f is norm continuous.
Members of LUC(S ) are called left uniformly continuous functions on S .

• WAP(S ) is the subspace of Cb(S ) consisting of all f with the property that the set
Ł( f ) = {`s f : s ∈ S } has compact closure in the weak topology of Cb(S ). Such
functions are called weakly almost periodic.

• AP(S ) is the space of all f ∈ Cb(S ) such that Ł( f ) is relatively compact with
respect to the norm topology of Cb(S ). Functions in AP(S ) are usually called
strongly almost periodic or simply almost periodic.

For the interested reader, relationships between those spaces and their properties are
known and may be found in [1]. From now on, X will denote a completely regular
topological space. An action of S on X is a map σ : S × X → X, (s, x) 7→ s.x with the
property that st.x = s.(t.x) for every pair of points s, t of S and x ∈ X. For each s ∈ S ,
we shall let σs : X → X denote the partial map x 7→ s.x. Then σ is termed separately
continuous if it is continuous with respect to each variable separately (that is, if for all
s ∈ S and x ∈ X, the mappings y 7→ s.y : X → X and t 7→ t.x : S → X are continuous)
and jointly continuous if (s, x) 7→ s.x is continuous when S × X is given the product
topology. Now, given a translation-invariant subspace Φ of Cb(S ), let

XΦ := {x ∈ X : fx : S → R, s 7→ f (s.x) ∈ Φ for all f ∈ Cb(X)}.

Then we shall say that the action is an A-action (respectively E-action) of (S ,Φ) on X if
XΦ = X (respectively XΦ , ∅). The symbol A stands for ‘any’, E for ‘there exists’ and
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164 K. Salame [3]

Cb(X) denotes the Banach algebra of all bounded continuous real-valued functions
on X equipped with the sup norm topology. Then it is trivial that an A-action is
an E-action.

3. Main results
In this section we shall establish our main results. Given a completely regular space

X, let βX denote its Stone–Čech compactification and let δ : X → Cb(X)∗ be the map
defined by δ(x)( f ) = f (x) for every point x of X. And, given a subset F of X, let the
symbol co(F) stand for the convex hull of δ(F) in the dual space Cb(X)∗.

Theorem 3.1. Let S be a semitopological semigroup. Let Φ be a translation-invariant
closed subspace of Cb(S ) containing the real-valued constant functions on S . If Φ has
a left invariant mean, then S possesses the following property:
(P): Whenever σ : S × X → X is a separately continuous E-action of (S ,Φ) on a
completely regular topological space X, then there exist a net (F j) j∈J of finite subsets
of X and Λ j ∈ co(F j) for all j ∈ J, and Λ ∈ Cb(X)∗ such that:

(1) Λ j( f ) −→
j

Λ( f ) for all f ∈ Cb(X);

(2) Λ( f ◦ σs) = Λ( f ) for all f ∈ Cb(X) and for all s ∈ S .

Conversely, if S has property (P) and Φ is any of the spaces AP(S ), WAP(S ), LUC(S ),
LMC(S ), WLUC(S ) or Cb(S ), then Φ has a LIM.

Proof. We start by extending the action on X to its compactification βX. Let
S : S × βX→ βX

(s, φ) 7→Ss(φ) : f 7→ φ( f ◦ σs).
In particular, Ss(δ(x)) := δ(σs(x)) for all s ∈ S and x ∈ X. We need to justify that S is
well defined.

Claim: Ss(φ) ∈ βX for all s ∈ S and φ ∈ βX. In fact, let (x j) j be a net in X
such that δ(x j)→ φ pointwise. Then, due to the separate continuity of σ given
f ∈ Cb(X), we have δ(σs(x j))( f ) = δ(x j)( f ◦ σs)→ φ( f ◦ σs) = Ss(φ)( f ). Therefore,
βX 3 Ss(δ(x j))→ Ss(φ), which implies that Ss(φ) ∈ βX. So, our claim is true. On
the other hand, as readily checked, S is an action that is continuous with respect
to the second variable. Now let us fix x ∈ XΦ. Then, given Ψ ∈ C(βX), the map
Ψx : s 7→ Ψ(Ss(δ(x)) lies in Φ because Ψ ◦ δ ∈ Cb(X) and Ψx = (Ψ ◦ δ)x ∈ Φ as σ is an
E-action. Now let m be a left invariant mean on Φ. Pick a net (mt)t∈T of finite means
on Φ converging pointwise to m; see [1, Theorem 1.8]. Since finite means are convex
combinations of point masses, then one can put mt :=

∑nt
i=1 λ

t
iδst

i
with λt

i ≥ 0,
∑nt

i=1 λ
t
i = 1

and st
i ∈ S . Then it follows that co(βX) 3 Λt :=

∑nt
i=1 λ

t
iδ(σst

i
(x)) for all t ∈ T . As βX is

compact in the topology of pointwise convergence, then one can extract a convergent
subnet (Λt j ) j∈J converging to some limit Λ lying in the pointwise closure of the convex
hull of βX. For all j ∈ J, put

F j := {σ
s

t j
1
(x), σ

s
t j
2
(x), . . . , σ

s
t j
nt j−1

(x), σ
s

t j
nt j

(x)}.
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[4] Actions of semitopological semigroups on completely regular spaces 165

Then it is obvious that Λt j ∈ co(F j) for all j ∈ J. Furthermore, given f ∈ Cb(X), if we
let f̃ ◦ σs ∈ C(βX) denote the continuous extension of f ◦ σs to βX, then it is readily
checked that f ◦ σs = f̃ ◦ σs ◦ δ. So,

Λ( f ◦ σs) = lim
j

nt j∑
i=1

λ
t j

i δ(σs
t j
i
(x))( f ◦ σs)

= lim
j

nt j∑
i=1

λ
t j

i f ◦ σs(σs
t j
i
(x))

= lim
j

nt j∑
i=1

λ
t j

i f̃ ◦ σs(δ(σs
t j
i
(x)))

= lim
j

nt j∑
i=1

λ
t j

i f̃ ◦ σs ◦ δ(σs
t j
i
(x))

= lim
j

nt j∑
i=1

λ
t j

i f ◦ σs(σs
t j
i
(x))

= lim
j

nt j∑
i=1

λ
t j

i δs
t j
i
(( f ◦ σs)x)

= lim
j

mt j (`s fx) = m(`s fx) = m( fx)

= lim
j

nt j∑
i=1

λ
t j

i δs
t j
i
( fx)

= lim
j

nt j∑
i=1

λ
t j

i δ(σs
t j
i
(x))( f )

= lim
j

Λt j ( f )

= Λ( f ).

Conversely, let us now assume that S possesses the property (P). We consider three
cases.

Case 1: Φ = AP(S ). Fix f ∈ AP(S ). Let X be the norm closure of the convex
hull of the right orbit R( f ) = {rs f ; s ∈ S }. Then X is norm compact since R( f ) is
relatively compact in the norm topology. Define σ : S × X→ X by letting σs(h) = rsh.
Then as readily checked σ is separately continuous; moreover, for all s ∈ S , the
mapping σs : h 7→ rsh is norm nonexpansive. So, it follows that {σs : s ∈ S } is an
equicontinuous family. Hence, it defines an A-action of (S , AP(S )) on X by [8].
Hence, by assumption, there are Λ ∈ C(X)∗ and Λ j ∈ co(δ(X)) such that Λ j → Λ

pointwise and Λ( f ◦ σs) = Λ( f ) for all s ∈ S and f ∈ C(X). Let Λ j =
∑n j

i=1 t j
i δ(h

j
i ).
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Note that as X is a compact space, we have βX ' X. Moreover, since X is convex and
norm compact, one can assume without loss of generality that X 3 g j :=

∑n j

i=1 t j
i h j

i → g
in norm to some g (because, if not, we just consider a norm-convergent subnet). Then,
given s ∈ S and φ ∈ AP(S )∗,

φ(rsg) = lim
j

n j∑
i=1

t j
i φ(rsh

j
i )

= lim
j

n j∑
i=1

t j
i δ(h

j
i )(φ ◦ σs)

= lim
j

Λ j(φ ◦ σs)

= Λ(φ ◦ σs) = Λ(φ)
= lim

j
φ(g j)

= φ(g).

Thus, φ(rsg − g) = 0 for all φ ∈ AP(S )∗. Hence, rsg = g for every s ∈ S .
If S has an identity, say e, then for all s ∈ S we have g(s) = rsg(e) = g(e), which

shows that g ≡ g(e) is a constant map.
If not, then we adjoin an identity e to S by simply letting se = s = es, ee = e. Let S e

be the new semigroup obtained. We topologise S e by adjoining {e} to the open sets of S
and extend σ to an action of σe on X by letting (e, h) 7→ h (h ∈ X). The extended action
σe is equicontinuous (because nonexpansive) and separately continuous; it therefore
defines an A-action of (S , AP(S e)) on X, which shows that S e has property (P). So, by
virtue of the previous case, there is a constant function in X ⊂ X

p
(the closure of X in

the topology of pointwise convergence). Hence, it follows from [5] that AP(S ) has a
left invariant mean.

Case 2: Φ = WAP(S ). Given f ∈WAP(S ), let X be as in Case 1. From the relative
compactness of R( f ) in the weak topology of Cb(S ), it follows that X is weakly
compact by virtue of the Krein–Šmulian theorem. Further, we assert that σ is quasi-
equicontinuous (that is, the closure S

p
of S in the product XX consists entirely of

continuous functions; see [1] for more details). Indeed, let θ ∈ S
p

and let us assume
by contradiction that θ is not continuous. Then there exist x ∈ X, φ ∈ WAP(S )∗, ε > 0
and a weakly convergent net h j → h ( j ∈ J) in X such that

φ(θ(h j) − θ(h)) ≥ ε for all j ∈ J. (3.1)

Since h j → h weakly, h lies in the closed convex hull of {h j : j ∈ J}. Therefore,
there exists a sequence (yn)n such that: yn =

∑
i∈Jn

tn
i hn

i , Jn finite, tn
i ≥ 0,

∑
i∈Jn

tn
i = 1,

hn
i ∈ {h j : j ∈ J} and ‖yn − h‖ → 0. On the other hand, as θ ∈ S

p
, pick a net (st)t in S

such that σst → θ weakly pointwise. Then, by using (3.1), we get for all n,

φ(θ(yn) − θ(h)) =
∑
i∈Jn

tn
i φ(θ(hn

i ) − θ(h)) ≥ ε.
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[6] Actions of semitopological semigroups on completely regular spaces 167

Thus, it follows that 0 < ε ≤ φ(θ(yn) − θ(h)) = limt φ(σst (yn − h)) ≤ ‖φ‖.‖yn − h‖ → 0,
leading to a contradiction. Hence, θ must be continuous and our claim is true.
Consequently, σ as a separately continuous and quasi-equicontinuous action on the
compact space X is by [9] an A-action of (S , WAP(S )) on X. So, by assumption, there
is a Λ ∈ C(X)∗ such that Λ( f ◦ σs) = Λ( f ) for all f ∈ C(X). Thus, a similar argument
as in Case 1 yields together with [5] the existence of a left invariant mean on WAP(S ).
Note that in the case where S has no identity, the extended action on its unitisation S e

is also quasi-equicontinuous because S e p
= S

p
∪ {idX}.

Case 3: Φ = LUC(S ), LM(S ), WLUC(S ) or Cb(S ). Let X be the collection of all
means on Φ. It is known that X is a compact convex subset of Φ∗ in the weak*
topology. Define σ : S × X → X by letting σs(m) = Łs(m) with Łs(m)( f ) = m(`s f ) if
f ∈ Φ. Then, from [10], this map is an A-action of (S ,Φ) on X whenever Φ = LUC(S ),
LM(S ) or WLUC(S ). If Φ = Cb(S ), then, due to the separate continuity of σ (which is
actually jointly continuous), it is automatically an A-action of (S ,Cb(S )) on X. Hence,
by assumption, for each case there is a convergent net (ΛΦ

j ) j∈JΦ
in the convex hull of

βX ' X such that ΛΦ := lim j ΛΦ
j has the property ΛΦ( f ◦ σs) = ΛΦ( f ) for all f ∈ C(X).

Then let us put ΛΦ
j :=

∑nΦ, j

i=1 tΦ, ji δ(mΦ, j
i ) for some of the mΦ, j

i ∈ X and, for all j ∈ J, define

mΦ, j :=
nΦ, j∑
i=1

tΦ, ji mΦ, j
i

and
mΦ( f ) := ΛΦ(ev f )

for all f ∈ Φ. Here, given f ∈ Φ, the symbol ev f stands for the evaluation map at f on
Φ∗, which is also an element of C(X). Then

mΦ, j( f ) =

nΦ, j∑
i=1

tΦ, ji mΦ, j
i ( f )

=

nΦ, j∑
i=1

tΦ, ji ev f (m
Φ, j
i )

= ΛΦ, j(ev f )
−→
j

ΛΦ(ev f ) = mΦ( f ).

So, mΦ as a pointwise limit of a net of means is then a mean. On the other hand, given
s ∈ S ,

mΦ(`s f ) = lim
j

mΦ, j(`s f )

= lim
j

nΦ, j∑
i=1

tΦ, ji mΦ, j
i (`s f )
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168 K. Salame [7]

= lim
j

ΛΦ
j (ev f ◦ σs)

= ΛΦ(ev f ◦ σs) = ΛΦ(ev f )
= mΦ( f ).

Hence, it follows that mΦ is a left invariant mean on Φ. �

Remark 3.2. We point out that Theorem 3.1 is a consequence of [14]. On the other
hand, if in property (P) the space X is assumed to be a compact convex subset of a
Hausdorff convex space and the action is affine, then property (P) yields a common
fixed point for S as established in Corollary 4.1.

Example 3.3. Let S be a semitopological semigroup andσ : S × X→ X be a separately
continuous action on a compact Hausdorff topological space X. Then it is known that
(see, for example, [8–10]):

(1) if S is discrete, then σ is automatically an A-action of (S , `∞(S )) on X (even
without any continuity assumption);

(2) if σ is separately continuous, then it is an A-action of (S , WLUC(S )) on X;
(3) if, for all x ∈ X, the mapping s 7→ σs(x) is continuous, then σ defines an A-action

of (S , LMC(S )) on X;
(4) if σ is jointly continuous, then it defines an A-action of (S , LUC(S )) on X;
(5) if σ is separately continuous and quasi-equicontinuous (that is, the closure S

p
of

S in the product space XX consists only of continuous functions), then it defines
an A-action of (S , WAP(S )) on X;

(6) if, in particular, X is a subset of a topological vector space, and σ is separately
continuous and equicontinuous (that is, for each neighbourhood V of 0, there is
a neighbourhood W of 0 such that for all x, y ∈ X we have: x − y ∈ W implies
that σs(x) − σs(y) ∈ V for all s ∈ S ), then σ is an A-action of (S , AP(S )) on X.

4. Applications to fixed point theory

In this section, given a semitopological semigroup S , we provide a characterisation
of the existence of a left invariant mean on translation-invariant closed subspaces of
Cb(S ) that contains the constant functions by a fixed point property generalising some
common fixed point theorems in the literature.

Corollary 4.1. Let S be a semitopological semigroup and Φ be a translation-
invariant closed subspace of Cb(S ) containing constant functions on S . If Φ has a
LIM, then S possesses the following fixed point property:

(F): Whenever S × X → X is a separately continuous affine E-action of (S ,Φ) on a
nonempty compact convex subset X of a Hausdorff locally convex space E, then there
exists in X a common fixed point for S .

Conversely, if S has the fixed point property (F) and Φ is any of the spaces: AP(S ),
WAP(S ), LUC(S ), LMC(S ), WLUC(S ) or Cb(S ), then Φ has a LIM.
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[8] Actions of semitopological semigroups on completely regular spaces 169

Proof. Assume that Φ is left amenable. Since X ' βX, then, by Theorem 3.1, there
is a convergent net

∑n j

i=1 t j
i δ(x j

i ) → Λ ∈ C(X)∗ such that Λ( f ◦ σs) = Λ( f ) for all
f ∈ C(X). Put x j :=

∑n j

i=1 t j
i x j

i ∈ X for all j ∈ J. From the compactness of X, by taking a
convergent subnet if necessary, we may assume without loss of generality that (x j) j∈J

is convergent. Let x̃ ∈ X denote its limit. Fix φ ∈ X∗ (the continuous dual of X) and
s ∈ S . Then, by affineness of σ,

φ(x̃) = lim
j
φ
( n j∑

i=1

t j
i x j

i

)
= lim

j

n j∑
i=1

t j
i δ(x j

i )(φ)

= Λ(φ) = Λ(φ ◦ σs)

= lim
j

n j∑
i=1

t j
i δ(x j

i )(φ ◦ σs)

= lim
j

n j∑
i=1

t j
i φ ◦ σs(x j

i )

= lim
j
φ ◦ σs

( n j∑
i=1

t j
i x j

i

)
= φ ◦ σs(x̃).

Thus, we have φ(σs(x̃) − x̃) = 0 for all ordered pairs (s, φ) ∈ S × X∗. Hence, σs(x̃) = x̃
(since X∗ separates points of X). By arbitrariness of s, it follows that x̃ is a common
fixed point for S . Conversely, if S has fixed point property (F), then the conclusion
follows from a similar argument as in the proof of Theorem 3.1. �

For nonlinear actions we also have the following result.

Corollary 4.2. Let S be a semitopological semigroup. Let Φ be a translation-
invariant closed subspace of Cb(S ) containing constant functions on S . If Φ possesses
a left invariant mean, then S possesses the following property:

(P’): Whenever S × X → X is a separately continuous E-action of (S ,Φ) on a
nonempty compact convex subset X of a Hausdorff locally convex space E, then there
exist a net (

∑nα
j=1 tαj xαj )α∈J of convex combinations of elements of X and an element

x̃ ∈ X such that:

(1)
∑nα

j=1 tαj xαj −→α
x̃ strongly;

(2)
∑nα

j=1 tαjσs(xαj ) −→
α

x̃ weakly for all s ∈ S ;

(3) q(
∑nα

j=1 tαjσs(xαj )) −→
α

q(x̃) for all continuous seminorms q on E, s ∈ S ;

(4) if in addition the action is affine, then x̃ is a common fixed point for S .
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170 K. Salame [9]

Proof. If Φ possesses a left invariant mean, then, by Theorem 3.1, there exists
φ ∈ coτwk∗(βX) (the weak* closed convex hull of the Stone–Čech compactification
βX (' X since X is compact) of X) such that φ( f ◦ σs) = φ( f ) for all s ∈ S and for
all f ∈ C(X). Put

φ := τwk∗- lim
j

n j∑
i=1

t j
i δ(x j

i )

with t j
i ∈ [0, 1],

∑n j

i=1 t j
i = 1 and x j

i ∈ X. Since K is convex, we have
∑n j

i=1 t j
i x j

i ∈ X for all
j ∈ J. So, by compactness (of X), from the net (

∑n j

i=1 t j
i x j

i ) j one can extract a convergent
subnet, say (

∑n jα
i=1 t jα

i x jα
i )α∈J; let x̃ denote its limit. Then, given Γ ∈ X∗ (the continuous

dual of X), s ∈ S and a continuous seminorm q on E,

Γ(x̃) = lim
α

Γ(θ jα) = φ(Γ) = φ(Γ ◦ σs)

= lim
α

n jα∑
i=1

t jα
i δ(x jα

i )(Γ ◦ σs)

= lim
α

n jα∑
i=1

t jα
i Γ ◦ σs(x jα

i )

= lim
α

Γ

( n jα∑
i=1

t jα
i σs(x jα

i )
)
.

Therefore, Γ(
∑n jα

i=1 t jα
i σs(x jα

i )) → Γ(x̃) for all Γ ∈ X∗ and s ∈ S , which means that∑n jα
i=1 t jα

i σs(x jα
i )→ x̃ weakly whenever s ∈ S . On the other hand, by replacing Γ with q,

then, by (weak) lower semicontinuity,

lim sup
α

q
( n jα∑

i=1

t jα
i σs(x jα

i )
)
≤ lim

α

n jα∑
i=1

t jα
i q ◦ σs(x jα

i ) = q(x̃) ≤ lim inf
α

q
( n jα∑

i=1

t jα
i σs(x jα

i )
)
.

Hence, equality holds throughout. The last part follows by affineness and (2).
Therefore, (

∑n jα
i=1 t jα

i x jα
i )α∈J is the required net we are looking for. �

Let S be a semitopological semigroup. Then Example 3.3 and Corollary 4.1 or
Corollary 4.2 yield the following result.

Corollary 4.3 [10, Theorem 4]. WLUC(S ) possesses a LIM if and only if:

(F1): Whenever S × X → X is a separately continuous affine action on a compact
convex subset X of a separated locally convex space, then there is a common fixed
point for S .

Corollary 4.4 [10, Theorem 2]. LUC(S ) has a LIM if and only if:

(F2): Whenever S × X → X is a jointly continuous affine action on a compact convex
subset X of a separated locally convex space, then there is a common fixed point for S .
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Corollary 4.5. WAPS(S ) has a LIM if and only if:
(F3): Whenever S × X → X is a separately continuous and quasi-equicontinuous
affine action on a compact convex subset X of a separated locally convex space, then
there is a common fixed point for S .

Corollary 4.6 [8, Theorem 3.2]. AP(S ) has a LIM if and only if:
(F4): Whenever S × X → X is a separately continuous and equicontinuous affine
action on a compact convex subset X of a separated locally convex space, then there
is a common fixed point for S .

5. Application to locally compact groups
A locally compact group is a group G together with a locally compact topology

and such that the mappings (g.h) 7→ gh from G ×G into G and g 7→ g−1 from G into
itself are continuous. Throughout, G denotes a locally compact group with identity
e. The purpose of this section is to show that an application of the results established
in the previous section yields the existence of a left Haar measure for amenable G;
that is, when Cb(G) possesses an invariant mean. Note that for a locally compact
group it is a known fact, see [12], that the existence of a mean on the space of left
uniformly continuous functions is equivalent to the algebra of bounded continuous
functions being amenable. Amenable locally compact groups include compact groups,
commutative groups and solvable (discrete) groups [3]. Note that fixed point proofs
of existence of a left Haar measure are known for the class of compact groups [11]
through the Kakutani fixed point theorem, abelian groups [6] through the Markov–
Kakutani fixed point theorem and amenable hypergroups (satisfying a certain positivity
property for translations) in [15].

Let C denote the collection of all nonempty compact subsets of G and let Cc(G)
stand for the subspace of Cb(G) consisting of those mappings having a compact
support. On Cc(G), let us say that a net ( ft)t is τ-convergent with limit f if there
exist a fixed compact set C f and some t f such that:

(1) support( f ) ⊂ C f ;
(2) support( ft) ⊂ C f for all t ≥ t f ;
(3) ft → f uniformly on C f .
Example 5.1. Let G = (R,+). Given xo ∈ G, t ∈ T = (0, 1], define

ft(x) :=


−1

1 + t
(x − xo) + 1 if x ∈ [xo, xo + 1 + t],

1
1 + t

(x − xo) + 1 if x ∈ [xo − 1 − t, xo],

0 if |x − xo| ≥ 1 + t,

and

f (x) :=


−(x − xo) + 1 if x ∈ [xo, xo + 1],
(x − xo) + 1 if x ∈ [xo − 1, xo],
0 if |x − xo| ≥ 1.
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Put C f = [xo − 2, xo + 2]. Then support( ft) = [xo − 1 − t, xo + 1 + t] ⊂ C f and
support( f ) = [xo − 1, xo + 1] ⊂ C f for all t ∈ T . Furthermore, it is straightforward that
supx∈C f

| ft(x) − f (x)| = (t/(1 + t)) −−−→
t→0

0. Therefore, f is the τ-limit of ( ft)t∈T .

Let us say that a linear form φ on Cc(G) is τ-continuous if we have φ( ft)→ 0
whenever ( ft)t is a τ-convergent net to 0. Define

D(G)∗ := {φ : Cc(G)→ R : φ is linear, τ-continuous}

and fix a relatively compact symmetric neighbourhood N of the identity e of G. Then
the author has established, see [13, Ch. 4, Lemma 4.5], the following result.

Lemma 5.2. Let K be the setφ ∈ D(G)∗ : φ ≥ 0,

φ( f ) ∈ [0, 1] if f ∈ [0, 1], support( f ) ⊂ g.N for some g,
φ( f ) ≥ 1 if f ≥ 0, f ≡ 1 on g.N.N for some g ∈ G.


Then K is a nonempty compact convex subset ofD(G)∗ with respect to the topology of
pointwise convergence.

Then, as an application of Corollary 4.1 and 5.2, we have the following result.

Theorem 5.3. Every amenable locally compact group G possesses a left Haar measure,
that is, a nonnegative nonzero regular Borel measure µ on G such that:

(1) µ(C) <∞ for all C ∈ C ;
(2) µ(g.E) = µ(E) for all Borel sets E and g ∈ G.

Proof. Let K be as in the lemma. Define σ : G × K → K, an action of G on K, by the
equation g.φ( f ) := φ(`g f ), ( f ∈ Cc(G)). Then it is readily checked that σ is a separately
continuous A-action of (G,Cb(G)) on K. So, if G is amenable, then, as an application
of Corollary 4.1 with Φ = Cb(G) and X = K (equipped with the topology of pointwise
convergence), there is φo ∈ K such that φo(`g f ) = φo( f ) for all g ∈ G and f ∈ Cb(G).
Moreover, from the definition of K, φo is a nonnegative linear form on Cc(G). We
claim that φo is nonzero. Indeed, since N.N is compact, then using Urysohn’s lemma
let us fix f ∈ Cc(G) such that f ≡ 1 on N.N, 0 ≤ f ≤ 1. Then φo( f ) ≥ 1, which shows
that φo( f ) , 0. Hence, the existence of the measure with the desired properties follows
by invoking the Riesz representation theorem to φo and the properties of φo. �

Remark 5.4. Actually, see [4, Theorem 5.10], the measure is unique up to a
multiplicative positive constant. We also point out that another proof for the amenable
case has been established independently in [7].

Remark 5.5. It is a well-known fact that for any topological group G, its space
WAP(G) of weakly almost periodic functions possesses an invariant mean (following
from an application of the Ryll–Nardzewsky fixed point theorem [2]). Therefore, it is
relevant at this point to raise the following question.

Open problem 1: Can we prove the existence of a left Haar measure for general locally
compact groups through a fixed point theorem?
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Remark 5.6. In Theorem 3.1, we have shown that the convergence Λ j → Λ is
pointwise. And, Corollary 4.1 shows that property (P) in Theorem 3.1 yields a
common fixed point when the action is affine and the underlying space is assumed to
be a compact convex subset of a locally convex space. So, one may ask the following
questions.

Open problem 2: Does the convergence in Theorem 3.1 still hold when Cb(X)∗ is
equipped with the weak topology? If not, under what condition does it hold with
respect to the weak topology?

Open problem 3: Is the converse of Theorem 3.1 true for any translation-invariant
closed algebra of functions containing the constants?
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