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In this work we show that horizontal gradients of temperature and salinity with
compensating effects on density can drive thermohaline intrusion in the fluid layer below.
Specifically, different types of double diffusive convection generate differential vertical
fluxes from the top boundary, which then sustain horizontal temperature and salinity
gradients within the bulk. Interleaving layers develop in the bulk and slope downward
towards the cold fresh side, which are of the diffusive type. New layers emerge near
the bottom boundary and shift the existing layers upward due to the density difference
induced by the divergence of the vertical fluxes through the top surface. Detailed analyses
reveal that the present intrusion is consistent with those in the narrow fronts, and both
layer thickness and current velocity follow the corresponding scaling laws. Such intrusion
process provides an extra path to transfer heat and salinity horizontally towards the cold
and fresh side, but transfer the density anomaly towards the warm and salty side. These
findings extend the circumstances where thermohaline intrusions may be observed.
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1. Introduction

Lateral gradients of temperature and salinity are omnipresent in the ocean, and
thermohaline intrusions and interleaving often occur in these areas (Woods, Onken &
Fischer 1986; Holbrook et al. 2003; Ruddick & Richards 2003; Timmermans & Marshall
2020). Thermohaline intrusions are of great importance since they generate fine-scale
thermohaline structures, drive lateral flux and mixing and affect the evolution of mesoscale
vortices (Merryfield 2000; Lee & Richards 2004; Ruddick, Oakey & Hebert 2010;
Sarkar et al. 2015; Bebieva & Timmermans 2019; Tang et al. 2019). Numerous studies
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have been carried out to understand the formation mechanism and transport properties
of thermohaline intrusions and interleaving (Ruddick 2003; Ruddick & Kerr 2003;
Krishnamurti 2006). One of the characteristic features of the interleaving is a set of
vertically stacked layers with alternating current directions, and double diffusive mixing
is believed to be one of the key mechanisms which induces and maintains the layering
morphology (Radko 2013; Radko & Sisti 2017).

Double diffusive convection (DDC) happens when the fluid density depends on two
scalars which have very different molecular diffusivities and experience certain gradients.
The difference in diffusivities of temperature and salinity is usually two orders of
magnitude, and the ocean is prone to double diffusive mixing (You 2002). Since the
groundbreaking work of Stern (1967), various studies have proved that double diffusive
mixing can generate interleaving unstable modes for different frontal configurations,
which agree with the field observations in many aspects (Ruddick 2003; Ruddick & Kerr
2003; Radko 2013). The key mechanism is that the double diffusive transport between
interleaving layers can further enhance the stratification and the intrusions.

In most of the existing studies, the interleaving and layering usually happen within the
water mass body which experiences the vertical and horizontal gradients of temperature
and salinity, such as the uniform gradient configuration and heated sidewall configuration,
e.g. see Ruddick (2003), Krishnamurti (2006), Simeonov & Stern (2007) and Hebert
(2011), to name a few. In those configurations, intrusion layers develop at the same depth
where the scalar gradients are present. Experiments also demonstrated that the intrusion
can grow near a cooled sidewall into the regions where the horizontal gradients are not
preset (Malki-Epshtein, Phillips & Huppert 2004). Here, by direct numerical simulation
(DNS), we reveal that surface gradients in temperature and salinity can generate horizontal
gradients in the fluid layer below through double diffusive processes. These gradients
subsequently lead to thermohaline interleaving and spontaneous layering. Briefly, surface
gradients can be a reason for the development of intrusion underneath.

The rest of the paper is organized as follows. In § 2 we describe the flow configuration,
the governing equations and the numerical method. Next, in § 3, we discuss the evolution
of flow morphology from the initial field. Then, in § 4, we present analyses concerning
the statistically steady state, including the interleaving layers and the horizontal transport
properties. Finally, in § 5 we provide the conclusions of the study.

2. The governing equations and numerical method

We consider a Cartesian box with the height H in the z-direction and a length L in the
y-direction. Gravity is in the negative z-direction. The flow is statistically homogeneous
in the x-direction. At the top boundary both temperature and salinity increase along
the y-direction with two homogeneous regions at the two ends. Such distributions of
two scalars will simultaneously drive the convection flow in the domain. Hereafter, we
respectively refer to the (x, y, z) directions as the spanwise, streamwise and vertical
directions, since the convection motions are mainly in the y − z-plane, as shown later.
An illustrative sketch of the flow configuration is shown in figure 1.

The fluid density is assumed to be linearly dependent on both temperature and salinity as
ρ∗ = ρ∗

0 [1 − βTT∗ + βSS∗]. Here, ρ∗ is density with ρ∗
0 being the value at the reference

state; T∗ and S∗ are the deviations of temperature and salinity from the reference state,
respectively. From now on the asterisk stands for the dimensional quantities. The parameter
βT is the thermal expansion coefficient; βS is the coefficient of the density increase due to
salinity change. The Oberbeck–Boussinesq approximation is employed for the governing
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Figure 1. Sketch showing the flow domain with boundary conditions in the y–z plane. The two arrows at the
two ends inside the domain indicate the direction of the convection cell if the flow is driven only by one of the
two scalar gradients.

equations, which read

∂tu∗ + u∗ · ∇u∗ = −∇p∗ + ν∇2u∗ + g(βTT∗ − βSS∗)ez, (2.1a)

∂tT∗ + u∗ · ∇T∗ = κT∇2T∗, (2.1b)

∂tS∗ + u∗ · ∇S∗ = κS∇2S∗, (2.1c)

∇ · u∗ = 0. (2.1d)

Here, u∗ is velocity, p∗ is pressure, ν is kinematic viscosity, g is the gravitational
acceleration and ez is the unit vector in the z-direction; κT and κS are the two molecular
diffusivities. In the first term on the right-hand side of (2.1a) the density has been absorbed
into the pressure. We then non-dimensionalize the flow quantities by the free-fall velocity√

gβTΔTH, the domain height H and the total scalar increments ΔT and ΔS along the top
surface, respectively. The non-dimensional form of the governing equations is then

∂tu + u · ∇u = −∇p + Pr1/2Ra−1/2∇2u + (T − ΛS)ez, (2.2a)

∂tT + u · ∇T = Pr−1/2Ra−1/2∇2T, (2.2b)

∂tS + u · ∇S = Pr1/2Ra−1/2Sc−1∇2S, (2.2c)

∇ · u = 0. (2.2d)

The control parameters include the Prandtl number, the Schmidt number, the thermal
Rayleigh number and the density ratio, which are defined, respectively, as

Pr = ν

κT
, Sc = ν

κS
, Ra = gβTH3ΔT

νκT
, Λ = βSΔS

βTΔT
. (2.3a–d)

Note that Ra measures the strength of the temperature difference; Λ represents the relative
strength of the salinity difference compared with that of temperature difference, i.e. the
ratio of the density anomaly induced by the salinity difference to that by the temperature
difference. Another important parameter is the aspect ratio of the domain, namely the ratio
between the domain length and height Γ = L/H.

In this study the Prandtl number is fixed at Pr = 7, and the Schmidt number at
Sc = 21. Note that Sc = 21 is much smaller than the typical value in the ocean, of
approximately 700 ∼ 1000. However, large Sc requires very fine grids and presents a big
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Case number Ra Λ Pr Sc Γ Nx Ny Nz ttotal tstatistics

1 108 1.0 7 21 4 128 512 288 28 000 20 000
2 109 1.0 7 21 4 128 512 288 35 000 20 000
3 1010 1.0 7 21 4 192 768 384 45 000 20 000
4 108 1.0 7 21 8 128 1024 288 26 000 20 000

Table 1. Summary of the numerical set-up. Columns from left to right are: case number, Rayleigh number,
density ratio, Prandtl number, Schmidt number, the aspect ratio of domain, the resolutions in each direction,
the total simulation time and the time period during which the statistics are sampled.

challenge for DNS. Therefore, a smaller Sc = 21 is chosen in the present study, which
is a common treatment in DDC simulations (Stellmach et al. 2011; Paparella & von
Hardenberg 2012). Here, we set Λ = 1 so that the effects of temperature and salinity on
the density compensate each other. For different cases we change Ra and Γ .

The governing equations (2.2a)–(2.2d) and the continuity equation are numerically
solved by our in-house code with the finite-difference and fraction of time step method,
which has been extensively used for wall-turbulence and convection flows (Ostilla-Mónico
et al. 2015). In the present study the multi-grid method is not used, mainly due to the
relatively small Schmidt number Sc = 21. The two endwalls in the streamwise direction
are imposed by an immersed-boundary technique. The bottom wall and two endwalls in the
streamwise direction are no slip for velocity and adiabatic for two scalars. The top surface
is free slip and has increasing T and S along the y-direction, see the curve in figure 1. At
both ends of the top surface, temperature and salinity are uniform over a width of L/8
with either low or high values. Between the two regions a smooth step function is used for
the scalar distribution. In the spanwise direction we fix the width as H and use periodic
boundary conditions. Initially, the fluid is at rest and with uniform temperature and salinity
distributions at ΔT/2 and ΔS/2, respectively. Small perturbations are added to both scalar
fields to trigger the flow.

The details of the numerical simulations are summarized in table 1. The first three
cases are run with fixed aspect ratio Γ = L/H = 4, and increasing Ra = 108, 109 and
1010. For the fourth case we use a larger aspect ratio of Γ = 8 and Ra = 108, in order to
investigate the effects of the domain length. As will be shown in the following sections,
the evolution of the system has a very large time scale. Therefore, the simulations have
to be run for a very long time period. For example, the shortest run here is already over
25 000 non-dimensional time units. This brings up another challenge to the numerics, and
only four cases are considered in the present study.

3. Development of the interleaving

We present, in this section, how the flow motions develop from the initial field and lead to
the interleaving layering. Since the two endwalls and the bottom boundary are adiabatic,
the total heat and salinity fluxes over the top surface should be around zero once the
flow reaches the statistically steady state. Figure 2 displays the time history of these
fluxes over the entire simulation of case 1, where the fluxes are measured by the Nusselt
number Nutop

ζ = (−κζ ∂z〈ζ 〉top)/(κζΔζ H−1) with ζ = T or S. Here, 〈·〉top denotes the
spatial average over the top boundary. For the time period t < 3000, the system undergoes
a strong transition stage. Starting from t ≈ 3000, oscillations emerge in the time history
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Figure 2. Time evolution of the total heat and salinity fluxes, measured by two Nusselt numbers Nutop

T and
Nutop

S , over the top boundary for case 1.
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Figure 3. The development of the flow field for case 1. Rows from top to bottom are for the times
500, 1500, 3000, 9000, and columns from left to right show the fields of temperature, salinity and streamwise
velocity in the spanwise mid-plane, respectively.

of the fluxes. After t ≈ 9000, the fluxes oscillate with a stable period around 3000. This
suggests that the dominant flow structures have a relatively large characteristic time scale.

The flow structures which induce the oscillations in the total fluxes are interleaving
layers. In figure 3 we show the instantaneous fields of temperature, salinity and streamwise
velocity on the spanwise mid-plane at four different times for case 1. Initially, both scalars
have uniform distributions equal to the corresponding mean values over the top boundary.
Then, just below the left half of the top boundary, the temperature and salinity differences
favour the diffusive type of DDC. While on the right half, the fingering type of DDC
develops. This initial stage can be seen in the top row of figure 3, where the flow structures
on left and right parts have distinct horizontal scales. The different types of DDC beneath
the top boundary transport heat and salinity with different rates at the two opposite sides of
the domain, which sets up horizontal scalar gradients within the domain. Then interleaving
layering emerges from the left side and extends horizontally towards the right side, as
shown from the second to the bottom row in figure 3. Once established, these interleaving
layers are the dominant structures in the flow and exhibit a complex dynamics, which will
be discussed in detail in the next section.
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Figure 4. The evolution of the vertical density ratio Λz for case 1. Rows from top to bottom are for the times
500, 1500, 3000, 9000, and left and right columns show the DDC type in diffusive and fingering regimes,
respectively.

The different types of DDC can be illustrated by the density ratio defined by the
vertical temperature and salinity gradients. Stability theory suggests that the fluid
layer is unstable to the diffusive oscillatory instability when 1 > Λz > (Pr + τ)/(Pr +
1) = 0.917 (Veronis 1965), and to the salt-finger instability when 1 < Λz < 1/τ = 3
(Stern 1960), respectively. Here, τ = κS/κT = 1/3 is the diffusivity ratio between two
components. In figure 4 we plot the local density ratio Λz = (βT∂zT)/(βS∂zS) for the
flow fields shown in figure 3. We highlight in the left column the region that is highly
susceptible to diffusive DDC, and in the right column the region in favour of fingering
DDC. Initially, both diffusive and fingering regimes are scattered throughout the domain
and then the two types concentrate on the opposite sides. Note that the interleaving mainly
occurs on the left part, see the bottom right panel in figure 3. The intrusion is of the
diffusive type with layers sloping down to the cold and fresh side (Stern 2003). When the
flow reaches the statistically stable state, both diffusive and salt-finger interfaces can be
identified. These interfaces exist between the velocity interleaving layers, which we will
discuss in detail in the next section.

4. Interleaving structures and horizontal transport

As shown in the previous section, once the interleaving layers are fully developed, they
occupy the majority of the flow domain. The total fluxes through the top boundary exhibit
long-time-period oscillations. In this section, we focus on the fully developed stage of the
flow, and discuss the dynamics and transport properties of the layers. We summarize in
table 2 all the key statistics from the numerical simulations, which will be discussed in
detail in the following subsections.

927 A12-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.753


Thermohaline interleaving induced by horizontal temperature

Case number h vm(×10−2) Us(×10−4) NuT NuS Re γ a

1 0.194 1.45 1.50 12.0 20.6 67.7 1.768 0.234
2 0.153 1.11 1.13 19.3 33.5 142.6 1.759 0.191
3 0.145 0.94 0.69 30.4 56.9 525.7 1.706 0.106
4 0.250 1.71 0.97 17.2 30.9 158.2 1.704 0.165

Table 2. Summary of the numerical results. Columns from left to right are as follows: case number, layer
thickness, the maximal current velocity, the upward-shifting velocity of the layer, Nusselt numbers for
temperature and salinity, Reynolds number, the horizontal density flux ratio and the isohaline slope.

4.1. Flow structures of interleaving
We first show the detailed flow structures for case 2 in figures 5(a) and 5(b) by the
three-dimensional volume rendering of the streamwise and vertical velocities. A stack
of interleaving layers is distinctively observed in the domain. For this case seven layers
are visible. The layers extend upward towards the positive streamwise direction and have
alternating flow directions with a positive or negative streamwise velocity, which is a
clear indication of interleaving. The layers have long horizontal length and relatively
small vertical thickness. In figure 5(c) we plot the profiles of the temperature and salinity
anomalies at seven different streamwise locations. Here, the anomaly of scalar ζ is

calculated as ζ ′ = ζ̄ − ζ̄ . Hereafter, one bar stands for the spanwise average, and two bars
for the spanwise and temporal average. Coherent temperature and salinity anomalies exist
along the interleaving currents.

Once the flow reaches the steady quasi-periodic state, the mean temperature and salinity
fields drive different types of flows within the domain. To demonstrate this, we plot in
figure 6(a) the contours of spanwise and temporally averaged temperature and salinity
fields. At the upper left and upper right corners, the isotherms and isohalines are almost
horizontal and parallel. The gradients of both scalars are mainly in the vertical direction,
and DDC occurs with the diffusive type near the left corner and the fingering type near
the right corner. The fingering DDC generates the small-scale vertical motions on the right
in figure 5(b). At the left part of the bulk region, where the layering is the strongest, the
isotherms and isohalines have different inclination angles. By averaging over the main
intrusion region, as marked by the dashed rectangular in figure 6(a), the mean inclination
angle for isotherms is approximately 25◦ and that for isohalines is approximately 11◦. The
interleaving currents have an inclination angle of approximately 3◦, which is smaller than
those of the isotherms and isohalines, a phenomenon consistent with the intrusion theory
(Ruddick 2003; Radko 2013).

The different types of DDC can be also identified by the Turner angle, which is
defined by the vertical gradients of the mean scalars as Tu = 135◦ − arg(βS∂zS̄ + iβT∂zT̄)

(Ruddick 1983). Here, i is the imaginary unit, and arg stands for the argument of the
imaginary number. Fingering DDC usually happens in the range 45◦ < Tu < 90◦, and
diffusive DDC in the range 270◦ < Tu < 315◦. In figure 6(b) we present the distribution
of Tu for the flow field shown in figure 5, where the mean gradients are calculated after
spanwise averaging. Again, both fingering and diffusive DDC exist in the flow field.
The region with 45◦ < Tu < 90◦ agrees with the vertical motions in figure 5(b), namely,
those vertical motions are mainly fingering convection. At the upper-right corner, the
fingering DDC is driven by the vertical salinity and temperature gradients imposed by
the top boundary. In the left part of the bulk, the layers with fingering DDC correspond
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Figure 5. Thermohaline interleaving for case 2 at t = 35 000 depicted by the volume renderings of (a) the
streamwise velocity and (b) the vertical velocity, in which the positive y-direction is from left to right. (c) The
profiles from left to right are for temperature anomaly (red dashed line) and salinity anomaly (blue solid lines)
at y = iL/8, with i = 1 · · · 7.

to the interfaces below the leftward moving currents with higher temperature and salinity
and above the rightward moving ones with lower temperature and salinity. Meanwhile,
diffusive DDC dominates the upper left region, where 270◦ < Tu < 315◦. The layers with
270◦ < Tu < 315◦ correspond to the interfaces above the leftward moving warm and salty
currents and below the rightward moving cold and fresh ones. Different types of DDC
between interleaving currents are characteristic phenomena of thermohaline intrusion
(Ruddick 2003; Radko 2013).

4.2. The upward shift of the layers
Moreover, our numerical results reveal that the vertical location of each layer is not
constant. Rather, these layers shift upward over a very large time scale, which is
clearly shown in supplementary movie 1 available at https://doi.org/10.1017/jfm.2021.753.
Figure 7 displays the time evolution of the vertical profiles of streamwise velocity at
location y = 3/8L, i.e. where the interleaving currents are strongest. For case 2, it takes
approximately 10 000 non-dimensional time units for one layer to move from the bottom
to the top surface. Detailed investigation indicates that the total density difference between
the two ends in the streamwise direction periodically changes sign, and close to the bottom
boundary new layers are generated accordingly with alternating movement directions.
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Figure 6. (a) Contours of spanwise and temporally averaged temperature T̄ (solid lines) and salinity S̄ (dashed
lines). (b) Flow regions susceptible to different types of double diffusion. Colours represent the Turner angle
Tu, with blue colours indicating the diffusive type and red colours the fingering type, respectively. Here, Tu is
calculated by the spanwise averaged scalar gradients ∂zT̄ and ∂zS̄ for the flow field shown in figure 5.
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Figure 7. The upward shifting of the interleaving layers depicted by the time evolution of the
spanwise-averaged profiles of the streamwise velocity at the streamwise location y = 3L/8 for case 2.

From the contours in figure 7 we extract the upward-shifting velocity Us of the layers.
Specifically, within the height range 0.2 < z/H < 0.8, we calculate the auto-correlation
coefficient of v̄ for the height separation δz and the time separation δt. Then, the shift
velocity Us is determined by the location of the maximal auto-correlation coefficient on
the δz–δt plane. The values are given in table 2. Compared with the current velocity, the
shift velocity Us is much smaller, by approximately two orders of magnitude.

The upward shift is caused by the continuously emerging new layers near the bottom
boundary, which are generated by the periodically oscillating density difference between
the two ends of the domain. This lateral asymmetry may be the key reason for the
upward migration. It should be mentioned that the linear instability analysis revealed a
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Figure 8. (a) The time histories of density flux through the top surface Nutop
ρ (black dash-dotted line and left

ordinate) and the mean density difference δρ (red solid line and right ordinate) between y = 7L/8 and L/8 for
case 2. (b) The upward-shifting velocity Us vs 2h/tdensity with h being the layer thickness and tdensity the period
of the δρ.

migration of the unstable modes in the heated sidewall configuration (Kerr 1989). We
calculate the difference of mean density over two streamwise locations y1 = 7L/8 and
y2 = L/8, namely δρ = 〈ρ′〉y1 − 〈ρ′〉y2 . Here, 〈 〉y stands for the spatial average over the
streamwise cross-section at the location y. The density is calculated as ρ′ = ΛS − T . The
total density flux through the top surface is measured accordingly as Ftop

ρ = κT〈∂zT〉top −
κSΛ〈∂zS〉top. In figure 8(a) we plot the time histories of δρ and Ftop

ρ for case 2. Both
quantities fluctuate with a similar period. Moreover, the variation of δρ lags behind Ftop

ρ

by a phase difference of approximately π/2. From the time history of δρ we can extract
the mean period of oscillation tdensity. If we assume that for each period two layers develop
near the bottom boundary, then the upward-shifting velocity Us should be very close to
the velocity scale 2h/tdensity. This is indeed the case, as shown in figure 8, where all data
points are very close to the line Us = 2h/tdensity.

4.3. Statistics of interleaving layers
One of the key parameters of intrusion is the layer thickness h. Previous experiments
by Ruddick & Turner (1979) (RT experiments) found the scaling law of hRT , which is
proportional to the so-called Chen scale (Chen 1974) developed for the bounded intrusion
model. Later, Toole & Georgi (1981) obtained another scale hTG for the unbounded case.
These two scales were then proven to be the two end limits in asymptotic analysis for the
intrusion front width, which was demonstrated by Niino (1986) and Simeonov & Stern
(2004) in different ways. The latter also introduced an extra scale hSS for an intermediate
state. Here, we will first use Niino’s (1986) method to reveal that the fronts are narrow
enough in our cases (the same as in the RT experiments) and then demonstrate that the
layer thickness in our simulations indeed has a scaling law which is essentially the same as
that for hRT . It should be pointed out that the model developed in Simeonov & Stern (2004)
requires a preset vertical density ratio Λz and its relation with Nusselt number Nu(Λz) for
the fingering regime. In our configuration, however, both fingering and diffusive regimes
are present simultaneously, so it is difficult to estimate Λz or Nu(Λz). Actually, the Niino
(1986) theory also applies to the fingering regime, but he demonstrated that the theory is
valid for the diffusive cases as far as the salt fingers are present, which is satisfied in our
simulations.
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Case number Δh
S G ε μ R 40(1 + μ)5.4 2 × 105(1 + μ)4.9

1 0.391 0.582 1.020 −0.116 0.570 20.6 1.09 × 105

2 0.260 0.144 0.628 −0.127 0.230 19.2 1.03 × 105

3 0.157 0.061 0.369 −0.162 0.164 15.4 0.84 × 105

4 0.539 0.751 0.680 −0.098 1.105 23.0 1.21 × 105

Table 3. Summary of the key parameters in the Niino (1986) model. Columns from left to right are as follows:
case number, the lateral variation of salinity across the front, the frontal stability parameter, the modified
Schmidt number, the stratification parameter, the modified stability parameter and the low and high critical
values for determination of the front width. When R < 40(1 + μ)5.4, the front can be considered narrow and
the layer thickness has a scaling law the same as hRT (Ruddick & Turner 1979). When R > 2 × 105(1 + μ)4.9,
the front can be considered wide and the layer thickness has a scaling law the same as hTG (Toole & Georgi
1981).

The following parameters are required in the Niino (1986) theory: the frontal stability
parameter G = (g(1 − γf )βSΔ

h
S/2)6/(K2

S l2N10), the modified Schmidt number ε = ν/KS,

the stratification parameter μ = g(1 − γf )βS∂zS̄/N2 and the modified stability parameter
R = G/ε. Here, γf is the flux ratio for fingering DDC and we use the constant value 0.88
since the diffusive ratio τ equals 1/3, which was also used in RT experiments. Also, KS
is the eddy diffusivity of salinity and we calculated it in the same way as NuS (see § 4.4);
l is the half-width of the intrusion front and we assume it to be of the same order as L/2
since the interleaving layers nearly occupy the whole bulk area in all cases; Δh

S is the
lateral variation of salinity within the water mass; and N = √−(g/ρ)∂zρ is the buoyancy
frequency. In the RT experiments, both the lateral salinity variation and the vertical scalar
stratification are carefully set as the control parameters, which is not the case in our
simulations. Instead, we take Δh

S as the averaged salinity difference between two endwalls

in the streamwise direction, and calculate N and ∂zS̄ by the mean density and salinity
difference between the top and bottom boundaries. The results are summarized in table 3.
The fronts can be considered narrow when R < 40(1 + μ)5.4, and obviously our results fall
into this range. Thus, h should have the same scaling law for hRT . Note that μ < 0 indicates
the diffusive regime in our cases. As mentioned above, Niino (1986) demonstrated that the
theory is still valid for −1 < μ < 0 as long as salt fingers are present. The values of G
and R are much smaller than those in the RT experiments (Niino 1986). This may be
attributed to the small Δh

S, which is qualitatively consistent with the Simeonov & Stern
(2004) theory.

Now we would like to examine the scaling law of layer thickness, which is sampled
from individual spanwise mean profiles at y = 3L/8 and averaged over time and all layers.
Since in the present flows the fronts are narrow and the layer thickness should follow the
RT scaling hRT = Ch(gβSΔ

h
S)/N2 (Ruddick & Turner 1979; Niino 1986), in figure 9(a) we

plot h vs (gβSΔ
h
S)/N2. Indeed the data follow the scaling law with Ch ≈ 0.066.

Another parameter that has been widely studied is the maximum horizontal velocity
vm of the interleaving layers. For the different frontal widths and DDC types, previous
experiments (Ruddick & Turner 1979) and simulations (Simeonov & Stern 2007, 2008)
all observed the same scaling law vm ∼ CvNh with different values for the prefactor Cv .
We use the spanwise-averaged profiles at y = 3L/8 to find the maximal horizontal velocity
vm of all layers during the whole sampling period. The result is consistent with the previous
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Figure 9. Properties of the interleaving layers. (a) Layer thickness h vs (gβSΔ
h
S)/N2. (b) The maximal

current velocity vm vs Nh. (c) The horizontal heat flux Nuh
T vs a−1/2 with a being the isohaline slope.

work and the prefactor Cv is approximately 0.15, as shown in figure 9(b). The value of Cv

is very close to those reported in Simeonov & Stern (2007, 2008).
As shown in figure 6(a), the layering intrusion in the present flow is of diffusive

type. For such a type of intrusion, the horizontal Nusselt number of temperature Nuh
T

can be related to the isohaline slope a by the scaling law Nuh
T ∼ a−1/2 (Simeonov &

Stern 2008). Here, Nuh
T represents the ratio of the horizontal heat flux to the horizontal

temperature gradient, namely Nuh
T = 〈vT〉h/(κTΔh

TL−1). The average 〈〉h is conducted
over the streamwise cross-section at y = 3L/8 and over time, and Δh

T is again taken as
the averaged temperature difference between two endwalls in the streamwise direction.
The isohaline slope is estimated by averaging over the main intrusion region, as explained
in § 4.1. Figure 9(c) displays the dependence of Nuh

T vs a−1/2. The data roughly follow the
scaling law Nuh

T ∼ 128.8a−1/2, where the prefactor is fixed by linear fitting.

4.4. The global transport
Finally, we proceed to analyse the global transport properties in the horizontal direction.
Due to our specific flow configuration, both heat and salinity are transported into the
domain from the right part of the top surface with higher temperature and salinity, then
move horizontally towards the left side within the domain bulk and finally exit the domain
over the left part of the top surface with lower temperature and salinity. Such behaviours
are shown in figure 10 by the distributions of local Nusselt number over the top boundary
for case 2. The local Nusselt number is calculated as Nul

ζ = (−κζ ∂zζ̄ )/(κζΔζ L−1) with
ζ = T or S. The zero point of Nul is not at the middle point z = L/2 but shifted towards
the warm salty end, which happens for all the four cases considered. Near the left end
the vertical flux is generated by the diffusive DDC process, while near the right end it is
generated by the fingering DDC. In between, the positive and negative peaks next to the
zero point are caused by the upward-shifting layers when they reach the top surface.

Moreover, the total flux through the entire top surface oscillates around zero with a
very long period. For example, case 1 has a time period of approximately 3000 time
units, as shown in figure 2. Nevertheless, the temporally averaged total flux should be
approximately zero when the system is in the statistically steady state and the average
is calculated over a long enough time period. We measure these global fluxes Nuζ by
integrating Nul

ζ over the range at either side of the zero-flux point. In addition, we
define the horizontal Rayleigh number RaL = (gβTL3ΔT)/(νκT) to account for the effect
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Figure 10. The local Nusselt number Nul over the top boundary for case 2.
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Figure 11. The global responses vs the horizontal Rayleigh number RaL. (a) The global heat flux. (b) The
global salinity flux. (c) The Reynolds number. (d) The horizontal density flux ratio γ . In (a,b) the error bars
indicate the maximal deviation from zero of the total fluxes through the top surface.

of the streamwise length L. The dependences of NuT and NuS on RaL are plotted in
figures 11(a) and 11(b), respectively. Both Nusselt numbers follow a very similar scaling
law: Nuζ ∼ Ra

αζ

L with αζ very close to 0.2. The Reynolds number Re = UrmsL/ν follows
a scaling law of Re ∼ Ra0.44

L . Here, Urms is the root-mean-square value of the velocity
magnitude.

Since both the heat and salinity fluxes have very similar scaling behaviours, the
density flux ratio γ = (βT〈vT〉0)/(βS〈vS〉0) should be nearly constant for different RaL.
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The average 〈 〉0 is conducted over the streamwise cross-section at the zero-flux point of
the top boundary, and over time. Figure 11(d) shows that γ lies between 1.7 and 1.8. Nearly
constant γ implies that the ratio of the density anomaly flux due to the heat flux to that
due to the salinity flux exhibits very weak dependence on RaL. Moreover, γ > 1 indicates
that the net density anomaly flux is in the same direction as the scalar gradients along the
top boundary.

5. Conclusion

In summary, we demonstrate that horizontal temperature and salinity gradients, which
have compensated effects on density, can induce thermohaline intrusions in the water mass
below, and interleaving layers with opposite moving directions emerge. Double diffusive
mixing plays a crucial role in such a process. Different types of DDC at the warm salty end
and the cold fresh end produce different vertical fluxes of heat and salinity, which maintain
the horizontal scalar differences at the lower part of the domain and the generation of
intrusion layers. The main intrusion region is located close to the cold and fresh side
with the layers, sloping upward towards the warm and salty side, therefore the intrusion
layering is of the diffusive type. At the interfaces between interleaving layers, fingering
and diffusive DDC happen alternatively.

The layers do not hold their heights but shift upward with a very small velocity. This
is caused by the divergence of vertical fluxes through the top surface. Specifically, the
density fluxes induced by the heat and salinity fluxes at the two ends of top surfaces do
not balance each other, and a density difference accumulates in the streamwise direction
at the lower part. New layers emerge periodically close to the bottom boundary and shift
the existing layers upward.

Detailed inspections suggest that the current intrusion and interleaving layers fit into
the narrow front type according to the theoretical model of Niino (1986). Both the layer
thickness and current velocity exhibit similar scaling laws as those for the intrusion in
narrow fronts. The horizontal Nusselt number of temperature roughly follows a power-law
scaling of the isohaline slope with an exponent −1/2. The total horizontal fluxes through
the fluid layer can be described by the scaling laws of the horizontal Rayleigh number. The
density flux ratio in the horizontal direction is nearly constant for all cases and higher than
unity. Therefore, both heat and salinity are transferred from the warm salty side to the cold
fresh side, but the density anomaly is transferred in the opposite direction.

Our results extend the circumstance where intrusions may occur. Specifically, they not
only develop within the water mass of horizontal gradients, but also in the fluid body at
adjacent depths. Based on a symmetry argument, one can expect that scalar gradients at
bottom boundary should also induce similar intrusions above. Also, horizontal temperature
and salinity gradients drive horizontal fluxes in the adjacent fluid layers, which may
accelerate the decay of the horizontal scalar inhomogeneity. All these findings are of great
interest and deserve experimental and observational verification. More studies are also
needed to fully understand the intrusion flows presented here. For instance, the influences
of the domain aspect ratio and the density ratio are not yet touched upon. The Schmidt
number is much smaller than those in the ocean, and simulations with typical oceanic
Schmidt number are highly desired in the future.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.753.
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