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Abstract Recently, it is proven that positive harmonic functions defined in the unit disc or the upper
half-plane in C are contractions in hyperbolic metrics [14]. Furthermore, the same result does not hold
in higher dimensions as shown by given counterexamples [16]. In this paper, we shall show that positive
(or bounded) harmonic functions defined in the unit ball in Rn are Lipschitz in hyperbolic metrics. The
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1. Introduction

Let Bn be the open unit ball and Hn be the upper half-space in Rn, respectively. Specially,
B2 and H2 are denoted as D and H, identified with the open unit disc and the upper
half-plane of C. The classical Schwarz–Pick lemma states that holomorphic functions
f : D → D satisfy

|f ′(z)| ≤ 1− |f(z)|2

1− |z|2
, z ∈ D, (1.1)

and

|ϕf(w)(f(z))| ≤ |ϕw(z)|, z, w ∈ D, (1.2)

where ϕw(z) = (w − z)(1− wz)−1 is the Möbius transformation of D onto itself.
Recall that the hyperbolic metric on D is given by

dD(z, w) = log
1 + |ϕw(z)|
1− |ϕw(z)|

= 2 tanh−1(|ϕw(z)|), z, w ∈ D.
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Note that tanh−1 is monotone increasing, then (1.2) can be rewritten as

dD(f(z), f(w)) ≤ dD(z, w), z, w ∈ D.

That is to say every holomorphic function f : D → D is a contraction with respect to the
hyperbolic metric on D.
In 2012, Kalaj and Vuorinen in [7, Theorem 1.12] proved that, for harmonic functions

f : D → (−1, 1),

|Of(z)| ≤ 4

π

1− |f(z)|2

1− |z|2
, z ∈ D, (1.3)

where the constant 4/π is sharp.
Equivalently, harmonic functions f : D → (−1, 1) are Lipschitz in the hyperbolic

metric, i.e.

dD(f(z), f(w)) ≤
4

π
dD(z, w), z, w ∈ D,

which holds also for harmonic functions defined in hyperbolic plane domains (see [15,
Theorem 4]).
In 2013, Chen in [3, Theorem 1.2] obtained a sharper version of (1.3)

|Of(z)| ≤ 4

π

cos π|f(z)|
2

1− |z|2
, z ∈ D,

which was generalized into pluriharmonic functions (see [26, Theorem 1.5]).
Motivated by the result of Kalaj and Vuorinen, Marković in 2015 showed [14, Theorem

1.1] that harmonic functions f : H → R+ = (0,+∞) are contractible in the hyperbolic
metric, i.e.

dR+(f(z), f(w)) ≤ dH(z, w), z, w ∈ H, (1.4)

where the hyperbolic metric dH on the upper half-plane H is given by

dH(z, w) = 2 tanh−1
∣∣∣z − w

z − w

∣∣∣, z, w ∈ H.

In particular, the hyperbolic distance dR+ on R+ is

dR+(x, y) = dH(ix, iy) = | log x
y
|, x, y ∈ R+.

In [16], Melentijević established some refinements of Schwarz’s lemma for holomorphic
functions with the invariant gradient and gave another proof of (1.4) based on Harnack
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inequality. By using the same strategy, one can show that harmonic functions f : D → R+

are also contractible in the hyperbolic metric,

dR+(f(z), f(w)) ≤ dD(z, w), z, w ∈ D. (1.5)

Furthermore, Melentijević provide counterexamples to show that these results in (1.4)
and (1.5) do not hold in higher dimensions for positive harmonic functions defined in Bn

or Hn when n ≥ 3; see [16, Example 1 and Example 2].
In fact, up to multiplying a constant depending on the dimension, these results in (1.4)

and (1.5) still hold for positive harmonic functions defined in higher dimensions. To be
more precise, we shall establish the following result in this paper.

Theorem 1.1. Let n ≥ 2 be integer and f : Bn → R+ be a harmonic function. Then

dR+(f(x), f(y)) ≤ (n− 1)dBn(x, y), x, y ∈ Bn, (1.6)

where dBn is the hyperbolic metric on Bn given by dBn(x, y) = 2 tanh−1(|ϕy(x)|), and
ϕy(x) is the Möbius transformation of Bn defined by (2.1).

The proof of Theorem 1.1 is built on the following estimate. Moreover, this estimate
is sharp.

Theorem 1.2. Let n ≥ 2 be integer and f : Bn → R+ be a harmonic function. Then

|(|x|2 − 1)∇f(x) + (n− 2)xf(x)| ≤ nf(x), x ∈ Bn. (1.7)

If the equality in (1.7) is attained for some a ∈ Bn, then there is a point ξ ∈ ∂Bn such
that

f(x) = f(a)|1− ϕa(x)a|n−2Pξ ◦ ϕa(x), x ∈ Bn, (1.8)

where Pξ is the Poisson kernel given by

Pξ(x) = P (x, ξ) =
1− |x|2

|x− ξ|n
.

Moreover, every positive and harmonic function f defined by (1.8) satisfies the equality
in (1.7) for all x ∈ Bn and ξ ∈ ∂Bn.

The natural question is to ask: what is the analogue of Theorem 1.1 for bounded har-
monic functions f : Bn → (−1, 1)? Based on the proved Khavinson conjecture in [11],
Liu very recently has given an answer to this question by established the following
Schwarz–Pick type inequality [12, Theorem 1], which can be viewed as a counterpart
of Theorem 1.2 for bounded harmonic functions.
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Theorem 1.3. Let n ≥ 4 be integer and f : Bn → (−1, 1) be a harmonic function.
Then

|∇f(x)| ≤ |Bn−1|
|Bn|

2

1− |x|2
, x ∈ Bn, (1.9)

where |Bn| denotes the volume of the unit ball Bn. The equality in (1.9) holds if and only
if x=0 and f = U ◦T for some T ∈ O(n), where U is the Poisson integral of the function
that equals 1 on a hemisphere and −1 on the remaining hemisphere and O(n) denotes
the set of orthogonal transformations of Rn.

Note that, for n =2, (1.9) can be obtained directly from (1.3). Curiously, for n =3,
(1.9) should be replaced by

|∇f(x)| < 8

3
√
3

1

1− |x|2
, x ∈ B3,

where 8
3
√
3
(> 2

|B2|
|B3|

= 1.5) is the best possible; see [10, Note] and [11, Remark 1]. Until

2019, Melentijević in [17, Theorem 2] established the following sharp inequality:

|∇f(x)| ≤ 1

|x|2
( (1 + 1

3 |x|
2)

3
2

1− |x|2
− 1

)
, x ∈ B3,

for every harmonic function f : B3 → (−1, 1).

Remark 1.4. Factually, (1.9) at x =0 holds for all n ≥ 2 and the constant
2|Bn−1|/|Bn| is optimal in this case; see [2, Theorem 6.26] or [6, Corollary 2.2].
Furthermore, the requirement that f is real-valued is crucial in the validity of (1.9).
In fact, (1.9) fails even at x =0 for complex-valued harmonic functions [2, p. 126]. In this
paper, for vector-valued harmonic functions f : Bn → Rm, we find that (1.9) still hold
by using the matrix (operator) norm of the Jacobian matrix ∇f(x) ∈ Rm×n, that is the
square root of the biggest eigenvalue of (∇f(x))T∇f(x).

Theorem 1.5. Let f : Bn → Bm be harmonic functions with n = 2, or n ≥ 4. Then

‖∇f(x)‖ ≤ |Bn−1|
|Bn|

2

1− |x|2
, x ∈ Bn, (1.10)

where ‖∇f(x)‖ denotes the matrix norm of ∇f(x) ∈ Rm×n.

We restate (1.10) in the terms of the hyperbolic metric as follows. The proof is standard
and omitted here.
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Theorem 1.6. Let f : Bn → Bm be harmonic functions with n = 2, or n ≥ 4. Then

|f(x)− f(y)| ≤ |Bn−1|
|Bn|

dBn(x, y), x, y ∈ Bn. (1.11)

Remark 1.7. The distance in the left side of (1.11) is Euclidean but not hyperbolic.
Based on the inequality (1.3) and Theorem 1.1, one would conjecture a sharper version
of (1.9) that, for harmonic functions f : Bn → (−1, 1) with n ≥ 4,

|∇f(x)|
1− |f(x)|2

≤ |Bn−1|
|Bn|

2

1− |x|2
, x ∈ Bn.

However, it is not the case as shown by a counter-example [9, Theorem 2.1].

Remark 1.8. Let f : Bn → Rm. When m =1, the matrix norm concises with the
Euclidean norm of ∇f(x) ∈ Rn, i.e. ‖∇f(x)‖ = |∇f(x)|. Furthermore, it holds that

|O|f |(x)| ≤ ‖∇f(x)‖, x ∈ Bn,

where O|f |(x) = (∂|f |∂x1
, ∂|f |∂x2

, . . . ∂|f |∂xn
) denotes the gradient of the Euclidean norm of f (x ).

In the study of the Schwarz–Pick inequality for holomorphic functions, the quantity
|O|f || was first adopted by Pavlović [18] due to that the classical form in (1.1) does
not hold generally for vector-valued holomorphic functions. To obtain analogous form
of (1.1), Pavlović gave that, for holomorphic mappings f = (f1, . . . , fn) : D → Cn with
|f | = (|f1|2 + · · ·+ |fn|2)1/2 < 1,

|O|f |(z)| ≤ 1− |f(z)|2

1− |z|2
, z ∈ D. (1.12)

Following the idea of Pavlović, Chen and Hamada established the vector-valued version
of the Khavinson conjecture for the norm of harmonic functions from the Euclidean
unit ball Bn into the unit ball of the real Minkowski space by complicated calculations
[4]. By the same technique, they gave several sharp Schwarz–Pick type inequalities for
pluriharmonic functions from the Euclidean unit ball (or the unit polydisc) in Cn into
the unit ball of the Minkowski space. Very recently, using the technique of the present
author [27], Chen et al. have provided some improvements and generalizations of the
corresponding results in [4] into Banach spaces by a relatively simple proof [5].
As a large subclass of the harmonic functions, the concept of monogenic functions

appears in Clifford analysis, which is also a natural generalization of complex analysis
into higher dimensions over non-commutative algebras. For monogenic functions, the
Schwarz lemma does not hold at least in the original form, observed by Yang and Qian
[23, Remark 2] and they established a Schwarz lemma outside of the unit ball in Rn+1.
Recently, some analogues of Schwarz lemma inside the unit ball were obtained in Clifford
analysis [24, 25], quaternionic analysis [13, 22] and octonionic analysis [21]. For exam-
ple, by integral representations of harmonic functions and Möbius transformations with
Clifford coefficients, Zhang established the following Schwarz type lemma.

https://doi.org/10.1017/S0013091524000798 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000798


6 Z. Xu, T. Yu and Q. Huo

Theorem 1.9. [25, Theorem 3.2]. Let f : Bn+1 → R0,n be a Clifford algebra valued
monogenic function with |f(x)| ≤ 1, x ∈ Bn+1. If f(a) = 0 for some a ∈ Bn+1, then

|f(x)| ≤ (1 + |a|)n
n+1
√
2− 1

|x− a|
|1− ax|n+1

, x ∈ Bn+1, (1.13)

where | · | is the norm and · is the conjugate in R0,n.

By the same technique as in the prove of Theorem 1.1, we shall offer a unify method
to establish Schwarz type inequalities for harmonic functions in Clifford analysis and
octonionic analysis as follows, instead of monogenic functions.

Theorem 1.10. Let f : Bn+1 → R0,n be a Clifford algebra valued harmonic function
with |f(x)| ≤ 1, x ∈ Bn+1. If f(a) = 0 for some a ∈ Bn+1, then

|f(x)| ≤ (1 + |a|)n−1

n+1
√
2− 1

|x− a|
|1− ax|n

, x ∈ Bn+1, (1.14)

and as a corollary

|∇f(a)| ≤ 1
n+1
√
2− 1

1

(1 + |a|)(1− |a|)n
.

Theorem 1.11. Let f : B8 → O be an octonion valued harmonic function with
|f(x)| ≤ 1, x ∈ B8. If f(a) = 0 for some a ∈ B8, then

|f(x)| ≤ (1 + |a|)6
8
√
2− 1

|x− a|
|1− ax|7

, x ∈ B8.

where | · | is the norm and · is the conjugate in O.

Note that |1 − ax| < 1 + |a| for a, x ∈ Bn+1. Hence, in a broader function class being
harmonic, the obtained results in Theorems 1.10 and 1.11 are essential improvements
of monogenic versions in [24, Theorem 4.8], [25, Theorem 3.2] and [21, Theorem 4],
respectively.
The remaining part of the paper is organized as follows. The next section shall recall

preliminaries on Clifford algebras and use it to rewrite some known properties of Möbius
transformations of Bn, which shall be used in the proof of main results. The § 3 is devoted
to the proof of Theorems 1.1, 1.2 and 1.5. In § 4, we recall the concepts of monogenic
functions in Clifford analysis and octonionic analysis and show that they are subclasses
of harmonic functions. Finally, we give the proof of Theorems 1.10 and 1.11.

2. Preliminaries

In this section, we first recall preliminaries on Clifford algebras; see e.g. [19].
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Denote by R0,n the real Clifford algebra over imaginary units {e1, e2, . . . , en} which
satisfy

eiej + ejei = −2δije0, 1 ≤ i ≤ j ≤ n,

where e0 is identify with 1, δij is Kronecker function.
Each element a ∈ R0,n has the form of

a =
∑
A

aAeA, aA ∈ R,

where A = h1h2 · · ·hr with 1 ≤ h1 < h2 < · · · < hr ≤ n, eA = eh1eh2 · · · ehr and
e∅ = e0 = 1. The real part of a ∈ R0,n is Re a = a∅ = a0. The norm of a is defined by

|a| = (
∑

A |aA|2)
1
2 . As a real vector space, the dimension of Clifford algebra R0,n is 2n .

The paravector x in R0,n is given by

x =
n∑

i=0

xiei, xi ∈ R.

Hence, the space Rn+1 can be identified as the set of all paravector in Clifford algebra
R0,n. For paravector x 6=0, it inverse is given by

x−1 =
x

|x|2
,

where x denotes the conjugate of x, that is x =
∑n

i=0 xiei = x0 −
∑n

i=1 xiei. Note that
Clifford algebra is associative and non-commutative, but not divisible generally. The
equality |ab| = |a||b| does not hold generally for a, b ∈ R0,n when n ≥ 3. However, it is
holds for in the following special case in Clifford algebras (see [19, Theorem 3.14]).

Lemma 2.1. Let a ∈ R0,n and x ∈ Rn+1. Then

|ax| = |xa| = |a||x|.

Now we introduce some known properties of Möbius transformations of Bn by using
the language of Clifford algebras, which shall be used in the sequel. These results can be
founded in [1, 20].
It is known that any Möbius transformation ψ of Bn onto itself has the form ψ = Tϕa,

where T ∈ O(n) and ϕa is Möbius transformations of Bn with ϕa(0) = a ∈ Bn, given by

ϕa(x) =
(1− |a|2)(a− x) + |a− x|2a

[x, a]2
, x ∈ Bn, (2.1)

where

[x, a] =
√
1 + |a|2|x|2 − 2〈a, x〉.

Here 〈·, ·〉 is real inner product in Rn.
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The vector space Rn can be viewed as the paravector in R0,n−1, and then

〈a, x〉 = Re (xa) = Re (ax).

Hence,

[x, a] =
√
1 + |a|2|x|2 − 2Re (xa) = |1− xa|.

Consequently, the mapping ϕa can be expressed as

ϕa(x) =
(1− |a|2 + a(a− x))(a− x)

|1− xa|2
=

(1− ax)(a− x)

|1− xa|2
= (1− xa)−1(a− x).

Furthermore, it holds that

ϕ−1
a = ϕa. (2.2)

To see this, we should notice that

ϕa(x) = (1− xa)−1(a− x) = (a− x)(1− ax)−1.

Let y = ϕa(x). Then

a− x = (1− xa)y = y − xay,

which implies that

a− y = x(1− ay) ⇒ x = (a− y)(1− ay)−1 = ϕa(y).

Denote by M(Bn) Möbius transformations of Bn onto Bn. Recall a useful identity
[20, Theorem 2.1.3]

|ϕ(x) − ϕ(y)|2

(1− |ϕ(x)|2)(1− |ϕ(y)|2)
=

|x− y|2

(1− |x|2)(1− |y|2)
, ϕ ∈ M(Bn).

This formula implies that

‖∇ϕa(x)‖ = limy→x
|ϕa(x)− ϕa(y)|

|x− y|
=

1− |ϕa(x)|2

1− |x|2
. (2.3)

From the identity

1− |ϕa(x)|2 = 1− |a− x|2|1− xa|−2 =
(1− |a|2)(1− |x|2)

|1− xa|2
, (2.4)

it is easy to see that

‖∇ϕa(x)‖ =
1− |a|2

|1− xa|2
∈ (

1− |a|
1 + |a|

,
1 + |a|
1− |a|

). (2.5)
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3. Proof of Theorems 1.1, 1.2 and 1.5

To prove main results, we recall the invariance of the Laplace equation [8, Chapter 1.10,
p. 22].

Lemma 3.1. Let a ∈ Bn. If an independent variable undergoes the transformation
y = ϕa(x), x ∈ Bn, and the function is transformed by

Y (y) =
( |1− xa|2

1− |a|2
)n

2−1

X(x), (3.1)

then

(1− |x|2)
n
2 +1

n−1∑
i=0

∂2X

∂x2i
= (1− |y|2)

n
2 +1

n−1∑
i=0

∂2Y

∂y2i
.

Let y = ϕa(x). From the identity

|1− xa||1− ya| = 1− |a|2, (3.2)

and (2.2), the transformation in (3.1) can be rewritten as

Y (y) =
( 1− |a|2

|1− ya|2
)n

2−1

X(ϕ−1
a (y)) =

( 1− |a|2

|1− ya|2
)n

2−1

X(ϕa(y)).

Hence, Lemma 3.1 gives directly the following result.

Lemma 3.2. Let a ∈ Bn and f be a harmonic function in Bn. Then the function

f [ϕa](x) :=
( 1− |a|2

|1− xa|2
)n

2−1

f ◦ ϕa(x)

is still harmonic in Bn.

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Firstly, let us prove the estimate (1.7) in the special case
x =0, i.e.

|∇f(0)| ≤ nf(0), (3.3)

for the positive harmonic function f defined in Bn.
From the Poisson–Herglotz representation, it holds that

f(x) =

∫
∂Bn

P (x, ξ) dµ(ξ), x ∈ Bn,

where µ is a positive Borel measure on ∂Bn such that
∫
∂Bn dµ(ξ) = f(0).
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Note that

∇Pξ(x) = − 2x

|x− ξ|n
− n(1− |x|2)

|x− ξ|n+2
(x− ξ), (x, ξ) ∈ Bn × ∂Bn. (3.4)

In particular,

∇Pξ(0) = nξ, ξ ∈ ∂Bn.

Hence,

|∇f(0)| = n|
∫
∂Bn

ξ dµ(ξ)| ≤ n

∫
∂Bn

dµ(ξ) = nf(0),

where the equality is attained if and only if the measure µ is a singleton, that is to say,
there exits some ξ ∈ ∂Bn such that

µ({ξ}) = f(0), µ(∂Bn \ {ξ}) = 0.

This shows (3.3) and that the equality in (3.3) is attained if and only if f(x) = f(0)Pξ(x)
for some ξ ∈ ∂Bn, and in this case, we have, by (3.4),

(|x|2 − 1)∇f(x) + (n− 2)xf(x)

= f(0)(|x|2 − 1)
(
− 2x

|x− ξ|n
− n(1− |x|2)

|x− ξ|n+2
(x− ξ)− (n− 2)x

|x− ξ|n
)

= f(0)
n(|x|2 − 1)

|x− ξ|n+2
((|x|2 − 1)(x− ξ)− x|x− ξ|2)

= f(0)
n(|x|2 − 1)

|x− ξ|n+2
(|x|2 − 1− x(x− ξ))(x− ξ)

= f(0)
n(|x|2 − 1)

|x− ξ|n+2
(xξ − 1)(x− ξ).

By Lemma 2.1, it follows that

|(xξ − 1)(x− ξ)| = |xξ − 1||x− ξ| = |x− ξ|2.

Therefore, the harmonic function f(x) = f(0)Pξ(x) satisfies the following identity

|(|x|2 − 1)∇f(x) + (n− 2)xf(x)| = nf(0)
1− |x|2

|x− ξ|n
= nf(x), (x, ξ) ∈ Bn × ∂Bn. (3.5)

Secondly, we prove the conclusion in the general case x = a. Fix a ∈ Bn. By Lemma 3.2,
the function f [ϕa](x) is harmonic in Bn. Hence, by applying the inequality (3.3) to the
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positive and harmonic function f [ϕa](x), we have

|∇f [ϕa](0)| ≤ nf [ϕa](0). (3.6)

Direct calculations gives that

∇ 1

|1− xa|n−2
=

(2− n)(|a|2x− a)

|1− xa|n−2
, x ∈ Bn,

and

∇(
1

|1− xa|n−2
f ◦ ϕa(x))|x=0 = (|a|2 − 1)∇f(a) + (n− 2)af(a),

then (3.6) reduces into

|(|a|2 − 1)∇f(a) + (n− 2)af(a)| ≤ nf(a).

Let us consider the case of the equality in (1.7) is attained at x = a, that is

|∇f [ϕa](0)| = nf [ϕa](0).

Therefore, the previously obtained result of x =0 gives that f [ϕa](x) = f [ϕa](0)Pξ(x)
for some ξ ∈ ∂Bn. More precisely,

( 1− |a|2

|1− xa|2
)n

2−1

f ◦ ϕa(x) = (1− |a|2)
n
2−1f(a)Pξ(x), x ∈ Bn.

Thus

f ◦ ϕa(x) = f(a)|1− xa|n−2Pξ(x), x ∈ Bn.

Replacing x with ϕa(x) in the above formula and noticing (2.2), we obtain

f(x) = f(a)|1− ϕa(x)a|n−2Pξ ◦ ϕa(x), x ∈ Bn.

Finally, we verify that every positive harmonic function f defined by (1.8) satisfies the
equality in (1.7) for all x ∈ Bn and ξ ∈ ∂Bn. Observing (3.2) and (2.4), straightforward
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calculations give

∇ log((1− |x|2)
n
2−1f(x))

= ∇ log
(
f(a)(1− |x|2)

n
2−1

( 1− |a|2

|1− xa|

)n−2

Pξ ◦ ϕa(x)
)

= ∇ log
(( (1− |a|2)(1− |x|2)

|1− xa|2
)n

2−1

Pξ ◦ ϕa(x)
)

= ∇ log((1− |ϕa(x)|2)
n
2−1Pξ ◦ ϕa(x))

=
n

2
∇ log

1− |ϕa(x)|2

|ϕa(x)− ξ|2

= (∇ log((1− | · |2)
n
2−1Pξ(·)))(ϕa(x))∇ϕa(x).

Observe that (3.5) has an equivalent representation

|∇ log((1− |x|2)
n
2−1Pξ(x))| =

n

1− |x|2
, (x, ξ) ∈ Bn × ∂Bn.

Combining this with ∇ϕa(x)/‖∇ϕa(x)‖ ∈ O(n) and (2.3), we infer that, for all (x, ξ) ∈
Bn × ∂Bn,

|∇ log((1− |x|2)
n
2−1f(x))|

= |∇ log((1− | · |2)
n
2−1Pξ(·)))(ϕa(x))|‖∇ϕa(x)‖

=
n

1− |ϕa(x)|2
‖∇ϕa(x)‖

=
n

1− |x|2
,

which completes the proof. �

With the help of Theorem 1.2, we turn back to prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 1.2, it holds that, for the harmonic function
f : Bn → R+,

|(|x|2 − 1)∇f(x) + (n− 2)xf(x)| ≤ nf(x), x ∈ Bn,

which has an equivalent representation

|∇ log((1− |x|2)
n
2−1f(x))| ≤ n

1− |x|2
, x ∈ Bn.

Hence, by Cauchy–Schwarz inequality,

|d(log((1− |x|2)
n
2−1f(x)))| ≤ |∇ log((1− |x|2)

n
2−1f(x))||dx| ≤ n|dx|

1− |x|2
.
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Recall that the hyperbolic metric on Bn is given by

dBn(x, y) = 2 tanh−1(|ϕy(x)|) = log
1 + |ϕy(x)|
1− |ϕy(x)|

,

and its responding element of arclength is

ds =
2|dx|

1− |x|2
.

Integrating both sides of the above inequality along geodesics for the hyperbolic metric
from x to y, we have

| log (1− |x|2)
n
2−1f(x)

(1− |y|2)
n
2−1f(y)

| ≤ n

2
dBn(x, y),

which implies that

dR+(f(x), f(y)) = | log f(x)
f(y)

| ≤ n

2
dBn(x, y) + (

n

2
− 1)| log 1− |y|2

1− |x|2
|.

Combining this with the inequality

1 + |ϕy(x)|
1− |ϕy(x)|

≥ 1− |y|2

1− |x|2
, x, y ∈ Bn, (3.7)

we get

dR+(f(x), f(y)) ≤ (n− 1)dBn(x, y).

To see (3.7), using the identity (2.4), we first obtain

1 + |ϕy(x)|
1− |ϕy(x)|

=
(1 + |ϕy(x)|)2

1− |ϕy(x)|2
=

(1 + |ϕy(x)|)2|1− xy|2

(1− |x|2)(1− |y|2)
,

then the question reduces into proving that, for x, y ∈ Bn with |x| > |y|,

|1− xy|+ |x− y| ≥ 1− |y|2. (3.8)

If |x− y| ≥ 1− |y|2, it is a trivial assertion. Otherwise, for |x− y| < 1− |y|2,

⇔ |1− xy|2 ≥ (1− |y|2 − |x− y|)2 = (1− |y|2)2 + |x− y|2 − 2|x− y|(1− |y|2)
⇔ (1− |x|2)(1− |y|2) ≥ (1− |y|2)2 − 2|x− y|(1− |y|2)
⇔ 1− |x|2 ≥ 1− |y|2 − 2|x− y|
⇔ |x|2 − |y|2 ≤ 2|x− y|.
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Under the assumption that x, y ∈ Bn with |x| > |y|, it holds naturally that

|x|2 − |y|2 ≤ 2(|x| − |y|) ≤ 2|x− y|.

Now the proof is complete. �

Remark 3.3. In the proof of Theorem 1.1, we give a direct and basic proof of inequal-
ity (3.7). As pointed out by an anonymous reader, (3.7) is a consequence of the known
inequality

|ρ(x, z)− ρ(z, y)|
1− ρ(x, z)ρ(z, y)

≤ ρ(x, y) ≤ ρ(x, z) + ρ(z, y)

1 + ρ(x, z)ρ(z, y)
, x, y, z ∈ Bn, (3.9)

where ρ(x, y) = |ϕy(x)| is the so-called pseudo-hyperbolic metric on Bn.
To see this, we need only to consider x, y ∈ Bn with |x| ≥ |y|. In this case, it follows

that

1− |y|2

1− |x|2
≤ (1 + |x|)(1− |y|)

(1− |x|)(1 + |y|)
=

1 + |x|−|y|
1−|x||y|

1− |x|−|y|
1−|x||y|

. (3.10)

According to (3.9), it holds that

|x| − |y|
1− |x||y|

=
|ρ(x, 0)− ρ(0, y)|
1− ρ(x, 0)ρ(0, y)

≤ ρ(x, y). (3.11)

Note that (1 + t)(1− t)−1 is an increasing function for t ∈ (0, 1), then (3.10) and (3.11)
give the desired inequality (3.7).

Proof of Theorem 1.5. Let l ∈ ∂Bm. For the harmonic f : Bn → Bm, consider the
scalar harmonic function g = 〈f, l〉, where 〈·, ·〉 is real inner product in Rm. Now the
scalar harmonic function g : Bn → (−1, 1) satisfies the condition of (1.9). Hence,

|∇〈f(x), l〉| = |(∇f(x))T · l| ≤ |Bn−1|
|Bn|

2

1− |x|2
, x ∈ Bn,

where · denotes the matrix product of (∇f(x))T ∈ Rn×m with l ∈ Rm×1. Due to the
arbitrariness of l ∈ ∂Bm, we obtain

‖∇f(x)‖ ≤ |Bn−1|
|Bn|

2

1− |x|2
, x ∈ Bn,

as desired. �

4. Proof of Theorems 1.10 and 1.11

Before proving the theorem, we recall the concepts of monogenic functions in Clifford
analysis and octonionic analysis and show that they are subclasses of harmonic functions.
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First, we give the definition of monogenic functions in Clifford analysis [19].

Definition 4.1. Let Ω ⊂ Rn+1 and f : Ω → R0,n be a Clifford algebra valued C1

function. The function f =
∑

A eAfA is called (left) monogenic in Ω if

Df(x) :=
n∑

i=0

ei
∂f

∂xi
(x) =

n∑
i=0

∑
A

eieA
∂fA
∂xi

(x) = 0, x ∈ Ω.

And the function f is called (left) anti-monogenic in Ω if

Df(x) :=
n∑

i=0

ei
∂f

∂xi
(x) =

n∑
i=0

∑
A

eieA
∂fA
∂xi

(x) = 0, x ∈ Ω.

Due to the non-commutation of Clifford algebra, the right monogenic functions could
be defined similarly. Note that all monogenic functions on Bn+1 is real analytic. For the
Clifford algebra valued C 2 functions f, by the association of Clifford algebra, it holds
that

DDf(x) = DDf(x) = ∆n+1f(x), (4.1)

where ∆n+1 is Laplace operator in Rn+1.
In fact, Definition 4.1 can also be built in octonionic analysis.

Definition 4.2. Denote by O the non-commutative and non-associative algebra with
canonical vector basis {e0 = 1, e1, e2, . . . , e7}. Let Ω ⊂ O and f : Ω → O be a octonionic

valued C1 function. The function f =
∑7

i=0 eifi is called (left) monogenic in Ω if

Df(x) :=
7∑

i=0

ei
∂f

∂xi
(x) =

7∑
i=0

7∑
j=0

eiej
∂fj
∂xi

(x) = 0, x ∈ Ω.

And the function f is called (left) anti-monogenic in Ω if

Df(x) :=
7∑

i=0

ei
∂f

∂xi
(x) =

7∑
i=0

7∑
j=0

eiej
∂fj
∂xi

(x) = 0, x ∈ Ω.

Even though the algebra of octonions is non-associative, (4.1) still holds in the octo-
nionic setting. Indeed, the Artin theorem shows that the subalgebra generated by two
elements (D and f ) in octonions is associative, which implies

∆f(x) = (DD)f(x) = D(Df(x)), (4.2)

where ∆ is Laplace operator in R8.
Hence, monogenic functions in Clifford analysis and octonionic analysis belong to

harmonic functions from (4.1) and (4.2).
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Since the proof of Theorem 1.11 is completely similar to Theorem 1.10, we only show
Theorem 1.10 in this section.

Proof of Theorem 1.10. Let f be as described in Theorem 1.10. First, if a =0 (that
is f(0) = 0), then [25, Theorem 3.1] gives that

|f(x)| ≤ 1
n+1
√
2− 1

|x|, x ∈ Bn+1. (4.3)

Now (1.14) at x =0 is obtained. Otherwise, as in the prove of Theorem 1.1, consider the
Clifford algebra valued harmonic function

g1(x) =
( 1− |a|2

|1− xa|2
)n+1

2 −1

f ◦ ϕa(x), x ∈ Bn+1.

In view of the estimate (2.5), set

g(x) =
(1− |a|
1 + |a|

)n−1
2
g1(x) =

( 1− |a|
|1− xa|

)n−1

f ◦ ϕa(x)

with |g(x)| < 1 for x ∈ Bn+1. Applying the inequality (4.3) to the harmonic function
g(x ), we obtain ( 1− |a|

|1− xa|

)n−1

|f ◦ ϕa(x)| ≤
1

n+1
√
2− 1

|x|, x ∈ Bn+1.

Let y = ϕa(x). From the identity (3.2), we have

|f(y)| ≤ 1
n+1
√
2− 1

( 1 + |a|
|1− ya|

)n−1

|ϕ−1
a (y)|, y ∈ Bn+1.

Thus the fact ϕa = ϕ−1
a in (2.2) gives the desired inequality

|f(x)| ≤ (1 + |a|)n
n+1
√
2− 1

|x− a|
|1− ax|n+1

, x ∈ Bn+1.

The proof is completed. �
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