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Cyclicity of the shift operator through
Bezout identities
Emmanuel Fricain and Romain Lebreton

Abstract. In this paper, we study the cyclicity of the shift operator S acting on a Banach space X of
analytic functions on the open unit disc D. We develop a general framework where a method based
on a corona theorem can be used to show that if f , g ∈ X satisfy ∣g(z)∣ ≤ ∣ f (z)∣, for every z ∈ D, and if
g is cyclic, then f is cyclic. We also give sufficient conditions for cyclicity in this context. This enable us
to recapture some recent results obtained in de Branges–Rovnayk spaces, in Besov–Dirichlet spaces
and in weighted Dirichlet type spaces.

1 Introduction

If T is a bounded linear operator on a Banach space X, then T is said to be cyclic if
there exists a vector x ∈ X such that the orbit of x under T, defined by {T n x ∶ n ≥ 0},
generates a dense subspace in X. Such a vector, if it exists, is called a cyclic vector for
T. The characterization of cyclic vectors of a given operator is a challenging question,
which has connections with the famous invariant subspace problem.

The cyclicity problem with respect to the (forward) shift operator S ∶ f (z) �→
z f (z) has been completely solved by Beurling [7] in the context of the Hardy space
H2 of the open unit disc D: a function f in H2 is cyclic for S if and only if f is an outer
function, in the sense that f can be written as

f (z) = c exp(∫
T

ξ + z
ξ − z

log(φ(ξ)) dm(ξ)) , ∣z∣ < 1,

where ∣c∣ = 1, m is normalized Lebesgue measure on the unit circle T and φ is a
nonnegative function in L2(T) such that log(φ) ∈ L1(T).

A similar question can be stated (and has been studied) in various Banach spaces
of analytic functions where the shift operator acts boundedly, e.g. in Bergman or
Dirichlet spaces. However, the situation in Hardy space is unique in the sense that in
most other spaces, there are no known characterizations despite numerous efforts by
many mathematicians. Cyclic vectors in the Dirichlet space were initially studied by
Carleson [11], and later by L. Brown and A. Shields [10]. In this last paper, the authors
conjectured that a function f in the Dirichlet space D is cyclic for the shift operator
if and only if f is outer and its boundary zero set is of logarithmic capacity zero. This
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2 E. Fricain and R. Lebreton

conjecture is still open despite significant progress [16]. Brown–Shields also posed the
following question about cyclic vectors for the shift acting on a general Banach space
X of analytic functions on D (with some standard properties):

Question 1.1 ([10]) If f , g ∈ X satisfy ∣g(z)∣ ≤ ∣ f (z)∣ for every z ∈ D and if g is cyclic
for the shift, then must f be cyclic for the shift?

They proved that if the algebra of multipliers of X coincides with H∞, the algebra
of analytic and bounded functions onD, then the answer is positive. They also showed
that this is the case whenX coincides with the Dirichlet spaceD. Finally, if f ∈D2 (the
weighted Hardy space on D with weight (n + 1)2) and if f has at most countably many
zeros on T, then f is cyclic for the shift in D. Note also the reference [30] where the
authors gave similar results in the context of Dirichlet spaceD(μ) for μ a nonnegative
finite Borel measure on T.

In [17], Carleson’s corona theorem is used to get two results on cyclicity for singular
inner functions in weighted Bergman type spaces on the open unit disc. In [13, 14], this
method based on corona theorem is pursued to get a positive answer to Question 1.1
in the context of Besov–Dirichlet spaces Dp

α . See also [8, 9, 32].
Inspired by [13, 14], the aim of this paper is to develop a general framework where

the method based on a corona theorem can be applied to get a positive answer to
Question 1.1. More precisely, consider a Banach space X of analytic functions on D

satisfying standard assumptions, and a Banach algebra A which is contained in the
mutilpliers algebra of X and which satisfies a corona theorem with some control on
the solutions. The main results of this paper are the following. See Subsections 2.1
and 2.3 for the precise statement of assumptions (H1) to (H8).

Theorem A LetX satisfying (H1) to (H3) and letA satisfying (H4) to (H6). Then there
exists N ∈ N∗ such that for every f , g ∈ A satisfying ∣g(z)∣ ≤ ∣ f (z)∣ for every z ∈ D, we
have

[gN]X ⊂ [ f ]X .

Here for f ∈ X, we denote by [ f ]X the smallest S-invariant subspace containing f,
that is

[ f ]X = {p f ∶ p ∈ P}
X

,

where P is the set of polynomials and {⋯}
X

denotes the closure of {⋯} in X. As
a corollary, we will get a (partial) positive answer to Brown–Shields question in our
context.

Corollary B LetX satisfying (H1) to (H3) and letA satisfying (H4) to (H6). Let f ∈ A
and g ∈ A ∩M(X) such that for every z ∈ D, we have ∣g(z)∣ ≤ ∣ f (z)∣. Suppose g is cyclic
for S in X. Then f is cyclic for S in X.

Finally, combining this approach based on a corona theorem and a tauberian result
of Atzmon, we also prove the following. The disc algebra consisting of holomorphic
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Cyclicity of the shift operator through Bezout identities 3

functions on D which are continuous on the closed unit disc D is denoted by A(D),
and for f ∈ A(D), we denote by Z( f ) the boundary zero sets of f, that is

Z( f ) = {ζ ∈ T ∶ f (ζ) = 0}.

Theorem C Let X satisfying (H1) to (H3) and let A satisfying (H4) to (H8). Assume
that there exists ζ0 ∈ T such that z − ζ0 is cyclic for S inX. Let f ∈ A ∩ A(D) be an outer
function such that Z( f ) = {ζ0}. Then f is cyclic for S in X.

The paper is organized as follows. In Section 2, we introduce the general framework
of our results and some standard preliminaries. Section 3 contains the proofs of
Theorem A and Corollary B. In Section 4, we present the proof of Theorem C. Finally,
in the last section, we present some concrete applications and show that our results
enable us to recapture some recent results obtained for X =H(b), the de Branges–
Rovnyak space with a rational (not inner) function in the closed unit ball of H∞, for
X =D

p
α the Besov–Dirichlet space with p > 1 and α + 1 ≤ p ≤ α + 2, and forX =D(μ),

the weighted Dirichlet type space where μ is a finite positive Borel measure on the
closed unit disc D.

We will use sometimes in the paper the notation A ≲ B meaning that there is an
absolute positive constant C such that A ≤ CB.

2 Presentation of the context and preliminaries

2.1 Our general framework

We begin by presenting the assumptions that our Banach space X must satisfy. For
n ∈ N, we define χn(z) = zn , z ∈ D. We assume that X is a Banach space of analytic
functions on D satisfying the following standard conditions:
(H1) For every λ ∈ D, the evaluation map Eλ ∶ f ∈ X�→ f (λ) ∈ C is continuous.
(H2) For every f ∈ X, we have χ1 f ∈ X.
(H3) The set of polynomials P = ⋁(χn ∶ n ≥ 0) is dense in X.
The assumption (H1) means that, for every λ ∈ D, Eλ belongs to X∗, the dual space of
X. In particular, it implies that convergence in X implies pointwise convergence on
D. We shall denote by ⟨ f ∣φ⟩ = φ( f ) the duality bracket between φ ∈ X∗ and f ∈ X.

The assumption (H2) means that χ1 belongs to M(X), the algebra of multipliers
of X defined by

M(X) ∶= {φ ∈ X ∶ φ f ∈ X, ∀ f ∈ X} .

Using closed graph theorem and (H1) it is easy to see that if φ ∈M(X), then the
multiplication operator by φ, Mφ ∶ f ∈ X�→ φ f ∈ X, is bounded on X. In particular,
it follows from (H2) that the shift operator acting on X defined by

S ∶ f ∈ X�→ χ1 f ∈ X,

is bounded. Moreover, if we set ∥φ∥M(X) = ∥Mφ∥L(X), where ∥ ⋅ ∥L(X) denotes the
(operator) norm on L(X), the space of linear and bounded operators on X, then it
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4 E. Fricain and R. Lebreton

is well known that M(X) is a Banach algebra. Note also that by (H2), we have P ⊂
M(X).

We introduce now a (commutative and unital) Banach algebra A satisfying the
following conditions:
(H4) either (H4a) A ⊂M(X) or (H4b) A ⊂ X and P is dense in A.
(H5) For every λ ∈ D the evaluation map f ∈ A�→ f (λ) ∈ C is continuous.
(H6) There exists C > 0 and A ≥ 1 such that for every f1 , f2 ∈ A satisfying

0 < δ ≤ ∣ f1∣ + ∣ f2∣ on D, and ∥ f1∥A + ∥ f2∥A ≤ 1,

there exists g1 , g2 ∈ A such that f1 g1 + f2 g2 ≡ 1 on D and

∥g1∥A , ∥g2∥A ≤ C
δA .

The assumption (H6) means that the Banach algebraA satisfies a Corona Theorem
with a control on the solutions. It is known to be true in the algebra H∞, with any
A > 2. See [12, 36, 38]. V. Tolokonnikov [37] also proved that (H6) is satisfied for A =
D

p
α ∩ A(D) with 1 < p ≤ α + 2 and A ≥ 4. Let us also mention the recent paper [29] of

Shuaibing Luo who proved that (H6) holds for A =M(D(μ)) with μ a finite positive
Borel measure on the closed unit disc D and A ≥ 4, and the paper [21] who studied
the case of the algebra of multipliers of some de Branges–Rovnyak spaces.

2.2 Some technical preliminaries

We now present some simple consequences of our assumptions. Let us first remind a
standard property for the multiplier algebraM(X). For completeness, we give a proof.

Lemma 2.1 Let X be a Banach space of analytic functions on D satisfying (H1) to
(H3).
(1) We have M(X) ⊂ H∞ ∩X and there exists c1 > 0 such that for every f ∈M(X),

we have

∥ f ∥X + ∥ f ∥∞ ≤ c1 ∥ f ∥M(X).

(2) If we assume furthermore that M(X) = H∞ ∩X, then there exists a constant c2 >
0 such that for every f ∈M(X), we have

c2∥ f ∥M(X) ≤ ∥ f ∥∞ + ∥ f ∥X .

Proof (1): Let f ∈M(X). Since χ0 = 1 ∈ X, f = f χ0 ∈ X, whence

∥ f ∥X = ∥ f χ0∥X ≤ ∥ f ∥M(X) ∥χ0∥X .

Note that M∗f ∶ X∗ → X∗ is well defined and, from (H1), Eλ ∈ X∗ for every λ ∈ D.
Then, for every g ∈ X, we have

⟨g , M∗f Eλ⟩ = ⟨ f g , Eλ⟩ = f (λ)g(λ) = f (λ)⟨g , Eλ⟩ = ⟨g , f (λ)Eλ⟩,

https://doi.org/10.4153/S0008439524000717 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000717


Cyclicity of the shift operator through Bezout identities 5

and we deduce that M∗f Eλ = f (λ)Eλ . Therefore,

∣ f (λ)∣ ∥Eλ∥X∗ ≤ ∥M f ∥L(X) ∥Eλ∥X∗ .

Remark that ⟨χ0 , Eλ⟩ = 1, hence Eλ ≠ 0 and dividing the last inequality by ∥Eλ∥X∗
gives

∣ f (λ)∣ ≤ ∥M f ∥L(X).

In other words, f is bounded on D and ∥ f ∥∞ ≤ ∥ f ∥M(X). Moreover, since f ∈ X ⊂
Hol(D), f ∈ H∞ and

∥ f ∥X + ∥ f ∥∞ ≤ (∥χ0∥X + 1) ∥ f ∥M(X) .

(2): Equip H∞ ∩X with the following norm

∥ f ∥∞,X = ∥ f ∥∞ + ∥ f ∥X , f ∈ H∞ ∩X.

It is not difficult to see that (H∞ ∩X, ∥ ⋅ ∥∞,X) is a Banach space. Consider now the
identity map

i ∶ M(X) �→ H∞ ∩X

f �→ f .

According to (1), this map is continuous and the theorem of isomorphism of Banach
gives the result. here ∎

The purpose of this paper is to study the cyclicity of S on X. Let us remind the
following notation

[ f ]X = {p f ∶ p ∈ P}
X

, for f ∈ X,

where {⋯}
X

denotes the closure of {⋯} in X. It is clear that f is a cyclic vector of S
in X if and only if

[ f ]X = X.

Remark 2.2 It is standard that f is cyclic for S in X if and only if 1 ∈ [ f ]X. Indeed,
since χ0 = 1 ∈ X by (H3), if f is cyclic for S in X, then 1 ∈ [ f ]X. Conversely, let g ∈
X and ε > 0. From the assumption (H3), there exists q ∈ P such that ∥q − g∥X ≤ ε

2 .
Moreover, if 1 ∈ [ f ]X, then there exists p ∈ P such that ∥p f − 1∥X ≤ ε

2∥q∥M(X)
. Thus,

pq ∈ P and

∥pq f − g∥X ≤ ∥pq f − q∥X + ∥q − g∥X ≤ ∥q∥M(X) ∥p f − 1∥X + ε
2
≤ ε,

which gives the cyclicity of f.

Remark 2.3 It also follows from (H1) and Remark 2.2 that if f is cyclic for S in X,
then for every λ ∈ D, f (λ) ≠ 0. Indeed, there should exists a sequence of polynomials
(pn)n such that pn f → 1 as n →∞. According to (H1), for every λ ∈ D, we thus have
pn(λ) f (λ) → 1 as n →∞. This forces f (λ) to be nonzero.
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6 E. Fricain and R. Lebreton

Lemma 2.4 Let X satisfying (H1) to (H3). Let f ∈ X and φ ∈M(X) be two cyclic
vectors for S in X. Then f φ is cyclic for S in X.

Proof Let ε > 0. Since φ is cyclic for S in X, there exists p ∈ P such that

∥pφ − 1∥X ≤ ε
2

.

Moreover, from (H2), p ∈ P ⊂M(X), whence pφ ∈M(X). Now, since f is also cyclic
for S in X, there exists q ∈ P such that

∥q f − 1∥X ≤ ε
2 ∥pφ∥M(X)

.

Thus,

∥ f φpq − 1∥X ≤ ∥ f φpq − pφ∥X + ∥pφ − 1∥X

≤ ∥φp(q f − 1)∥X + ε
2

≤ ∥pφ∥M(X) ∥q f − 1∥X + ε
2
≤ ε,

which gives the cyclicity of f φ for S in X. ∎

Corollary 2.5 Let X satisfying (H1) to (H3). Let f ∈M(X) and assume that f is cyclic
for S in X. Then, for every N ∈ N∗, f N is cyclic for S in X.

Proof We proceed by induction. Suppose that f N is cyclic for S in X for some
N ∈ N∗. Then, from Lemma 2.4, we get that f N+1 is cyclic for S in X. ∎

Let us justify that the assumptions (H1), (H4) and (H5) imply the existence of a
constant c4 > 0 such that, for every f ∈ A, we have

∥ f ∥X ≤ c4 ∥ f ∥A .(2.1)

Indeed, if (H4a) is satisfied, that is A ⊂M(X), then according to the closed graph
theorem applied to the canonical i ∶ f ∈ A�→ f ∈M(X) and (H5), there exists c3 > 0
such that for every f ∈ A, we have

∥ f ∥M(X) ≤ c3 ∥ f ∥A ,

and (2.1) follows from Lemma 2.1.
On the other hand, if (H4b) is satisfied, then A ⊂ X, and (2.1) follows immediately

for the closed graph theorem applied to the canonical i ∶ f ∈ A�→ f ∈ X and the
assumptions (H1) and (H5).

For f ∈ A, we denote by I f the closed ideal of A generated by f, that is

I f ∶= {g f ∶ g ∈ A}
A

.(2.2)

Lemma 2.6 Let X satisfying (H1) to (H3) and let A satisfying (H4) and (H5). For
every f ∈ A, we have I f ⊂ [ f ]X.
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Cyclicity of the shift operator through Bezout identities 7

Proof We show first that for every g ∈ A, we have g f ∈ [ f ]X. Assume first that
(H4a) is satisfied, that is A ⊂M(X). Then it follows from Lemma 2.1 that g ∈ X.
Now, according to (H3), there exists a sequence of polynomials (pn)n≥0 such that
∥pn − g∥X → 0 as n →∞. Since f ∈ A ⊂M(X), we obtain that ∥pn f − g f ∥X → 0 as
n →∞, and thus g f ∈ [ f ]X.

On the other hand, if (H4b) is satisfied, that is A ⊂ X and P is dense in A, then
there exists a sequence of polynomials (pn)n≥0 such that ∥pn − g∥A → 0 as n →∞.
Since A is a Banach algebra, we have ∥pn f − g f ∥A ≤ ∥ f ∥A∥pn − g∥A, whence ∥pn f −
g f ∥A → 0 as n →∞. Now, according to (2.1), we get ∥pn f − g f ∥X → 0 as n →∞, and
thus again g f ∈ [ f ]X.

Consider now φ ∈ I f . By definition, there exists a sequence (φn)n≥0 of A such that
∥φn f − φ∥A → 0 as n →∞. Then it follows from (2.1) that ∥φn f − φ∥X → 0 as n →
∞. Finally, since φn f belongs to [ f ]X, that is closed in X, we conclude that φ ∈ [ f ]X
and thus I f ⊂ [ f ]X. ∎

2.3 Some operator tools

For Theorem C, we introduce now two more assumptions that we shall need in order
to use a tauberian result of Atzmon. Apart assumptions (H1),(H2),. . .,(H6), we also
assume that:
(H7) The function χ1 ∈ A.
(H8) There exists C > 0 and p ∈ N such that for every n ≥ 0, ∥χn∥A ≤ Cnp .
In the following, σ(χ1) denotes the spectrum of χ1 in the Banach algebra A.

Lemma 2.7 Let X satisfying (H1) to (H3) and let A satisfying (H5), (H7) and (H8).
We have
(i) σ(χ1) = D.
(ii) Hol(D) ⊂ A.
(iii) For every ∣λ∣ > 1, we have

∥(z − λ)−1∥A ≲ ∣λ∣p+1

(∣λ∣ − 1)p+1 .

Proof (i): According to (H8), we have

∥χn
1 ∥A = ∥χn∥A ≤ Cnp .(2.3)

It immediately implies that the spectral radius of χ1 satisfies r(χ1) ≤ 1, and then
σ(χ1) ⊂ D. On the other hand, let λ ∈ D and assume that λ − χ1 is invertible in
A. It means that there exists f ∈ A such that (λ − χ1) f = 1. Evaluating at λ gives a
contradiction. Hence, D ⊂ σ(χ1) and we conclude by closeness of σ(χ1).

(ii): Let f ∈ Hol(D) and write

f (z) =
∞

∑
n=0

anzn , z ∈ D.
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It is well known that there exists a constant c > 0 such that an = O(exp(−cn)) as n →
∞. See for instance [23, Theorem 5.7]. Thus according to (H8), we have

∣an ∣∥χn∥A ≲ np exp(−cn).

Thus, g =
∞

∑
n=0

an χn defines a function in A. Now using that convergence in A implies

pointwise convergence, we see that f = g, whence f ∈ A.
(iii): Observe that for ∣λ∣ > 1, the function z �→ 1

z−λ is in Hol(D), and we have

1
z − λ

= −
∞

∑
n=0

zn

λn+1 .

Thus, using (H8),

∥(z − λ)−1∥A ≤
∞

∑
n=0

∥χn∥A
∣λ∣n+1

≤ C
∞

∑
n=0

np

∣λ∣n .

It is easy to check that for every 0 < x < 1 and every p ∈ N, we have
∞

∑
n=0

npxn ≤

p!
(1 − x)p+1 , whence

∥(z − λ)−1∥A ≲ p!

(1 − 1
∣λ∣)

p+1 =
p!∣λ∣p+1

(∣λ∣ − 1)p+1 ,

which concludes the proof. ∎

Remark 2.8 Using similar arguments as in the proof of Lemma 2.7 (i), we can prove
that in our context when X and A satisfy (H1) to (H8), then σ(S) = D.

We now recall the following famous result of Atzmon [4].

Theorem 2.9 (Atzmon) Let E be a Banach space and let T ∈ L(E) whose spectrum
σ(T) = {ζ0} for some ζ0 ∈ T. Suppose that there exists k ≥ 0 such that

∥T n∥ =
n→+∞

O(nk) and log ∥T−n∥ =
n→+∞

o(
√

n).(2.4)

Then (T − ζ0I)k = 0.

Using Cauchy’s inequalities, we can obtain the following version which translates
growth assumptions (2.4) on the iterates of T into growth assumptions on the
resolvant of T. It appears in [13] and we refer to it for the proof of this corollary.
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Corollary 2.10 Let E be a Banach space and let T ∈ L(E) whose spectrum σ(T) =
{ζ0} for some ζ0 ∈ T. Suppose that there exists k ≥ 0 and c > 0 such that

∥(T − λI)−1∥ ≤ c ∣λ∣k

(∣λ∣ − 1)k , ∣λ∣ > 1,

and for all ε > 0, there exists Kε > 0 such that

∥(T − λI)−1∥ ≤ Kε exp( ε
1 − ∣λ∣ ) , ∣λ∣ < 1.

Then (T − ζ0I)k = 0.

3 Proof of Theorem A and Corollary B

We restate Theorem A in the following.

Theorem 3.1 Let X satisfying (H1) to (H3) and let A satisfying (H4) to (H6). Then
there exists N ∈ N∗ such that for every f , g ∈ A satisfying ∣g(z)∣ ≤ ∣ f (z)∣ for every z ∈ D,
we have [gN]X ⊂ [ f ]X.

Proof The proof follows the same lines as [14, Theorem 2.5]. For λ ∈ C∗ define

δλ ∶= inf
z∈D

{∣1 − λg(z)∣ + ∣ f (z)∣} .

Let z ∈ D. If ∣g(z)∣ ≤ 1
2∣λ∣ , then

∣1 − λg(z)∣ ≥ 1 − ∣λ∣ ∣g(z)∣ ≥ 1 − 1
2
= 1

2
.

Otherwise if ∣g(z)∣ ≥ 1
2∣λ∣ , then

∣ f (z)∣ ≥ ∣g(z)∣ ≥ 1
2 ∣λ∣ .

In particular, we get

δλ ≥ min( 1
2

, 1
2 ∣λ∣ ) > 0.

Let us now define Mλ = ∥1 − λg∥A + ∥ f ∥A. Thus, for every z ∈ D, we have

0 < δλ

Mλ
≤ ∣1 − λg(z)∣ + ∣ f (z)∣

Mλ
,

and

∥ 1 − λg
Mλ

∥
A

+ ∥ f
Mλ

∥
A

= 1
Mλ

Mλ = 1.

From (H6), there exists two functions G̃λ , F̃λ ∈ A such that

(1 − λg) G̃λ

Mλ
+ f F̃λ

Mλ
≡ 1 on D and ∥G̃λ∥A , ∥F̃λ∥A ≤ CMA

λ
δA

λ
.
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10 E. Fricain and R. Lebreton

Take now Gλ = G̃λ
Mλ

∈ A and Fλ = F̃λ
Mλ

∈ A. We thus obtain

(1 − λg)Gλ + f Fλ ≡ 1 on D and ∥Gλ∥A , ∥Fλ∥A ≤ CMA−1
λ

δA
λ

.(3.1)

We may assume that the closed ideal I f of A defined by (2.2) is a proper ideal of
A, otherwise by Lemma 2.6, the result is trivial. Let us introduce the quotient map
Π ∶ A�→ A/I f where we recall that the quotient space A/I f is endowed with the
usual norm

∥Π(h)∥A/I f ∶= dist(h, I f ) = inf
φ∈I f

∥h − φ∥A , h ∈ A,

making A/I f a Banach algebra. Using (3.1) and the fact that f Fλ ∈ I f , we see
that Π(1 − λg)Π(Gλ) = 1 for every λ ∈ C∗, where 1 is the unit of A/I f . Thus,
Π(1 − λg) is invertible for every λ ∈ C, and for λ ∈ C∗, we have Π(1 − λg)−1 = Π(Gλ).
In particular, with (3.1), we get that, for every λ ∈ C∗,

∥Π(1 − λg)−1∥A/I f = ∥Π(Gλ)∥A/I f ≤ ∥Gλ∥A ≲ MA−1
λ

δA
λ

.

Now let � ∈ (A/I f )
∗, � ≠ 0, and define

φ(λ) = ⟨Π(1 − λg)−1 , �⟩, λ ∈ C.

The function φ is an entire function. Moreover, for ∣λ∣ > 1, δλ ≥ 1
2∣λ∣ , and we obtain

∣φ(λ)∣ ≲ ∥Π(1 − λg)−1∥A/I f ≲ MA−1
λ ∣λ∣A.

Since Mλ ≤ 1 + ∣λ∣∥g∥A + ∥ f ∥A, we see that

∣φ(λ)∣ = O(∣λ∣2A−1), ∣λ∣ → ∞.(3.2)

We may of course assume that g ≠ 0. For ∣λ∣ < ∥g∥−1
A , note that

(1 − λg)−1 =
∞

∑
n=0

λn gn ,

and thus

φ(λ) =
∞

∑
n=0

⟨Π(gn)∣�⟩λn .

It follows from (3.2) and Liouville’s theorem that, for every n > 2A− 1, we have
⟨Π(gn)∣�⟩ = 0. In particular, for N = [2A], we have ⟨Π(gN)∣�⟩ = 0. Since this holds
for any � ∈ (A/I f )

∗, we get that Π(gN) = 0, that is gN ∈ I f . It then follows from
Lemma 2.6 that [gN]X ⊂ [ f ]X, which concludes the proof. ∎

Remark 3.2 Note that we can take N = [2A] in Theorem 3.1, where A ≥ 1 is the
constant given in (H6).

We restate Corollary B in the following.
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Corollary 3.3 Let X satisfying (H1) to (H3) and let A satisfying (H4) to (H6). Let
f ∈ A and let g ∈ A ∩M(X) such that for every z ∈ D, we have ∣g(z)∣ ≤ ∣ f (z)∣. Suppose
g is cyclic for S in X. Then f is cyclic for S in X.

Proof Since g ∈M(X) is cyclic for S in X, we get from Corollary 2.5 that gm is
also cyclic for S in X for every m ∈ N∗. Moreover, according to Theorem 3.1, there
exists N ∈ N∗ such that [gN]X ⊂ [ f ]X. Then the cyclicity of gN immediately implies
the cyclicity of f. ∎

Corollary 3.4 Let X satisfying (H1) to (H3) and let A satisfying (H4) to (H6). Let
f ∈ A and assume that infD ∣ f (z)∣ > 0. Then f is cyclic for S in X.

Proof Denote by δ = infD ∣ f (z)∣ > 0. Since P is dense in X, the constant function
g = δ χ0 is cyclic for S in X, and we also have trivially that g ∈M(X). The conclusion
now follows from Corollary 3.3. ∎

We can weaken the assumption ∣g(z)∣ ≤ ∣ f (z)∣ in Theorem 3.1 and obtain a similar
conclusion.

Theorem 3.5 Let X satisfying (H1) to (H3) and let A satisfying (H4) to (H6). Let
f , g ∈ A and assume that R(g) ≥ 0 and there exists γ > 1 such that

∣g(z)∣ ≤ (log ∥ f ∥A
∣ f (z)∣)

−γ

, z ∈ D.

Then we have [g]X ⊂ [ f ]X.

Proof The proof is similar to the proof of Theorem 3.1, but we replace Liouville’s
theorem by a Phragmen–Lindelöf theorem. The details are left to the reader. ∎

Remark 3.6 Theorem 3.5 appears in [14] in the case when X =D
p
α the Besov–

Dirichlet space and A =D
p
α ∩ A(D). The proof is similar in our general context.

4 Proof of Theorem C

We restate Theorem C in the following.

Theorem 4.1 Let X satisfying (H1) to (H3) and let A satisfying (H4) to (H8). Assume
that there exists ζ0 ∈ T such that z − ζ0 is cyclic for S inX. Let f ∈ A ∩ A(D) be an outer
function such that Z( f ) = {ζ0}. Then f is cyclic for S in X.

Proof The proof follows the same lines as [14, Theorem 1.1]. Since f is outer, we
have (1 − ∣z∣) log ∣ f (z)∣ → 0 as ∣z∣ → 1. See [34]. In other words, for all ε > 0, there
exists cε > 0 such that for every z ∈ D,

∣ f (z)∣ ≥ cε exp(− ε
2(1 − ∣z∣)) .(4.1)
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12 E. Fricain and R. Lebreton

For λ ∈ C, ∣λ∣ ≠ 1, define

δλ ∶= inf
z∈D

{∣z − λ∣ + ∣ f (z)∣} .

If ∣z − λ∣ ≤ ∣1−∣λ∣∣2 , then

∣1 − ∣λ∣∣
2

≥ ∣∣z∣ − ∣λ∣∣ ≥ ∣1 − ∣λ∣∣ − ∣1 − ∣z∣∣ ,

whence 1 − ∣z∣ ≥ ∣1−∣λ∣∣2 . We thus get from (4.1) that, if ∣z − λ∣ ≤ ∣1−∣λ∣∣2 , then

∣ f (z)∣ ≥ cε exp(− ε
2(1 − ∣z∣)) ≥ cε exp(− ε

∣1 − ∣λ∣ ∣ ) .

In particular, we deduce that for ∣λ∣ ≠ 1, we have

δλ ≥ min(cε exp(− ε
∣1 − ∣λ∣ ∣ ) , ∣1 − ∣λ∣∣

2
) > 0.(4.2)

Let us now define Mλ = ∥χ1 − λ∥A + ∥ f ∥A. Using (H6), there exists Fλ , Gλ ∈ A such
that

(z − λ)Gλ + f Fλ ≡ 1 on D and ∥Gλ∥A , ∥Fλ∥A ≤ C
MA−1

λ
δA

λ
.(4.3)

We may assume that I f ≠ A, otherwise, according to Lemma 2.6 and (H7), P ⊂ [ f ]X,
and we get the cyclicity of f. Let us introduce the quotient map Π ∶ A�→ A/I f and
the operator

T ∶ A/I f �→ A/I f
Π(g) �→ Π(z)Π(g).

We want to apply Corollary 2.10 to T. For this purpose, we need to check that T satisfies
the following three conditions:
(i) Its spectrum σ(T) = {ζ0}.
(ii) There exists k ≥ 0 and c > 0 such that

∥(T − λI)−1∥ ≤ c ∣λ∣k

(∣λ∣ − 1)k , ∣λ∣ > 1,

(iii) For all ε > 0, there exists Kε > 0 such that

∥(T − λI)−1∥ ≤ Kε exp( ε
1 − ∣λ∣ ) , ∣λ∣ < 1.

(i): Since T is the multiplication operator by Π(z) on the Banach algebra A/I f , it
is easy to check that σ(T) ⊂ σ(Π(z)). Now, since σ(T) ≠ ∅, it remains to show that
σ(Π(z)) ⊂ {ζ0}. So take μ ∈ C/{ζ0}. Since z �→ ∣z − μ∣ + ∣ f (z)∣ is continuous on the
compact set D, there exists z0 ∈ D such that

δ = inf
z∈D

{∣z − μ∣ + ∣ f (z)∣} = ∣z0 − μ∣ + ∣ f (z0)∣ .
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Using that Z( f ) = {ζ0} and μ ≠ ζ0, we see that δ > 0. Therefore, by (H6), there exists
g1 , g2 ∈ A such that (z − μ)g1 + f g2 ≡ 1 on D. In particular, (Π(z) − μ1)Π(g1) =
1 and Π(z) − μ1 is invertible in A/I f . Hence, μ ∈ C/σ(Π(z)) and C/{ζ0} ⊂
C/σ(Π(z)). In other words, σ(Π(z)) ⊂ {ζ0}, and thus σ(T) = {ζ0}.

(ii): Let ∣λ∣ > 1. According to Lemma 2.7, (z − λ)−1 ∈ A. Since (T − λI)−1 is the
multiplication operator by π((z − λ)−1) on A/I f , we have

∥(T − λI)−1∥ ≤ ∥Π((z − λ)−1)∥A/I f ≤ ∥(z − λ)−1∥A .

Lemma 2.7 implies now that

∥(T − λI)−1∥ ≲ ∣λ∣p+1

(∣λ∣ − 1)p+1 .

(iii): Let ∣λ∣ < 1. Since (T − λI)−1 is the multiplication operator by (Π(z) − λ1)−1

on A/I f , we have
∥(T − λI)−1∥ ≤ ∥(Π(z) − λ1)−1∥A/I f .

But, from (4.3), we have Π(z − λ)Π(Gλ) = 1. Thus, (Π(z) − λ1)−1 = Π(Gλ), which
implies

∥(T − λI)−1∥ ≤ ∥Π(Gλ)∥A/I f ≤ ∥Gλ∥A ≤ C
MA−1

λ
δA

λ
.

Observe that, for ∣λ∣ < 1, we have ∥ f ∥A ≤ Mλ ≤ 1 + ∥χ1∥A + ∥ f ∥A, which gives that

∥(T − λI)−1∥ ≲ 1
δA

λ
.

Let us remark that
2cε

1 − ∣λ∣ exp(− ε
1 − ∣λ∣ ) → 0, as ∣λ∣ → 1−.

Then, for all ε > 0, there exists K′ε > 0 such that for all λ ∈ D,

2cε

1 − ∣λ∣ exp(− ε
1 − ∣λ∣ ) ≤ K′ε ,

that is
cε

K′ε
exp(− ε

1 − ∣λ∣ ) ≤ 1 − ∣λ∣
2

.

Therefore, from (4.2), we get that

δλ ≥ K′′ε exp(− ε
1 − ∣λ∣ ) ,

where K′′ε = min(cε , cε
K′ε
) > 0. Finally, we obtain

∥(T − λI)−1∥ ≲ 1
K ′′A

ε
exp( Aε

1 − ∣λ∣ ) .

Changing ε by ε/A if necessary, we then deduce (iii).
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14 E. Fricain and R. Lebreton

Therefore, the operator T satisfies the assumptions of Corollary 2.10, and we get
that (T − ζ0I)p+1 = 0. In other words,

(Π(z) − ζ01)p+1 = Π((z − ζ0)p+1) = 0.

Thus, (z − ζ0)p+1 ∈ I f ⊂ [ f ]X. Since z − ζ0 is cyclic for S in X and z − ζ0 ∈M(X), we
get from Corollary 2.5 that (z − ζ0)p+1 is also cyclic for S in X. Finally, [ f ]X = X and
f is cyclic for S in X. ∎

The assumption that z − ζ0 is cyclic for S in X (in Theorem C) is linked with the
point spectrum σp(S∗) of S∗ where S∗ is the adjoint operator of S ∶ X�→ X, and with
the property known as bounded point evaluation. We say that ζ ∈ T is a bounded point
evaluation of X if there exists a constant C > 0 such that for every p ∈ P, we have

∣p(ζ)∣ ≤ C∥p∥X .

Since the polynomials are dense in X, this means that the functional p �→ p(ζ)
extends uniquely to a continuous functional on X.

Lemma 4.2 Let X satisfying (H1) to (H3) and let ζ ∈ T. The following assertions are
equivalent:
(i) The point ζ ∈ σp(S∗).
(ii) ζ is a bounded point evaluation of X.
(iii) The function z − ζ is not cyclic for S in X.

Proof (i) &⇒ (ii): Let ζ ∈ σp(S∗). Hence, there is kζ ∈ X∗, kζ ≠ 0, such that
S∗kζ = ζkζ . In particular, on one hand, we have, for every k ≥ 0,

⟨zk ∣S∗kζ⟩ = ⟨zk+1∣kζ⟩,

and on the other hand, we also have

⟨zk ∣ζkζ⟩ = ζ⟨zk ∣kζ⟩.

Hence for every k ≥ 0,

⟨zk+1∣kζ⟩ = ζ⟨zk ∣kζ⟩,

and by induction, we get

⟨zk ∣kζ⟩ = ζ k⟨1∣kζ⟩.

Observe that necessarily ⟨1∣kζ⟩ ≠ 0, otherwise the previous relation would imply that
kζ vanishes on the set of polynomials which is dense inX, but that contradicts the fact
that kζ ≠ 0. Hence, normalizing kζ if necessary, we may assume that ⟨1∣kζ⟩ = 1 and we
thus deduce

⟨zk ∣kζ⟩ = ζ k , k ≥ 0.

By linearity, for every p ∈ P, we have

⟨p∣kζ⟩ = p(ζ),
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and finally we obtain

∣p(ζ)∣ ≤ ∥kζ∥X∗∥p∥X .

(ii) &⇒ (iii): Assume that there exists a constant C > 0 such that for every
p ∈ P, we have

∣p(ζ)∣ ≤ C∥p∥X ,(4.4)

and argue by absurd, assuming also that z − ζ is cyclic for S. Let ε > 0. Then there
exists a polynomial q such that

∥(z − ζ)q − 1∥X ≤ ε.

Consider the polynomial p = (z − ζ)q − 1 and observe that p(ζ) = −1. According to
(4.4), we thus have

1 ≤ Cε,

and this gives a contradiction for sufficiently small ε > 0.
(iii) &⇒ (i): Assume that z − ζ is not cyclic for S in X. According to Hahn–

Banach Theorem, there exists φ ∈ X∗, φ ≠ 0 such that φ vanishes on [z − ζ]X. In
particular, for every k ≥ 0, we have

⟨zk ∣S∗φ − ζφ⟩ = ⟨zk(z − ζ)∣φ⟩ = 0.

By linearity, we get that for every p ∈ P,

⟨p∣S∗φ − ζφ⟩ = 0,

and since P is dense in X, we deduce that S∗φ = ζφ. But φ ≠ 0, and thus ζ ∈ σp(S∗).
∎

5 Some concrete examples

We study in this section two applications.

5.1 De Branges–Rovnyak spaces

To every non-constant function b in the closed unit ball of H∞, we associate the de
Branges–Rovnyak space H(b) defined as the reproducing kernel Hilbert space on D

with positive definite kernel given by

kb
λ(z) = 1 − b(λ)b(z)

1 − λz
, λ, z ∈ D.

It is well known that H(b) is contractively contained into H2, and moreover, it is
invariant with respect to S if and only if log(1 − ∣b∣) ∈ L1(T) [24, Corollary 20.20].

So from now on, we assume that b is a non-constant function in the closed unit ball
of H∞ which satisfies log(1 − ∣b∣) ∈ L1(T), and we denote by Sb the restriction of the
shift operator on H(b). Note that, for every λ ∈ D, the evaluation map f �→ f (λ)
is continuous on H(b). It is also known that when log(1 − ∣b∣) ∈ L1(T), the set of
polynomials P is dense in H(b). Hence, H(b) satisfies (H1) to (H3). We refer the
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16 E. Fricain and R. Lebreton

reader to [24, 33] for an in-depth study of de Branges–Rovnyak spaces and their
connections to numerous other topics in operator theory and complex analysis.

Now considerA =M(H(b)) the Banach algebra of multipliers ofH(b). Of course
A satisfies (H4a) (and thus of course (H4)) and also (H5) according to Lemma 2.1.
Now we immediately get from Theorem 3.1 and Corollary 3.3 the following result.

Theorem 5.1 Let b be a function in the closed unit ball of H∞ such that log(1 − ∣b∣) ∈
L1(T). Assume that M(H(b)) satisfies (H6). Let f , g ∈M(H(b)) which satisfies
∣g(z)∣ ≤ ∣ f (z)∣ for every z ∈ D.
(1) There exists N ∈ N∗ such that

[gN]H(b) ⊂ [ f ]H(b).

(2) Moreover, if g is cyclic for Sb in H(b), then f is also cyclic for Sb in H(b).

Proof Since H(b) satisfies (H1) to (H3) and M(H(b)) satisfies (H4) to (H6), it
suffices to apply Theorem 3.1 and Corollary 3.3. ∎

The previous result leads to the following question.

Question 5.2 Let b be a function in the closed unit ball of H∞ such that log(1 − ∣b∣) ∈
L1(T). Can we characterize those b such that M(H(b)) satisfies (H6)?

Remark 5.3 In [21, Theorem 6.5], the authors prove that when b is a rational (not
inner) function in the closed unit ball of H∞, thenM(H(b)) satisfies (H6) with some
constant A > 2 + m and m is the maximum of the multiplicities of the zeros of the
pythagorean mate a of b (see (5.4) for the definition of a). So our results apply in this
case. It would be interesting to see if we could have more examples. It should also be
noted that the cyclicity of Sb in H(b) has been studied recently in [6, 18, 22] where
different technics were developed. In particular, in the case when b is a rational (not
inner) function in the closed unit ball of H∞, the cyclic vectors have been completely
characterized. However, even in this case, Part (1) of Theorem 5.1 seems to be new.

With regard to the application of Theorem 4.1, we need to recall the notion of angu-
lar derivatives. We say that b has an angular derivative in the sense of Carathéodory at
ζ ∈ T if b and b′ both have a non-tangential limit at ζ and ∣b(ζ)∣ = 1. We denote by
E0(b) the set of such points. It is known that for ζ ∈ T, every function f ∈H(b) has a
non-tangential limit at ζ if and only if ζ ∈ E0(b). In particular, if ζ ∈ E0(b), then there
exists C > 0 such that

∣ f (ζ)∣ ≤ C∥ f ∥H(b), f ∈H(b).(5.1)

See [24, Theorem 21.1]. It is also known [24, Theorem 28.37] that for ζ ∈ T, we have

ζ is an eigenvalue for S∗b if and only if ζ ∈ E0(b),(5.2)

where here S∗b denotes the adjoint of Sb in the Banach sense. We then get from
Theorem 4.1 the following result.
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Theorem 5.4 Let b be a function in the closed unit ball of H∞ such that log(1 − ∣b∣) ∈
L1(T). Assume thatM(H(b)) satisfies (H6) and (H8). Let f ∈M(H(b)) ∩ A(D) and
assume that Z( f ) = {ζ0} for some ζ0 ∈ T. Then the following assertions are equivalent.
(i) The function f is cyclic for Sb .
(ii) The function f is outer and ζ0 ∉ E0(b).

Proof (i) &⇒ (ii): If f is cyclic for Sb in H(b), then since H(b) is contractively
contained in H2, the function f is also cyclic for S in H2. Thus, by Beurling’s theorem,
f should be outer. On the other hand, assume that ζ0 ∈ E0(b). Let ε > 0. There exists
p ∈ P such that

∥p f − 1∥H(b) ≤ ε.

Hence, according to (5.1), we get

∣p(ζ0) f (ζ0) − 1∣ ≤ Cε.

Since f (ζ0) = 0, this gives 1 ≤ Cε and thus a contradiction for sufficiently small ε.
Therefore, ζ0 ∉ E0(b).

(ii) &⇒ (i): Assume that f is outer and ζ0 ∉ E0(b). According to (5.2), we know
that ζ0 is not in the point spectrum of S∗b . Then it follows from Lemma 4.2 that z − ζ0
is cyclic for Sb . SinceH(b) satisfies (H1) to (H3) andM(H(b)) satisfies (H4) to (H8),
we can apply Theorem 4.1 to get that f is cyclic for Sb in H(b). ∎

The previous result leads to the following question.

Question 5.5 Let b be a function in the closed unit ball of H∞ such that log(1 − ∣b∣) ∈
L1(T). Can we characterize those b such that there exists C > 0 and p ∈ N with

∥χn∥M(H(b)) ≤ Cnp , for every n ≥ 0 ?

We can give a positive answer in the case when b is a rational (not inner) function
in the closed unit ball of H∞.

Proposition 5.6 Let b be a rational (not inner) function in the closed unit ball of H∞.
Then there exists C > 0 and p ∈ N such that

∥χn∥M(H(b)) ≤ Cnp , for every n ≥ 0.

Proof Since b is a rational (not inner) function in the closed unit ball of H∞, then
it is known that M(H(b)) = H∞ ∩H(b). See [20]. According to Lemma 2.1, we get
that

∥χn∥M(H(b)) ≲ ∥χn∥∞ + ∥χn∥H(b) = 1 + ∥χn∥H(b).
Thus, it is sufficient to prove that

∥χn∥H(b) ≲ np ,(5.3)

for some p ∈ N. When b is a rational (not inner) function in the closed unit ball
of H∞, we know that there exists a unique rational outer function a such
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that a(0) > 0 and

∣a∣2 + ∣b∣2 = 1 on T.

See [19]. We may assume that ∥b∥∞ = 1, otherwise H(b) = H2 (with equivalent
norms) and the result is trivial. Thus, a has at least one zero on T. Factorize a as

a(z) = a1(z)
s
∏
i=1

(z − ζ i)m i ,(5.4)

where ζ i ∈ T, m i ≥ 1, s ≥ 1 and a1 is rational function without zeros (and poles) in D.
If the series expansion of b/a ∈ Hol(D) has the form

b(z)
a(z) =

∞

∑
j=0

c jz j , ∣z∣ < 1,

then it is known [24, Theorem 24.12] that

∥χn∥2
H(b) = 1 +

n
∑
j=0

∣c j ∣2 .(5.5)

From Cauchy’s inequalities, we have

∣c j ∣ =
...........

( b
a )
( j)(0)
j!

...........
≤ inf

0<r<1

M(r)
r j ,

where

M(r) = sup
∣z∣=r

∣b(z)
a(z) ∣ , 0 < r < 1.

Using (5.4), for ∣z∣ = r, we have

∣a(z)∣ ≳
s
∏
i=1

∣z − ζ i ∣m i ≥
s
∏
i=1

(∣ζ i ∣ − ∣z∣)m i = (1 − r)N ,

where N = ∑s
i=1 m i . We get that M(r) ≤ (1 − r)−N and thus

∣c j ∣ ≲ inf
0<r<1

(1 − r)−N r− j .

If we introduce φ(r) = (1 − r)−N r− j , 0 < r < 1, it is not difficult to check that φ has
minimum at r = 1 − N

j+N = j
j+N , which gives that

∣c j ∣ ≲ (1 + j
N
)

N
(1 + N

j
)

j

≲ jN as j →∞.

Thus
n
∑
j=0

∣c j ∣2 ≲
n
∑
j=0

j2N ≤ n2N+1 .

Then (5.3) follows from (5.5), which concludes the proof. ∎
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5.2 Besov–Dirichlet spaces

For p ≥ 1 and α > −1, the Besov–Dirichlet space Dp
α consists of functions f holomor-

phic on D satisfying

∥ f ∥ p
D

p
α
∶= ∣ f (0)∣p + (1 + α)∫

D

∣ f ′(z)∣p (1 − ∣z∣2)α dA(z) < ∞.

Let us recall that for p = 2 and α = 1, Dp
α = H2 the Hardy space of the unit disc, and

for p = 2 and α = 0, Dp
α =D, the classical Dirichlet space. This example of Dp

α was
studied in details by Egueh–Kellay–Zarrabi in [14], which was a source of inspiration
for us. See also [13].

Let us recall that if 1 < p < α + 1, then H p is continuously embedded in D
p
α . Hence,

every outer functions f ∈ H p is cyclic for the shift in D
p
α . See [28, Proposition 3.1].

On the other hand, if p > α + 2, then D
p
α ⊂ A(D) becomes a Banach algebra, and

consequently, the only cyclic outer functions are the invertible functions. Thus, a
function f ∈Dp

α which vanishes at least at one point in D is not cyclic for the shift
in D

p
α . See [13, 28].

We will assume from now on that α + 1 ≤ p ≤ α + 2.

Lemma 5.7 Let p > 1 such that α + 1 ≤ p ≤ α + 2 and let A =D
p
α ∩ A(D) endowed

with the norm

∥ f ∥ p
A
∶= ∥ f ∥ p

∞ + ∫
D

∣ f ′(z)∣p (1 − ∣z∣2)α dA(z).

Then D
p
α satisfies (H1) to (H3) and A satisfies (H4) to (H8).

Proof It is well known that Dp
α satisfies (H1) to (H3). See [3, 25, 37, 40]. It is also

known that A is an algebra. Let us justify that A satisfied (H4b). We obviously have
A ⊂ X =D

p
α . Moreover, for f ∈ A, let us consider σn( f ) the nth Fejér mean of f. Since

f ∈ A(D), we have ∥σn( f ) − f ∥∞ → 0 as n →∞. On the other hand, we also have
∥σn( f ) − f ∥Dp

α
→ 0 as n →∞ (see [27]). Hence, we get that ∥σn( f ) − f ∥A → 0 as n →

∞, and we conclude that the polynomials are dense in A.
It is clear that A satisfies (H5) because for every λ ∈ D and every f ∈ A,

we have

∣ f (λ)∣ ≤ ∥ f ∥∞ ≤ ∥ f ∥A .

The fact that A satisfies (H6), with constant A ≥ 4, is a deep result of Tolokon-
nikov [37].

Clearly A satisfies (H7). So it remains to check that A satisfies (H8). We have

∥χn∥p
A
= ∥χn∥p

∞ + ∫
D

∣χ′n(z)∣p(1 − ∣z∣2)α dA(z)

= 1 + np ∫
D

∣z∣(n−1)p(1 − ∣z∣2)α dA(z)

≤ 1 + np ∫
2π

0
∫

1

0
(1 − r2)α r dr dθ

2π
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≤ 1 + np ∫
1

0
(1 − r)α dr

≤ 1 + np

α + 1
,

which gives (H8), and concludes the proof. ∎

Using Theorem 3.1 and Corollary 3.3, we (partially) recover the following result
due to Egueh–Kellay–Zarrabi in [14].

Theorem 5.8 (Egueh–Kellay–Zarrabi) Let p > 1 such that α + 1 ≤ p ≤ α + 2. Let
f , g ∈Dp

α ∩ A(D) and assume that ∣g(z)∣ ≤ ∣ f (z)∣ for every z ∈ D.
(1) There exists N ∈ N∗ such that

[gN]Dp
α
⊂ [ f ]Dp

α
.

(2) Moreover, if g is cyclic for S in D
p
α and g ∈M(Dp

α), then f is also cyclic for
S in D

p
α .

Proof According to Lemma 5.7, we can apply Theorem 3.1 and Corollary 3.3 which
immediately gives the result. ∎

It should be noted that Theorem 5.8 is an extension of a result of Brown-Shields
[10]. See also [1].

As an application of Theorem 4.1, we recover now the following result of Egueh–
Kellay–Zarrabi in [14].

Theorem 5.9 (Egueh–Kellay–Zarrabi) Let p > 1 such that α + 1 ≤ p ≤ α + 2. Let f ∈
D

p
α ∩ A(D) be an outer function and assume that Z( f ) = {ζ0} for some ζ0 ∈ T. Then f

is cyclic for S in D
p
α .

Proof It is known that for every ζ ∈ T, z − ζ is cyclic for S in D
p
α . See [13, Proposi-

tion 4.3.8]. Then, according to Lemma 5.7, we can apply Theorem 4.1 which gives the
result. ∎

Note that the case of the classical Dirichlet spaceDwas discovered by Hedenmalm
and Shields [26] and generalized by Richter and Sundberg [31]. Theorem 5.9 was
already obtained by Kellay, Lemanach and Zarrabi in [28] for α + 1 < p ≤ α + 2 using
technics from [26]. Thanks to [26, Theorem 3], as observed in [14], Theorem 5.9
remains true under the assumption that Z( f ) is a countable set.

5.3 Dirichlet type spaces

Given a finite positive Borel measure μ on the closed unit disc D, let

Uμ(z) = ∫
D

(log ∣ 1 − wz
z − w

∣ 2) dμ(w)
1 − ∣w∣2 + ∫

T

1 − ∣z∣2
∣ζ − z∣2 dμ(ζ), z ∈ D.
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The function Uμ is a positive superharmonic function on D and we associate to it the
Dirichlet type space D(μ) defined as the space of analytic functions f on D satisfying

∫
D

∣ f ′(z)∣2Uμ(z) dA(z) < ∞,

where dA stands the normalized area measure. It is known that D(μ) ⊂ H2 and if for
f ∈D(μ), we define

∥ f ∥2
D(μ) = ∥ f ∥2

2 + ∫
D

∣ f ′(z)∣2Uμ(z) dA(z),(5.6)

it is known that D(μ) is a reproducing kernel Hilbert space. These Dirichlet type
spaces are important in model theory. See [2]. It turns out that these spaces also enter
in our general framework. The key result to check that our assumptions are satisfied
is the following deep result of Shuabing Luo [29]. Since the result is not exactly stated
like this, we shall explain how to get this following version

Theorem 5.10 (S. Luo) Let μ be a finite positive measure onD. There exists C > 0 such
that for every f1 , f2 ∈M(D(μ)) satisfying

0 < δ ≤ ∣ f1∣ + ∣ f2∣ on D, and ∥ f1∥M(D(μ)) + ∥ f2∥M(D(μ)) ≤ 1,

there exists g1 , g2 ∈M(D(μ)) such that f1 g1 + f2 g2 ≡ 1 on D and

∥g1∥M(D(μ)) , ∥g2∥M(D(μ)) ≤
C
δ4 .

Proof Let f1 , f2 ∈M(D(μ)) satisfying

0 < δ ≤ ∣ f1∣ + ∣ f2∣ on D, and ∥ f1∥M(D(μ)) + ∥ f2∥M(D(μ)) ≤ 1.

Then it is proved in [29] that, for every h ∈D(μ), there exists φ1 , φ2 ∈D(μ) such that

f1φ1 + f2φ2 ≡ h on D,

and for � = 1, 2, we have

∥φ�∥D(μ) ≲ δ−4∥h∥D(μ) .

But is known that D(μ) is a reproducing kernel Hilbert space with a complete
Nevanlinna–Pick kernel [35]. Hence, it satisfies the Toeplitz Corona Theorem. See
[5, 39]. Thus, it follows that there exists g1 , g2 ∈M(D(μ)) such that

f1 g1 + f2 g2 ≡ 1 on D,

and for � = 1, 2, we have

∥g�∥M(D(μ)) ≲ δ−4 ,

which concludes the proof. ∎

Lemma 5.11 Let μ be a finite positive measure on D, let X =D(μ) and A =
M(D(μ)). Then X satisfies (H1) to (H3) and A satisfies (H4) to (H8).
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Proof It is well known that D(μ) satisfies (H1) to (H3). See [2]. Moreover, A
satisfies trivially (H4a) and (H7), as well as (H5) according to Lemma 2.1. The
hypothesis (H6) follows from Luo’s theorem with A ≥ 4. It thus remains to check that
M(D(μ)) satisfies (H8). According to [2, Theorem IV.1.9], for every g ∈D(μ), we
have

∫
D

∣g′(z)∣2Uμ(z) dA(z) = ∫
D

Dz(g) dμ(z),

where

Dz(g) = ∫
T

∣ g(z) − g(ζ)
z − ζ

∣
2

dm(ζ),

and m is the normalized Lebesgue measure on T. Let f ∈D(μ). Using (5.6), we get
that

∥χn f ∥2
D(μ) = ∥χn f ∥2

2 + ∫
D

∣(χn f )′(z)∣2Uμ(z) dA(z)

= ∥ f ∥2
2 + ∫

D

Dz(χn f ) dμ(z).(5.7)

Observe now that

Dz(χn f ) = ∫
T

∣ zn f (z) − ζn f (ζ)
z − ζ

∣
2

dm(ζ),

and straightforward computations show that

∣ zn f (z) − ζn f (ζ)
z − ζ

∣
2

≤ 2n2∣ f (z)∣2 + 2 ∣ f (z) − f (ζ)
z − ζ

∣
2

.

We then deduce that

Dz(χn f ) ≤ 2n2∥ f ∥2
2 + 2Dz( f ),

whence, according to (5.7), we obtain

∥χn f ∥2
D(μ) ≤ ∥ f ∥2

2 + 2n2 μ(D)∥ f ∥2
2 + 2∫

D

Dz( f ) dμ(z)

≤ 2∥ f ∥2
D(μ) + 2n2 μ(D)∥ f ∥2

D(μ)

≲ n2∥ f ∥2
D(μ) .

Therefore, we deduce that ∥χn∥M(D(μ)) ≲ n, which proves (H8). ∎

Using Theorem 3.1 and Corollary 3.3, we can recover a partial version of a result of
Richter–Sundberg [30, Corollary 5.5] and Aleman [2].

Theorem 5.12 (Richter–Sundberg, Aleman) Let μ be a finite positive measure on D,
and let f , g ∈M(D(μ)) and assume that ∣g(z)∣ ≤ ∣ f (z)∣ for every z ∈ D.
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(1) There exists N ∈ N∗ such that

[gN]D(μ) ⊂ [ f ]D(μ).

(2) Moreover, if g is cyclic for S in D(μ), then f is also cyclic for S in D(μ).

Proof According to Lemma 5.11, we can apply Theorem 3.1 and Corollary 3.3 which
immediately gives the result. ∎

It should be noted that Theorem 5.12 is proved in [30] with N = 1 and with the
weaker assumption that f , g ∈D(μ) but with a measure μ onT. The case of a measure
on the closed unit disc is obtained in [2] with N = 1. In both papers, the result is
obtained using radial approximations technics.

As an application of Theorem 4.1, we get the following result.

Theorem 5.13 Let μ be a finite positive measure on D and let f ∈M(D(μ)) ∩ A(D)
be an outer function and assume that Z( f ) = {ζ0} for some ζ0 ∈ T which is not a
bounded point evaluation of D(μ). Then f is cyclic for S in D(μ).

Proof Since ζ0 is not a bounded point evaluation of D(μ), Lemma 4.2 implies
that z − ζ0 is cyclic for S in D(μ). Then, according to Lemma 5.11, we can apply
Theorem 4.1 which gives the result. ∎

It should be noted that in [15] (in the case when μ is a measure on T), O. El-Fallah,
Y. Elmadani and K. Kellay proved that ζ is a bounded point evaluation of D(μ) if and
only if cμ(ζ) > 0, where cμ is the Choquet capacity associated to D(μ). Moreover,
they also showed that when μ has countable support, then a function f ∈D(μ) is a
cyclic vector for the shift precisely when f is an outer function and cμ(Z( f )) = 0.
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