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A wall-resolved large-eddy simulation of a symmetric Joukowski aerofoil with a 12 %
thickness at a Reynolds number of 250 000, a Mach number of 0.4 and zero incidence
angle is performed in order to investigate the effect of using a serrated trailing edge on the
acoustic feedback event that generates a tonal noise. The acoustic feedback is investigated
in detail to emphasise the interaction between the upstream travelling acoustic expansion
wave and the laminar separation bubble. The simulation shows that the serrated trailing
edges may result in a significant reduction of the tonal noise. This paper provides detailed
investigations into the noise reduction mechanisms. The main finding is that the presence
of a serrated trailing edge decreases the amplitude of the acoustic source pressure in the
transitional region and gives rise to destructive phase interference in the wall pressure
fluctuations in the vicinity of the trailing edge which weakens the acoustic feedback loop.
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1. Introduction

It is well known that aerofoil noise can be split into several different types (Brooks, Pope
& Marcolini 1989). Among the various types of aerofoil noise, Fink (1975) investigated
the tonal noise generated due to laminar-to-turbulent boundary-layer transition. They
showed the existence of a law predicting the tone frequencies from the boundary-layer
instability theory. Meanwhile, Paterson et al. (1973) observed that the tone frequencies
scaled proportionally to the 3/2 power of the free-stream velocity. A feedback loop theory
was introduced by Tam (1974). They inferred that the feedback loop took place between
the aerofoil trailing edge and a location in the wake. However, this theory was challenged
by Longhouse (1977), who suggested that the feedback loop occurred between the acoustic
waves radiating from the trailing edge and the Tollmien–Schlichting (T–S) instability
waves developing in the transition region. Arbey & Bataille (1983) confirmed Paterson’s
work and suggested that the tones were predicted using the following formula:

fnLc

a∞
= Uc/a∞

L/Lc

(
n + 1

2

)(
1 + Uc/a∞

1 − M∞

)−1

, (1.1)

where f n is the modal frequency, a∞ is the speed of sound, Lc is the aerofoil chord
length, Uc is the convection speed of the boundary layer, M∞ = U∞/a∞ is the free-stream
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Mach number, L is the distance separating the feedback locations and n is an integer.
The equation, which is a modified version of the earlier one introduced by Tam (1974),
clarifies that the feedback loop takes place between the trailing edge and the transitional
region. Acoustic pressure waves scattered by the trailing edge propagate upstream at the
speed of sound and trigger T–S instabilities in the transition region which will further
generate hydrodynamic disturbances convecting downstream within the boundary layer at
convection speed Uc. The incoming hydrodynamic waves are then radiated by the trailing
edge and the process reiterates at a discrete frequency. This fixed frequency depends on the
speed of sound, the convection speed and the distance separating the transitional region
from the trailing edge.

Nash, Lowson & McAlpine (1999) and McAlpine, Nash & Lowson (1999) discussed the
modelling of tonal noise in the case of a separating laminar boundary layer in the vicinity
of the trailing edge. Their results were further confirmed by Tam & Ju (2012) in a direct
numerical simulation. After many experimental investigations, Desquesnes, Terracol &
Sagaut (2007) performed a direct numerical simulation to study tonal noise mechanisms
and inferred that secondary discrete frequencies are created due to a bifurcation of the
aerofoil wake from a symmetric to an asymmetric vortex pattern. Jones & Sandberg (2011)
showed that the tonal contribution becomes less significant compared to the broadband
noise at high angles of attack. Arcondoulis et al. (2013) used formula (1.1) and found
a satisfying agreement between the theory and their experimental observations. Chong,
Joseph & Kingan (2013) experimentally studied the tonal noise of a NACA0012 aerofoil
for various angles of attack and Reynolds numbers. They found that the most effective
tonal noise requires the T–S waves to be amplified by a separated boundary layer near
the trailing edge. This was further supported by Pröbsting, Serpieri & Scarano (2014) and
Pröbsting, Scarano & Morris (2015) from their particle image velocimetry measurements
in the same range of Reynolds numbers and angles of attack. Nguyen et al. (2017)
distinguished the vortex shedding frequency from the acoustic feedback loop frequency.

An additional study on controlled-diffusion aerofoil was investigated by Padois et al.
(2016) and Sanjose et al. (2017). The latter emphasised quiet and intense time strands
where the quiet period is driven by attached boundary layers and the intense period
involves an unstable separation bubble. To summarise, coherent T–S instabilities coupled
with the presence of a recirculation bubble in the vicinity of the trailing edge is the most
effective condition for generating an aerofoil tonal noise.

An efficient method to decrease the aerofoil tonal noise would be of interest to many.
The authors, however, have not identified various methods in this regard except the
modified trailing edge (TE) studied by Chong & Joseph (2013). They tested four different
sawtooth serration geometries fitted to a NACA0012 aerofoil. They did observe a reduction
of the tonal noise when the serrated TEs were used, compared to an unmodified TE. They
suggested that the reduction might be related to an abatement of the two-dimensionality
in the T–S waves near the TE leading to a decorrelated T–S amplification. They also
hypothesised that the serrated TE would be more effective if the separation bubble is
located closer to the TE.

Following the work of Chong & Joseph (2013), the main objective of this paper is
to clarify the hypothesis of the tonal noise reduction due to the serrated TE. For this
purpose, the authors use a high-fidelity numerical simulation to provide detailed flow and
acoustic information. The noise reduction mechanisms found in this paper are twofold:
(i) the presence of a serrated TE diminishes the amplitude of the acoustic source pressure
in the transitional region which lowers the acoustic source at the TE and (ii) there is an
elevated level of destructive phase interference in the acoustic source when a serrated TE
is used.
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2. Computational details

This section aims to introduce the governing equations, numerical methods and
computational set-up of the present study. The current numerical investigation
utilises a high-resolution implicit large-eddy simulation (LES) approach based on a
wavenumber-optimised discrete filter. The filter acts as an implicit subgrid scale (SGS)
model that dissipates scales smaller than the filter cutoff. It has been demonstrated by
Garmann, Visbal & Orkwis (2013) and many others that an implicit LES is capable of
capturing flow physics as accurately as the conventional SGS model based LES.

2.1. Governing equations and numerical schemes
The present numerical study is based on a wall-resolved LES by using the
three-dimensional compressible Navier–Stokes equations. The Navier–Stokes equations
(with a source term for the sponge layer implementation) can be written in a conservative
form, transformed onto a generalised coordinate system as

∂

∂t

(
Q
J

)
+ ∂

∂ξi

(
Ej − Re−1

∞ M∞F j

J
∂ξi

∂xj

)
= −a∞

Lc

S
J
, (2.1)

where the indices i = 1, 2, 3 and j = 1, 2, 3 denote the three dimensions and a∞ is the
ambient speed of sound. The vectors of the conservative variables, inviscid and viscous
fluxes are given by

Q = [ρ, ρu, ρv, ρw, ρet]T,

Ej = [ρuj, (ρuuj + δ1jp), (ρvuj + δ2jp), (ρwuj + δ3jp), (ρet + p)uj]T,

F j = [0, τ1j, τ2j, τ3j, uiτji + qj]T,

⎫⎪⎬
⎪⎭ (2.2)

with the stress tensor and heat flux vector written as

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij

∂ui

∂xi

)
, qj = μ

(γ − 1)Pr
∂T
∂xj

, (2.3a,b)

where ξi = {ξ, η, ζ } are the generalised coordinates, xj = {x, y, z} are the Cartesian
coordinates, δij is the Kronecker delta, uj = {u, v, w}, et = p/[(γ − 1)ρ] + ujuj/2 and
γ = 1.4 for air. The local dynamic viscosity μ is calculated by using Sutherland’s law
(White 1991). In the current set-up, ξ , η and ζ are aligned in the streamwise, wall-normal
and spanwise directions, respectively. The Jacobian determinant of the coordinate
transformation (from Cartesian to generalised) is given by J−1 = |∂(x, y, z)/∂(ξ, η, ζ )|.
In this paper, the free-stream Mach and Reynolds numbers are defined as M∞ = u∞/a∞
and Re∞ = ρ∞u∞Lc/μ∞. The Mach number is fixed at M∞ = 0.4 and a Reynolds number
of Re∞ = 2.5 × 105 is considered. The governing equations are non-dimensionalised
based on the aerofoil chord length Lc for length scales, the ambient speed of sound a∞
for velocities, Lc/a∞ for time scales and ρ∞a2

∞ for pressure. Temperature, density and
dynamic viscosity are normalised by their respective ambient values: T∞, ρ∞ and μ∞.

The spatial derivatives are calculated by using an optimised pentadiagonal compact
finite difference scheme that is globally fourth-order accurate up to the boundaries
(Kim 2007). A matching fourth-order Runge–Kutta scheme is used for explicit time
marching with a Courant–Friedrichs–Lewy number of 1.0. A sixth-order pentadiagonal
compact filter with a normalised cutoff wavenumber of 0.85π (Kim 2010) is used to
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FIGURE 1. A bird’s eye view of the surface mesh for the BTE and STE2 aerofoils (20 % of total
cells shown) (a,c) and a cross-sectional view of the interior mesh of the BTE case (25 % of total
cells shown) (b).

dissipate unresolved subgrid scales and ensure the numerical stability. The computation
is distributed over 512 processor cores based on a message passing interface (MPI)
parallelisation. The MPI parallelisation of the compact scheme and filter is implemented
by using the quasi-disjoint matrix system proposed by Kim (2013). All simulations are
executed on IRIDIS-4 at the University of Southampton.

2.2. Computational domain, grid and boundary conditions
The present simulation is based on a symmetric Joukowski aerofoil with a 12 % thickness.
We consider three different TE geometries in this study: baseline (BTE) and two serrated
(STE) cases. The conventional sawtooth serrations are used. Grid meshes used in the
current work are displayed in figure 1. A structured H-type topology is used in the present
grid and the cells are gradually stretched from the aerofoil surface to the far boundaries.
In the BTE case, a constant spanwise grid spacing is used. Meanwhile, in the STE cases,
a finer grid spacing is used near the sharp corners. The tips and roots of the serrations are
gently rounded (with a radius of 3 % of the span) in order to maintain a continuous mesh
without losing the sharp character of the serration. The leading edge of the aerofoil is on
the z-axis. In the BTE case, the trailing edge lies at (x, y)/Lc = (1, 0). In the paper, two
different STE geometries are considered; STE1 with an aspect ratio of 0.5 and STE2 of 1.0.
The aspect ratio is defined by the streamwise length divided by the spanwise wavelength
of the serration. The serrations extend from the baseline geometry. The local chord length
is the same as the baseline case at the roots of the serrations and it becomes longer at the
tips.

The spanwise domain size is set to 5 % of the chord length (Lz = 0.05Lc) of the
baseline aerofoil. This span length is also set as the wavelength of the serrations. The
aerofoil chord is aligned with the x-axis. The entire grid consists of Nξ × Nη × Nζ =
961 × 481 × 51 = 23.6 million points where Nξ , Nη and Nζ are the streamwise, vertical
and spanwise number of points. The wall-unit grid spacings are presented in figure 2
and they all meet the wall-resolved LES criteria recommended by Georgiadis, Rizzetta
& Fureby (2010): Δs+ < 40, Δz+ < 40 and Δn+ < 1 in the turbulent region where
Δs+,Δn+ and Δz+ are the body-fitted streamwise, wall-normal and spanwise wall-unit
grid spacings, respectively.

Characteristics-based non-reflecting boundary conditions (Kim & Lee 2000) are used
in the far field boundaries. A sponge layer (Kim, Lau & Sandham 2010a,b) is introduced
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FIGURE 2. Wall-unit grid spacings used in the BTE case where Δs+ is the streamwise
curvilinear spacing, Δz+ is the spanwise spacing and Δn+ is the wall-normal spacing.
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FIGURE 3. Time-averaged profiles of the pressure coefficient Cp and skin friction coefficient
Cf . The BTE profile is spanwise averaged whereas the STE profiles are extracted from the
mid-span cross-section. The laminar separation bubble (LSB) range is also depicted.

via the source term S in (2.1) around the far field boundaries to enforce the damping
of acoustic waves and therefore avoid spurious reflections. A no-slip iso-thermal wall
boundary condition is applied on the aerofoil surface. A periodic boundary condition is
applied across the spanwise boundaries.

Each simulation is run for tu∞/Lc = 16.0 time units in total where the fully developed
solutions are taken during the last 4.0 time units for data processing. In figure 3, time-
and spanwise-averaged profiles of the pressure and skin friction coefficients (Cp and Cf )
are compared with corresponding XFoil predictions. It is shown that the time-averaged
solution matches very well with the XFoil prediction over the laminar region of the flow.
There is a noticeable deviation in the turbulent region perhaps attributable to the difference
between the two- and three-dimensional approaches.

2.3. Calculation of the acoustic field
For the current study, an established approach originally proposed by Ffowcs–Williams
and Hawkings (FW–H) is adopted to calculate the acoustic solutions in the far field.
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The ‘Formulation 1A’ derived by Farassat (2007) is implemented in this paper. Since
the monopole and quadrupole contributions are irrelevant to the current study, the loading
noise is solely considered and the following equation is used:

4πp′
L =

∫
S

[
ṗ cos θ

a∞r(1 − Mr)2
+ r̂iṀip cos θ

a∞r(1 − Mr)3

]
ret

dS

+
∫

S

[
p(cos θ − Mini)

r2(1 − Mr)2
+ (Mr − M2

∞)p cos θ

r2(1 − Mr)3

]
ret

dS, (2.4)

where subscript L designates the loading noise component; ‘·’ is the time derivative;
‘ret’ stands for ‘retarded time’; M = M1, M2, M3; M∞ = |M | is the Mach number; r̂ is
the unit radiation vector between the source and the observer; r is the source–observer
distance; cos θ = n · r̂; Mr = M · r̂; and S is the surface of integration. A numerical
validation of this implementation can be found in Turner & Kim (2020). A constant
non-dimensionalised radius of 10 is taken for all the presented results and appropriate
observer angles are specified later on. Moreover, for the range of frequencies exposed
(1 < f Lc/a∞ < 25), f r/a∞ > 10 so the observer truly lies in the far field.

2.4. Definition of variables for statistical analysis
Data processing and analysis are carried out upon the completion of each simulation.
The main property required in this study is the power spectral density (PSD) function of
pressure fluctuations on the aerofoil surface and at the far field observer location. The
pressure fluctuation is defined as

p′(x, t) = p(x, t) − p̄(x), (2.5)

where p̄(x) is the time-averaged pressure. Following Goldstein (1976), the one-sided PSD
functions of the pressure fluctuations based on frequency are defined by

Spp(x, f ) = lim
T→∞

P(x, f , T)P∗(x, f , T)

T
, (2.6)

where P is an approximate Fourier transform of p′ based on the following definition:

P(x, f , T) =
∫ T

−T
p′(x, t) exp(−2πift) dt, (2.7)

and, ‘∗’ denotes a complex conjugate. In the above equations, T represents the half-length
of the time signals used for the approximate Fourier transform. The present study also
exhibits the wall pressure jump which is defined in the frequency domain by

ΔP(x, f , T) =
∫ T

−T
Δp′(x, t) exp(−2πift) dt, (2.8)

where Δp′ = p′
u − p′

l is the difference between the pressure fluctuations on the upper and
the lower sides of the aerofoil.
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FIGURE 4. (a) Contour maps of the PSD of wall pressure fluctuations (WPF) on the suction
side of the BTE case in log scale at five different frequencies, where the black dashed line
indicates the transition location; and (b) spanwise-averaged PSDs of WPF on the suction side
extracted at four different streamwise locations: x1/Lc = 0.72, x2/Lc = 0.80, x3/Lc = 0.90 and
x4/Lc = 0.99.

3. Results and discussion

The results of the current study are presented under three subsections. The first part
shows how the acoustic feedback loop and the corresponding tonal noise are retrieved from
the current LES data. It also depicts how the upstream travelling acoustic wave affects the
laminar separation bubble. The second part discusses the tonal noise abatement in the
presence of trailing edge serrations. The third part investigates the effect of the spanwise
domain length.

3.1. Acoustic feedback loop generating a tonal noise
Figure 4(a) shows some surface contour plots of the wall pressure fluctuations at five
different frequencies, obtained from (2.6), for the BTE case. Only the second half of
the chord is displayed for clarity. Figure 4(b) shows spanwise-averaged PSDs of the
wall pressure fluctuations measured at a few different streamwise locations. The first
observation made from figure 4 is that the tonal peak at f Lc/a∞ � 3.9, is originated from
the local area (x/Lc � 0.72) where the boundary-layer transition occurs. As indicated
earlier, the tonal peak is generated by an acoustic feedback loop which has extensively
been investigated by Jones & Sandberg (2011). The present results are compared with
the findings of Arbey & Bataille (1983). First, it is necessary to estimate the convection
velocity of the tonal component in the turbulent boundary layer. For this purpose,
a wavenumber–frequency Fourier transform of the streamwise velocity fluctuation is
computed on a mid-span plane along a path line which extends from x/Lc = 0.8 to 1.0 and
displaced from the wall by approximately 20 % of the boundary-layer thickness (at the TE).
The resulting contour map of the wavenumber–frequency Fourier transform (magnitude) is
displayed in figure 5. Based on the data, a least square best fit is performed (as shown in the
figure). The best fit gives an estimated convection speed of Uc/a∞ = 0.223 corresponding
to 55.6 % of the free-stream velocity. By using (1.1), a tonal frequency of f Lc/a∞ = 3.81 is
predicted for n = 3. This is within only a 2 % deviation from the current LES result, which
confirms the presence of an acoustic feedback loop. In the far field noise spectra presented,
the contribution of quadrupole sources is considered negligible for two reasons: (i) only
the dipole term (surface integral) of the FW–H calculation is used and (ii) at the low
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FIGURE 5. A wavenumber–frequency spectrum of the streamwise velocity fluctuation (the
magnitude of the Fourier transform) extracted on a mid-span plane along a path-line displaced
from the wall by approximately 20 % of the boundary-layer thickness at the TE in the BTE case.
Least square best fit line with a slope of 0.223 is also displayed.
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FIGURE 6. Visualised acoustic feedback loop in a mid-span plane showing flood of filtered
vertical cross-stream velocity time derivative fluctuation dv/dt at f Lc/a∞ = 3.9, contour lines
of acoustic wave front (solid grey), extrapolated acoustic wave front in the near field (dashed
grey) and the laminar separation bubble canopy (solid pink) in the BTE case.

free-stream Mach number of the current study, any footprint of the wake noise captured in
the surface integral would be substantially weaker than the dipole contribution. Hence, the
tonal noise calculated with the FW–H dipole formula may be solely attributed to Arbey &
Bataille’s feedback model.

A more in-depth investigation of the acoustic feedback loop is presented in figure 6. The
solid grey contour lines show the upstream travelling acoustic waves (based on pressure
fluctuations) at f Lc/a∞ = 3.9. Since the acoustic waves are masked by the turbulence
in the near field, the authors have extrapolated them (dashed grey) with the following
function:

ζ(x, t) = sin
[

2πf0

(
t − r(x)

uac

)]
, (3.1)
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FIGURE 7. Close up of the velocity vector field near the LSB detachment in the BTE case.
Snapshots are synchronised with the ones in figure 6.

where f0 is the tonal frequency, r(x) is the distance between the TE and the point x, uac is
the acoustic velocity which depends on the flow speed. The vertical cross-stream velocity
time derivative fluctuation dv/dt emphasises the size variation of the laminar separation
bubble canopy illustrated by the pink contour line. The quantity dv/dt is filtered at the
feedback frequency f Lc/a∞ = 3.9. The filtering is applied by a narrowband window as
follows:

d̃v

dt
(x, t) = F−1

{
W( f )F

{
dv

dt
(x, t)

}}
, (3.2)

W( f ) =
1∑

m=0

exp[−α( f + (−1)mf0)
2], (3.3)

where F and F−1 represent the Fourier and inverse Fourier transforms, respectively; ‘−̃’
denotes a filtered variable; α is a damping parameter (α = 5) and f0 is the frequency
around which the signal is to be filtered. It can be seen from the plots that a detached
LSB is generated when the expansion wave (blue arrow) hits the main LSB. Moreover,
dv/dt shows in figure 6 an increased magnitude on the edge of the LSB as time marches
emphasising the fact that the LSB is excited by the incoming acoustic expansion wave and
its tail broadens as the secondary LSB detaches. The incoming acoustic wave front and
the LSB canopy are structures from two different scales, therefore a close up of the LSB
canopy is proposed in figure 7 along with a velocity vector field visualisation to picture
the LSB detachment more accurately. Figure 8 displays the time evolution of the bubble
canopy. The time frame is close to the feedback period and the periodic detachment of the
secondary LSB is well illustrated by the white dashed lines.

3.2. Influence of serrated trailing edges on the acoustic feedback loop
Instantaneous plots of the generated sound waves are illustrated in figure 9 based on the
divergence of velocity ∂(uj/a∞)/∂(xj/Lc). It should be noted here that the mesh resolution
is maintained sufficiently fine for the high-frequency components up to about half a chord
length away from the aerofoil surface. Figure 9 compares the BTE, STE1 and STE2 cases.
It is noticeable from the figure that the overall intensity of the sound waves becomes
weaker as a sharper STE is used, compared to the BTE case.

More details of the noise reduction due to the STEs are further investigated in figure 10
where the loading noise from (2.4) is explored. The far field sound pressure fluctuation
spectra in figure 10(a) clearly show the tonal noise component at f Lc/a∞ = 3.9 in the BTE
case, which becomes significantly reduced when the STEs are used. Figure 10(b) presents
the relative change of the spectra (due to the use of the STEs) in a decibel scale. It is
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Main LSB

Detached

secondary

LSB

FIGURE 8. Time evolution of the laminar separation bubble over a period (t8 − t1)a∞/Lc =
0.28 in the BTE case. Frames are extracted with a time step of (Δt)a∞/Lc = 0.04. The white
dashed lines depict the periodic detachment of the secondary LSB.

BTE

0.02

∂(uj/a∞)/∂(xj/Lc)

–0.02

0

STE1 STE2

(a) (b) (c)

FIGURE 9. Contour map of the divergence of velocity ∂(uj/a∞)/∂(xj/Lc) on a mid-span plane
comparing the BTE, STE1 and STE2 cases.

observed that a 10 dB reduction of the tonal noise is obtained in the STE2 case. Meanwhile,
the noise increase observed at lower frequencies might be due to the usage of a reasonably
small spanwise domain size – as figure 17 suggests that a longer spanwise domain size tend
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FIGURE 10. Power spectral density of far field sound pressure fluctuations (loading noise from
(2.4)) over a narrow circular arc 80◦ ≤ θ ≤ 100◦ of a radius of r/Lc = 10 centred at the TE
of the baseline aerofoil (x/Lc, y/Lc, z/Lc) = (1.0, 0, 0): (a) the individual PSDs and (b) the
relative difference of the STE cases to the baseline in decibels.
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FIGURE 11. One-third-octave band power spectral density of far field sound pressure
fluctuations (loading noise from (2.4)) over a narrow circular arc 80◦ ≤ θ ≤ 100◦ of a radius
of r/Lc = 10 centred at the TE of the baseline aerofoil (x/Lc, y/Lc, z/Lc) = (1.0, 0, 0): (a) the
individual PSDs and (b) the relative difference of the STE cases to the baseline in decibels.

to lower the peak and shift it towards even lower frequencies – as well as a time signal not
sufficiently long to accurately address low-frequency events. Although the magnitudes are
captured more accurately by the narrowband spectra in figure 10, figure 11 gives a better
insight into the spectrum trend by showing one-third-octave band (a) individual PSDs and
(b) sound pressure level (SPL) differences. At higher frequencies, it is relatively clear that
STE1 does not produce any broadband noise reduction whereas STE2 performs better with
an attenuation of 4 dB compared to BTE at f Lc/a∞ = 20. This result is in agreement with
the past investigations conducted by Gruber, Joseph & Chong (2011) on serrations. They
demonstrated that significant noise reduction occur above a critical serration aspect ratio
of 1.0 (corresponding to STE2 in the present study).

Figure 12 shows the acoustic source pressure distribution at the tonal frequency
quantified by a Fourier transform of the wall pressure jump between the upper and lower
surfaces of the aerofoil (see (2.8)). In this paper, the proposed mechanisms of the tonal
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FIGURE 12. Surface contour maps of the Fourier transform of the wall pressure jump at the
tonal frequency f Lc/a∞ = 3.9: (a) the magnitude in log scale and (b) the phase distribution.
The reference phase φref is the spanwise-averaged value at the transition location (x/Lc = 0.72).
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FIGURE 13. Time evolution of the laminar separation bubble over a period (t8 − t1)a∞/Lc =
0.28 in the STE2 case. Frames are extracted with a time step of (Δt)a∞/Lc =
0.04.
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FIGURE 14. Spanwise variation of the phase of the wall pressure fluctuations taken at the tonal
frequency f Lc/a∞ = 3.9: (a) at the transition location and (b) along the TE.
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FIGURE 15. Time-averaged profiles of the pressure coefficient Cp and skin friction coefficient
Cf . The BTE profiles are spanwise averaged.

noise reduction due to the STEs are twofold: (i) decreased magnitude of the acoustic source
pressure in the transitional region (figure 12a) and (ii) incoherent phase distribution of the
acoustic source downstream of the transitional region (figure 12b). A reduced intensity
of the acoustic source pressure at the transition when the serrated geometries are used
results in a reduced intensity of the acoustic source at the TE and consequently means
that the acoustic excitation of the transitional separation bubble upstream becomes less
effective. The reduced intensity of the acoustic source at the transition in the serrated
cases (figure 12a) could be attributed to the laminar separation bubble behaviour in
this region. As depicted in figure 8, a secondary LSB detaches from the main LSB
with a clear periodic pattern in the BTE case whereas in the STE2 case (figure 13),
the secondary LSB re-merges with the main LSB and weaker recirculation is produced.
The authors theorise that the merging of LSBs inhibits the secondary LSB detachment
and that the absence of LSB detachment may explain the reduced amplitude of acoustic
source pressure in the transitional region at the tonal frequency. Figure 14 provides the
profiles of the source phase variation (at the tonal frequency) as a function of the spanwise
coordinate, obtained at the transition location and at the TE. The reference phase is set
to the spanwise-averaged value at the transition location, for each of the three cases. The
graphs show that there is a significant phase variation as much as 180◦ in the STE cases
whereas the baseline case maintains a highly uniform distribution. This variation is likely
to produce some destructive interference and supports the second mechanism proposed in
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FIGURE 16. Time-averaged profiles of the pressure coefficient Cp and skin friction coefficient
Cf . The STE profiles are extracted at the tip of the serrations.
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FIGURE 17. Power spectral density of far field sound pressure fluctuations (loading noise from
(2.4)) over a narrow circular arc 80◦ ≤ θ ≤ 100◦ of a radius of r/Lc = 10 centred at the TE of the
baseline aerofoil (x/Lc, y/Lc, z/Lc) = (1.0, 0, 0) comparing two span lengths: (a) the individual
PSDs and (b) the relative difference of the STE2 cases to the baseline in decibels.

this paper. There exist similar phase interference effects discussed for TE broadband noise
(Avallone et al. 2018) and leading edge interaction noise (Turner & Kim 2019).

3.3. Impact of the spanwise domain length
For completeness of the present study, a span length investigation is also reported below.
On top of the three cases BTE, STE1 and STE2 performed with 5 % span (one serration
resolved), BTE-ext. and STE2-ext. cases have been run using an extended 10 % span (two
serrations resolved). Figures 15 and 16 compare the Cp and Cf profiles obtained with the
two different spanwise domain sizes for BTE and STE2 cases. In both cases, the results
are very close. Figures 17 and 18 display the FW-H comparison. The integration uses
juxtaposed aerofoils. While BTE and STE2 were integrated over 0.05Lc × 401 = 20.05Lc
total span length, BTE-ext. and STE2-ext. were integrated over 0.1Lc × 201 = 20.10Lc
total span length making the total span lengths comparable. Furthermore, the FW–H
calculation is already converged when the span is repeated to 20Lc. BTE and BTE-ext.
give a very similar far field sound and it is clear that STE2-ext. provides a clearer trend
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FIGURE 18. One-third-octave band power spectral density of far field sound pressure
fluctuations (loading noise from (2.4)) over a narrow circular arc 80◦ ≤ θ ≤ 100◦ of a radius of
r/Lc = 10 centred at the TE of the baseline aerofoil (x/Lc, y/Lc, z/Lc) = (1.0, 0, 0) comparing
two span lengths: (a) the individual PSDs and (b) the relative difference of the STE2 cases to the
baseline in decibels.
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FIGURE 19. Comparison of 5 % span (top) and 10 % span (bottom) for STE2 case with surface
contour maps of the Fourier transform of the wall pressure jump at the tonal frequency
f Lc/a∞ = 3.9: (a) the magnitude in log scale and (b) the phase distribution.

of noise reduction compared to STE2 at the tonal frequency. The broadband component
remains the same at higher frequencies. The exploration of the acoustic source (wall
pressure jump) in figure 19(a) explains the above observation: in the 10 % span case, the
magnitude of acoustic source pressure in the transitional region is slightly lower than in
the 5 % span case. Furthermore, the phase distribution shows more variation along the
TE (figure 19b). This phenomenon is emphasised in figure 20 where the phase along the
serrated trailing edge is compared between STE2 and STE2-ext. cases. In the 10 % span
case, greater variations of the phase are detected. Hence, both mechanisms previously
inferred are consistent enough to explain why the extended span case produces a clearer
trend of sound attenuation.
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FIGURE 20. Comparison of the spanwise variation of the phase of the wall pressure fluctuations
taken at the tonal frequency f Lc/a∞ = 3.9 along the TE between the STE2 and STE2-ext. cases.
Lz = 0.1Lc and the distribution for STE2 is repeated two times.

4. Conclusions

This paper has investigated how the aerofoil tonal noise could be reduced due to a STE,
based on a large-eddy simulation of a Joukowski aerofoil with a 12 % thickness at Re∞ =
250 000, M∞ = 0.4 and zero incidence angle. The current simulation properly captured
the well-known acoustic feedback loop and the consequent tonal noise generation. The
interaction of the upstream travelling acoustic wave with the laminar separation bubble
was studied in detail. It has thus been shown that the incoming acoustic expansion wave
directly excites the main LSB, giving birth to detached secondary LSBs at the tonal
frequency. Also, the significant reduction of the tonal noise due to the STEs which Chong
& Joseph (2013) reported, is validated by the current LES results. It has been demonstrated
that using a sawtooth STE with a length of 5 % of the chord and an aspect ratio of 1.0
achieved a 10 dB noise reduction of the tonal noise, in the present aerofoil geometry and
flow condition used. A secondary investigation reported a comparison of two spanwise
domain sizes (5 % and 10 % chord respectively) and it was found that the extended span
case gives a clearer trend of noise reduction at the tonal frequency. Two major mechanisms
of the tonal noise reduction were suggested in this paper. The first was the reduced
intensity of acoustic source pressure (or wall pressure jump) in the transitional region in
the presence of STE which directly weakens the scattering at the TE. The second was the
early breakdown of the spanwise coherence in the acoustic source which is likely to create
destructive interference in the acoustic feedback process. The two inferred mechanisms
are also comprehensible in explaining the clearer trend of noise abatement shown by the
extended span case.
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