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Prominent moraines deposited by the Laurentide Ice Sheet in northern New England document readvances, or
stillstands, of the ice margin during overall deglaciation. However, until now, the paucity of direct chronologies
over much of the region has precluded meaningful assessment of the mechanisms that drove these events,
or of the complex relationships between ice-sheet dynamics and climate. As a step towards addressing this
problem, we present a cosmogenic 10Be surface-exposure chronology from the Androscoggin moraine complex,
located in theWhiteMountains of westernMaine and northernNewHampshire, aswell as four recalculated ages
from the nearby Littleton–Bethlehem moraine. Seven internally consistent 10Be ages from the Androscoggin
terminal moraines indicate that advance culminated ~13.2 ± 0.8 ka, in close agreement with the mean age of
the neighboring Littleton–Bethlehem complex. Together, these two datasets indicate stabilization or advance
of the ice-sheet margin in northern New England, at ~14–13 ka, during the Allerød/Greenland Interstadial I.

© 2015 University of Washington. Published by Elsevier Inc. All rights reserved.
Introduction

During the Last Glacial Maximum (LGM; ~26–19 ka), the Laurentide
Ice Sheet (LIS) constituted the largest ice mass on Earth. With an area
of ~13,000,000 km2 and maximum surface elevations of as much as
3000 m (Denton and Hughes, 1981), the LIS exerted a considerable
influence on global climate through albedo forcing (e.g., Broccoli
and Manabe, 1987), displacement of atmospheric circulation (e.g.,
Williams et al., 1974; Hostetler and Clark, 1997; Oviatte, 1997; Birkel,
2010), and, particularly along the ice sheet's Atlantic margins, ocean–
ice sheet interactions (e.g., Bond et al., 1993; MacAyeal, 1993). Indeed,
perturbations of the ice sheet's maritime sectors have been invoked
widely as a key component – if not the cause – of Heinrich events
(e.g., Hulbe et al., 2004), during which considerable volumes of ice ap-
parently were disgorged into the North Atlantic Ocean with profound
consequences for downwind ocean circulation (Broecker, 2003).
Concurrently, the temperate nature and relatively low latitude of the
ice sheet mean the LIS itself will have been highly sensitive to climate,
particularly along southern and eastern margins where deglacial
readvances have been correlated with perturbations of North Atlantic
. Bromley).

y Elsevier Inc. All rights reserved.

mbridge University Press
circulation (e.g., Lowell et al., 1999; Dorion et al., 2001; Borns et al.,
2004; Kaplan, 2007). Consequently, accurate reconstruction of past
ice-sheet behavior provides the means to assess both the role of the
LIS in Late Quaternary climate variability and sensitivity of the ice
sheet to key events, such as Heinrich stadials and late-glacial climate
reversals.

Comprehensive geologic mapping of glacial deposits and features
over the past several decades has revealed the overall pattern of ice-
sheet behavior in New England during the LGM and subsequent degla-
ciation. At its maximum extent, the southeastern sector of the LIS
terminated at the large moraine systems off the coast of southern
New England – Long Island, Martha's Vineyard, and Nantucket Island
(Fig. 1; Oldale, 1982; Oldale and O'Hara, 1984; Stone and Borns, 1986;
Balco et al., 2002) – while farther east the ice margin lay far offshore
at George's Bank in the Gulf of Maine (Fig. 1; Pratt and Schlee, 1969;
Stone and Borns, 1986). Inland from these limits, minor moraine
belts and landform assemblages in southern New England document
the northward retreat of the ice-sheet margin through Connecticut,
Massachusetts, and into New Hampshire (Fig. 1; Koteff and Pessl,
1981; Ridge, 2004; Balco and Schaefer, 2006; Balco et al., 2009). In
Maine, swarms of minor moraines occur where deglaciation of the
coastal lowland was accompanied by marine submergence. The distri-
bution of glacial landforms in these areas indicates that ice-sheet retreat
initiallywas gradual and oscillatory, with frequent stillstands andminor
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Figure 1.Map of New England and SE Canada showing themaximum extent of the Laurentide Ice Sheet during the LGM (dashed line). Also shown are locations of sitesmentioned in the
text (L–B moraine — Littleton–Bethlehemmoraine; PR moraine — Pineo Ridge moraine; BB moraine — Buzzards Bay moraine; NH — New Hampshire; NB — New Brunswick), as well as
prominentmoraines corresponding to deglacial ice-marginal positions (CH— Chicopee Readvancemoraines: Ridge, 2004; LD— Ledyardmoraines; OS—Old Saybrookmoraine: Balco and
Schaefer, 2006; PM — Perry Mountain moraine: Balco et al., 2009).
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readvances resulting in the extensive (N100 km in length) coastal
moraine belt in Maine and New Brunswick (Borns, 1973, 1980; Borns
and Hughes, 1977; Rampton et al., 1984; Thompson and Borns, 1985;
Smith and Hunter, 1989; Kaplan, 1999; Borns et al., 2004). In a few
places, the advances or stillstands were long enough to build extensive
deposits, such as the Pond Ridge moraine and Pineo Ridge moraine
complex (Borns et al., 2004; Fig. 1). The scarcity of moraines and preva-
lence of eskers proximal to the coastal moraine belt indicates that
subsequent deglaciation proceeded rapidly and without major inter-
ruption until the ice margin reached the vicinity of the Appalachian
Mountains (Davis and Jacobson, 1985). There, several extensive mo-
raine complexes record fluctuations of this sector of the LIS and are
the focus of this study.

Compared to extensive mapping studies, the glacial chronology for
this SE sector of the LIS is less complete and, in places, controversial.
On the basis of limiting radiocarbon ages and existing 10Be surface-
exposure ages, we know that the ice sheet was most extensive during
the LGM sensu stricto (Tucholke and Hollister, 1973; Oldale, 1982;
Stone and Borns, 1986; Stone et al., 1998; Balco et al., 2002, 2009), con-
sistentwith other sectors of the LIS (Dyke and Prest, 1987). Recalculated
10Be ages from the Buzzards Bay moraine in Massachusetts (Fig. 1)
rg/10.1016/j.yqres.2015.02.004 Published online by Cambridge University Press
suggest that the ice margin remained at or near its maximum extent
until ~21 ka (Balco et al., 2009). However, estimates for the onset of de-
glaciation vary widely, with varve (e.g., Ridge, 2004) and surface-
exposure (Balco and Schaefer, 2006; Balco et al., 2009) chronologies in-
dicating a significantly earlier (by as much as ~5 ka) retreat of the LIS
than that determined by recent terrestrial radiocarbon dating
(e.g., Peteet et al., 2012). Nonetheless, radiocarbon ages of mollusk
shells from raised marine deposits in eastern Maine indicate that
the ice-sheet margin had retreated to the present-day coastline by
~17–15 ka, with the Pineo Ridge moraine complex representing a
major stillstand (Smith and Hunter, 1989) and/or readvance (Borns
and Hughes, 1977; Borns, 1980) of the LIS towards the end of that
period (e.g., Kaplan, 1999, Dorion, 1997; Dorion et al., 2001; Borns
et al., 2004; Kaplan, 2007).

Subsequent portions of the deglacial record are problematic. For
example, the deglaciation of central and northern Maine is constrained
by a relatively sparse coverage of minimum-limiting 14C ages, many
ofwhich are based onbulk samples and, in some cases, affected by ama-
rine reservoir effect of uncertain magnitude (Davis and Jacobson, 1985;
Ridge et al., 2001; Borns et al., 2004). In comparison, the varve chronol-
ogies constructed for central New England (Antevs, 1922, 1928; Ridge
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et al., 2001; Ridge, 2004) offer a seemingly precise chronology for ice-
sheet retreat through that sector. However, as argued by Borns et al.
(2004) and later by Peteet et al. (2012), these essentially “floating”
chronologies are pinned to the calendar time scale in relatively few lo-
cations (see below), raising the possibility of systematic age offsets in
the deglacial record. Thus, much of the chronology of ice-sheet retreat
in New England is known only on a first-order basis.

Together, the glacial stratigraphy and existing chronology for New
England provide some insight into ice-sheet behavior during the last
glacial–interglacial transition. However, the temporal resolution is in-
sufficient to reveal the fine structure of deglaciation or to assess the re-
sponse of the LIS to millennial-scale climate forcing. This is particularly
true for the late-glacial period (~15–11.6 ka), during which the climate
system underwent high-magnitude, potentially abrupt transitions on
both regional and global scales. For example, although several studies
have reported evidence for a cryospheric response in New England
to such events as the Younger Dryas (YD) stadial (e.g., Lamothe, 1992;
Borns et al., 2004) and Heinrich stadials (e.g., Balco et al., 2002; Ridge,
2004; Kaplan, 2007), these correlations have yet to be tested and there-
fore remain equivocal.

To help develop the deglacial record of New England, specifically
after the LIS had retreated inland of the marine limit, we present a
10Be surface-exposure chronology for the Androscoggin moraine com-
plex, located in the White Mountains of western Maine and eastern
New Hampshire (Figs. 1, 2). Together with the neighboring Littleton–
Bethlehem (L–B) moraine (Figs. 1, 2; Thompson et al., 1996, 1999,
2002), the Androscoggin moraine represents renewed advance – or a
stillstand – of the LIS in northern New England during overall deglacia-
tion. However, until now the Androscogginmoraine has not been dated
directly. As a result, the significance of these prominentmoraines to the
deglacial record of the LIS hithertowas poorly understood. In this paper,
we discuss the implications of our Androscoggin moraine dataset in
conjunction with four recalculated 10Be ages from the L–B moraine.

Geologic setting and methods

The White Mountains of New Hampshire and western Maine con-
tain a rich geologic record of LIS deglaciation that has been studied
in detail since the mid-19th century (e.g., Lyell, 1850; Agassiz, 1870;
Thompson, 1999, and references therein). The most conspicuous depo-
sitional landforms include the L–B moraine system, a broad complex
Figure 2. Topographic relief map of central New Hampshire and westernmost Maine showin
Sleeping Astronomer moraine; BHM — Beech Hill moraine; CD— Comerford Dam; POS— Pond
from Thompson et al., 1999: for more detailed maps of the BHM and SAM sections, we refer rea
indicates the area depicted in Fig. 3.

oi.org/10.1016/j.yqres.2015.02.004 Published online by Cambridge University Press
of ridges in the vicinity of the towns of Littleton and Bethlehem
(Fig. 2; Thompsonet al., 1999), and a group of prominent lateral and ter-
minal moraines straddling the Maine–New Hampshire border in the
Androscoggin River valley (Figs. 2, 3) that are the focus of this paper.

The Androscoggin moraines, comprising approximately twenty sec-
tions of lateral and terminal ridges located on both sides of the valley
(Fig. 3) (Stone, 1880; Thompson and Fowler, 1989), are some of the
most prominent moraines in the White Mountains (Upham, 1904). As
detailed by Thompson and Fowler (1989), the arcuate distribution
of the moraines defines the former terminus of an ~3 km-wide, east-
flowing glacier tongue and its subsequent separation into discrete
sub-lobes during initial stages of retreat. The Androscoggin moraines
exhibit considerable relief (exceeding 30 m in places) and sharp, well-
preserved crests, indicating little post-glacial reworking. Moreover, the
crests are mantled with boulders of local and regional provenance
(Fig. 4), the majority of which are quartz-bearing and thus ideal for
10Be surface-exposure dating (see below).

Previous work has established the age of the Androscoggin moraine
complex only in a broad sense. A basal age of 12,450 ± 60 14C yr BP
(OS-7125) (14,985–14,219 cal yr BP (IntCal 13); Thompson et al.,
1996) from Pond of Safety (Fig. 2), located approximately 30 km north-
west of themoraine in the upper Israel River valley, has been interpreted
as a minimum age for the Androscoggin complex (Thompson et al.,
1999). However, owing to the challenging terrain anddistances involved,
the exact correlation between the two sites – and thus the relevance of
the basal age to the moraine – has not been established unequivocally.

Age control notwithstanding, Thompson et al. (1999) suggested
on the basis of relative position that the Androscoggin moraine might
predate the extensive L–B moraine, whereas a subsequent interpreta-
tion proposed that the two complexes might correspond to the same
advance (Thompson et al., 2007). Because the two moraine systems
are not laterally continuous, and owing to heavy forest cover, it is not
possible to determine their age relationship from mapping alone.

Compared to the Androscoggin moraine, the age of the L–B complex
is better resolved owing to its direct association with the New England
varve record at Comerford Dam, on the Vermont–New Hampshire
border (Ridge et al., 1996; Fig. 2). Indeed, the correlation of the mo-
raines with a till deposited between varve years 7154 and 7305
(Ridge and Larsen, 1990; Ridge et al., 1999) allowed Balco et al. (2009)
to assign a mean age of 13,840 ± 250 yr to the complex as part of the
north-east North America (NENA) 10Be production-rate calibration
g the location sites discussed in the text. AMC — Androscoggin moraine complex; SAM —

of Safety. Thick black line represents the Littleton–Bethlehem moraine complex (adapted
ders to that publication). White arrows indicate the general ice-flow direction. Red square

Image of Figure 2
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Figure 3. Geomorphic map of the Androscoggin moraine complex, showing the general distribution of surficial deposits (adapted from Thompson and Fowler, 1989), as well as locations
and surface-exposure ages of samples from Hark Hill (HH). Non-specified areas comprise till and/or bedrock.
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study. Balco et al. (2009) also collected four surface-exposure samples
from two sites – the Sleeping Astronomer and Beech Hill moraines
(Fig. 2) – located close to the distal edge of the L–B moraine belt.
In the current study, we present recalculated ages for those samples
using the beryllium concentrations published by Balco et al. (2009).

Our Androscoggin surface-exposure chronology is based on 10Be
ages (n = 7) from coarse-grained granite boulders, all but one (AM-
07-01) of which are located on the crests of two terminal moraines pro-
truding eastward fromHarkHill (Figs. 3, 4). Sample AM-07-01 is located
on a bedrock knoll immediately inside themoraine complex (Fig. 3).We
targeted these prominent landforms because they represent the closest
well-preserved moraines to the maximum terminal position of the
Androscoggin glacier. Samples comprise the upper few centimeters
(≤5 cm) of rock from the boulders' horizontal top surfaces and were
collected with a hammer and chisel. Although sampled surfaces ex-
hibited pronounced glacial molding, the absence of striae and polish
suggests a minor degree of post-depositional erosion, as reported by
Balco et al. (2009) for samples from the L–B moraines. As argued
below, however, this process is unlikely to have had a significant effect
on exposure age (see Results).

To reduce the likelihood of shielding effects due to snow or vegeta-
tion cover, we sampled only boulders greater than 1 m in relief
(Table 1). Additionally, we calculated chi-squared (χ2) values for
both the AM and L–B data sets to assess the impact, if any, of post-
depositional geological and/or environmental processes on exposure-
age distributions (see Results).

Samples were prepared at the University of Maine and Lamont–
Doherty Earth Observatory. We separated quartz following established
heavy-liquid and HF-leaching procedures, after which beryllium
was extracted following the methods described by Schaefer et al.
(2009). Beryllium ratios of samples and blanks were measured at the
Lawrence–Livermore CAMS facility relative to the 07KNSTD standard
[10Be/9Be = 2.85 × 10−12; Nishiizumi et al., 2007] (note: ratios for
rg/10.1016/j.yqres.2015.02.004 Published online by Cambridge University Press
the L–B samples were measured relative to the KNSTD standard
[10Be/9Be = 3.15 × 10−12]). We calculated surface-exposure ages
using the CRONUS-Earth online calculator, version 2.2 (Balco et al.,
2008), in conjunction with the NENA 10Be production rate (Balco
et al., 2009) and the time-independent “St” scaling (Lal, 1991; Stone,
2000). To provide an independent check of the NENA-derived ages,
and to prevent circular reasoning (i.e., the L–B samples are a constituent
of the NENA calibration), we also calculated ages using two recent, non-
local 10Be production rates, one from north-eastern North America
(Young et al., 2013; see Table 3) and one from the Southern Alps of
New Zealand (~44°S; Putnam et al., 2010). In calculating moraine
mean age, we also propagated analytical uncertainties with a system-
atic uncertainty (4.8%) associated with the NENA production rate cali-
bration (Table 1). Although inclusion of such a systematic uncertainty
is not needed for comparison between the closely located L–B and
Androscoggin moraines (e.g., Fig. 5), it is a consideration when com-
paring to records determined by other chronological methods.

Our choice of St scaling reflects the closematch this schemeprovides
to independent chronological constraints in New England (Balco et al.,
2009) and elsewhere (Fenton et al., 2011; Briner et al., 2012; Kelly
et al., 2013; Young et al., 2013). However, we stress that our conclusions
are independent of our choice of scaling scheme, because at these lati-
tudes and relatively low elevations the respective ages are statistically
identical (Table 2). Analytical results and ages are given in Table 1.

Results

The seven 10Be ages from the Androscoggin moraine – constituting
the first surface exposure-dated moraine from the state of Maine – are
given in Table 1 and are shown in Figs. 3 and 5. The four recalculated
surface-exposure ages from the L–B moraine are given in Table 1 and
Fig. 5. Together, the seven Androscoggin ages form an internally consis-
tent grouping, without outliers (i.e., ±1σ), ranging from 13.7 ± 0.6 ka

Image of Figure 3
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Figure 4. Glacially molded erratics on Hark Hill, Maine. Clockwise from top left: (A) AM-07-01; (B) AM-07-02; (C) AM-07-03; (D) AM-07-04; (E) AM-07-05; and (F) AM-07-07
(foreground) and AM-07-04 (background). With the exception of AM-07-01, which is located on a bedrock knoll inside the moraine complex, all sampled boulders are located on
well-defined moraine crests.
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to 12.6±0.5 ka, and provide an averagemoraine age of 13.2±0.4 ka, or
13.2 ± 0.8 ka if an ~5% systematic uncertainty is propagated. Plotted as
an age–probability curve, the ages exhibit a normal distribution with a
peak age of 13.2 ka (Fig. 5). In comparison, the four samples collected
from the L–B moraine by Balco et al. (2009) range from 14.0 ± 0.4 ka
to 13.5 ± 0.5 ka, and provide a mean moraine age of 13.8 ± 0.2 ka (or
13.8 ± 0.7 ka with a 5% propagated uncertainty) and a peak age of
13.8 ka (Fig. 5). As the three production rates (Balco et al., 2009;
Putnam et al., 2010; Young et al., 2013) are statistically identical, our
moraine ages are consistent regardless of which rate is used. Moreover,
both of the two more precise rates (Putnam et al., 2010; Young et al.,
2013) produce exposure ages for L–B samples that are congruent with
that inferred from the New England varve chronology (Ridge et al.,
1999; Balco et al., 2009), supporting their use throughout eastern
North America. We also point out that the very close agreement be-
tween the production rate of Young et al. (2013) and the New England
varve chronology implies that our propagation of a 5% systematic uncer-
tainty is conservative.
oi.org/10.1016/j.yqres.2015.02.004 Published online by Cambridge University Press
While we acknowledge the possibility of geologic or environmental
processes affecting our Androscoggin ages, several lines of evidence
point to these processes having hadminimal impact on our age calcula-
tions. First, despite the evidence for minor erosion of boulder surfaces,
both the glacialmolding of selected boulders and the internal consisten-
cy of our data set (Figs. 3, 5) suggest that this effect has been minor.
Second, comparison of 10Be age versus boulder height shows no signif-
icant relationship (Table 1), as would be expected with snow shielding.
Third, the Androscoggin moraines are well defined and sharp crested,
indicating that post-depositional modification has been negligible. Fi-
nally, chi-squared values for both the Androscoggin and L–B data sets
are b1; values of ~1–2 indicate that age differences can be explained
by analytical uncertainties alone (Bevington and Robinson, 1992).
Processes such as snow shielding, substantial boulder erosion, and mo-
raine deflation should cause each boulder to have a different exposure
history. Given that our ages are statistically indistinguishable from one
another, we conclude that such post-depositional processes have had
a negligible effect on our data set.

Image of Figure 4
https://doi.org/10.1016/j.yqres.2015.02.004


Table 1
Sample details and 10Be surface-exposure ages for the Androscoggin (AM) and Littleton–Bethlehem (LIT) moraine samples. All exposure ages shown are calculated using the NENA pro-
duction rate of Balco et al. (2009) and St scaling (Lal, 1991; Stone, 2000). The L–B ages are identical if calculated with either the (independent) rate in Balco et al. (2009) or Young et al.
(2013) (see text). Asterisk denotes the average 10Be concentration of two replicates of sample 06-NE-013-LIT (Balco et al., 2009). For mean moraine age (arithmetic), we also present an
error that includes propagation of the standard deviation as well as the uncertainty (4.8%) for the NENA production rate calibration.
Data for the LIT samples from Balco et al. (2009).

Sample Latitude Longitude Altitude
(m)

Boulder
height
(m)

Thickness
(cm)

Horizon
correction

Quartz
mass
(g)

Carrier
mass
(mg)

10Be/9Be
(10−14)

10Be conc.
(103 atoms/g)

Exposure age
(yr)

AM-07-01 44.3973 −71.0188 279 2 1.0 0.998 7.3058 0.1798 3.998 ± 0.15 65.37 ± 2.9 12,890 ± 570
AM-07-02 44.3952 −71.0168 288 1.5 2.0 0.999 11.551 0.1797 6.653 ± 0.26 69.57 ± 2.9 13,700 ± 580
AM-07-03 44.3971 −71.0162 283 1.5 2.1 0.999 5.510 0.1798 3.052 ± 0.21 65.54 ± 4.9 12,980 ± 970
AM-07-04 44.3969 −71.0139 273 1.5 0.8 0.999 11.3217 0.1796 6.511 ± 0.30 69.41 ± 3.4 13,730 ± 670
AM-07-05 44.3942 −71.0137 241 1.5 2.1 0.999 8.4227 0.1797 4.468 ± 0.34 63.53 ± 5.0 13,070 ± 1040
AM-07-06 44.3944 −71.0146 244 1.5 2.4 0.999 12.3043 0.1796 6.238 ± 0.23 61.13 ± 2.3 12,570 ± 510
AM-07-07 44.3949 −71.0143 241 1 1.8 0.999 11.8735 0.1796 6.413 ± 0.34 65.17 ± 3.6 13,380 ± 740

Mean age (s.d.)
(with PR uncertainty
propagated)

13,190 ± 430
13,190 ± 770

06-NE-010-LIT 44.2903 −71.7612 357 1.8 2 0.999 – – – 81.80 ± 2.6 13,730 ± 450
06-NE-011-LIT 44.2904 −71.7608 357 1.9 2 0.999 – – – 80.60 ± 2.7 13,530 ± 450
06-NE-012-LIT 44.3129 −71.5722 414 1.6 1 0.999 – – – 88.30 ± 2.3 13,970 ± 360
06-NE-013-LIT 44.3146 −71.5730 412 1.6 10 0.999 – – – 81.00 ± 1.8* 13,780 ± 310

Mean age (s.d.)
(with PR uncertainty
propagated)

13,750 ± 180
13,750 ± 690

Note: All AM samples were spiked with a 1024 mg/g 9Be carrier. Two procedural blanks (10Be/9Be= (0.491 and− 1.835 × 10−15)), consisting of 0.180 ml of 9Be carrier, were processed
identically to the samples. Beryllium ratios of AM samples and blanks weremeasured relative to the 07KNSTD standard [10Be/9Be= 2.85 × 10−12], while those of L–B samples and blanks
were measured relative to the KNSTD standard [10Be/9Be = 3.15 × 10−12]. Ages were calculated using a rock density of 2.65 g/cm3 and assuming zero erosion.
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Discussion

The prominent nature of the Androscoggin moraines suggests that
this complex, like the L–B moraine belt (Thompson et al., 1999), repre-
sents an advance or stillstand of the LIS during overall retreat. However,
owing to dense forest cover and challenging terrain, the exact relation-
ship between the two complexes has remained ambiguous. Our new
ages for the Androscoggin moraine and recalculated ages for the L–B
moraine provide important insight into the deglaciation of northern
New England. As noted above, we discuss the data as calculated using
the local NENA production rate, but stress that our interpretations
would remain unchanged using other recently published, indistin-
guishable production rates (see Table 3). Indeed, it is noteworthy
that these three production rates produce results that are indistin-
guishable statistically despite having been calibrated in starkly different
geographic and environmental contexts (i.e., New England, Arctic,
Southern Alps).

Although the peak ages of the two moraine complexes differ by
~600 yr, their respective mean ages overlap within 1σ uncertainty and
thus the datasets are indistinguishable statistically. Therefore, we sug-
gest that the Androscoggin and L–B moraine systems represent the
same late-glacial advance/stillstand of the LIS, as hypothesized original-
ly by Thompson et al. (2007). Viewed in greater detail, the small dis-
crepancy in peak age potentially reflects differences in the distribution
of moraines and sampled boulders between the two sites. For instance,
the sprawling geographic distribution of the L–B complex (Upham,
1904; Thompson et al., 1999) indicates that this moraine belt was de-
posited over a considerable period, while the four existing L–B 10Be
ages, from the Sleeping Astronomer and Beech Hill moraines, constrain
the age of only the most distal parts of the complex. In contrast, the
Androscoggin moraines, which are primarily composite landforms, ex-
hibit a more compact spatial distribution. Our seven samples, collected
from the crests of those composite moraines, thus represent the most
recent period of deposition. Therefore, it is conceivable that themargin-
ally younger peak age of the Androscoggin moraines correlates with
the more proximal, as yet undated deposits in the L–B complex. None-
theless, given the statistically indistinguishable ages of the twomoraine
complexes, we acknowledge that we are unable to test this model with
the existing dataset.
rg/10.1016/j.yqres.2015.02.004 Published online by Cambridge University Press
We also note that our surface-exposure data conflict with the origi-
nal interpretation of the Pond of Safety radiocarbon chronology. By
that model, the 14C date from the basal sediments of the pond consti-
tutes a minimum-limiting age for the Androscoggin moraines but a
maximum-limiting age for the L–B complex, moraines of which are lo-
cated proximal (relative to ice-flow direction) to the pond (Thompson
et al., 1996, 1999). However, our data suggest that the Androscoggin
moraines postdate the onset of sedimentation in – and thus deglacia-
tion of – the pond, and therefore must be younger. This conflict is re-
solved by our interpretation of the Androscoggin and L–B moraines
as representing the same advance. Because Thompson et al. (1996,
1999) have established that Pond of Safety represents a maximum-
limiting age for the L–B complex, it follows that this basal date must
also constitute a maximum age for the Androscoggin moraines.

Together, our tightly grouped ages from the Androscoggin River val-
ley and the recalculated ages from Balco et al. (2009) show that the ice-
sheet margin advanced during the Allerød (GI-1a-c; Lowe et al., 2008),
resulting in formation of the Androscoggin and L–Bmoraine complexes.
This interpretation is reinforced by the maximum-limiting basal radio-
carbon age (14,985–14,219 cal yr BP) from Pond of Safety, located distal
to the L–B complex in the upper Israel River valley. Moreover, as
surface-exposure ages typically represent the culmination of a glacial
advance close to the onset of retreat, our Androscoggin chronology
also might suggest that this sector of the LIS retreated during the subse-
quent YD stadial. This interpretation is supported by the absence
of nearby moraines up-valley from the Androscoggin terminus (Borns
et al., 2004).

At first glance, this disparity between glacial activity in northern
New England and the widely accepted late-glacial temperature record
for the North Atlantic region represents an ostensible paradox,
in terms of the assumed climatic conditions during the YD stadial.
Indeed, within New England, organic-poor, minerogenic sediments
dating to the late glacial have been documented at several sites in
Maine and the White Mountains and are interpreted as a return to
stadial conditions during the YD (e.g., Dorion, 1997; Borns et al., 2004;
Dieffenbacher-Krall and Nurse, 2006). Nonetheless, we note that this
pattern of Allerød advance–YD retreat has been documented elsewhere
in the Northern Hemisphere, including at sites immediately adjacent
the North Atlantic Ocean where YD cooling apparently was greatest
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Table 3
Comparison of 10Be surface-exposure ages for the Androscoggin and Littleton–Bethlehem
moraine samples generated using several recent production rates: NENA (Balco et al.,
2009); Arctic (Young et al., 2013); and New Zealand (Putnam et al., 2010). All ages were
calculated using the CRONUS-Earth online calculator, version 2.2 (Balco et al., 2008), and
St scaling (Lal, 1991; Stone, 2000).

Sample Exposure age: NENA
(ka)

Exposure age: NZ
(ka)

Exposure age: Arctic
(ka)

AM-07-01 12.9 ± 0.6 13.2 ± 0.6 12.9 ± 0.6
AM-07-02 13.7 ± 0.6 14.0 ± 0.6 13.7 ± 0.6
AM-07-03 13.0 ± 1.0 13.3 ± 1.0 13.0 ± 1.0
AM-07-04 13.7 ± 0.7 14.0 ± 0.7 13.7 ± 0.7
AM-07-05 13.1 ± 1.0 13.4 ± 1.1 13.1 ± 1.0
AM-07-06 12.6 ± 0.5 12.9 ± 0.5 12.6 ± 0.5
AM-07-07 13.4 ± 0.7 13.7 ± 0.8 13.4 ± 0.7
06-NE-010-LIT 13.7 ± 0.4 14.1 ± 0.5 13.7 ± 0.4
06-NE-011-LIT 13.5 ± 0.5 13.8 ± 0.5 13.5 ± 0.4
06-NE-012-LIT 14.0 ± 0.4 14.3 ± 0.4 14.0 ± 0.4
06-NE-013-LIT 13.8 ± 0.3 14.1 ± 0.3 13.8 ± 0.3

Figure 5. Age probability curves for the Androscoggin moraine and Littleton–Bethlehem
moraine complex, showing mean and peak ages calculated using the NENA production
rate (Balco et al., 2009) and time-independent St scaling (Lal, 1991; Stone, 2000). Vertical
yellow bands depict the 1σ (dark yellow) and 2σ (light yellow) ranges of uncertainty for
the mean ages. Reduced chi2 (χ2) values of b1–2 reflect that age differences can be ex-
plained by analytical uncertainties alone (Bevington and Robinson, 1992).
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(Bowen, 1999; Lohne et al., 2007; Bromley et al., 2014). Moreover, our
New England record is in accordance with evidence for mild YD sum-
mertime temperatures in Greenland (Björck et al., 2002) and with the
absence of YD moraines (e.g., Mangerud and Landvik, 2007; Hall et al.,
Table 2
Comparison of 10Be surface-exposure ages for the Androscoggin and Littleton–Bethlehem
moraine samples generated using the NENA production rate and various scaling schemes:
St — time-independent (Lal, 1991/Stone, 2000); Lm — time dependent (Lal, 1991/Stone,
2000); De (Desilets et al., 2006); Du (Dunai, 2001); and Li (Lifton et al., 2005). All ages
were calculated using the CRONUS-Earth online calculator, version 2.2 (Balco et al., 2008).

Sample Exposure
age: St
(ka)

Exposure
age: Lm
(ka)

Exposure
age: De
(ka)

Exposure
age: Du
(ka)

Exposure
age: Li
(ka)

AM-07-01 12.9 ± 0.6 12.9 ± 0.6 13.0 ± 0.6 13.0 ± 0.6 13.0 ± 0.6
AM-07-02 13.7 ± 0.6 13.7 ± 0.6 13.8 ± 0.6 13.8 ± 0.6 13.8 ± 0.6
AM-07-03 13.0 ± 1.0 13.0 ± 1.0 13.0 ± 1.0 13.1 ± 1.0 13.1 ± 1.0
AM-07-04 13.7 ± 0.7 13.7 ± 0.7 13.8 ± 0.7 13.8 ± 0.7 13.8 ± 0.7
AM-07-05 13.1 ± 1.1 13.1 ± 1.1 13.1 ± 1.1 13.2 ± 1.1 13.2 ± 1.1
AM-07-06 12.6 ± 0.5 12.6 ± 0.5 12.6 ± 0.5 12.7 ± 0.5 12.7 ± 0.5
AM-07-07 13.4 ± 0.8 13.4 ± 0.8 13.4 ± 0.8 13.5 ± 0.8 13.5 ± 0.8
06-NE-010-LIT 13.7 ± 0.4 13.7 ± 0.5 13.8 ± 0.5 13.8 ± 0.5 13.8 ± 0.5
06-NE-011-LIT 13.5 ± 0.5 13.5 ± 0.5 13.6 ± 0.5 13.6 ± 0.5 13.6 ± 0.5
06-NE-012-LIT 14.0 ± 0.4 13.9 ± 0.4 14.0 ± 0.4 14.1 ± 0.4 14.0 ± 0.4
06-NE-013-LIT 13.8 ± 0.3 13.8 ± 0.3 13.8 ± 0.3 13.9 ± 0.3 13.9 ± 0.3
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2008; Kelly et al., 2008; Briner et al., 2009) or stratigraphy (e.g., Wolfe,
1996) at many northern high-latitude sites. Such late-glacial behavior
potentially points to the effects of extreme seasonality adjacent the
North Atlantic during the YD (Denton et al., 2005),withwarm summers
driving glacial recession and very cold winters causing the depressed
mean-annual temperatures recorded by ice-core proxies. If true, the
sedimentologic signature of the YD recorded in New England lakes po-
tentially reflects periglacial remobilization of slope deposits rather
than year-round cooling (Putnam and Putnam, 2009).

Finally, our new chronology supports the findings of Richard
and Occhietti (2005) that late-glacial marine transgression of the
St. Lawrence lowlands occurred later than indicated by basal radiocar-
bon ages from the former Champlain Sea (Rodrigues, 1992). Construc-
tion of the L–B and Androscoggin moraines would have required the
persistence of a robust ice-sheet margin in northern New England
at least as late as ~13.2 ka, a scenario that is supported by terrestrial ra-
diocarbon data from elsewhere in this region (see Thompson et al.,
1999; Borns et al., 2004) but which may be incompatible with ice-free
conditions in the St. Lawrence River valley immediately north of New
Hampshire as early as ~14 ka (Parent andOcchietti, 1988). This discrep-
ancy is removed, however, if the radiocarbon dates upon which the age
of the Champlain Sea is based incorporate a considerable reservoir
effect, as suggested by Rodrigues (1992) and demonstrated by Richard
and Occhietti (2005). Thompson et al. (2011) found evidence of a
1000-yr reservoir at a site with juxtaposed marine and terrestrial
organics, located in Portland, Maine.
Conclusions

Our cosmogenic 10Be surface-exposure chronology from the
Androscoggin moraine, coupled with four recalculated ages from the
L–B complex, affords robust and directly dated evidence for a major
late-glacial fluctuation of the LIS in northern New England. Retreat
of the ice sheet north of the White Mountains was interrupted by
at least one advance during the Allerød, resulting in deposition of
the prominent L–B and Androscoggin complexes. Seven ages from the
terminal moraines of the Androscoggin complex indicate deposition
~13.2 ± 0.8 ka, broadly coincident with the emplacement of the
Sleeping Astronomer and Beech Hill moraines in the L–B complex,
leading us to conclude that the two moraine belts represent the same
late-glacial climate reversal. Ultimately, our chronology indicates that
the LIS in northern New England underwent readvance, or stillstand,
during the Allerød. These findings have important implications for our
understanding both of ice-sheet behavior in New England during the
last glacial termination and the terrestrial impact of deglacial climate
changes, including cold stadials, in the North Atlantic region.

Image of Figure 5
https://doi.org/10.1016/j.yqres.2015.02.004
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