
J. Fluid Mech. (2015), vol. 768, pp. 51–90. c© Cambridge University Press 2015
doi:10.1017/jfm.2015.48

51

Mixed convection in a periodically
heated channel
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Mixed convection in a channel with flow driven by a pressure gradient and subject to
spatially periodic heating along one of the walls has been studied. The pattern of the
heating is characterized by the wavenumber α and its intensity is expressed in terms
of the Rayleigh number Rap. The primary convection has the form of counter-rotating
rolls with the wavevector parallel to the wavevector of the heating. The resulting net
heat flow between the walls increases proportionally to Rap but the growth saturates
when Rap = O(103). The most effective heating pattern corresponds to α ≈ 1, as
this leads to the most intense transverse motion. The primary convection is subject
to transition to secondary states with the onset conditions depending on α. The
conditions leading to transition between different forms of secondary motion have
been determined using the linear stability theory. Three patterns of secondary motion
may occur at small Reynolds numbers Re, i.e. longitudinal rolls, transverse rolls and
oblique rolls, with the critical conditions varying significantly as a function of α. An
increase of α leads to the elimination of the longitudinal rolls and, eventually, to the
elimination of the oblique rolls, with the transverse rolls assuming the dominant role.
For large α, the transition is driven by the Rayleigh–Bénard mechanism; while for
α=O(1), the spatial parametric resonance dominates. The global flow characteristics
are identical regardless of whether the heating is applied at the lower or the upper
wall.

Key words: buoyancy-driven instability, convection

1. Introduction
There are numerous heat transfer systems where the heat flow is driven by spatially

distributed heating. Efficient heat removal from components installed on computer
motherboards represents one typical situation. Natural convection is preferred due
to its passive character but it can rarely handle the required heat load. Weather
phenomena associated with non-uniform heating of the ground represent another
example. This effect is related to the presence of patterns of roofs–streets–parks in an
urban environment and forests–lakes–fields in a rural environment. The use of flow
patterning for biological applications such as cell analysers provides an interesting
application in microfluidics (Krishnan, Ugaz & Burns 2002). Understanding of the
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motions of fluids over geometrically, chemically and thermally patterned surfaces is
of vital interest in their design. Of particular importance is how convective motions
develop and how they affect the transport of passive scalar quantities along regularly
structured surfaces (Beltrame et al. 2011). It is known in geological applications that
a system of fractures, leads and polynyas in sea ice leads to convection in both the
ocean and the atmosphere, with small leads of the order of several metres being more
efficient than larger ones of the order of several hundred metres (Marcq & Weiss
2012). The insulating effect of continents on mantle convection within the Earth is
another example of a spatially structured convection occurring in nature (Lenardic
et al. 2005).

The heat transport in the case of pure natural convection is driven by the
buoyancy force. Convection occurring in a stationary fluid layer subject to spatially
homogeneous heating from below represents the reference case. This is the so-called
Rayleigh–Bénard (RB) convection (Bénard 1900; Rayleigh 1916). The conductive
state of equilibrium undergoes transition to convective motion if the critical conditions
expressed in terms of a suitably defined Rayleigh number are met; see Bodenschatz,
Pesch & Ahlers (2000), Ahlers, Grossmann & Lohse (2009), Lohse & Xia (2010) and
Chilla & Schumacher (2012) for recent reviews. The RB convection can be combined
with inhomogeneities in the boundary temperatures, but this concept has been used
only to study the effects of small inhomogeneities (or boundary imperfections) on
the symmetry breakup in the RB convection rather than to investigate convection
dominated by such inhomogeneities (Hossain & Floryan 2013b). The introduction of
forced motion (mixed convection) gives preference to rolls with axes parallel to the
flow direction but does not affect the critical conditions (Gage & Reid 1968); see
Kelly (1994) for a complete review.

Inhomogeneous heating creates horizontal temperature variations, which lead to
different vertical pressure distributions at different horizontal locations, giving rise
to horizontal pressure gradients. Such configurations are statically unstable, resulting
in fluid movement regardless of the intensity of the heating and leading to motion
frequently referred to as horizontal convection (Maxworthy 1997; Siggers, Kerswell &
Balmforth 2004; Hughes & Griffiths 2008; Winters & Young 2009). The first study of
such convection that we are aware of used asymptotic approximation in the analysis
of long-wavelength heating (Kelly & Pal 1976a,b). A detailed analysis of convection
resulting from application of heating with arbitrary wavelength and with arbitrary
Prandtl number has been given only recently (Hossain & Floryan 2013a). It has been
shown that the heat transfer strongly depends on the wavenumber; it rapidly decreases
when the wavenumber is either too small or too large. The primary convection
undergoes transition to secondary convection whose structure strongly depends on
the heating wavenumber (Hossain & Floryan 2013b). For large wavenumbers, the
primary convection creates a conduction zone above a thin boundary layer adjacent
to the heated wall, resulting in the dominance of the RB mechanism. When heating
wavenumbers are O(1), the spatial parametric resonance dominates, resulting in the
formation of oblique rolls with the wavevector having a component orthogonal to the
wavevector of the primary convection. Such oblique structures are rarely observed
in pattern-forming systems, where they lead to the three-dimensionalization of the
otherwise two-dimensional flow problem. It has been shown that wavenumber locking
between the primary and secondary convection occurs under certain conditions. A
qualitatively similar problem with spatial variability resulting from the use of mixed
insulating and conducting boundary conditions has been studied by Ripesi et al.
(2014) using numerical simulations.
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In many applications, spatially distributed heating is combined with forced
motion. It has been shown recently that spatially periodic heating gives rise to
the superthermohydrophobic effect (Floryan 2012; Hossain, Floryan & Floryan 2012),
which leads to a significant drag reduction for small Re flows and thus could lead
to the design of a new class of microfluidic devices. These predictions remain valid
as long as the flow does not undergo transition to secondary states. The first study
of secondary states that we are aware of is due to Hasnaoui et al. (1991), who used
two-dimensional direct numerical simulations and observed a number of complex
secondary states. Their analysis cannot capture oblique rolls as well as rolls with
axes parallel to the flow direction, which play the dominant role in mixed convection
with uniform heating (Gage & Reid 1968; Kelly 1994). It can be concluded that the
characteristics of mixed convection in a system subject to spatially periodic heating
are not known. The conditions leading to transition to secondary states as well as
flow patterns resulting from such transition remain to be determined.

The main objective of this analysis is to determine the basic characteristics of fluid
movement and the resulting heat transfer process associated with mixed convection
in a simple system consisting of an infinitely long horizontal channel where the
flow is driven by a pressure gradient and the channel is subject to heating that is
periodic in the flow direction. We shall focus our attention on fluids with Pr = 0.71
and consider a simple sinusoidal temperature variation applied at the lower wall, as
this reduces the number of parameters to just three, i.e. the heating wavenumber
α, the heating intensity expressed in terms of the Rayleigh number Rap, and the
flow Reynolds number Re. The convective motion resulting from the applied heating
can be viewed as a forced response or, alternatively, it can be referred to as the
primary convection. It is known that convective flows are highly unstable, and thus
the analysis is extended to include determination of conditions leading to secondary
convection as well as determination of the possible patterns of secondary motions.
The analysis is carried out using a model problem where the heating is applied at
the lower wall. Generalization of the results to the heating applied at the upper wall
is discussed, as the system exhibits up–down symmetries (Howard & Krishnamurti
1986; Hossain & Floryan 2014).

The rest of this paper is organized as follows. Section 2 discusses the forced
response of the fluid, i.e. the primary convection. Section 3 discusses transition to
secondary states as well as flow topologies associated with these states using linear
stability theory as the main methodology. Section 4 provides a summary of the main
conclusions.

2. Primary convection

The external heating of interest is a function of the streamwise coordinate and
it results in a two-dimensional steady primary convection. The three-dimensional
secondary convection is discussed in § 3.

2.1. Problem formulation with heating applied at the lower wall
Consider fluid contained in a slot between two parallel plates extending to ±∞ in
the x and z directions and placed at a distance 2h apart from each other, with the
gravitational acceleration g acting in the negative y direction, as shown in figure 1.
The fluid is driven in the positive x direction by a constant pressure gradient, resulting
in a two-dimensional motion. The upper plate is kept isothermal with the constant
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FIGURE 1. Sketch of the flow system.

temperature TU, while the lower plate is subject to periodic heating resulting in its
temperature TL of the form

TL(x)= TU + 1
2 Td cos(αx), (2.1)

where λ = 2π/α is the wavelength of the heating. The fluid is incompressible and
Newtonian, with thermal conductivity k, specific heat c, thermal diffusivity κ = k/ρc,
kinematic viscosity ν, dynamic viscosity µ, thermal expansion coefficient Γ and
variations of the density ρ that follow the Boussinesq approximation. All material
properties are taken at the reference temperature TU.

The dimensionless form of the velocity and pressure fields in the absence of the
heating are expressed as

v0(x, y)= [u0(y), 0] = [1− y2, 0], p0(x, y)=−2x/Re, (2.2a,b)

where v0 denotes the velocity vector scaled with the maximum of the x velocity Umax,
p0 stands for the pressure scaled with ρU2

max, half of the distance between the plates
h has been chosen as the length scale and the Reynolds number is defined as Re=
Umaxh/ν.

Introduction of the heating modifies the above fields, which can be represented
as a superposition of the pressure-gradient-driven and the buoyancy-driven motions.
The temperature field can be represented, for convenience of interpretation, as a
superposition of the conductive field θ0 corresponding to the external heating and
modifications associated with the movement of the fluid. Here θ0 = (T − TU) stands
for the relative temperature. The complete flow quantities are identified using the
subscript B and have the form

uB(x, y)= Re u0(y)+ u1(x, y), vB(x, y)= v1(x, y),

θB(x, y)= Pr−1θ0(x, y)+ θ1(x, y), pB(x, y)= Re2p0(x)+ p1(x, y),

}
(2.3)

where (u1, v1), p1 and θ1 stand for the part of the velocity vector, the pressure and
the temperature associated with the buoyancy effects. The complete velocity vector
(uB, vB) and the velocity modifications (u1, v1) have been scaled using the convective
velocity scale Uv = ν/h, where Umax/Uv = Re, the complete pressure field pB as
well as the pressure modifications p1 have been scaled using ρU2

v , the complete
temperature field θB as well as the temperature modifications θ1 have been scaled
with the convective temperature scale Tv = Tdν/κ , while the conductive temperature
field has been scaled with Td as the relevant scale, where Tv/Td = Pr and Pr stands
for the Prandtl number. The reader may note that the maximum of θB in this scaling
is always (2Pr)−1. The conductive temperature field is described by the system

∇2θ0 = 0, θ0(+1)= 0, θ0(−1)= 1
2 cos(αx), (2.4a−c)
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where ∇2 denotes the Laplace operator. Its solution has the form

θ0(x, y)= 1
4

[
−sinh(αy)

sinh(α)
+ cosh(αy)

cosh(α)

]
cos(αx)= θ (1)0 (y)eiαx + θ (−1)

0 (y)e−iαx, (2.5)

and demonstrates that conductive effects do not generate net heat flow across the
channel. The dimensionless field equations for the flow and temperature modifications
take the form

(Re u0 + u1)
∂u1

∂x
+ Re v1

du0

dy
+ v1

∂u1

∂y
=−∂p1

∂x
+∇2u1, (2.6a)

(Re u0 + u1)
∂v1

∂x
+ v1

∂v1

∂y
=−∂p1

∂y
+∇2v1 + Rapθ1 + RapPr−1θ0, (2.6b)

Pr
(
(Re u0 + u1)

∂θ1

∂x
+ v1

∂θ1

∂y

)
+ (Re u0 + u1)

∂θ0

∂x
+ v1

∂θ0

∂y
=∇2θ1, (2.6c)

∂u1

∂x
+ ∂v1

∂y
= 0, (2.6d)

where Rap = gΓ h3Td/νκ is the Rayleigh number that measures the intensity of
the heating. Our main interest is in the determination of the aperiodic part of the
temperature modification θ1, as it provides information about the net heat flow. The
presence of convection affects the drag experienced by the fluid, which, in turn, may
lead to a different flow rate and thus may affect the convective heat transfer. The
formulation is finalized by imposing the fixed flow-rate constraint, i.e. the flow rate
must be the same in the isothermal as well as in the heated channels. The explicit
form of this constraint can be written as

Q=
∫ 1

−1
uB dy=

∫ 1

−1
(Re u0 + u1) dy= 4 Re/3. (2.7)

The relevant boundary conditions include the no-slip and the no-penetration conditions
as well as the thermal boundary of the form

u1(±1)= 0, v1(±1)= 0, θ1(±1)= 0. (2.8a−c)

Solution of (2.6)–(2.8) results in the simultaneous determination of the velocity and
temperature fields, followed by determination of the heat flow characteristics. The
limit of Re → 0 corresponds to a pure natural convection studied by Hossain &
Floryan (2013a,b). An increase of Re leads to an increase in the importance of the
forced flow. Elimination of the heating corresponds to the limit Rap → 0, which
results in u1 = v1 = p1 = θ1 = 0 with the flow field being described by (2.2a,b).

2.2. Numerical solution method
The numerical algorithm used in this analysis is similar to that employed by Hossain
& Floryan (2013b) and thus the following presentation is limited to a short outline.
Introduction of the stream function ψ(x, y), defined in the usual manner, i.e. u1 =
∂ψ/∂y, v1 =−∂ψ/∂x, and elimination of pressure brings the governing equations to
the form

Re u0
∂

∂x
(∇2ψ)− Re

d2u0

dy2

∂ψ

∂x
+Nψ =∇4ψ − Rap

∂θ1

∂x
− RapPr−1 ∂θ0

∂x
, (2.9a)
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PrRe u0
∂θ1

∂x
+ Pr Nθ1 + Re u0

∂θ0

∂x
+Nθ0 =∇2θ1, (2.9b)

where ∇4 denotes the biharmonic operator, the nonlinear terms are written in the
conservative form, i.e.

Nψ = ∂

∂y

(
∂

∂x
〈u1u1〉 + ∂

∂y
〈u1v1〉

)
− ∂

∂x

(
∂

∂x
〈u1v1〉 + ∂

∂y
〈v1v1〉

)
, (2.10)

Nθ1 = ∂

∂x
〈u1θ1〉 + ∂

∂y
〈v1θ1〉, Nθ0 = ∂

∂x
〈u1θ0〉 + ∂

∂y
〈v1θ0〉 (2.11a,b)

and 〈· · ·〉 denotes products. The solution is assumed to be in the form of Fourier
expansions

ψ(x, y)=
n=+∞∑
n=−∞

ϕ(n)(y)einαx, θ1(x, y)=
n=+∞∑
n=−∞

φ(n)(y)einαx, (2.12a,b)

u1(x, y)=
n=+∞∑
n=−∞

u(n)1 (y)e
inαx, v1(x, y)=

n=+∞∑
n=−∞

v
(n)
1 (y)e

inαx, (2.12c,d)

p1(x, y)= Ax+
n=+∞∑
n=−∞

p(n)1 (y)e
inαx, (2.12e)

where u(n)1 = Dϕ(n), v(n)1 = −inαϕ(n), ϕ(n) = ϕ(−n)∗, u(n)1 = u(−n)∗
1 , v(n)1 = v(−n)∗

1 , φ(n) =
φ(−n)∗, p(n)1 = p(−n)∗

1 , and the asterisk denotes the complex conjugate. The products are
expressed using Fourier expansions of the form

〈u1u1〉 =
n=+∞∑
n=−∞
〈u1u1〉(n)(y)einαx, 〈u1v1〉 =

n=+∞∑
n=−∞
〈u1v1〉(n)(y)einαx, (2.12f ,g)

〈v1v1〉 =
n=+∞∑
n=−∞
〈v1v1〉(n)(y)einαx, (2.12h)

〈u1θ1〉 =
n=+∞∑
n=−∞
〈u1θ1〉(n)(y)einαx, 〈v1θ1〉 =

n=+∞∑
n=−∞
〈v1θ1〉(n)(y)einαx, (2.12i,j)

〈u1θ0〉 =
n=+∞∑
n=−∞
〈u1θ0〉(n)(y)einαx. (2.12k)

Substitution of (2.12) into (2.9) and separation of Fourier components results in a
system of ordinary differential equations for the modal functions for −∞ < n <∞
of the form

D2
nϕ

(n) − inαRe(u0Dn −D2u0)ϕ
(n) − inαRapφ

(n) = inαRapPr−1θ
(n)
0 +N(n)

ψ , (2.13a)

Dnφ
(n) − inαPrRe u0φ

(n) = inαRe u0θ
(n)
0 +N(n)

θ0 + Pr N(n)
θ1 , (2.13b)

where D = d/dy, D2 = d2/dy2, Dn = D2 − n2α2, N(n)
θ0 = inα〈u1θ0〉(n) + D〈v1θ0〉(n),

N(n)
θ1 = inα〈u1θ1〉(n)+D〈v1θ1〉(n) and N(n)

ψ = inαD〈u1u1〉(n)+D2〈u1v1〉(n)+ n2α2〈u1v1〉(n)−
inαD〈v1v1〉(n). The required boundary conditions and constraints for the modal
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functions have the form

Dϕ(n)(±1)= 0, ϕ(n)(±1)= 0, φ(n)(±1)= 0 for −∞< n<+∞, (2.14a−c)

where the conditions for ϕ(0) represent the stream function normalization condition and
the flow-rate constraint. System (2.13) and (2.14) needs to be solved numerically.

For the purpose of numerical solution, the expansions (2.12) have been truncated
after NM terms. The discretization method in the y direction uses the Chebyshev
collocation technique based on NT collocation points. The resulting nonlinear algebraic
system is solved using an iterative technique combined with under-relaxation of the
form Φj+1 = Φj + RF(Φcomp −Φj), where Φ = {ϕ(n), φ(n)} is the vector of unknowns,
Φcomp denotes the current solution, Φj denotes the previous solution, Φj+1 stands for
the accepted value of the next iteration and RF denotes the relaxation factor. The
solution process represents the first-order fixed point method, i.e. the full iteration
step involves solution of (2.13) with the nonlinear terms on the right-hand side taken
from the most recent iteration (they are ignored in the first iteration), evaluation of the
new approximation of the velocity and temperature fields, and evaluation of the new
values of the nonlinear terms. This process is continued until a convergence criterion
in the form max(|Φcomp −Φj|) < TOL is satisfied, where TOL denotes the specified
error. The number of collocation points and the number of Fourier modes used in the
solution were selected through numerical experiments so that the flow quantities of
interest were determined with at least six-digit accuracy. Typically NT = 50 provided
sufficient accuracy. The required value of NM strongly depends on α, Re and Ra and
can be as large as NM = 30.

The evaluation of the nonlinear terms requires evaluation of products of two Fourier
series. It is more efficient to evaluate these products in physical space rather than in
Fourier space. The required quantities were computed in physical space on a suitable
grid based on the collocation points in the y direction and on a uniformly distributed
set of points in the x direction, and the relevant products were evaluated. The fast
Fourier transform (FFT) algorithm was used to express these products in terms of
Fourier expansions (2.12). The aliasing error was controlled using a discrete FFT
transform with Np rather than NM points, where Np > 3NM/2.

2.3. Description of the primary convection when the lower wall is heated
Figure 2 illustrates typical flow patterns. The pattern for purely natural convection
(Re = 0) consists of a pair of counter-rotating rolls with fluid rising above the hot
spots (figure 2a). The introduction of forced convection results in the formation of
stream tube meandering between separation bubbles whose origin can be traced to the
convection rolls, e.g. see the flow pattern in figure 2(b) for Re= 5. A further increase
of Re results in the removal of the separation bubbles (figure 2c) and nearly complete
elimination of the transverse motion.

The main quantities of interest are the net heat transfer between the walls and the
horizontal heat transfer along the heated wall. The former is expressed in terms of the
average Nusselt number Nuav based on the conductive temperature scale, i.e.

Nuav = Pr
λ

∫ λ
0
(−Dθ1|y=−1) dx=−Pr Dφ(0)|y=−1. (2.15a)

The latter is measured by evaluating the periodic part of the heat flow coming out
of the wall per half wavelength and is expressed in terms of the horizontal Nusselt
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FIGURE 2. Flow patterns for Rap = 1000, α = 1 and Re = 0 (a), 5 (b) and 20 (c),
respectively. The complete stream function Ψ (x, y) = Re(−y3/3 + y + 2/3) + ψ(x, y) is
normalized by its maximum, Ψmax = 6.52 (a), 8.56 (b) and 26.27 (c), respectively.

number Nuh defined as

Nuh = 2
λ

Pr
∫ λ/4
−λ/4

(−DθB|y=−1) dx+ PrDφ(0)|y=−1

= α

2π
[coth(α)+ tanh(α)] +

[
2
λ

Pr
∫ λ/4
−λ/4

(−Dθ1|y=−1) dx+ PrDφ(0)|y=−1

]
= Nuh,cond +Nuh,conv. (2.15b)

In the above, the first term on the right-hand side accounts for the conductive heat
flow, and the second accounts for the convective heat flow. The reader may note
alternative methods for estimation of the horizontal heat fluxes (Maxworthy 1997;
Siggers et al. 2004; Hughes & Griffiths 2008; Winters & Young 2009).

The qualitative analysis of Nuav can be carried out by extracting mode zero from
(2.13b), i.e.

D2φ(0) =
m=∞∑

m=−∞
D[(θ (−m)

0 + Prφ(−m))v
(m)
1 ]. (2.16a)

Double integration and application of the boundary conditions results in

φ(0) =M(y)−M(1)(1+ y)/2, M(y)=
∫ y

−1

m=∞∑
m=−∞

(θ
(−m)
0 (η)+ Pr φ(−m)(η))v

(m)
1 (η) dη

(2.16b,c)
and leads to

Nuav =−Pr M(1)/2. (2.17)

The function M can be referred to as the heat transport function and its form
demonstrates explicitly the essential role played by the vertical velocity component
in creating the net heat transfer. We shall now investigate how the convective motion
is affected by the characteristics of the applied heating.

2.3.1. Long-wavelength heating (α→ 0)
We begin the analysis by identifying the range of α that leads to the most intense

heat transfer. In the case of long-wavelength heating (α → 0), the conductive field
(i.e. (2.5)) can be approximated as

θ0(x, y)= [θ00(y)+ α2θ02(y)+ α4θ04(y)+O(α6)] cos(X), (2.18)
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where the definitions of θ00, θ02 and θ04 are given in appendix A and X= αx denotes
the slow scale. The field equations, with x replaced by the slow scale, assume the
form

α(Re u0 + u1)
∂u1

∂X
+ Re v1Du0 + v1

∂u1

∂y
=−α∂p1

∂X
+ α2 ∂

2u1

∂X2
+ ∂

2u1

∂y2
, (2.19a)

α(Re u0 + u1)
∂v1

∂X
+ v1

∂v1

∂y
=−∂p1

∂y
+ α2 ∂

2v1

∂X2
+ ∂

2v1

∂y2
+ Rapθ1 + RapPr−1θ0, (2.19b)

(Re u0 + u1)

(
α
∂θ0

∂X
+ Pr α

∂θ1

∂X

)
+ v1

(
∂θ0

∂y
+ Pr

∂θ1

∂y

)
= α2 ∂

2θ1

∂X2
+ ∂

2θ1

∂y2
, (2.19c)

α
∂u1

∂X
+ ∂v1

∂y
= 0 (2.19d)

and lead to a solution that can be represented as

[u1(X, y), v1(X, y), θ1(X, y)] =
4∑

n=1

αn[Un(X, y), Vn(X, y), Θn(X, y)] +O(α5), (2.20a)

p1(X, y)=
3∑

n=0

αnPn(X, y)+O(α4), [Nuav,NuL] =
4∑

n=1

αn[Nuav,n,NuL,n], (2.20b,c)

where NuL is the local Nusselt number. The above expansions are substituted into
(2.19), with the leading-order system being of the form

∂2U1

∂y2
= ∂P0

∂X
,

∂P0

∂y
= Rap

Pr
θ00 cos(X),

∂U1

∂X
+ ∂V2

∂y
= 0,

∂2Θ1

∂y2
=−Re u0θ00 sin(X),

(2.21a−d)
with the proper boundary conditions and the flow-rate constraint. The solution is of
the form

U1(X, y)= RapPr−1FU1(y) sin(X), V2(X, y)= RapPr−1FV2(y) cos(X), (2.22a,b)

P0(X, y)= RapPr−1FP0(y) cos(X), (2.22c)

Θ1(X, y)= ReFΘ1(y) sin(X), Nuav,1 = 0, NuL,1 =−5−1PrRe sin(X), (2.22d−f )

with definitions of FU1, FV2, FP0 and FΘ1 given in appendix A. Here U1, V2 and P0
describe the natural convection, which is unaffected by the forced convection at this
level of approximation, and Θ1 describes modifications of the temperature field created
by the forced convection. There is no net heat transfer between the walls. The next-
order system has the form

∂2U2

∂y2
= ∂P1

∂X
+ Re

(
u0
∂U1

∂X
+ du0

dy
V2

)
,

∂P1

∂y
= RapΘ1, (2.23a,b)

∂U2

∂X
+ ∂V3

∂y
= 0,

∂2Θ2

∂y2
= RePr u0

∂Θ1

∂X
− θ00U1 sin(X)+Dθ00V2 cos(X). (2.23c,d)
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A similar solution process leads to

U2(X, y)= RapRe[FU21(y)+ Pr−1FU22(y)] cos(X), (2.24a)

V3(X, y)= RapRe[FV31(y)+ Pr−1FV32(y)] sin(X), (2.24b)

P1(X, y)= RapRe[FP1(y)− 1
1050 Pr−1] sin(X), (2.24c)

Θ2 (X, y)= RapPr−1FΘ21(y)+ Re2Pr FΘ22(y) cos(X)+ RapPr−1FΘ23(y) cos(2X),
(2.24d)

Nuav,2 = 1
1400 Rap, NuL,1 = 1

1400 Rap + [ 88
1575 Pr2 Re2 − 3

1400 Rap] cos(X), (2.24e,f )

with the definitions of FU21, FU22, FV31, FV32, FP1, FΘ21, FΘ22 and FΘ23 given in
appendix A. Here FU21, FV31 and FP1 arise because of temperature changes created
by the forced convection, FU22, FV32 and FP1 arise because of the interaction of the
natural and forced convective motions, FΘ22 accounts for the temperature changes
created by the forced convection, and FΘ21 and FΘ23 account for changes in the
conductive temperature field created by the natural convection. There is a net heat
transfer between both walls at this level of approximation. The next-order system has
the form

∂2U3

∂y2
= ∂P2

∂X
+ Re

(
u0
∂U2

∂X
+ du0

dy
V3

)
+U1

∂U1

∂X
+ V2

∂U1

∂y
− ∂

2U1

∂X2
, (2.25a)

∂P2

∂y
= ∂

2V2

∂y2
+ RapΘ2 + RapPr−1θ02 cos(X), (2.25b)

∂U3

∂X
+ ∂V4

∂y
= 0, (2.25c)

∂2Θ3

∂y2
= Re

[
Pr u0

∂Θ2

∂X
− u0θ02 sin(X)

]
+ Pr

(
U1
∂Θ1

∂X
+ V2

∂Θ1

∂y

)
−U2θ00 sin(X)+Dθ00V3 cos(X)− ∂

2Θ1

∂X2
. (2.25d)

Its solution can be written as

U3 = Rap{Pr−1 FU31(y)+ Re2[FU32(y)+ Pr−1FU33(y)+ Pr FU34(y)]} sin(X)

+Ra2
p[Pr−1FU35(y)+ Pr−2FU36(y)] sin(2X), (2.26a)

V4 = Rap{Pr−1 FV41(y)+ Re2[FV42(y)+ Pr−1FV43(y)+ Pr FV44(y)]} cos(X)

+Ra2
p[Pr−1FV45(y)+ Pr−2FV46(y)] cos(2X), (2.26b)

Θ3 = {Re FΘ31(y)+ Pr2Re3FΘ32(y)+ RapRe[FΘ33(y)+ Pr−1FΘ34(y)]} sin(X)

+RapRe[FΘ35(y)+ Pr−1FΘ36(y)] sin(2X), (2.26c)
Nuav,3 = 0, (2.26d)
NuL,3 = −[− 17

63 RePr+ ( 47
1039 500 + 169

346 500 Pr)RapRe− 5872
307 125 Pr3Re3] sin(X)

+ ( 47
1039 500 + 111

77 000 Pr)RapRe sin(2X). (2.26e)

It is sufficient to consider only the energy equation at the next level of approximation
in order to obtain a better approximation of the net heat transfer. This equation takes
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100

10–2

10–4

100

10–2

10–4

100 10110–1 100 10110–1

(a) (b)

FIGURE 3. Variations of the average Nusselt number Nuav as a function of α for Rap =
200, 400 and 1000 with Re= 1 (a) and R= 10 (b). The asymptotes for α→ 0 and α→
∞ are marked using dotted lines. The curves for Re= 0 and Re= 1 overlap within the
resolution of panel (a).

the form

∂2Θ4

∂y2
= RePr u0

∂Θ3

∂X
+ Pr

(
U1
∂Θ2

∂X
+U2

∂Θ1

∂X
+ V2

∂Θ2

∂y
+ V3

∂Θ1

∂y

)
− (θ02U1 + θ00U3) sin(X)+ (Dθ02V2 +Dθ00V4) cos(X)− ∂

2Θ2

∂X2
. (2.27)

The aperiodic term on the right-hand side is responsible for the net heat flow and it
results in

Nuav,4 =− 52
70 875 Rap − ( 821

851 350 500 + 313
1277 025 750 Pr+ 184 127

2128 376 250 Pr2)RapRe2. (2.28)

The expression for NuL,4 is not given due to its length. The results displayed in
figure 3 demonstrate that (2.20) provides a good approximation for Nuav when
α < 0.2.

2.3.2. Short-wavelength heating (α→∞)
In the case of the short-wavelength heating, the conductive temperature field,

i.e. (2.5), can be approximated as

θ0 = [ 12 e−α(1+y) +O(e−α)] cos(αx). (2.29)

The x variations of the buoyancy force are confined to a thin boundary layer adjacent
to the lower wall, and the natural convection is confined to the same layer. All the
field variables above the boundary layer can be functions of the vertical coordinate
only. The solution is expressed as an expansion in terms of α−1 and using the method
of matched asymptotic expansions leads to the determination of the expansion terms.
It can be shown through matching with the inner solution that the outer solution can
be simplified to the following form:

u1,outer(x, y)=O(α−4), v1,outer(x, y)= 0, (2.30a,b)
p1,outer(x, y)= α−3P̃3(y)+O(α−4), θ1,outer(x, y)= α−3Θ̃3(y)+O(α−4). (2.30c,d)

Similarly, the Nusselt number can be represented as

Nuav = α−3Nuav,(−3) +O(α−4). (2.31)
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Substitution of (2.29) and (2.30) into the field equations and separation of terms of
equal order of magnitude leads to the following systems:

∂P̃3

∂y
= RapΘ̃3, D2Θ̃3 = 0, (2.32a,b)

with solution of the form

Θ̃3 = B̃3(y− 1), P̃3 = RapB̃3

(
y2

2
− y
)
, (2.33a,b)

where B̃3 is to be determined from matching with the inner solution. The heat
transport in the outer zone is driven by the vertical conduction with a non-zero
boundary condition at the edge of the boundary layer created by the boundary layer
phenomena.

Analysis of the boundary layer begins with the introduction of the fast scale ξ =
αx in the horizontal direction and the stretched coordinate centred at the lower wall
η=α(1+ y) in the vertical direction. The externally imposed temperature and velocity
fields expressed in the (ξ , η) coordinate system have the form

θ0 = 1
2

e−η cos(ξ),
∂θ0

∂x
=−α−1 1

2
e−η sin(ξ),

∂θ0

∂y
=−α−1 1

2
e−η cos(ξ), (2.34a)

u0 = α−12η− α−2η2, Du0 = 2− α−12η. (2.34b)

The field equations expressed in terms of the (ξ , η) system are of the form

∂2u1

∂ξ 2
+ ∂

2u1

∂η2
− α−1 ∂p1

∂ξ
= α−1[Re(α−12η− α−2η2)+ u1]∂u1

∂ξ

+α−2

[
Re(2− α−12η)+ α∂u1

∂η

]
v1, (2.35a)

∂2v1

∂ξ 2
+ ∂

2v1

∂η2
− α−1 ∂p1

∂η
= α−1[Re (α−12η− α−2η2)+ u1]∂v1

∂ξ
+ α−1v1

∂v1

∂η

−α−2Rapθ1 + α−2 1
2

RapPr−1e−η cos(ξ), (2.35b)

∂u1

∂ξ
+ ∂v1

∂η
= 0, (2.35c)

∂2θ1

∂ξ 2
+ ∂

2θ1

∂η2
= α−1[Re (α−12η− α−2η2)+ u1]

[
−1

2
e−η sin(ξ)+ Pr

∂θ1

∂ξ

]
+α−2v1

[
−1

2
αe−η cos(ξ)+ α Pr

∂θ1

∂η

]
. (2.35d)

The solution of (2.35) can be represented as

[u1,inner(ξ , η), v1,inner(ξ , η), θ1,inner(ξ , η)]

=
3∑

n=2

α−n[Un(ξ , η), Vn(ξ , η), Θn(ξ , η)] +O(α−4), (2.36)

p1,inner(ξ , η)=
2∑

n=1

α−nPn(ξ , η)+O(α−3). (2.37)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

48
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.48


Mixed convection in a periodically heated channel 63

Substitution of (2.36) and (2.37) into (2.35) and retention of the leading-order terms
leads to a system of O(α−2) of the form

∂2U2

∂ξ 2
+ ∂

2U2

∂η2
− ∂P1

∂ξ
= 0,

∂2V2

∂ξ 2
+ ∂

2V2

∂η2
− ∂P1

∂η
= 1

2
RapPr−1e−η cos(ξ), (2.38a,b)

∂U2

∂ξ
+ ∂V2

∂η
= 0,

∂2Θ2

∂ξ 2
+ ∂

2Θ2

∂η2
=−Reηe−η sin(ξ). (2.38c,d)

Its solution

U2(ξ , η)=− Rap

16Pr
(2η− η2)e−η sin(ξ), V2(ξ , η)= Rap

16Pr
η2e−η cos(ξ), (2.39a,b)

P1(ξ , η)=−Rap

8Pr
(3− 2η)e−η cos(ξ), Θ2(ξ , η)= Re

4
(η+ η2)e−η sin(ξ) (2.39c,d)

demonstrates that the natural convection is confined to the boundary layer and thus
is unable to alter the net heat transfer between the walls. The system O(α−3) has the
form

∂2U3

∂ξ 2
+ ∂

2U3

∂η2
− ∂P2

∂ξ
= 0,

∂2V3

∂ξ 2
+ ∂

2V3

∂η2
− ∂P2

∂η
= 0, (2.40a,b)

∂U3

∂ξ
+ ∂V3

∂η
= 0,

∂2Θ3

∂ξ 2
+ ∂

2Θ3

∂η2
=−1

2
(−Reη2 +U2)e−η sin(ξ)− 1

2
V2e−η cos(ξ),

(2.40c,d)
and leads to the solution

U3(ξ , η)= 0, V3(ξ , η)= 0, P2(ξ , η)= 0, (2.41a−c)

Θ3(ξ , η) =
[

Rap

256Pr
+ B3η− Rap

256Pr
(1+ 2η+ 2η2)e−2η

]
− Re

4

(
η

2
+ η

2

2
+ η

3

3

)
e−η sin(ξ)+ Rap

256Pr

(η
2
+ η2

)
e−2η cos(2ξ). (2.41d)

Constant B3 is determined from matching with the outer solution, leading to the
uniformly valid expression for the temperature, i.e.

θ1(x, y) = α−3

[
Rap

512Pr
(1− y)− Rap

256Pr
[1+ 2α(1+ y)+ 2α2(1+ y)2]e−2α(1+y)

− Re
4

[
1
2
α(1+ y)+ 1

2
α2(1+ y)2 + 1

3
α3(1+ y)3

]
e−α(1+y) sin(αx)

+ Rap

256 Pr

[
1
2
α(1+ y)+ α2(1+ y)2

]
e−2α(1+y) cos(2α x)

]
+O(α−4). (2.42)

The above expression demonstrates explicitly that the outer zone sees the edge of the
boundary layer as a uniformly heated wall. The net heat transfer between the two
walls can now be expressed as

Nuav = α−3Rap/512+O(α−4). (2.43)

The above expression provides a good approximation for Nuav when α > 7 (see
figure 3).
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2.3.3. Weak heating
The above discussion demonstrates, together with the results presented in figure 3,

that the net heat transfer becomes marginal if the heating wavelength is either too
short or too long. We shall now consider a heating wavelength O(1). The heat transfer
occurs due to the vertical fluid movement, as demonstrated in § 2.3. The forced motion
increases the horizontal fluid movement, which competes with the vertical movement.
A very strong horizontal motion may negate any transverse motion and thus may alter
the heat transport qualitatively. It is convenient to start discussion of these processes
by considering weak heating.

The natural convection is driven by nonlinear effects and thus its strength is not
directly related to the magnitude of Rap; Rap of order O(1) may generate convection
with negligible nonlinear interactions. In the following analysis, the strength of the
natural convection is measured using ε � 1. The flow quantities are represented as
expansions in powers of ε of the form

(u1, v1, p1, θ1)= ε(U1, V1, P1, Θ1)+ ε2(U2, V2, P2, Θ2)+O(ε3). (2.44)

Substitution of (2.44) into (2.6) and retention of the terms of the two highest orders
of magnitude lead to a system O(ε) of the form

∇2U1 − Re u0
∂U1

∂x
− Re V1Du0 − ∂P1

∂x
= 0, (2.45a)

∇2V1 − Re u0
∂V1

∂x
− ∂P1

∂y
=−RapΘ1 − Rap Pr−1θ̂0, (2.45b)

∇2Θ1 − PrRe u0
∂Θ1

∂x
= Re u0

∂θ̂0

∂x
, (2.45c)

∂U1

∂x
+ ∂V1

∂y
= 0, (2.45d)

where θ̂0 = θ0/ε=O(1), and a system O(ε2) of the form

∇2U2 − Re u0
∂U2

∂x
− Re V2Du0 − ∂P2

∂x
=U1

∂U1

∂x
+ V1

∂U1

∂y
, (2.46a)

∇2V2 − Re u0
∂V2

∂x
− ∂P2

∂y
=−RapΘ2 +U1

∂V1

∂x
+ V1

∂V1

∂y
, (2.46b)

∇2Θ2 − PrRe u0
∂Θ2

∂x
=U1

∂θ̂0

∂x
+ V1

∂θ̂0

∂y
+ Pr U1

∂Θ1

∂x
+ Pr V1

∂Θ1

∂y
, (2.46c)

∂U2

∂x
+ ∂V2

∂y
= 0. (2.46d)

Both systems are supplemented by the homogeneous boundary conditions and
constraints resulting from (2.8).

The solution process starts with the energy equation (2.45c), which is decoupled
from the rest of the system. Since ε is undefined, this equation is rearranged into the
form

∇2Θ̃1 − PrRe u0
∂Θ̃1

∂x
= Re u0

∂θ0

∂x
, (2.47)
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where Θ̃1 = εΘ1. The known forcing on the right-hand side of (2.47) leads to a
solution of the form

Θ̃1(x, y)= Θ̃ (1)
1 (y)eiαx + c.c., (2.48)

where Θ̃ (1)
1 is defined by the following problem,

D2Θ̃
(1)
1 − (α2 + iαPr Re u0)Θ̃

(1)
1 = iαRe u0θ

(1)
0 , Θ̃

(1)
1 (±1)= 0, (2.49a,b)

and c.c. stands for the complex conjugate. The solution has been determined using
the spectral collocation method identical to that described in § 2.2. Determination of
the net heat transfer requires analysis of the next-order problem, i.e. (2.46c). The
coefficients of (2.46c) include the U1 and V1 velocity components, which need to
be determined from the solution of (2.45a,b,d). Introduction of the stream function,
defined as u1= ∂ψ/∂y and v1=−∂ψ/∂x, and elimination of the pressure results in a
single equation of the form

D4ψ − Re u0

(
∂3ψ

∂x∂y2
+ ∂

3ψ

∂x3

)
+ Re D2u0

∂ψ

∂x
= Rap

∂Θ1

∂x
+ Rap Pr−1 ∂θ̂0

∂x
. (2.50)

The character of the forcing on the right-hand side of (2.50) suggests a solution of
the form

εψ(x, y)= ψ̃(x, y)= ϕ̃(1)(y)eiαx + c.c. (2.51)

Substitution of (2.5), (2.48) and (2.49) into (2.50) leads to the problem

D4ϕ̃(1) − (2α2 + iα Re u0)D2ϕ̃(1) + (α4 + iα3Re u0 + iα Re D2u0)ϕ̃
(1)

= iα Rap Θ̃
(1)
1 + iα RapPr−1θ

(1)
0 , (2.52a)

ϕ̃(1)(±1)=Dϕ̃(1)(±1)= 0, (2.52b)

which describes the modal function ϕ̃(1). The solution of (2.52) can be determined
using the spectral collocation method described in § 2.2. The corresponding velocity
components can be expressed in the form

εU1 = Ũ1 = ε ∂ψ
∂y
= ∂ψ̃
∂y
=Dϕ̃(1)(y)eiαx + c.c.= Ũ(1)

1 (y)e
iαx + c.c., (2.53a)

εV1 = Ṽ1 = ε ∂ψ
∂x
= ∂ψ̃
∂x
= iαϕ̃(1)(y)eiαx + c.c.= Ṽ (1)

1 (y)eiαx + c.c., (2.53b)

which is convenient for determination of the temperature correction O(ε2).
Equation (2.46c) is arranged into the form

∇2Θ̃2 − PrRe u0
∂Θ̃2

∂x
=U1

∂θ̂0

∂x
+ V1

∂θ̂0

∂y
+ Pr U1

∂Θ̃1

∂x
+ Pr V1

∂Θ̃1

∂y
, (2.54)

where Θ̃2 = εΘ2 and the right-hand side represents the known forcing F(x, y), which
can be written explicitly as

F(x, y) = F(0)(y)+ [F(2)(y)e2iαx + c.c.], (2.55a)
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where

F(0)(y)= [iα(θ (1)0 + Pr Θ̃ (1)
1 )U(−1)

1 + (Dθ (1)0 + Pr DΘ̃
(1)
1 )V

(−1)
1 + c.c.], (2.55b)

F(2)(y)= [iα(θ (1)0 + Pr Θ̃ (1)
1 )U(1)

1 + (Dθ (1)0 + Pr DΘ̃
(1)
1 )V

(1)
1 ]. (2.55c)

The solution of (2.54) has the form

Θ̃2(x, y)= Θ̃ (0)
2 (y)+ (Θ̃ (2)

2 (y)e2iαx + c.c.), (2.56)

i.e. it consists of a non-periodic term, which determines the net heat flow, and the first
superharmonic of the imposed heating. Substitution of (2.55) and (2.56) into (2.54)
and mode separation leads to equations for the modal functions of the form

D2Θ̃
(0)
2 = F(0), Θ̃

(0)
2 (±1)= 0, (2.57a,b)

D2Θ̃
(2)
2 − 2iα RePr u0Θ̃

(2)
2 = F(2), Θ̃

(2)
2 (±1)= 0. (2.58a,b)

Before attempting solution, (2.57) is rearranged, i.e.

D2(εΘ̃
(0)
2 )=D(M(0)), (2.59a)

M(0)(y)= [θ (1)0 Ṽ (−1)
1 + θ (−1)

0 Ṽ (1)
1 + Pr(Θ̃ (1)

1 Ṽ (−1)
1 + Θ̃ (−1)

1 Ṽ (1)
1 )]. (2.59b)

Since the function M(0) is available, integration and application of boundary
conditions leads to a solution of the form

εΘ̃
(0)
2 =

∫ y

−1
M(0) dy− 1

2
(y+ 1)

∫ 1

−1
M(0) dy. (2.60)

Explicit evaluations of (2.60) have been carried out using the fourth-order-accurate
extension of the trapezoid rule. Similarly, (2.58) is arranged into the form

D2(εΘ̃
(2)
2 )− 2iα RePr u0(εΘ̃

(2)
2 )=M(2), (2.61a)

M(2)(y)=−(θ (1)0 + Pr Θ̃ (1)
1 )DṼ

(1)
1 + Ṽ (1)

1 D(θ (1)0 + Pr Θ̃ (1)
1 ). (2.61b)

The function M(2) is also available and thus solution of (2.61) can be determined; the
spectral collocation method has been used for this purpose.

The average Nusselt number can be evaluated as

Nuav =−Pr
d(εΘ̃

(0)
2 )

dy
= 1

2

∫ 1

−1
M(0) dy (2.62)

without the need for an explicit determination of ε. The above analysis shows that
Nuav increases proportionally to Rap for small enough Rap. The approximation is
sufficiently accurate for Rap ≈ 500 as shown in figure 4.

Equation (2.62) demonstrates that the net heat flow results from the nonlinear
effects associated with the buoyancy-driven motion. The heat transport function M(0)

represents energy carried by the transverse movement of the fluid averaged over one
heating wavelength in the x direction. Integration of this function between the walls
gives the net energy transfer between the walls. The magnitude of M(0) depends on
the magnitudes of θ (1)0 , Θ̃ (1)

1 and Ṽ (−1)
1 as well as on the phase difference between the

temperature field and the vertical velocity component. The conductive temperature
θ
(1)
0 is always real, i.e. θ (1)0 = θ (−1)

0 , while the phase of Θ̃ (1)
1 changes depending on

the strength of the forced motion.
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FIGURE 4. Variations of the average Nusselt number Nuav as a function of Rap for α= 1.

2.3.4. Effects of the Reynolds number Re
The introduction of a forced convection results in the formation of a continuous

stream tube directed from left to right, which reduces the size of the rolls and
separates vortex pairs into distinct objects that can be viewed as separation bubbles
(see figure 2). The motion in the interior of these bubbles is driven by both the
buoyancy and the shear created by the forced convection. The transverse motion,
which is responsible for the vertical heat transfer, occurs in the interior of the bubbles
as well as in the stream tube that meanders in the upwards and downwards directions.
An increase of Re increases the size of the stream tube and makes this stream tube
more rectilinear, and, as a result, the size of the rolls significantly decreases. The
overall transverse motion decreases and the heat may be carried only by conduction
across the stream tube.

The mechanics of the heat transfer changes as the presence of the forced motion
modifies the temperature field (i.e. Θ̃ (1)

1 6= 0 in (2.49)), alters the buoyancy-driven
motion and changes the phase difference between the temperature and the vertical
velocity component. We shall now discuss these processes in detail for the case of
weak heating.

Assume initially that Re is small but finite. Separate Θ̃ (1)
1 into real and imaginary

parts and represent each as an expansion in terms of powers of Re, i.e.

Θ̃
(1)
1 = [ReΘr1 + Re2Θr2 +O(Re3)] + i [ReΘi1 + Re2Θi2 +O(Re3)]. (2.63)

Substitution of (2.63) into (2.49) and retention of terms proportional to the two lowest
powers of Re results in the following systems:

O(Re) : D2Θr1 − α2Θr1 = 0, D2Θi1 − α2Θi1 = αu0θ
(1)
0 , (2.64a,b)

O(Re2) : D2Θr2 − α2Θr2 =−α Pr u0Θi1, D2Θi2 − α2Θi2 = 0. (2.65a,b)

Analysis of (2.64a) and (2.65b) shows that Θr1 = 0 and Θi2 = 0. The modification
temperature Θ̃ (1)

1 assumes non-zero values for small but finite Re, with its imaginary
part playing the dominant role. Now separate the stream function into real and
imaginary parts and represent them as expansions in terms of powers of Re, i.e.

ϕ̃(1) = [ϕr0 + Reϕr1 + Re2ϕr2 +O(Re3)] + i[ϕi0 + Reϕi1 + Re2ϕi2 +O(Re3)]. (2.66)
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FIGURE 5. Variations of the average Nusselt number Nuav as a function of Re for α= 1
and Rap= 200, 400 and 1000. The asymptotes for Re→ 0 and Re→∞ are marked using
dotted lines.

Substitution of (2.66) into (2.52) and retention of those terms proportional to the two
lowest powers of Re results in the following systems:

O(Re0) : D4ϕr0 − 2α2D2ϕr0 + α4ϕr0 = 0, (2.67a)
D4ϕi0 − 2α2D2ϕi0 + α4ϕi0 = α RapPr−1θ

(1)
0 , (2.67b)

O(Re1) : D4ϕr1 − 2α2D2ϕr1 + α4ϕr1 = −αu0D2ϕi0 + (α3u0 + αD2u0)ϕi0, (2.68a)
D4ϕi1 − 2α2D2ϕi1 + α4ϕi1 = 0. (2.68b)

Analysis of (2.67a) and (2.68b) shows that ϕr0= 0 and ϕi1= 0. Explicit evaluation of
Θi1, Θr2, ϕi0 and ϕr1, which requires numerical work, is not required for the further
discussion. The temperature and the vertical velocity component have the forms

θ
(1)
0 + Pr Θ̃ (1)

1 = [θ (1)0 + Re2PrΘr2 +O(Re4)] + i [RePrΘi1 +O(Re3)], (2.69a)

Ṽ (1)
1 = [αϕi0 + αϕi2Re2 +O(Re4)] + i [−α Reϕr1 +O(Re3)] (2.69b)

and the heat transport function becomes

M(0)= 2Real[(θ (1)0 + Pr Θ̃ (1)
1 )Ṽ (−1)

1 ]
= 2αθ (1)0 ϕi0 + 2 Re2α(θ

(1)
0 ϕi2 + PrΘr2ϕi0 − PrΘi1ϕr1)+O(Re4). (2.70)

The forced motion affects both the temperature and the velocity fields at O(Re) but
these changes contribute only to a small phase shift and thus do not affect the heat
flow. The heat flow is affected at O(Re2) and the change occurs due to (i) correction
in the vertical velocity component that is in phase with the conductive field (the first
term in the brackets in (2.70)), (ii) the part of the temperature modification that is
in phase with the conductive temperature field (the second term in the brackets), and
(iii) interaction between the parts of the velocity and temperature modifications that
are out of phase with the conductive temperature field (the third term in the brackets).
The importance of the third term is expected to rise as Re increases. The conclusion
that the heat transfer approaches a constant limit corresponding to the pure natural
convection when Re→ 0 is supported by the results presented in figure 5.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

48
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.48


Mixed convection in a periodically heated channel 69

0.002

0.050

0.070

0.010

0.180

0.100

0.150

102

101

100

10–1

10–2

0.01 1.00 2.00 3.00 4.00 5.00
0.030

0.020

FIGURE 6. Variations of the average Nusselt number Nuav as a function of α and Re for
Rap = 1000.

Variations of the heat transport for large Re are more complex but can nevertheless
be explained in qualitative terms. Equation (2.49) describing the temperature field has
a variable coefficient containing the product Re and u0, and an inhomogeneous term
with a similar product. When Re→∞, these two terms are large everywhere except
close to the walls where u0 ≈ 0 and thus temperature boundary layers may form. It
can be shown that the temperature modal function Θ̃

(1)
1 = (Θr + iΘi) is equal to the

conductive temperature modal function, i.e.

Θ̃
(1)
1 = (Θr + iΘi)≈−Pr−1θ

(1)
0 , (2.71)

everywhere except near the lower wall; this is due to the fact that θ (1)0 →0.5 but Θr→
0 when y→−1. This leads to the formation of the temperature boundary layer at the
lower wall. The flow becomes nearly isothermal outside the boundary layer, leading
to the elimination of the buoyancy force in the bulk of the fluid. This force must
overcome dissipation in the whole flow domain in order to drive natural convection.
Clearly, the intensity of this convection must be decreasing rapidly as Re increases.
As a result, the Nusselt number must also be decreasing. This process is illustrated
in figure 5, where the numerically determined decrease rate is proportional to Re−1.71

for Re→∞.

2.3.5. Mixed convection under arbitrary heating conditions
We shall now consider mixed convection for an arbitrary combination of transport

parameters. The discussion presented in the previous sections demonstrate that Nuav

rapidly decreases for large Re and both small and large α. This defines the range of
parameters that are relevant for potential applications. Figure 6 illustrates variations
of Nuav as a function of Re and α and clearly identifies the magnitudes of the net
heat transfer driven by periodic heating. Figure 7 illustrates variations of Nuav as a
function of α and Rap for fixed Re and defines the conditions under which secondary
motions are expected to set in. Figure 8 illustrates the magnitude of the horizontal heat
flux and demonstrates that the overall heat flux is dominated by the conductive effects.
The convective part of this flux (Nuh,conv) has a similar magnitude and characteristics
as Nuav.
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FIGURE 7. Variations of the average Nusselt number Nuav as a function of Rapα
−3 and

α for Re = 1 (a), 5 (b) and 10 (c). The thick solid lines identify the critical stability
conditions for the transverse rolls.
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FIGURE 8. Variations of (a) the horizontal heat flux along the heated wall expressed in
terms of the horizontal Nusselt number Nuh and (b) the convective part of this heat flux
expressed in terms of the horizontal convective Nusselt number Nuh,conv .

2.4. Heating applied at the upper wall
Consider the same problem as discussed above but apply the external heating at the
upper wall. The conduction problem (2.4) needs to be replaced by

∇2θ0 = 0, θ0(+1)= 1
2 cos(αx), θ0(−1)= 0, (2.72a−c)

while the rest of the formulation remains the same. The similarity of the flow response
to that found in the case of heating applied from below can be demonstrated by
(i) reversing the direction of gravity, i.e. Rap→−Rap, and (ii) changing the sign of
the temperature, i.e. θ→−θ . The latter condition implies a change of the sign of the
temperature imposed at the lower plate and results in a shift of the temperature field
by half a cycle in the x direction. As a result, the global convection characteristics for
the system heated from above are identical to those found in the case of the system
heated from below (Hossain & Floryan 2014).

3. Stability of the primary convection
The linear stability theory is used to identify the onset conditions and to predict

the form of the secondary motions. We begin with convection resulting from heating
applied at the lower wall.
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3.1. Problem formulation
The stability analysis begins with the momentum equations written in the vorticity
transport form supplemented by the energy and the continuity equations, i.e.

∂ω

∂t
− (ω · ∇)v+ (v · ∇)ω=∇2ω+∇× (Rap θ j), ∇ · v= 0, ω=∇× v, (3.1a−c)

∂θ

∂t
+ (v · ∇)θ = Pr−1∇2θ, (3.1d)

where j is the unit vector along the vertical direction, and ω and v are the vorticity
and velocity vectors, respectively. Unsteady three-dimensional disturbances are
superposed on the base flow in the form (Floryan 1997)

v= vB(x, y)+ v2(x, y, z, t), ω=ωB(x, y)+ω2(x, y, z, t), θ = θB(x, y)+ θ2(x, y, z, t),
(3.2a−c)

where subscripts 2 refer to the disturbance fields, v2 = (u2, v2, w2) is the disturbance
velocity vector, ω2 = (ωx2, ωy2, ωz2) is the disturbance vorticity vector and θ2 stands
for the temperature disturbance. The flow quantities (3.2) are substituted into (3.1),
the components containing the primary convection are subtracted, and the equations
are linearized. The resulting disturbance equations have the form

∂ω2

∂t
+ (vB · ∇)ω2 − (ω2 · ∇)vB + (v2 · ∇)ωB − (ωB · ∇)v2 =∇2ω2 +∇× (Rap θ2 j),

(3.3a)
∇ · v2 = 0, ω2 =∇× v2,

∂θ2

∂t
+ (v2 · ∇)θB + (vB · ∇)θ2 = Pr−1∇2θ2, (3.3b−d)

and are subject to the homogeneous boundary conditions

v2 = 0, θ2 = 0 (3.3e,f )

at the walls. The disturbance equations (3.3) have coefficients that are functions of x
and y, and thus the solution can be written in the form

v2(x, y, z, t)= V 2(x, y)ei(δx+βz−σ t) + c.c., ω2(x, y, z, t)=Ω2(x, y)ei(δx+βz−σ t) + c.c.,
(3.4a,b)

θ2(x, y, z, t)=Θ2(x, y)ei(δx+βz−σ t) + c.c. (3.4c)

The disturbance wavevector has components (δ, β) in the (x, z) directions, V 2(x, y),
Ω2(x, y) and Θ2(x, y) are the x-periodic amplitude functions modulated by the heating,
the exponent σ is assumed to be complex (σ = σr + iσi) with imaginary and real
parts describing the rate of growth and the frequency of disturbances, respectively, and
c.c. stands for the complex conjugate. Positive σi identifies instability.

The set (δ, β, σ ) represents the eigenvalues for the specified heating conditions
(Re, Pr, Rap, α), creating a large parameter space; the size of this space is reduced
in this analysis by setting Pr= 0.71. The relevant eigenvalue problem for the partial
differential equations (3.3) can be easily derived. Rather than solving this problem
directly, we take advantage of the periodicity of the amplitude functions and represent
them in terms of Fourier expansions

V 2(x, y)=
m=+∞∑
m=−∞

[g(m)2u (y), g(m)2v (y), g(m)2w (y)]eimαx, (3.5a)
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Ω2(x, y)=
m=+∞∑
m=−∞

[ζ (m)2x (y), iζ (m)2y (y), ζ
(m)
2z (y)]eimαx, (3.5b)

Θ2(x, y)=
m=+∞∑
m=−∞

g(m)2θ (y)e
imαx, (3.5c)

which leads to the following form of the disturbance quantities:

v2(x, y, z, t) =
m=+∞∑
m=−∞

[g(m)2u (y), g(m)2v (y), g(m)2w (y)]ei[(δ+mα)x+βz−σ t] + c.c., (3.6a)

ω2(x, y, z, t) =
m=+∞∑
m=−∞

[ζ (m)2x (y), iζ (m)2y (y), ζ
(m)
2z (y)]ei[(δ+mα)x+βz−σ t] + c.c., (3.6b)

θ2(x, y, z, t) =
m=+∞∑
m=−∞

g(m)2θ (y)e
i[(δ+mα)x+βz−σ t] + c.c. (3.6c)

Substitution of (3.6) into (3.3) and separation of Fourier components results, after
some rather lengthy algebra, in a system of linear homogeneous ordinary differential
equations of the form

A(m)ζ (m)2y + Re Du0βg(m)2v =
n=+∞∑
n=−∞
[H(m−n)

ζ ζ
(m−n)
2y +H(m−n)

v g(m−n)
2v ], (3.7a)

B(m)g(m)2v − Rapk2
mg(m)2θ =−

n=+∞∑
n=−∞
[I(m−n)
ζ ζ

(m−n)
2y + I(m−n)

v g(m−n)
2v ], (3.7b)

C(m)g(m)2θ = Pr
n=+∞∑
n=−∞
[J(m−n)
ζ ζ

(m−n)
2y + J(m−n)

v g(m−n)
2v + J(m−n)

θ g(m−n)
2θ ], (3.7c)

subject to the boundary conditions

ζ
(m)
2y (±1)= 0, g(m)2v (±1)= 0, Dg(m)2v (±1)= 0, g(m)2θ (±1)= 0 for −∞<m<+∞,

(3.8a−d)
where

A(m) =D2 − k2
m − i(tmRe u0 − σ), (3.9a)

B(m) = (D2 − k2
m)

2 − i(tmRe u0 − σ)(D2 − k2
m)+ itmRe D2u0, (3.9b)

C(m) =D2 − k2
m − i Pr(tmRe u0 − σ), (3.10)

Dn = dn/dyn, (3.11)
tm = δ +mα, (3.12)
k2

m = t2
m + β2, (3.13)

H(m−n)
ζ = itmu(n)1 + k−2

m−n(β
2 + tm−ntm)v

(n)
1 D, (3.14)

H(m−n)
v =−βDu(n)1 + inαβk−2

m−nv
(n)
1 D2, (3.15)

I(m−n)
ζ = nαβk−2

m−n[2tm−nu(n)1 D+ (tm + tm−n)Du(n)1 − ik2
mv

(n)
1 − iv(n)1 D2], (3.16)
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I(m−n)
v = k−2

m−n[inα(β2 − tmtm−n)Du(n)1 D+ k2
m(β

2 + tm−ntm−2n)v
(n)
1 D]

+ k−2
m−n[i(−k2

m−ntm + 2nαβ2)u(n)1 D2 + (nαtm − k2
m)v

(n)
1 D3]

+ ik2
mtm−2nu(n)1 + itmD2u(n)1 , (3.17)

J(m−n)
ζ =−inαβk−2

m−nθ
(n)
B , (3.18)

J(m−n)
v =−nαk−2

m−ntm−nθ
(n)
B D+Dθ (n)B , θ

(n)
B = φ(n) + Pr−1δ1|n|θ

(n)
0 , (3.19a,b)

J(m−n)
θ = itm−nu(n)1 + v(n)1 D. (3.20)

The above formulation is analogous to the Bloch theory (Bloch 1928) for systems with
spatially periodic coefficients. It can also be interpreted in terms of the Floquet theory
(Coddington & Levinson 1965).

3.2. Method of solution

Equations (3.7a–c), together with the boundary conditions (3.8), are truncated after
NM modes. The dispersion relation is determined numerically through solution of the
relevant eigenvalue problem. For the purposes of calculations, the problem is posed
as an eigenvalue problem for σ . Equations (3.7a–c) are discretized with spectral
accuracy using the Chebyshev collocation method with NT collocation points. The
discretization procedure results in a matrix eigenvalue problem Ξx= 0, where Ξ(σ )
represents the coefficient matrix. This matrix is linear in σ , i.e. Ξ = Ξ0 + Ξ1σ ,
where Ξ0 = Ξ(0) and Ξ1 = Ξ(1)− Ξ0. The σ spectrum is determined by solving a
general eigenvalue problem of the form Ξ0x= σΞ1x. The individual eigenvalues are
determined by finding the zeros of the determinant of Ξ . The computed eigenvalues
are further refined using the inverse iteration technique.

Two methods of tracing the eigenvalues in the parameter space have been used
(Floryan 2003). In both of them we start with a small change of one of the
dimensionless numbers. Then, in the first method, we produce an approximation
for the eigenvalue, which is improved iteratively by searching for the nearby zero
of the determinant using a Newton–Raphson search procedure. A reasonable guess
for the unknown eigenvalue is essential for the convergence. In the second method,
the inverse iterations method, we compute an approximation for the eigenvector
Λa corresponding to the unknown eigenvalue σa using an iterative process in
the form (Ξ0 − σ0Ξ1)Λ

(k+1) = Ξ1Λ
(k), where σ0 and Λ(0) are the eigenvalue and

the eigenvector (an eigenpair) corresponding to the unaltered flow. If σa is the
eigenvalue closest to σ0, Λ(k) converges to Λa. The eigenvalue σa is evaluated using
the formula σa=Λ∗aΞ0Λa/Λ

∗
aΞ1Λa, where the asterisk denotes the complex conjugate

transpose. The inverse iterations method was found to be generally more efficient. The
relevant numerical parameters (i.e. NM and NT) have been selected through numerical
convergence studies to guarantee at least four-digit eigenvalue accuracy.

3.3. Description of flow stability characteristics

It is convenient to start the discussion with descriptions of two reference states, i.e. the
natural convection (Re= 0) driven by periodic heating and the forced convection in a
channel with a uniformly heated lower plate.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

48
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.48


74 M. Z. Hossain and J. M. Floryan

2

3

1

Unstable

Stable

3

3
1

220

15

10

5

2 4 6 8 10 2 4 6 8 10
0

0.4

0.8

1.2

1.6

2.0

0

0.4

0.8

1.2

1.6
(a) (b)

FIGURE 9. Variations of (a) the critical Rayleigh number Rap,cr and (b) the critical
wavenumbers δcr and βcr as functions of α for the periodically heated layer with Re= 0
(see § 3.3.1). Curves 1, 2 and 3 correspond to the longitudinal, transverse and oblique
rolls, respectively.

3.3.1. Natural convection driven by a periodic heating (Re= 0)
Two instability mechanisms are active in the case of periodic heating described

by (2.1), i.e. the RB mechanism and the spatial parametric resonance mechanism
(Hossain & Floryan 2013b). Three types of structures can be created at the onset,
i.e. longitudinal rolls (rolls parallel to the primary rolls) driven primarily by the
RB mechanism, transverse rolls (rolls orthogonal to the primary rolls) also driven
primarily by the RB mechanism, and oblique rolls driven primarily by the spatial
parametric resonance. Figure 9 illustrates variations of the critical Rayleigh number
Rap,cr and the critical wavenumbers δcr and βcr as functions of α for these rolls. The
oblique rolls play the critical role for α=O(1), the longitudinal rolls play such a role
in a small interval of α centred around α≈ 4 and the transverse rolls become critical
for larger α. In the limit of α→∞, the primary convection is confined to a thin
boundary layer adjacent to the lower wall with the conduction state emerging above
this layer (see § 2.3.2) resulting in the dominance of the RB mechanism. As a result,
the critical stability curves approach an asymptote for α→∞, which can be predicted
on the basis of the RB instability (Pellew & Southwell 1940; Koschmieder 1993).
Wavenumber lock-in between the primary rolls and the component of the disturbance
wavevector parallel to the primary convection wavevector occurs for α =O(1).

3.3.2. Forced convection driven by uniform heating
Conditions leading to the onset of natural convection in the case of a uniformly

heated lower wall and in the absence of forced convection are expressed in terms
of the Rayleigh number defined as Ra = gΓ h31T/νκ , where 1T stands for the
temperature difference between the walls. The Rayleigh number Ra has to reach the
critical value of Racr = 213.5 in order to initiate any movement of the fluid (Pellew
& Southwell 1940; Koschmieder 1993). The pattern of the resulting motion cannot
be determined on the basis of linear stability theory; various symmetry-breaking
mechanisms may affect this process (Freund, Pesch & Zimmermann 2011; Weiss,
Seiden & Bodenschatz 2012). Introduction of forced motion provides another
symmetry-breaking mechanism and gives preference to rolls with their axes parallel
to the direction of the forced flow (Gage & Reid 1968). The evolution of the critical
conditions as a function of Re is illustrated in figure 10. Three types of roll are
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FIGURE 10. Variations of (a) the critical Rayleigh number Racr and (b) the critical
wavenumbers δcr and βcr, and the frequency σr as functions of the Reynolds number Re
for the uniformly heated fluid layer (see § 3.3.2). Curves 1, 2, 3 and 4 correspond to
the parallel rolls, the 60◦ oblique rolls, the 30◦ oblique rolls, and the orthogonal rolls,
respectively. In panel (b), the thick solid, dashed and dash-dotted lines identify δcr, βcr and
σr, respectively; the limit points A, B, C and D (marked usingu, ♦,E,A) correspond
to (δcr, βcr, σr) = (0, 1.56, 0), (0.51, 0.89, 1565), (0.89, 0.51, 1554) and (1.02, 0, 1554),
respectively.

shown: (i) rolls with axes parallel to the flow direction are referred to as parallel
rolls (they correspond to the transverse rolls in the case of periodic heating), (ii) rolls
with axes orthogonal to the flow direction are referred to as orthogonal rolls (they
correspond to the longitudinal rolls in the case of periodic heating), and (iii) oblique
rolls. The obliqueness angle χ is defined as tan(χ)=β/δ and thus χ = 0◦ corresponds
to orthogonal rolls and χ = 90◦ to parallel rolls. The critical conditions for all rolls
approach the same limit of Recr = 213.5,

√
δ2

cr+β2
cr = 1.56, σr = 0 when Re→ 0.

The critical conditions for the parallel rolls remain independent of Re and such rolls
always remain stationary. All other rolls travel in the downstream direction when
Re> 0 with σr increasing with Re; their Racr increases with increase of Re, reaches a
maximum and then drops off rapidly, as shown in figure 10. The orthogonal rolls are
of the most interest as their Racr drop to zero at the smallest Re, i.e. at Re= 5772,
and this point corresponds to the shear instability beginning to play the critical role.
The results displayed in figure 10 well illustrate the morphing of the orthogonal
rolls into the two-dimensional Tollmien–Schlichting (TS) waves as Re increases. In
summary, the parallel rolls play the critical role when Re< 5772, and the transition
to the secondary state for such conditions is driven by the RB mechanism. The
two-dimensional travelling waves play the critical role for Re > 5772, and for such
conditions the transition is driven by viscous shear. One should note that flow with
parallel rolls is subject to secondary instabilities (Clever & Busse 1991).

3.3.3. Transverse rolls
We shall now return to the periodic heating and enquire how the introduction

of forced convection affects the onset conditions when compared with natural
convection, and identify the form of the unstable motion at the onset. We begin
the presentation with the transverse rolls; such rolls are parallel to the direction of
the forced convection and are orthogonal to the primary rolls, and thus may exhibit
some of the features of the parallel rolls generated by uniform heating. The form
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FIGURE 11. The flow structures associated with (a) the primary convection and (b) the
secondary convection in the form of transverse rolls at the onset in a flow with Re= 1.
(a) The stream function normalized by its maximum; (b) the second invariant of the
velocity gradient tensor (see (3.21)). The heating has the wavenumber α = 5, requires
the intensity corresponding to Rap,cr = 3317 and generates the secondary convection with
wavenumber βcr = 1.6.
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FIGURE 12. The onset conditions required for the formation of the secondary convection
in the form of transverse rolls in the fluid flowing through a periodically heated channel at
different Reynolds numbers Re (see § 3.3.3): variations of (a) the critical Rayleigh number
Racr and (b) the critical wavenumber βcr as functions of the heating wavenumber α.

of these rolls is illustrated in figure 11, where the second invariant of the velocity
gradient tensor ϑ (Dubief & Delcayre 2000), defined as

ϑ = 1
2(ΦijΦij −$ij$ij), (3.21)

where Φij = (ui,j − uj,i)/2, $ij = (ui,j + uj,i)/2, has been plotted with the disturbance
velocity field normalized by the condition max(g(1)2u ) = 1. Figure 12(a) illustrates
variations of Racr as a function of α; the form of the critical curves suggests the
existence of two characteristic zones. In the limit of α → ∞ these curves reach
the same asymptote for all Re considered and, in this sense, the properties of these
rolls resemble the properties of the parallel rolls of § 3.3.2. The asymptote can be
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determined analytically by taking advantage of (2.43) (for details see Hossain &
Floryan 2013b). This is due to the fact that in this limit the temperature field splits
into a thin boundary layer adjacent to the heated wall and a conduction zone with
a constant vertical temperature gradient above the boundary layer. As a result, the
spatial parametric resonance is practically eliminated and the instability is driven by
the RB mechanism. The results displayed in figure 12(b) demonstrate that the critical
wavenumbers reach the limit βcr → 1.56 when α →∞, which is identical to that
found in the case of uniform heating. The situation is more complex when α=O(1),
as the strength of the primary rolls is largest under such conditions (see § 2.3) and
this strengthens the spatial parametric resonance. The critical curves displayed in
figure 12(a) show large variations of form as a function of Re for α=O(1). A small
increase of Re may destabilize the system and expand the unstable zone to smaller
α values, but its further increase stabilizes the system due to the washing out of the
separation bubbles, as illustrated in figures 2, 5 and 6. The complexity of this process
is illustrated in figure 12(b), which displays variations of βcr as a function of α for
several values of Re. The strong role of the parametric resonance is underlined by
the rapid change in the character of variations of βcr for Re= 0 at α≈ 4. Introduction
of forced convection, regardless of how small Re might be, leads to the qualitative
change in the variations of βcr (figure 12b) and to an increase rather than a decrease
of βcr as the magnitude of α decreases to α < 4.

Figure 13 illustrates effects of Re more explicitly. When Re=O(1) and α =O(1),
the parametric resonance is active and results in the formation of a variety of critical
curves as shown in figure 13(a). An increase of Re while keeping Rap fixed results
in the washing away of the primary rolls and the formation of a boundary layer at
the lower wall (§ 2.3.4). These rolls can be maintained in the whole channel if an
increase of Re is accompanied by an appropriate increase of Rap. The second effect
in play involves variations of α; its increase results in the formation of a different
boundary layer at the lower wall and a conduction zone above it. An increase of both
Re and α reduces the spatial flow modulations and eliminates the spatial parametric
resonance. As a result, the secondary motion is driven by the RB effect and all of the
critical curves approach a similar asymptote for Re→∞, as illustrated in figure 13(a);
the asymptote has been determined numerically. On the other hand, variations of βcr
always show a strong dependence on α, as illustrated in figure 13(b); this variability
does not disappear even in the limit of Re→∞. The results displayed in figure 14
demonstrate the existence of different βcr for different α even when Re= 105.

3.3.4. Longitudinal rolls
We shall now turn our attention to the longitudinal rolls. Such rolls are parallel

to the primary rolls and thus they are orthogonal to the direction of the forced
flow (see figure 15). These rolls correspond to the orthogonal rolls in the case of
uniform heating. Figure 16 displays variations of the critical conditions as a function
of α. It can be seen that the rolls are stationary for Re = 0 but begin to be pushed
downstream when forced convection is introduced (figure 16b). The speed of the
downstream movement increases with Re for the complete range of α studied. There
is a finite range of α bounded from below, which can lead to the formation of such
rolls when Re= 0 (figure 16a). An increase of Re expands this range towards smaller
αs. The minimum of Rap,cr occurs for Re ≈ 5 and further increase of Re stabilizes
the flow, at least in the range of α studied. There is an interesting evolution of the
disturbance pattern at the onset, as illustrated in figure 16(b). In the case of natural
convection (Re= 0) and for α< 4.2, the disturbance wavenumber is locked in with the
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FIGURE 13. The onset conditions required for the formation of the secondary convection
in the form of transverse rolls in the fluid flowing through a channel subject to periodic
heating of different wavelength (see § 3.3.3): variations of (a) the critical Rayleigh number
Rap,cr and (b) the critical wavenumber βcr as functions of the Reynolds number Re. The
asymptote for large Re is marked in panel (a) using the dashed line. No asymptote has
been identified in panel (b) (see figure 14 for further explanations).
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FIGURE 14. Demonstration that an α-independent asymptote for βcr for large Re does
not exist. This figure displays variations of the amplification rate σi as a function of
the wavenumber β of transverse rolls resulting from the application of heating with
wavenumbers α = 1, 2, 5 and 10 for three values of the Reynolds number, i.e. Re= 104,
5×104 and 105. Heating with the Rayleigh number corresponding to the critical conditions
for each combination of α and Re has been used. It can be seen that an increase of Re
results in βcr→ 1.74, 1.58, 1.51 and 1.50 for α = 1, 2, 5 and 10.

wavenumber of the primary convection according to the relation δcr=α/2 (figure 16b).
Heating with larger α generates rolls with δcr exhibiting a rather complex dependence
on α and with the limit point of δcr→ 1.56 for α→∞ (Hossain & Floryan 2013b).
A small increase of Re up to Re= 5 maintains a similar structure of variations of δcr

but with the lock-in point moved towards smaller α and the limit point for α→∞
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FIGURE 15. The flow structures associated with (a) the primary convection and (b) the
secondary convection in the form of longitudinal rolls at the onset in a flow with Re= 1.
(a) The stream function normalized with its maximum; (b) the second invariant of the
velocity gradient tensor (see (3.21)). The heating has the wavenumber α = 3.6, requires
an intensity corresponding to Rap,cr = 3191 and generates the secondary convection with
wavenumber δcr = 1.8 (the lock-in conditions). The rolls are pushed downstream with the
phase speed corresponding to σr = 0.0015. This speed increases with an increase of Re.

30

50
5

10

1

30

103

8
1

50

5
1
0

5

10
30

75

25

100

50

8 106420 8 106420

2.0

1.5

1.0

(a)  (b) 80

60

40

20

0

FIGURE 16. The onset conditions required for the formation of the secondary convection
in the form of longitudinal rolls in a fluid driven through a periodically heated channel
at different Reynolds numbers Re (see § 3.3.4). (a) Variations of the critical Rayleigh
number Racr as a function of the heating wavenumber α. The thick solid line identifies
the reference state of Re = 0. (b) Variations of the critical wavenumber δcr (solid lines)
as a function of the heating wavenumber α, with the thick solid line corresponding to
the reference state of Re= 0. Also shown are variations of the critical frequency σcr as
a function of the heating wavenumber α (dashed lines). The reference state of Re= 0 is
marked using the dotted line (σcr = 0).

slightly increasing (figure 16b). A further increase of Re completely eliminates the
lock-in phenomenon and leads to an increase of δcr for α < 4.2. This is due to the
elimination of the separation bubbles and thus elimination of the spatial parametric
resonance, as has already been discussed in the previous section. At the same time,
the limit of δcr for α→∞ increases above the reference value of 1.56 found in the
case of natural convection.
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FIGURE 17. The onset conditions required for the formation of the secondary convection
in the form of longitudinal rolls in a fluid driven through a channel subject to periodic
heating of different wavelength (see § 3.3.4). (a) Variations of the critical Rayleigh
number Rap,cr, (b) variations of the critical wavenumber δcr and (c) variations of the
critical frequency σr as functions of the Reynolds number Re. Correlation Rap,cr =
α0.2(61.1Re1.386 − 7.2× 10−7Re3.48) valid for 250<Re< 5772 is marked in panel (a) using
the dotted line. The limit points A, B and C in panel (b) are located at (Re, δcr) =
(5772,1.02), (0,2) and (0,1.66), respectively, and the limit point D in panel (d) is located
at (Re, σr)= (5772, 1554).

Figure 17 illustrates more explicitly the variations of the critical conditions as
a function of Re. The results displayed in figure 17(a) demonstrate a complex
dependence of Rap,cr on Re. For small Re (Re < 5), Rap,cr either does not depend
on Re or decreases with Re depending on α. Increase of Re above Re = 5
results in an increase of Rap,cr for all α considered. All critical curves exhibit
a similar form for Re > 250, which leads to a correlation of the form Rap,cr =
α0.2(61.1 Re1.386 − 7.2× 10−7 Re3.48). When Re approaches the limiting value of 5772,
Rap,cr rapidly drops off for all α as the instability becomes dominated by shear,
similar to the case of uniform heating (§ 3.3.2). The variations of δcr displayed in
figure 17(b) underline the complexity of the dependence of the critical conditions
on Re. There is a wide range of variations of δcr as a function of Re for Re < 5,
dependent on the heating wavenumber. This is followed by rapid but qualitatively
similar variations of δcr for all α for Re between 5 and 250, and different but also
qualitatively similar variations for Re > 250 with the critical curves approaching
the same limit point (δcr, Re) = (1.02, 5772) for all α. Figure 17(c) illustrates the
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FIGURE 18. The flow structures associated with (a) the primary convection and (b) the
secondary convection in the form of oblique rolls at the onset in a flow with Re = 1.
(a) The stream function normalized by its maximum; (b) the second invariant of the
velocity gradient tensor (see (3.21)). The heating has the wavenumber α = 2.5, requires
an intensity corresponding to Rap,cr = 2513 and generates the secondary convection with
wavenumbers δcr = 1.25 and βcr = 0.77.

evolution of the complex frequency from σr = 0 at Re= 0 to σr = 1554 at Re= 5772.
These changes illustrate morphing of the stationary longitudinal rolls at Re = 0 into
travelling waves driven by shear for Re> 5772.

3.3.5. Oblique rolls
The previous two sections discussed the properties of two special classes of

rolls, i.e. longitudinal and transverse rolls. The instability can generate rolls with
any orientation, i.e. oblique rolls (see figure 18). Figure 19 displays variations of
Rap,cr as a function of roll orientation for α = 3.5 for Re = 0, 1 and 10. The
obliqueness angle χ used in this figure is defined as tan(χ) = β/δ and thus χ = 0◦
corresponds to longitudinal rolls and χ = 90◦ to transverse rolls. Results of this type
permit identification of the roll orientation at the onset and variations of the critical
roll orientation as a function of Re and α. In the case of this particular heating
wavenumber, the oblique rolls play the critical role at Re = 0 and Re = 1, to be
replaced by the transverse rolls at Re= 10. Figure 20 displays the critical curves that
identify both the critical roll orientation and the corresponding Rap,cr as a function
of Re and α. This figure is limited only to those conditions where the oblique rolls
play the critical role. The limit points where either longitudinal or transverse rolls
become critical are marked with a black dot.

In all the cases considered, the critical oblique rolls are stationary, i.e. σr = 0.
The critical wavevector has x component locked in with the wavevector of the
primary instability according to the relation δcr = α/2, which is a characteristic
feature of the spatial resonance (figure 20b), while variations of the z component
do not follow any regular path. The appearance of the z component results in
the three-dimensionalization of the disturbance velocity field, which is another
characteristic feature of the spatial resonance (Manor, Hagberg & Meron 2008,
2009). An increase of Re results in the transfer of the limit points towards smaller
α; an increase of Re from Re= 0 to Re= 3 results in the reduction of Rap,cr, which
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FIGURE 19. The onset conditions required for the formation of the secondary convection
in the form of oblique rolls in a fluid driven through a periodically heated channel
(see § 3.3.5). (a–c) Variations of the critical Rayleigh number Rap,cr as a function of
the magnitude of the disturbance wavevector |q| = √δ2 + β2 and its orientation angle
χ , defined as tan(χ) = β/δ, for the heating with the wavenumber α = 3.5 for the flow
Reynolds number Re= 0 (a), 1 (b) and 10 (c), respectively.
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FIGURE 20. The onset conditions required for the formation of the secondary convection
in the form of oblique rolls in a fluid driven through a periodically heated channel
(see § 3.3.5). Variations of (a) the critical Rayleigh number Rap,cr and (b) the critical
wavenumbers δcr and βcr as functions of the heating wavenumber α. The critical curves for
Re>6 consist of two segments with the dash-dotted lines used to identify the left segment.
Symbols (u) identify the limit points on the α axis where the oblique rolls cease to play
the critical role.

can be achieved at any α (see figure 20a), but a further increase of Re leads to an
increase of Rap,cr. The flow stabilization, which is due to an increase of Re and, at
the same time, due to the reduction of α, is consistent with the weakening of the
parametric resonance mechanism. It has already been pointed out in the previous
two sections that an increase of Re reduces the strength of the separation bubbles,
which leads to the reduction of the magnitude of the spatial flow modulation, and
this results in the reduction of the strength of the spatial resonance.

The special feature of the oblique rolls is the division of the critical curves into two
segments for Re>5. As Re increases above Re=3, the instability expands into smaller
α, with the critical curve acquiring two minima (see curve for Re=4 in figure 20a). A
further increase of Re amplifies this division (see curve for Re= 5 in figure 20a) and
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FIGURE 21. The onset conditions required for the formation of the secondary convection
in the form of oblique rolls in a fluid driven through a periodically heated channel
(see § 3.3.5). Variations of (a) the critical Rayleigh number Rap,cr and (b) the critical
wavenumber βcr as functions of the Reynolds number Re. Symbols (u) identify the limit
points on the Re axis where the oblique rolls cease to play the critical role. Note that
δcr = α/2 for oblique rolls.

leads to separation of the critical curves into two segments (see curves for Re= 6–10
in figure 20a). These segments might join each other at much higher Rap, but this
question has not been investigated. The formation of the left segment of the critical
curve, which extends into α values much smaller than those found for Re=0, suggests
that another instability mechanism may contribute to the system dynamics. In this
case the primary convection has the form of very elongated rolls (Hossain & Floryan
2013a), the spatial resonance remains active (see the form of the critical wavevector
in figure 20b) and so the most likely mechanism is the reinvigorated RB mechanism.
This question has not been pursued any further in this study.

The role of Re in the onset of oblique rolls is illustrated in figure 21. These
rolls play the critical role for very small Re and undergo a very rapid α-dependent
transformation due to small changes of Re. Generally, they cease to play the critical
role for Re< 10, but these conditions vary greatly with α.

3.3.6. The critical conditions
The final question to be discussed is the identification of the type of rolls that is

generated at the onset, i.e. discussion of the competition between different rolls and
the identification of patterns of motion that result from the instability. The discussion
presented in the previous sections demonstrates a rapid change in the instability
patterns for small Re, with the transverse rolls eventually winning the competition.
This process is illustrated in figure 22. When Re= 0, the oblique rolls dominate for
α < 4.03, the longitudinal rolls dominate for 4.03<α < 4.46 and the transverse rolls
dominate for α > 4.46. At Re= 1 the changeover points are at α= 3.77 and α= 4.34.
The longitudinal rolls cease to play the critical role at Re = 2 and the changeover
between the oblique and transverse rolls occurs at α = 3.68. The changeover point
moves to α = 3.16, 2.77, 2.38, 1.72 and 1.2 for Re = 3, 4, 5, 6 and 8, respectively.
The transverse rolls dominate at Re= 10. These predictions are correct assuming that
there are no additional effects that may provide a preference for certain type of rolls.
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FIGURE 22. The onset conditions for the secondary convection (see § 3.3.6). (a–i)
Variations of the critical conditions for the transverse, longitudinal and oblique rolls
as a function of the heating wavenumber α for the flow Reynolds number Re = 0,
1, 2, 3, 4, 5, 6, 8 and 10, respectively. Labels 1, 2 and 3 identify the longitudinal,
transverse and oblique rolls, respectively. Points A, B, C, D, E, F, G, H, I and J have
coordinates (α,Rap,cr)= (4.46,3192), (4.03,3032), (4.34,3156), (3.77,3201), (3.68,3178),
(3.16, 3162), (2.77, 3251), (2.38, 3623), (1.72, 8234) and (1.2, 8040), respectively.

3.4. Transition to secondary states with heating applied at the upper wall
It can be shown that the transformation discussed in § 2.4 applies also to the analysis
of stability of the primary convection. As a result, the transition to secondary states
occurs under the same conditions as in the case of heating applied at the lower wall,
while the disturbance flow patterns exhibit phase differences similar to those discussed
by Hossain & Floryan (2014).

4. Summary
Mixed convection in a channel exposed to heating that is periodic in the flow

direction has been analysed. The heating can be applied either at the lower or at the
upper wall and results in a sinusoidal wall temperature distribution characterized by
the wavenumber α and the amplitude expressed in terms of the Rayleigh number
Rap. The primary convection represents a forced response to the applied heating
and has the form of counter-rotating rolls whose pattern is dictated by the pattern
of the heating. This convection occurs regardless of the magnitude of the heating.
Detailed results have been presented for fluids with Prandtl number Pr = 0.71.
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The largest heat transfer across the channel occurs for the natural convection (Re= 0)
and diminishes with an increase of the forced flow component (increase of Re). The
most effective heating wavenumber is α≈ 1, with the heat transfer rapidly decreasing
for smaller and larger α. The magnitude of the heat transfer is proportional to Rap
for small enough heating intensity but its growth saturates for Rap =O(103). Heating
with large α leads to the formation of a boundary layer adjacent to the heated wall
and formation of a conduction zone in the remaining part of the channel where the
temperature varies only in the vertical direction.

The primary convection with large enough Rap undergoes transition to a secondary
convection, which changes the heat transfer process in a qualitative sense. This
transition is driven by a mix of the RB mechanism, which dominates for large α,
with the spatial parametric resonance, which dominates for α = O(1). The critical
conditions have been determined for the range of α and Re of practical interest. Three
types of rolls can be formed at the onset, i.e. longitudinal, transverse and oblique rolls,
depending on α and Re. The detailed characteristics of these rolls have been given for
the range of Re where the heating determines the onset conditions. The longitudinal
rolls are stationary at Re = 0 but begin to travel in the downstream direction as
Re increases. These rolls undergo morphing into TS waves as Re increases, with
transition completed at Re = 5772. Wavenumber locking between the primary and
secondary convection is observed for small enough Re and α; an increase of Re above
Re= 5 eliminates the lock-in phenomenon. The transverse rolls remain stationary as
Re increases; the corresponding critical Rap approaches an asymptote for α → ∞,
which can be predicted analytically by taking advantage of knowledge about the
formation of the conduction zone away from the heated wall. An increase of Re
leads to the formation of another type of boundary layer; the corresponding Rap
approaches an asymptote as Re→∞ whose form has been determined numerically.
Oblique rolls play a critical role only for small enough Re and small enough α. The
character of the instability motion undergoes rapid α-dependent changes for small Re.
A sufficient increase of Re results in the dominance of the transverse rolls, assuming
that no symmetry-breaking effects are present. The heat transfer properties of the
saturation states remain to be determined.

The system response is the same regardless of whether the heating is applied at the
lower or at the upper wall.
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Appendix A
Definitions of functions used in § 2.3:

θ00 = 1
4
− y

4
, (A 1)

θ02 =− y3

24
+ y2

8
+ y

24
− 1

8
, (A 2)

θ04 =− y5

480
+ y4

96
+ y3

144
− y2

16
− 7y

1440
+ 5

96
, (A 3)

FU1(y)= y4

96
− y3

24
− y2

80
+ y

24
+ 1

480
, (A 4)
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FV2(y)=− y5

480
+ y4

96
+ y3

240
− y2

48
− y

480
+ 1

96
, (A 5)

FP0(y)=−y2

8
+ y

4
+ 1

40
, (A 6)

FΘ1 =− y5

48
+ y4

48
+ y3

24
− y2

8
− 7y

240
+ 5

48
, (A 7)

FU21(y) = − y8

26 880
+ y7

10 080
+ y6

2880
− y5

480
− 7y4

1152
+ 5y3

288

+ 107y2

100 800
− 31y

2016
− 1

6400
, (A 8)

FU22(y) = − y8

8960
+ y7

2016
+ 7y6

14 400
− y5

480
− y4

1152
+ y3

288

+ 19y2

33 600
− 19y

10 080
− 29

403 200
, (A 9)

FV31(y) = − y9

241 920
+ y8

80 640
+ y7

20 160
− y6

2880
− 7y5

28 800

+ 5y4

1152
+ 107y3

302 400
− 31y2

4032
− y

6400
+ 33

8960
, (A 10)

FV32(y) = − y9

80 640
+ y8

16 128
+ y7

14 400
− y6

2880
− y5

5760
+ y4

1152

+ 19y3

100 800
− 19y2

20 160
− 29y

403 200
+ 29

80 640
, (A 11)

FP1 = − y6

480
+ y5

240
+ y4

96
− y3

24
− 7y2

480
+ 5y

48
+ 107

50 400
, (A 12)

FΘ21 = y7

26 880
− y6

3840
+ y5

6400
+ y4

1280
− y3

1280

− y2

1280
+ 79y

134 400
+ 1

3840
, (A 13)

FΘ22 = 1
201 600

( 35y9 − 75y8 − 260y7 + 980y6 + 714y5 − 3850y4

− 980y3 + 10 500y2 + 491y− 7555 ), (A 14)

FΘ23 = − y7

40 320
+ y6

5760
− y5

4800
− y4

2880
+ y3

1152
− y2

1920

− y
1575

+ 1
1440

, (A 15)

FU31(y) = y6

960
− y5

160
− 11y4

2880
+ 5y3

144
+ 109y2

33 600
− 41y

1440
− 47

100 800
, (A 16)

FU32(y) = − y12

4561 920
+ y11

1478 400
+ 23y10

7257 600
− y9

48 384
− 31y8

1612 800

+ 31y7

120 960
+ 949y6

18 144 000
− y5

1152
− 73y4

967 680

+ 323y3

241 920
+ 181 171y2

4036 032 000
− 1337y

1900 800
− 398 309

72 648 576 000
, (A 17)
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FU33(y) = − y12

1520 640
+ y11

295 680
+ 37y10

7257 600
− 19y9

725 760
− 29y8

1612 800

+ 11y7

120 960
+ 71y6

2016 000
− y5

5760
− 199y4

4838 400

+ 47y3

241 920
+ 323y2

14 676 480
− 709y

7983 360
− 185 711

72 648 576 000
, (A 18)

FU34(y) = − y12

7603 200
+ y11

2661 120
+ 13y10

7257 600
− y9

103 680
− 17y8

1612 800

+ 11y7

120 960
+ 7y6

172 800
− y5

1152
− 491y4

4838 400

+ 1511y3

241 920
+ 15 661y2

192 192 000
− 8717y

1596 672
− 120 749

10 378 368 000
, (A 19)

FU35(y) = y10

14 515 200
− y9

1451 520
+ y8

806 400
+ y7

302 400
− y6

69 120
+ y5

57 600

+ y4

18 900
− y3

4320
− 197y2

4224 000
+ 307y

1451 520
+ 2749

399 168 000
, (A 20)

FU36(y) = y10

8294 400
− y9

829 440
+ 23y8

6451 200
+ y7

483 840
− 49y6

6912 000

+ y5

230 400
− y4

55 296
− y3

69 120
+ 1021y2

39 424 000

+ 269y
29 030 400

− 14 083
3193 344 000

, (A 21)

FV41(y) = − y7

6720
+ y6

960
+ 11y5

14 400
− 5y4

576
− 109y3

100 800
+ 41y2

2880

+ 47y
100 800

− 19
2880

, (A 22)

FV42(y) = y13

59 304 960
− y12

17 740 800
− 23y11

79 833 600
+ y10

483 840

+ 31y9

14 515 200
− 31y8

967 680
− 949y7

127 008 000
+ y6

6912

+ 73y5

4838 400
− 323y4

967 680
− 181 171y3

12 108 096 000

+ 1337y2

3 801 600
+ 398 309y

72 648 576 000
− 1411

10 644 480
, (A 23)

FV43(y) = y13

19 768 320
− y12

3548 160
− 37y11

79 833 600
+ 19y10

7257 600

+ 29y9

14 515 200
− 11y8

967 680
− 71y7

14 112 000
+ y6

34 560

+ 199y5

24 192 000
− 47y4

967 680
− 323y3

44 029 440
+ 709y2

15 966 720

+ 185 711y
72 648 576 000

− 359
22 809 600

, (A 24)
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FV44(y) = y13

98 841 600
− y12

31 933 440
− 13y11

79 833 600
+ y10

1036 800

+ 17y9

14 515 200
− 11y8

967 680
− y7

172 800
+ y6

6912

+ 491y5

24 192 000
− 1511y4

967 680
− 15 661y3

576 576 000
+ 8717y2

3193 344

+ 120 749y
10 378 368 000

− 69 323
53 222 400

, (A 25)

FV45(y) = − y11

79 833 600
+ y10

7257 600
− y9

3628 800
− y8

1209 600

+ y7

241 920
− y6

172 800
− y5

47 250
+ y4

8640
+ 197y3

6336 000

− 307y2

1451 520
− 2749y

199 584 000
+ 53

518 400
, (A 26)

FV46(y) = − y11

45 619 200
+ y10

4147 200
− 23y9

29 030 400
− y8

1935 360

+ 7y7

3456 000
− y6

691 200
+ y5

138 240
+ y4

138 240

− 1021y3

59 136 000
− 269y2

29 030 400
+ 14 083y

1596 672 000
+ 109

29 030 400
, (A 27)

FΘ31(y) = − y7

1008
+ y6

240
+ y5

60
− y4

24
− 7y3

144
+ 3y2

16
+ 83y

2520
− 3

20
, (A 28)

FΘ32(y) = y13

898 560
− y12

354 816
− 59y11

4435 200
+ 211y10

3628 800
+ 487y9

7257 600

− 23y8

53 760
− 121y7

604 800
+ 41y6

17 280
+ 1471y5

4032 000
− 3611y4

483 840

− 491y3

1209 600
+ 1511y2

80 640
+ 966 443y

5189 184 000
− 1059 757

79 833 600
, (A 29)

FΘ33(y) = y11

10 6444 800
− y10

29 030 400
− y9

5806 080
+ y8

645 120

+ y7

691 200
− y6

27 648
− 107y5

24 192 000
+ 31y4

193 536

+ y3

153 600
− 33y2

71 680
− 769y

228 096 000
+ 9721

29 030 400
, (A 30)

FΘ34(y) = y11

35 481 600
− y10

5806 080
− y9

4147 200
+ y8

645 120
+ y7

967 680

− y6

138 240
− 19y5

8064 000
+ 19y4

967 680
+ 29y3

9676 800

− 29y2

645 120
− 2333y

1596 672 000
+ 181

5806 080
, (A 31)
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FΘ35(y) = − y11

2027 520
+ 23y10

6451 200
− 3y9

716 800
− y8

36 864

+ 47y7

645 120
+ 37y6

460 800
− 259y5

768 000
+ 163y4

9676 800
+ 13 033y3

19 353 600

− 217y2

307 200
− 430 411y

1064 448 000
+ 12 247

19 353 600
, (A 32)

FΘ36(y) = − y11

7884 800
+ 7y10

8294 400
− y9

58 060 800
− 37y8

6451 200
+ y7

276 480

+ y6

55 296
− 293y5

16 128 000
− 247y4

9676 800
+ 731y3

19 353 600

+ 29y2

6451 200
− 73 691y

3193 344 000
+ 13

1658 880
. (A 33)
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