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High-frequency instabilities of Stokes waves
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Euler’s equations govern the behaviour of gravity waves on the surface of an
incompressible, inviscid and irrotational fluid of arbitrary depth. We investigate the
spectral stability of sufficiently small-amplitude, one-dimensional Stokes waves, i.e.
periodic gravity waves of permanent form and constant velocity, in both finite and
infinite depth. We develop a perturbation method to describe the first few high-frequency
instabilities away from the origin, present in the spectrum of the linearization about
the small-amplitude Stokes waves. Asymptotic and numerical computations of these
instabilities are compared for the first time, with excellent agreement.
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1. Introduction

We consider periodic gravity waves along a one-dimensional (1-D) surface of an
incompressible, inviscid and irrotational fluid of arbitrary depth. These waves are governed
by Euler’s equations

φxx + φzz = 0 in {(x, z) : |x| < π/κ and − h < z < η}, (1.1a)

ηt + ηxφx = φz on z = η, (1.1b)

φt + 1
2

(
φ2

x + φ2
z
)+ gη = 0 on z = η, (1.1c)

φz = 0, on z = −h, (1.1d)

and satisfy the periodicity conditions

η(−π/κ, t) = η(π/κ, t), (1.2a)

φx(−π/κ, z, t) = φx(π/κ, z, t), φz(−π/κ, z, t) = φz(π/κ, z, t). (1.2b)

In these equations, η = η(x, t) is the surface displacement of the fluid, φ = φ(x, z, t) is
the velocity potential inside the bulk of the fluid, g is the acceleration due to gravity, h is
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u(x, z, t) = (φx(x, z, t), φz(x, z, t))
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Figure 1. A schematic of 1-D gravity waves in finite depth h. In this work, the surface displacement η and
velocity field u = (φx, φz) are 2π/κ-periodic in the x-direction.

the depth of the fluid and κ is the wavenumber of the surface displacement, see figure 1.
Subscripts x and t denote partial differentiation.

Stokes showed in 1847 that periodic, travelling-wave solutions of (1.1a)–(1.1d) in infinite
depth can be expressed as a power series in a small parameter ε that scales with the
amplitude of the waves (Stokes 1847). Nekrasov (1921) first proved the convergence
of this series, and the works of Levi-Civita (1925) and Struik (1926) extended these
considerations to the case of finite depth, see § 3 and Appendix A for more details.

The stability of Stokes waves with respect to longitudinal perturbations was first studied
in the 1960s by Benjamin (1967), Benjamin & Feir (1967) and Whitham (1967). These
independent investigations concluded that Stokes waves are modulationally unstable,
provided κh > 1.3627 . . . . This is now referred to as the Benjamin–Feir instability. The
presence of this instability was proven rigorously in finite depth by Bridges & Mielke
(1995) and in infinite depth by Nguyen & Strauss (2020).

In the 1970s, Bryant (1974, 1978) studied the stability of Stokes waves with respect
to co-periodic and transverse perturbations in shallow depth (κh < 1.3627 . . . ), while
Longuet-Higgins (1978a,b) considered infinite depth with longitudinal perturbations that
were sub- and super-harmonic to the fundamental period of the Stokes wave. McLean
(1982) extended this work to finite depth and transverse perturbations. Over the next
decades, several papers focused on the transverse instability of Stokes waves (Kharif &
Ramamonjiarisoa 1990; Francius & Kharif 2006; Akers & Nicholls 2012), see also Craik
(2004) and Yuen & Lake (1980).

In 2011, using a reformulation of Euler’s equations developed by Ablowitz, Fokas &
Musslimani (2006), Deconinck & Oliveras (2011) numerically revisited the stability of
Stokes waves with respect to quasi-periodic perturbations (parameterized by a Floquet
exponent μ ∈ R), encompassing both super- and sub-harmonic perturbations. This results
in a spectral problem that has a countable number of finite-multiplicity eigenvalues for
each value of the Floquet exponent (Kapitula & Promislow 2013). These eigenvalues
control the exponential growth rates of the perturbations, and the union of these point
spectra defines the stability spectrum of the Stokes waves, to be more precisely defined in
§ 4 of this paper.

The stability spectrum depends analytically on the amplitude ε of the Stokes waves
(Nicholls 2007). In addition, for fixed ε, the spectrum is symmetric with respect to the real
and imaginary axes, since system (1.1a)–(1.1d) is Hamiltonian (Zakharov 1968). Thus,
Stokes waves are spectrally stable only when the stability spectrum is a subset of the
imaginary axis. Otherwise, there exists a Floquet exponent and corresponding eigenvalue
for which the perturbation grows in time.

In figure 2, we use the Floquet–Fourier–Hill (FFH) method (Deconinck & Kutz 2006;
Curtis & Deconinck 2010) to compute stability spectra of 2π-periodic Stokes waves
with amplitude ε = 0.01 in various depths. When κh > 1.3627 . . . , we observe the
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Figure 2. The stability spectrum of a 2π-periodic Stokes wave with amplitude ε = 0.01 and (a) h = ∞,
(b) h = 1.5, (c) h = 1.4 and (d) h = 1. The Benjamin–Feir figure eight is coloured blue. The high-frequency
isolas are coloured red. Purely imaginary eigenvalues are coloured black. A zoom-in of the Benjamin–Feir and
high-frequency instabilities are inlaid in the top, left plot.

Benjamin–Feir instability as a figure-eight pattern at the origin. We also find unstable
eigenvalues away from the origin, referred to as high-frequency instabilities. Unlike the
Benjamin–Feir instability, high-frequency instabilities appear in the stability spectrum for
all values of κh. They even dominate the Benjamin–Feir instability when 1.3627 . . . <

κh < 1.4305 . . . (Deconinck & Oliveras 2011). The focus of this paper is on the study of
these high-frequency instabilities using formal perturbation methods, as described below.

High-frequency instabilities develop from a Hamiltonian–Hopf bifurcation: a non-zero,
repeated eigenvalue λ0 of the zero-amplitude stability spectrum (ε = 0) leaves the
imaginary axis as the amplitude increases (MacKay & Saffman 1986; Akers & Nicholls
2012; Deconinck & Trichtchenko 2017). When 0 < ε � 1, a connected locus of unstable
eigenvalues forms, which we call a high-frequency isola (red inset in figure 2). The isola
is parameterized by values of μ near μ0, the Floquet exponent corresponding to λ0.

High-frequency isolas are challenging to detect for numerical methods like FFH as they
exist for narrow, specific ranges of the Floquet exponent. To complicate matters further,
this narrow interval of Floquet exponents drifts from μ0 as ε increases. At most depths, μ0
is no longer within the interval that parameterizes the first high-frequency isola for small,
positive values of ε. Therefore, to capture an isola using numerical methods, one must
not only take into account the narrow interval of Floquet exponents that parameterizes the
isola, but also its drift from μ0 as ε changes (figure 3).

In this paper, we derive formal asymptotic expressions for isolas close to the origin, both
in finite and infinite depth. Specifically, for each isola we derive
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Figure 3. (a) The high-frequency isola closest to the origin for a 2π-periodic Stokes wave in depth h = 1.5
with amplitude ε = 2 × 10−3 (orange), ε = 4 × 10−3 (red), ε = 6 × 10−3 (magenta), ε = 8 × 10−3 (purple)
and ε = 10−2 (blue). The imaginary axis is recentred to show the drift of the isola from the collided eigenvalues
at λ0. The isolas are computed using the perturbation method developed in this paper. (b) The interval of
Floquet exponents that parameterizes the isola closest to the origin in depth h = 1.5 as a function of the
amplitude. The solid black lines indicate the boundaries of this interval, while the dashed black line gives
the Floquet exponent corresponding to the most unstable eigenvalue on the isola. The coloured lines give the
Floquet exponents corresponding to the similarly coloured isolas in the left figure. The Floquet axis is recentred
to show the drift of the parameterizing interval from the Floquet exponent μ0 that corresponds to the collided
eigenvalues. The parameterizing interval is also computed using the perturbation method in this paper.

(i) an interval of Floquet exponents that is asymptotic to the interval parameterizing the
isola;

(ii) an asymptotic expansion for the most unstable eigenvalue on the isola; and
(iii) a closed-form expression for the curve asymptotic to the isola.

Our asymptotic expressions are compared directly with numerical results of the FFH
method. For almost all κh (except a few isolated values), our asymptotic expressions
predict that Stokes waves of sufficiently small (but finite) amplitude are unstable with
respect to high-frequency instabilities, extending recent work by Hur & Yang (2020) that
establishes the instability closest to the origin only for κh ∈ (0.86430 . . . , 1.00804 . . . ),
see § 5.

Crucial to our approach is an expansion for the Floquet parameterization of the
isola as power series in the wave amplitude ε. This same approach was first used in
Creedon, Deconinck & Trichtchenko (2021a) on the Kawahara equation and in Creedon,
Deconinck & Trichtchenko (2021b) on a Boussinesq–Whitham system. An outline of the
leading-order calculations of the method in infinite depth is also used by Akers (2015),
where the emphasis is on understanding the analyticity properties of the stability spectrum
as a function of the boundary conditions imposed on the perturbations (i.e. as a function
of the Floquet exponent), and on the connections with resonant interaction theory.

2. The Ablowitz–Fokas–Musslimani formulation

Euler’s equations (1.1a)–(1.1d) together with the auxiliary conditions (1.2a)–(1.2b)
constitute a boundary value problem for Laplace’s equation in a domain evolving
nonlinearly in time. Depending on the application, other formulations of gravity waves
may be preferred over (1.1a)–(1.1d). We consider the Ablowitz–Fokas–Musslimani (AFM)
formulation, first proposed in Ablowitz et al. (2006). This formulation has dependence
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only on surface variables, as in Zakharov (1968) or Craig & Sulem (1993), but avoids
direct numerical computations of the Dirichlet-to-Neumann operator.

As shown in Ablowitz & Haut (2008) and Oliveras (2009), Euler’s equations
(1.1a)–(1.1d) with the lateral periodic boundary conditions (1.2a)–(1.2b) are equivalent
to the following system for the surface variables η and q = φ(x, η, t):∫ π/κ

−π/κ

e−iκmx [ηt cosh (κm (η + h)) + iqx sinh (κm (η + h))
]

dx = 0, m ∈ Z\{0},
(2.1a)

qt + 1
2

q2
x + gη − 1

2
(ηt + ηxqx)

2

1 + η2
x

= 0. (2.1b)

We call (2.1a) and (2.1b) the non-local and local equations of the AFM formulation,
respectively.

We write (2.1a)–(2.1b) in a travelling frame x → x − ct∫ π/κ

−π/κ

e−iκmx [(ηt − cηx) cosh (κm (η+h)) + iqx sinh (κm (η + h))
]

dx=0, m ∈ Z\{0},
(2.2a)

qt − cqx + 1
2

q2
x + gη − 1

2
(ηt − cηx + ηxqx)

2

1 + η2
x

= 0. (2.2b)

Unless otherwise stated, x represents the horizontal coordinate in the travelling frame for
the remainder of this work.

Non-dimensionalizing (2.2a)–(2.2b) according to x → x/κ , t → t/
√

gκ , η → η/κ ,
q → q

√
g/κ3, c → c

√
g/κ and h → α/κ , we arrive at∫ π

−π

e−imx [(ηt − cηx) cosh (m (η + α)) + iqx sinh (m (η + α))
]

dx = 0, m ∈ Z\{0},
(2.3a)

qt − cqx + 1
2

q2
x + η − 1

2
(ηt − cηx + ηxqx)

2

1 + η2
x

= 0, (2.3b)

where α = κh > 0 is the aspect ratio of the surface profile η (in dimensional variables).
Without loss of generality, we study solutions of the non-dimensional equations
(2.3a)–(2.3b).

REMARK 2.1. Dividing (2.3a) by cosh(mα) and taking the limit α → ∞ yields (after
some manipulation) the non-local equation in infinite depth∫ π

−π

exp(−imx + |m|η)
[
ηt − cηx + i sgn (m) qx

]
dx = 0, m ∈ Z\{0}. (2.4)

The local equation remains unchanged in infinite depth.

3. Small-amplitude Stokes waves

Using the non-dimensional AFM formulation (2.3a)–(2.3b), Stokes waves are defined
as surface displacements ηS and velocity potentials (at the surface) qS that satisfy the
following:
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(i) ηS and qS are time-independent, infinitely smooth solutions of (2.3a)–(2.3b).
(ii) ηS and qS,x are 2π-periodic with respect to x (but not so of qS).

(iii) ηS, qS,x and c (the velocity of the Stokes wave) depend analytically on a small
parameter ε such that

ηS|ε=0 = 0 = qS,x
∣∣
ε=0 and ||ηS||L2 = ε + O

(
ε2
)

as ε → 0. (3.1)

(iv) ηS and qS,x are even in x without loss of generality, and c(ε) is even in ε.
(v) ηS has zero average over one period.

As mentioned in the Introduction, the existence of these waves is proven in Levi-Civita
(1925), Nekrasov (1921) and Struik (1926). In this section, we derive power series
expansions of ηS, qS,x and c in the small parameter ε using the non-dimensional AFM
formulation. These expansions are required for the stability calculations considered in §§ 5
and 6.

Equating time derivatives to zero in (2.3a)–(2.3b) by property (i), integrating the cosh
term in (2.3a) by parts using property (ii) and solving for qx in (2.3b), we arrive at the
following equations determining the Stokes waves:

∫ π

−π

e−imx
√(

1 + η2
S,x

) (
c2 − 2ηS

)
sinh(m(ηS + α)) dx = 0, m ∈ Z\{0}, (3.2a)

qS,x = c ±
√(

1 + η2
S,x

) (
c2 − 2ηS

)
. (3.2b)

By property (iii), the positive branch of (3.2b) is defined for left-travelling waves (c <

0), while the negative branch is defined for right-travelling waves (c > 0) (Constantin &
Strauss 2010). In what follows, we consider right-travelling waves. Similar results hold for
the other case.

REMARK 3.1. In infinite depth, (3.2a) becomes

∫ π

−π

exp(−imx + |m|ηS)

√(
1 + η2

S,x

) (
c2 − 2ηS

)
dx = 0, m ∈ Z\{0}. (3.3)

By properties (ii) and (iv), ηS has a Fourier cosine series. We define the small-amplitude
parameter ε as the first Fourier cosine mode of ηS

ε = 1
π

∫ π

−π

ηS cos(x) dx. (3.4)

Then, by property (iii),

ηS(x; ε) = ε cos(x) + O
(
ε2
)

, (3.5)

for |ε| � 1. The leading-order term of ηS completely resolves the first Fourier cosine
mode: higher-order corrections do not include terms proportional to cos(x) as a result.
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Using properties (iii) and (iv), we write ηS and c as power series in ε

ηS(x; ε) =
∞∑

j=1

ηj(x)ε j, (3.6)

c(ε) =
∞∑

j=0

c2jε
2j. (3.7)

Both of these series are substituted into (3.2a) and, after equating powers of ε, a triangular
sequence of linear integral equations for ηj(x) and c2j is found. Each of these integral
equations depends on m, which can be any non-zero integer.

REMARK 3.2. Since ηS is even in x, the integrand of (3.2a) modulo the complex
exponential is even in x. Therefore, m ∈ Z+ without loss of generality.

The first non-trivial integral equation in this sequence is∫ π

−π

e−imx
[
mc2

0 cosh(mα) − sinh(mα)
]
η1(x) dx = 0. (3.8)

From above, η1(x) = cos(x). If (3.8) holds for all m ∈ Z+,

c2
0 = tanh(α), (3.9)

otherwise (3.8) is not satisfied when m = 1. Since we study right-travelling waves, we
choose c0 > 0.

For the jth integral equation in the sequence (j ≥ 2), one finds

ηj(x) =
j∑

�=2
� even

N̂j,� cos(�x) for j even, (3.10a)

ηj(x) =
j∑

�=3
� odd

N̂j,� cos(�x) for j odd, (3.10b)

where the coefficients N̂j,� are determined by the jth equation with m = �. No corrections
to the velocity c are found when j is even. When j is odd, cj−1 is determined by the jth
equation with m = 1, similar to the j = 1 case considered above. This correction is chosen
so that ηj(x) has no terms proportional to cos(x).

Expansions of ηS and c are substituted into (3.2b). After equating powers of ε, an
expansion for qS,x follows immediately. In general,

qS,x(x; ε) =
∞∑

j=1

qj,x(x)ε j. (3.11)

The corrections qj,x(x) have the same structure as (3.10a)–(3.10b), but also include
constant modes (when j is even) and modes proportional to cos(x) (when j is odd). Thus,
qS,x has non-zero average, and the first Fourier cosine mode of qS,x has corrections beyond
O(ε), unlike ηS.
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Figure 4. (a) The amplitude vs velocity bifurcation diagram of 2π-periodic Stokes waves when α = 1 (dashed
line), α = 1.5 (dotted line), α = 2 (dot-dashed line) and α = ∞ (solid line), according to our O(ε4) asymptotic
calculations. The zeroth-order contribution c0 is removed for better visibility. The numerical results are given by
the coloured dots. Red dots correspond to α = 1, magenta dots correspond to α = 1.5, purple dots correspond
to α = 2 and blue dots correspond to α = ∞. (b) Expansions of ηS/ε to O(ε4) with ε = 0.1 for α = 1, 1.5, 2
and ∞ (arranged from top to bottom using the same line styles as in panel a). A sampling of the numerical
results is given by the coloured dots using the same colour scheme as in panel (a).

REMARK 3.3. Integrating (3.11) term-by-term gives qS. The constant of integration can
be eliminated by a Galilean transformation of (3.2b). Because qS,x has non-zero average,
qS exhibits linear growth in x. This behaviour captures the mean flow induced by the
travelling frame.

Explicit representations for the expansions of ηS, qS,x and c up to O(ε4) are found in
Appendix A. In figure 4, these expansions show excellent agreement with direct numerical
computations of the Stokes waves using the continuation method presented in Deconinck
& Oliveras (2011).

4. The spectral instability of Stokes waves

4.1. The stability spectrum
We consider perturbations to the Stokes waves of the form

(
η(x, t; ε, ρ)

q(x, t; ε, ρ)

)
=
(

ηS(x; ε)

qS(x; ε)

)
+ ρ

(
ηρ(x, t; ε)

qρ(x, t; ε)

)
+ O

(
ρ2
)

, (4.1)

where |ρ| � 1 is a parameter independent of ε. The perturbations ηρ and qρ are
sufficiently smooth functions of x and t that are bounded over the real line for each t ≥ 0.

The non-local equation (2.3a) assumes η, ηt and qx are 2π-periodic in x, which is not
required of our perturbations. We modify (2.3a) to allow η, ηt and qx ∈ C0(R) ∩ L∞(R)
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for each t ≥ 0. The appropriate modification is〈
e−ikx [(ηt − cηx) cosh (k (η + α)) + iqx sinh (k (η + α))

]〉 = 0, k ∈ R\{0}, (4.2)

where

〈f (x)〉 = lim
L→∞

1
L

∫ L/2

−L/2
f (x) dx, (4.3)

for any f (x) ∈ C0(R) ∩ L∞(R) (Bohr 1947; Deconinck & Oliveras 2011). If η, ηt and qx
are 2π-periodic in x for each t ≥ 0, then (4.2) reduces to (2.3a).

Substituting (4.1) into (2.3b) and (4.2) and equating powers of ρ, terms of O(ρ0)
necessarily cancel, since ηS and qS solve (2.3b) and (4.2). At O(ρ), one finds the governing
equations for ηρ and qρ〈

e−ikx [cCkηρ,x + k
(
cSkηS,x − iCkqS,x

)
ηρ − iSkqρ,x

]〉 =
〈
e−ikxCkηρ,t

〉
, (4.4a)

ηS,xζ
2ηρ,x − ηρ − ζqρ,x = qρ,t − ηS,xζηρ,t, (4.4b)

where

Ck = cosh(k(ηS + α)), Sk = sinh(k(ηS + α)), ζ = qS,x − c

1 + η2
S,x

. (4.5a–c)

Equations (4.4a)–(4.4b) are autonomous in t. We separate variables to find(
ηρ(x, t)
qρ(x, t)

)
= eλt

(
N(x)
Q(x)

)
, (4.6)

where λ ∈ C controls the growth rates of the perturbations. The functions N(x) and Q(x)
satisfy 〈

e−ikx [cCkNx + k
(
cSkηS,x − iCkqS,x

)
N − iSkQx

]〉 = λ
〈
e−ikxCkN

〉
, (4.7a)

ηS,xζ
2Nx − N − ζQx = λ (Q − ηS,xζN

)
. (4.7b)

Equations (4.7a)–(4.7b) are invariant under the shift x → x + 2π by the periodicity of ηS
and qS,x. Therefore, we expect the solutions N and Q to have Bloch form (Deconinck &
Oliveras 2011) (

N(x)
Q(x)

)
= eiμx

(
N (x)
Q(x)

)
, (4.8)

where μ ∈ R is the Floquet exponent and N and Q are sufficiently smooth and
2π-periodic. Note that by redefining N and Q, μ ∈ [−1/2, 1/2), without loss of
generality.

Substituting (4.8) into (4.7a)–(4.7b), we arrive at〈
exp(−i(k − μ)x)

[
cCkDxN + k

(
cSkηS,x − iCkqS,x

)
N − iSkDxQ

]〉
= λ 〈exp(−i(k − μ)x)CkN 〉 , (4.9a)

ηS,xζ
2DxN − N − ζDxQ = λ (Q − ηS,xζN

)
, (4.9b)

where Dx = iμ + ∂x.
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The integrands of the averaging operators in (4.9a) are 2π-periodic except for the
complex exponentials. These operators evaluate to zero unless k − μ = n ∈ Z (Deconinck
& Oliveras 2011). For such k, (4.9a) becomes〈

e−inx [cCn+μDxN + (n + μ)
(
cSn+μηS,x − iCn+μqS,x

)
N − iSn+μDxQ

]〉
= λ

〈
e−inxCn+μN

〉
, n ∈ Z. (4.10)

The averaging operators of (4.10) reduce to Fourier transforms〈
e−inxf (x)

〉
= 1

2π

∫ π

−π

e−inxf (x) dx = Fn[ f (x)], (4.11)

for any f (x) ∈ L2
per(−π, π). The inverse transform is

F−1[{fn}] =
∞∑

n=−∞
fneinx, (4.12)

provided {fn} ∈ �2(Z). Using the inverse transform on (4.10), we find
∞∑

n=−∞
einxFn

[
cCn+μDxN + (n + μ)

(
cSn+μηS,x − iCn+μqS,x

)
N
]

+
∞∑

n=−∞
einxFn

[−iSn+μDxQ
] = λ

∞∑
n=−∞

einxFn
[
Cn+μN

]
. (4.13)

Equations (4.9b) and (4.13) are written compactly as

Lμ,εwμ,ε = λμ,εRμ,εwμ,ε, (4.14)

where λμ,ε = λ, wμ,ε = (N ,Q)T and

Lμ,ε =
(
L(1,1)

μ,ε L(1,2)
μ,ε

L(2,1)
μ,ε L(2,2)

μ,ε

)
, Rμ,ε =

(
R(1,1)

μ,ε 0

R(2,1)
μ,ε 1

)
, (4.15a,b)

L(1,1)
μ,ε [N ] =

∞∑
n=−∞

einxFn
[
cCn+μDxN + (n + μ)

(
cSn+μηS,x − iCn+μqS,x

)
N
]
,

(4.16a)

L(1,2)
μ,ε [Q] =

∞∑
n=−∞

einxFn
[−iSn+μDxQ

]
, (4.16b)

L(2,1)
μ,ε [N ] = ηS,xζ

2DxN − N , (4.16c)

L(2,2)
μ,ε [Q] = −ζDxQ, (4.16d)

R(1,1)
μ,ε [N ] =

∞∑
n=−∞

einxFn
[
Cn+μN

]
, (4.16e)

R(2,1)
μ,ε [N ] = −ηS,xζN . (4.16f )

Equation (4.14) represents a two-parameter family of generalized eigenvalue problems for
the linear operators Lμ,ε and Rμ,ε.
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High-frequency instabilities of Stokes waves

REMARK 4.1. In infinite depth,

L(1,1)
μ,ε [N ] =

∞∑
n=−∞

einxFn

[
e|n+μ|ηS

(
cDxN + (cηS,x|n + μ| − i(n + μ)qS,x

)
N
)]

,

(4.17a)

L(1,2)
μ,ε [Q] =

∞∑
n=−∞

einxFn

[
e|n+μ|ηS (−i sgn(n + μ)DxQ)

]
, (4.17b)

R(1,1)
μ,ε [N ] =

∞∑
n=−∞

einxFn

[
e|n+μ|ηSN

]
. (4.17c)

All other entries are the same as above.

The spectrum of (4.14) has a countable collection of finite-multiplicity eigenvalues λμ,ε

for each μ (Deconinck & Oliveras 2011; Kapitula & Promislow 2013; Akers & Nicholls
2014). The union of these eigenvalues over μ ∈ [−1/2, 1/2) is defined as the stability
spectrum of Stokes waves with amplitude ε. If there exists λμ,ε for some μ such that
Re(λμ,ε) > 0, then there exist perturbations of the Stokes waves ηρ and qρ that grow
exponentially in time. In this case, the Stokes waves are spectrally unstable. If no such μ

and λμ,ε exist, the Stokes waves are spectrally stable.

4.2. Necessary conditions for high-frequency instabilities
When ε = 0, (4.14) reduces to a generalized eigenvalue problem with constant coefficients

(
ic0(μ + D) cosh(α(μ + D)) (μ + D) sinh(α(μ + D))

−1 ic0(μ + D)

)
wμ,0 = λμ,0

(
cosh(α(μ + D)) 0

0 1

)
wμ,0,

(4.18)
where D = −i∂x. The eigenvalues of (4.18) are

λ
(σ )
μ,0,n = −iΩσ(μ + n), σ = ±1, n ∈ Z, (4.19)

with

Ωσ(z) = −c0z + σω(z), (4.20a)

ω(z) = sgn(z)
√

z tanh(αz). (4.20b)

Equation (4.20a) is the linear dispersion relation of the non-dimensional Euler equations in
a frame travelling with velocity c0. The parameter σ specifies the branch of the dispersion
relation. As expected, (4.19) gives a countable collection of eigenvalues for each μ ∈
[−1/2, 1/2). These eigenvalues are purely imaginary, and therefore, the zero-amplitude
Stokes waves are spectrally stable.

High-frequency instabilities develop from non-zero eigenvalues of (4.18) that have
double (algebraic and geometric) multiplicity for a Floquet exponent μ0 that satisfies
(MacKay & Saffman 1986; Akers & Nicholls 2012; Deconinck & Trichtchenko 2017)

λ
(σ1)
μ0,0,n = λ(σ2)

μ0,0,n+p /= 0, (4.21)

for p ∈ Z\{0}. Such double eigenvalues occur only if σ1 /= σ2 and |p| > 1 (Deconinck &
Trichtchenko 2017). More specifically, we have the following theorem:
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THEOREM 4.2. Let c0 > 0, σ1 = 1 and σ2 = −1. For each p ∈ Z\{0, ±1}, there exists a
unique Floquet exponent μ0,p ∈ [−1/2, 1/2) and unique integer np such that

λ0,p = λ(1)
μ0,p,0,np

= λ(−1)
μ0,p,0,np+p /= 0. (4.22)

The eigenvalues have the symmetry λ0,−p = −λ0,p, and the magnitudes of the eigenvalues
are strictly monotonically increasing as |p| → ∞. The corresponding eigenfunctions are

w0,p = β0

⎛
⎝ 1

−i
ω(np + μ0,p)

⎞
⎠ exp(inpx) + γ0

⎛
⎝ 1

i
ω(np + p + μ0,p)

⎞
⎠ exp(i(np + p)x),

(4.23)
where ω is given by (4.20b) and β0, γ0 ∈ C\{0}.

An important corollary is the following:

COROLLARY 4.3. Let c0 > 0. Let λ0,p be given by (4.22) for some p ∈ Z\{0, ±1}. Then,

ω(np + μ0,p)ω(np + p + μ0,p) > 0, (4.24)

and

cg,1(np + μ0,p) /= cg,−1(np + p + μ0,p), (4.25)

where cg,σ (z) is the group velocity of Ωσ(z), i.e. cg,σ (z) = Ωσ,z(z).

Similar results hold if c0 < 0 provided σ1 = −1 and σ2 = 1. See Creedon et al. (2021b)
for the proofs of Theorem 4.2 and Corollary 4.3.

The product (4.24) is equivalent to the Krein condition developed by MacKay &
Saffman (1986) and, in more generality, Deconinck & Trichtchenko (2017). This is a
second necessary condition for the development of high-frequency instabilities. Corollary
4.3 guarantees this condition is satisfied for all non-zero eigenvalues of (4.18) with double
multiplicity. Both (4.24) and (5.3) are crucial to the formal asymptotic expansions of the
high-frequency instabilities derived in §§ 5 and 6.

REMARK 4.4. In infinite depth, μ0,p and λ0,p are known explicitly. For c0 > 0,

μ0,p = −sgn( p)

8

(
(−1)p + 1

)
, (4.26a)

λ0,p = i
sgn( p)

4

(
1 − p2

)
. (4.26b)

These eigenvalues have the conjugate symmetry λ0,−p = −λ0,p, and {|λ0,p|} is strictly
monotonically increasing as |p| → ∞, similar to the finite-depth case.

5. First isola. High-frequency instabilities: p = 2

We develop a perturbation method to obtain the leading-order behaviour of the
high-frequency isola that arises from λ0,p with p = 2. According to Theorem 4.2, this
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High-frequency instabilities of Stokes waves

isola is the closest to the origin. We assume the spectral data of (4.14) corresponding to
the isola vary analytically with ε, including the Floquet exponent

λμ(ε),ε = λ0,p + λ1ε + λ2ε
2 + O

(
ε3
)

, (5.1a)

wμ(ε),ε = w0,p + w1ε + w2ε
2 + O

(
ε3
)

, (5.1b)

μ(ε) = μ0,p + μ1ε + μ2ε
2 + O

(
ε3
)

. (5.1c)

If the Floquet exponent is fixed, at most two eigenvalues are found on the isola by standard
eigenvalue perturbation theory (Kato 1966). If instead the Floquet exponent is formally
expanded in ε, all of the eigenvalues on the isola can be approximated at once. We see
below that the leading-order behaviour of these eigenvalues is obtained at O(ε2).

REMARK 5.1. Choosing p = −2 gives the isola conjugate to the p = 2 isola. Thus, we
choose p = 2 without loss of generality.

We impose the following normalization on wμ(ε),ε:

Fnp[wμ(ε),ε · e1] = 1, (5.2)

where np ∈ Z is given by Theorem 4.2 and e1 = (1, 0)T. Then, β0 = 1 in (4.23), and
all subsequent corrections of wμ(ε),ε do not include the Fourier mode exp(inpx) in the
first component. The eigenvalue and Floquet expansions, (5.1a) and (5.1c) above, are
unaffected by this normalization. For ease of notation, let λ0,p → λ0, w0,p → w0, μ0,p →
μ0 and np → n.

Several of the asymptotic expressions that follow are suppressed for ease of readability.
See the Data Availability Statement at the end of this manuscript for access to the full
expressions.

5.1. The O(ε) problem
Substituting expansions (5.1a)–(5.1c) into the generalized eigenvalue problem (4.14) and
equating powers of ε, terms of O(ε0) cancel by the choice of λ0, w0 and μ0. Terms of O(ε)

yield

(L0 − λ0R0) w1 = (λ1R0 − (L1 − λ0R1)) w0, (5.3)

where

Lj = 1
j!

∂ jLμ(ε),ε

∂ε j

∣∣∣∣
ε=0

, Rj = 1
j!

∂ jRμ(ε),ε

∂ε j

∣∣∣∣
ε=0

, j ∈ W. (5.4)

If (5.3) can be solved for w1, the inhomogeneous terms on the right-hand side
of (5.3) must be orthogonal to the nullspace of the adjoint of L0 − λ0R0 by the
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Fredholm alternative. A direct calculation shows

Null
(
(L0 − λ0R0)

†
)

= Span
{(

1
−iω (n + μ0)

)
einx,

(
1

iω (n + p + μ0)

)
ei(n+p)x

}
.

(5.5)
Hence, we impose the following solvability conditions on (5.3):〈(

1
−iω (n + μ0)

)
einx, (λ1R0 − (L1 − λ0R1)) w0

〉
= 0, (5.6a)

〈(
1

iω (n + p + μ0)

)
ei(n+p)x, (λ1R0 − (L1 − λ0R1)) w0

〉
= 0, (5.6b)

where 〈·, ·〉 is the standard inner product on L2
per(−π, π) × L2

per(−π, π). Simplifying both
conditions, we arrive at

λ1 + iμ1cg,1 (n + μ0) = 0, (5.7a)

γ0
(
λ1 + iμ1cg,−1 (n + p + μ0)

) = 0. (5.7b)

Since γ0 /= 0 by Theorem 4.2 and cg,1(n + μ0) /= cg,−1(n + p + μ0) by Corollary 4.3, we
must have

λ1 = 0 = μ1. (5.8)

Thus no instabilities are found at O(ε).
Before proceeding to O(ε2), we invert L0 − λ0R0 against its range to find the particular

solution of w1. Uniting the particular solution with the nullspace of L0 − λ0R0,

w1 =
n+p+1∑
j=n−1

j /= n,n+p

Ŵ1,jeijx + β1

⎛
⎝ 1

−i
ω(n + μ0)

⎞
⎠ einx + γ1

⎛
⎝ 1

i
ω(n + p + μ0)

⎞
⎠ ei(n+p)x, (5.9)

where the coefficients Ŵ1,j depend on α (possibly through intermediate dependencies on
known zeroth-order results) and at most linearly on γ0. The parameter γ1 ∈ C is free at
this order. By our choice of normalization (5.2), β1 = 0. Thus,

w1 =
n+p+1∑
j=n−1

j /= n,n+p

Ŵ1,jeijx + γ1

⎛
⎝ 1

i
ω(n + p + μ0)

⎞
⎠ ei(n+p)x. (5.10)

5.2. The O(ε2) problem
At O(ε2), the spectral problem (4.14) is

(L0 − λ0R0) w2 = λ2R0w0 − (L1 − λ0R1) w1 − (L2 − λ0R2) w0, (5.11)

using (5.8). Proceeding as above, we obtain the solvability conditions for (5.11)

2
(
λ2 + i𝔠2,1,n

)+ iγ0𝔰2,n = 0, (5.12a)

2γ0
(
λ2 + i𝔠2,−1,n+p

)+ i𝔰2,n+p = 0, (5.12b)

where
𝔠2,σ,j = μ2cg,σ (j + μ0) − 𝔭2,j. (5.13)

The quantities 𝔰2,j and 𝔭2,j depend only on α (possibly through known zeroth- and
first-order quantities). Using the collision condition (4.21), it can be shown that the product
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High-frequency instabilities of Stokes waves

of 𝔰2,n and 𝔰2,n+p is related to a perfect square:

𝔰2,n𝔰2,n+p = − S2
2

ω(n + μ0)ω(n + p + μ0)
, (5.14)

where

S2 = T2,1 + T2,2N̂2,2 + T2,3Q̂2,2. (5.15)

The expressions T2,j are functions only of α, as are the Stokes wave corrections N̂2,2 and
Q̂2,2, see Appendix A. When fully expanded, S2 consists of roughly 100 terms (depending
on how it is written), but each term depends only on α. The full expression of S2 is found
in the appropriate Mathematica notebook provided in the Data Availability Statement.

Solving for λ2 in (5.12a)–(5.12b),

λ2 = −i
(
𝔠2,−1,n+p+𝔠2,1,n

2

)
±
√

−
(
𝔠2,−1,n+p − 𝔠2,1,n

2

)2

+ S2
2

4ω(n+μ0)ω(n + p + μ0)
.

(5.16)
From Corollary 4.3, ω(n + μ0)ω(n + p + μ0) > 0. Thus, λ2 has non-zero real part for

μ2 ∈ (M2,−, M2,+), where

M2,± = μ2,∗ ± |S2|∣∣cg,−1 (n + p + μ0) − cg,1 (n + μ0)
∣∣√ω(n + μ0)ω(n + p + μ0)

,

(5.17)
and

μ2,∗ = 𝔭2,n+p − 𝔭2,n

cg,−1 (n + p + μ0) − cg,1 (n + μ0)
, (5.18)

provided S2 �≡ 0. Note that Corollary 4.3 guarantees (5.17) and (5.18) are well defined,
since cg,−1(n + p + μ0) and cg,1(n + μ0) are never equal.

A plot of S2 vs α reveals that S2 /= 0 except at α1 = 1.8494040837 . . . (figure 5). For
this isolated value of α, λ2 has no real part at O(ε2). We conjecture that small-amplitude
Stokes waves of all wavenumbers and in all depths are unstable to the high-frequency
instability closest to the origin, with the possible exception of Stokes waves with α = α1.

To O(ε2), the p = 2 isola is an ellipse in the complex spectral plane. The ellipse is
constructed explicitly from the real and imaginary parts of

λ(μ2; ε) = λ0 + λ2(μ2)ε
2, (5.19)

for μ2 ∈ (M2,−, M2,+). This ellipse has semi-major and -minor axes that are O(ε2), and its
centre drifts from λ0 along the imaginary axis like O(ε2). Similarly, the interval of Floquet
exponents parameterizing this ellipse has width O(ε2) and drifts from μ0 like O(ε2). In
figure 6, we compare the ellipse with a subset of numerically computed eigenvalues on the
p = 2 isola for ε = 0.01 and find excellent agreement. We find similar agreement between
the Floquet parameterization of the ellipse and of the numerically computed isola.

The eigenvalue of largest real part on the ellipse occurs when μ2 = μ2,∗. Thus, the
leading-order behaviour of the most unstable eigenvalue on the p = 2 isola has real and
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Figure 5. (a) A plot of S2 vs α (solid red). The zero of S2 for α > 0 is α1 = 1.8494040837 . . . (gold star).
(b) The real part λr,∗ of the most unstable eigenvalue on the p = 2 isola as a function of α according to our
asymptotic calculations (solid red). The real part of the eigenvalue is normalized by ε2 for better visibility.
We zoom-in around α = α1 (gold star) in the inlay. The real part of the most unstable eigenvalue on the isola
vanishes as α → α1 according to our asymptotic calculations, which agrees with our numerical results using
the FFH method with ε = 0.01 (blue dots).

imaginary parts

λr,∗ = |S2|
2
√

ω(n + μ0)ω(n + p + μ0)
ε2 + O

(
ε3
)

, (5.20a)

λi,∗ = −Ω1 (n + μ0) −
(𝔭2,n+pcg,1 (n + μ0) − 𝔭2,ncg,−1 (n + p + μ0)

cg,−1 (n + p+μ0) − cg,1 (n + μ0)

)
ε2+O

(
ε3
)

,

(5.20b)

respectively. The corresponding Floquet exponent is

μ∗ = μ0 + μ2,∗ε2 + O
(
ε3
)

. (5.21)

These expansions agree well with numerical results (figure 7).

REMARK 5.2. According to figure 7, μ0 is contained within the interval parameterizing
the p = 2 isola if the boundaries of this interval have opposite concavity at ε = 0. This
occurs if and only if M2,+M2,− < 0. In figure 8, we plot M2,+M2,− as a function of α.
We find M2,+M2,− < 0 only if α ∈ (0.8643029367 . . . , 1.0080416077 . . . ). Hur & Yang
(2020) prove the existence of an eigenvalue with Floquet exponent μ0 on the p = 2 isola
for α in this interval. As we have demonstrated, to account for p = 2 high-frequency
instabilities that occur outside this interval, it is necessary to expand the Floquet exponent
as a power series in ε about μ0.

5.3. The case of infinite depth
In infinite depth, the p = 2 isola originates from the eigenvalue

λ0 = −3
4 i, (5.22)
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Figure 6. (a) The p = 2 isola with α = 1.5 and ε = 0.01. The most unstable eigenvalue λ∗ is removed from the
imaginary axis for better visibility. The solid red curve is the ellipse obtained by our asymptotic calculations.
The blue dots are a subset of eigenvalues from the numerically computed isola using the FFH method. (b)
The Floquet parameterization of the real (blue) and imaginary (red) parts of the isola on the left. The most
unstable eigenvalue λ∗ and its corresponding Floquet exponent μ∗ are removed from the imaginary and Floquet
axes, respectively, for better visibility. The solid curves are our asymptotic results. The coloured dots are our
numerical results using the FFH method. (c,d) Same with α = 1.

with corresponding Floquet exponent μ0 = −1/4 and n = −2, see Remark 4.4. The
corresponding eigenfunction, after normalizing, is

w0 =
(

1
2
3 i

)
einx + γ0

(
1

−2i

)
ei(n+p)x, (5.23)

where γ0 ∈ C\{0}. We modify the generalized eigenvalue problem (4.14) according to
Remark 4.1 and expand the spectral data as a power series in ε about the values above.

Terms of O(ε0) cancel by construction. At O(ε), the solvability conditions simplify to

λ1 = 0 = μ1, (5.24)
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Figure 7. (a) The interval of Floquet exponents parameterizing the p = 2 isola as a function of ε for α = 1.5.
The zeroth-order correction of the Floquet exponent is removed from the Floquet axis for better visibility. The
solid blue curves are the boundaries of this interval according to our asymptotic calculations. The blue dots are
the boundaries computed numerically by the FFH method. The solid red curve gives the Floquet exponent of
the most unstable eigenvalue on the isola according to our asymptotic calculations. The red dots are the Floquet
exponent of the most unstable eigenvalue as computed by the FFH method. (b) The real (blue) and imaginary
(red) parts of the most unstable eigenvalue of the p = 2 isola with α = 1.5 as a function of ε. The zeroth-order
correction of the eigenvalue is removed from the imaginary axis for better visibility. The solid curves are our
asymptotic calculations. The coloured dots are our numerical results using the FFH method. (c,d) Same with
α = 1.

as in finite depth, and the normalized solution of the O(ε) problem is

w1 =
n+p+1∑
j=n−1

j /= n,n+p

Ŵ1,j,∞eijx + γ1

(
1

−2i

)
ei(n+p)x, (5.25)

where the coefficients Ŵ1,j,∞ depend at most linearly on γ0.
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Figure 8. A plot of M2,+M2,− vs α (solid red). We find M2,+M2,− < 0 only when α ∈
(0.8643029367 . . . , 1.0080416077 . . . ) (solid black). If M2,+M2,− < 0, the boundaries of the Floquet
exponents parameterizing the p = 2 isola have opposite concavities at ε = 0. Only then does μ0 remain in the
interval of Floquet exponents parameterizing the isola for positive ε.

At O(ε2), the solvability conditions are

λ2 + i𝔠2,1,n,∞ = 0, (5.26a)

γ0
(
λ2 + i𝔠2,−1,n+p,∞

) = 0, (5.26b)

where

𝔠2,σ,j,∞ = μ2cg,σ,∞ (j + μ0) − 𝔭2,j,∞, (5.27)

with cg,σ,∞(z) = limα→∞ Ωσ,z(z), 𝔭2,n,∞ = 9/8 and 𝔭2,n+p,∞ = −1/16.
Because γ0 /= 0, (5.26a)–(5.26b) reduce to a linear system for λ2 and μ2. The solution

of this system is

λ2 = 55
32 i, μ2 = 57

64 . (5.28a,b)

Since λ2 is purely imaginary, the leading-order behaviour of the p = 2 isola does
not occur at O(ε2), as expected from (5.20a), since limα→∞ S2 = 0. Thus, while the
asymptotic expressions involved in infinite depth are simpler than those in finite depth, the
leading-order behaviour of the p = 2 isola requires a higher-order calculation in infinite
depth. We obtain the normalized solution of the O(ε2) problem

w2 =
n+p+2∑
j=n−2

Ŵ2,j,∞eijx + γ2

(
1

−2i

)
ei(n+p)x, (5.29)

where the coefficients Ŵ2,j,∞ depend at most linearly on γ0 and γ1 while γ2 ∈ C is a free
parameter at this order.

At O(ε3), the solvability conditions reduce to

λ3 + iμ3cg,1,∞ (n + μ0) = 0, (5.30a)

γ0
(
λ3 + iμ3cg,−1,∞ (n + p + μ0)

) = 0. (5.30b)

As in finite depth, cg,1,∞(n + μ0) /= cg,−1,∞(n + p + μ0), and since γ0 /= 0, we must
have

λ3 = 0 = μ3. (5.31)
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No instability is observed at this order. The normalized solution of the O(ε3) problem is

w3 =
n+p+3∑
j=n−3

Ŵ3,j,∞eijx + γ3

(
1

−2i

)
ei(n+p)x, (5.32)

where the coefficients Ŵ3,j,∞ depend at most linearly on γ0, γ1 and γ2 while the parameter
γ3 ∈ C is free at this order.

At O(ε4), the solvability conditions are

2
(
λ4 + i𝔠4,1,n,∞

)+ iγ0𝔰4,n,∞ = 0, (5.33a)

2γ0
(
λ4 + i𝔠4,−1,n+p,∞

)+ i𝔰4,n+p,∞ = 0, (5.33b)

where
𝔠4,σ,j,∞ = μ4cg,σ,∞ (j + μ0) − 𝔭4,j,∞, (5.34)

with 𝔰4,n,∞ = −111/256, 𝔰4,n+p,∞ = 37/256, 𝔭4,n,∞ = 24 119/12 288 and 𝔭4,n+p,∞ =
24 985/36 864. Solving (5.33a)–(5.33b) for λ4, we find the explicit formula

λ4 = (48 671 + 49152μ4)

36 864
i ±
√

−134 933 977 + 291053568μ4 − 150994944μ2
4

18 432
.

(5.35)
Equation (5.35) has non-zero real part provided

μ4 ∈
(

11 843
12 288

− 111
√

3
1024

,
11 843
12 288

+ 111
√

3
1024

)
. (5.36)

Thus, the p = 2 isola is an ellipse to O(ε4) given by the real and imaginary parts of

λ(μ4; ε) = −3
4 i + 55

32 iε2 + λ4(μ4)ε
4, (5.37)

for μ4 in (5.36). Unlike in finite depth, this ellipse has semi-major and -minor axes that are
O(ε4), while the centre drifts from λ0 like O(ε2). Similarly, the Floquet parameterization
of the isola has width O(ε4) and drifts from μ0 like O(ε2).

In figure 9, we compare the asymptotically computed ellipse with a subset of
numerically computed eigenvalues on the p = 2 isola for ε = 0.01. Notice this ellipse
is considerably smaller than that in finite depth for comparable wave amplitude (figure 6).
Excellent agreement is found between the asymptotic and numerical predictions. Similar
agreement is found between the Floquet parameterization of the ellipse and of the
numerically computed isola.

The eigenvalue of largest real part on the ellipse occurs when μ4 = 11843/36864. Thus,
the real and imaginary parts of the most unstable eigenvalue on the isola have asymptotic
expansions

λr,∗ = 37
√

3
512

ε4 + O
(
ε5
)

, (5.38)

λi,∗ = −3
4

+ 55
32

ε2 + 96 043
36 864

ε4 + O
(
ε5
)

, (5.39)

respectively. The corresponding Floquet exponent has expansion

μ∗ = −1
4

+ 57
64

ε2 + 11 843
36 864

ε4 + O
(
ε5
)

. (5.40)

These expansions are compared with numerical results in figure 10.
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Figure 9. (a) The p = 2 isola with α = ∞ and ε = 0.01. The most unstable eigenvalue λ∗ is removed from the
imaginary axis for better visibility. The solid red curve is the ellipse obtained by our asymptotic calculations.
The blue dots are a subset of eigenvalues from the numerically computed isola using the FFH method. (b) The
Floquet parameterization of the real (blue) and imaginary (red) parts of the isola. The most unstable eigenvalue
λ∗ and its corresponding Floquet exponent μ∗ are removed from the imaginary and Floquet axes, respectively,
for better visibility. The solid curves are our asymptotic results. The coloured dots are our numerical results
using the FFH method.
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Figure 10. (a) The interval of Floquet exponents parameterizing the p = 2 isola as a function of ε for α = ∞.
The most unstable Floquet exponent μ∗ is removed from the Floquet axis for better visibility. The solid blue
curves are the boundaries of this interval according to our asymptotic calculations. The blue dots are the
boundaries computed numerically by the FFH method. The solid red curve gives the Floquet exponent of the
most unstable eigenvalue on the isola according to our asymptotic calculations. The red dots are the Floquet
exponent of the most unstable eigenvalue as computed by the FFH method. (b) The real (blue) and imaginary
(red) parts of the most unstable eigenvalue of the p = 2 isola with α = ∞ as a function of ε. The zeroth-order
correction of the eigenvalue is removed from the imaginary axis for better visibility. The solid curves are our
asymptotic calculations. The coloured dots are our numerical results using the FFH method.

6. Second isola. High-frequency instabilities: p = 3

We extend the perturbation method developed in § 5 to obtain the leading-order behaviour
of the high-frequency isola that arises from λ0,p with p = 3. This isola is the second closest
to the origin by Theorem 1, and its leading-order behaviour is obtained at O(ε3).

937 A24-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1119


R.P. Creedon, B. Deconinck and O. Trichtchenko

As in the previous section, we expand the spectral data of (4.14) according to
(5.1a)–(5.1c) and normalize the eigenfunctions according to (5.2) for convenience. The
perturbation method proceeds as in § 5, with two major changes:

(i) At O(ε2), the solvability conditions are independent of γ0 and linear in λ2 and μ2.
As a consequence, λ2 is purely imaginary, and the leading-order behaviour of the
isola is undetermined at this order.

(ii) At O(ε3), the solvability conditions depend on γ0, λ3, and γ1. Using solvability
conditions from the previous order together with the collision condition (4.21), one
shows that the dependence on γ1 vanishes from these conditions.

A more complete description of these calculations is provided in Appendix B.

6.1. The O(ε3) problem
Solving for λ3 in the solvability conditions at O(ε3), we find

λ3 = −iμ3

(
cg,−1(n + p + μ0) + cg,1(n + μ0)

2

)

±
√

−μ2
3

(
cg,−1(n + p + μ0) − cg,1(n + μ0)

2

)2

+ S2
3

4ω(n + μ0)ω(n + p + μ0)
.

(6.1)

Similar to S2 in the previous section, S3 is another lengthy expression depending only
on α, see Appendix B for more details. A plot of S3 vs α reveals S3 /= 0, except at α2 =
0.8206431673 . . . (figure 11). We conjecture that Stokes waves of all wavenumbers and
in all depths are unstable to the second closest high-frequency instability from the origin,
with possible exceptions if α = α2. Since α2 /=α1, Stokes waves of all wavenumbers and
in all depths appear to be unstable with respect to high-frequency instabilities.

REMARK 6.1. As α → ∞, S3 → 0. Therefore, the leading-order behaviour of the p = 3
isola in infinite depth is resolved at higher order. For ε of the order of 0.01 and smaller, this
isola is already within the numerical error of the FFH method. For larger ε, the expansions
deviate too quickly from the numerics to make comparisons.

Provided α /=α2, (6.1) has non-zero real part for μ3 ∈ (−M3, M3), where

M3 = |S3|
|cg,−1(n + p + μ0) − cg,1(n + μ0)|

√
ω(n + μ0)ω(n + p + μ0)

. (6.2)

Unlike the p = 2 isola, this interval is symmetric about the origin. For μ3 in this interval,
the real and imaginary parts of (6.1), together with the lower-order corrections of λ, trace
an ellipse asymptotic to the p = 3 isola. This ellipse has semi-major and -minor axes that
scale as O(ε3) and a centre that drifts form λ0 like O(ε2). The Floquet parameterization of
this ellipse has width O(ε3) and drifts from μ0 like O(ε2). As a result, this isola is more
challenging to capture than the p = 2 isola in finite depth.

Comparing our asymptotic and numerical p = 3 isolas with ε = 0.01 (figure 12), we
observe that, while the real part of the numerical isola matches our O(ε3) calculations, the
imaginary part and Floquet parameterization of the isola require fourth-order corrections.
This is in contrast with the p = 2 isola (figure 6), for which we obtain the drifts in the
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Figure 11. (a) A plot of S3 vs α (solid red). The zero of S3 for α > 0 is α2 = 0.8206431673 . . . (gold star).
(b) The real part λr,∗ of the most unstable eigenvalue on the p = 3 isola as a function of α according to our
asymptotic calculations (solid red). The real part of the eigenvalue is normalized by ε3 for better visibility.
We zoom-in around α = α2 (gold star) in the inlay. The real part of the most unstable eigenvalue on the isola
vanishes as α → α2 according to our asymptotic calculations, which agrees with our numerical results using
the FFH method with ε = 0.01 (blue dots).

imaginary part and Floquet parameterization at the same order as the real part. We obtain
these drifts for the p = 3 isola in the following subsection.

Equating μ3 = 0 maximizes the real part of (6.1). Hence, the real and imaginary part of
the most unstable eigenvalue on the p = 3 isola have asymptotic expansions

λr,∗ =
( |S3|

2
√

ω(n + μ0)ω(n + p + μ0)

)
ε3 + O

(
ε4
)

, (6.3a)

λi,∗ = −iΩ1(n + μ0) −
(𝔭2,n+pcg,1(n + μ0) − 𝔭2,ncg,−1(n + p + μ0)

cg,−1(n + p + μ0) − cg,1(n + μ0)

)
ε2 + O

(
ε4
)

,

(6.3b)

respectively, and the corresponding Floquet exponent has asymptotic expansion

μ∗ = μ0 +
( 𝔭2,n+p − 𝔭2,n

cg,−1(n + p + μ0) − cg,1(n + μ0)

)
ε2 + O

(
ε4
)

. (6.4)

The quantities 𝔭2,j are defined in Appendix B.
Figure 13 compares the asymptotic expansions (6.3a)–(6.3b) and (6.4) with their

numerical counterparts. Excellent agreement is found for the real and imaginary parts
of the most unstable eigenvalue. The interval of Floquet exponents that parameterizes the
isola requires a fourth-order correction to match the numerical predictions.

Before proceeding to the next order, we solve the O(ε3) problem for w3:

w3 =
n+p+3∑
j=n−3

Ŵ3,jeijx + γ3

⎛
⎝ 1

i
ω(n + p + μ0)

⎞
⎠ ei(n+p)x, (6.5)

where the coefficients Ŵ3,j depend on α (possibly through intermediate dependencies on
known zeroth-, first- and second-order results) and at most linearly on γ0, γ1, and γ2. At
this order, γ3 ∈ C is a free parameter.
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Figure 12. (a) The p = 3 isola with α = 1.5 and ε = 0.01. The most unstable eigenvalue λ∗ is removed from
the imaginary axis for better visibility. The solid and dashed red curves are the ellipses obtained by our O(ε4)

and O(ε3) asymptotic calculations, respectively. The blue dots are a subset of eigenvalues from the numerically
computed isola using the FFH method. (b) The Floquet parameterization of the real (blue) and imaginary
(red) parts of the isola on the left. The most unstable eigenvalue λ∗ and its corresponding Floquet exponent
μ∗ are removed from the imaginary and Floquet axes, respectively, for better visibility. The solid teal and
orange curves are our asymptotic results for the real and imaginary parts of the Floquet parameterization,
respectively, to O(ε4). The dashed blue and red curves are the same results to O(ε3). The blue and red dots
are the numerically computed real and imaginary parts of the Floquet parameterization, respectively, using the
FFH method. (c,d) Same with α = 1.
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Figure 13. (a) The interval of Floquet exponents parameterizing the p = 3 isola as a function of ε for α = 1.5.
The most unstable Floquet exponent μ∗ is removed from the Floquet axis for better visibility. The solid and
dashed blue curves are the boundaries of this interval according to our O(ε4) and O(ε3) asymptotic calculations,
respectively. The blue dots are the boundaries computed numerically by the FFH method. The solid and dashed
red curves give the Floquet exponent of the most unstable eigenvalue on the isola according to our O(ε4)

and O(ε3) asymptotic calculations, respectively. The red dots are the Floquet exponent of the most unstable
eigenvalue as computed by the FFH method. (b) The real (blue) and imaginary (red) parts of the most unstable
eigenvalue of the p = 3 isola with α = 1.5 as a function of ε. The zeroth-order correction of the eigenvalue
is removed from the imaginary axis for better visibility. The solid teal and orange curves are our asymptotic
calculations for the real and imaginary parts of the most unstable eigenvalue to O(ε4), respectively. The dashed
blue and red curves are the same results to O(ε3). The blue and red dots are the numerically computed real and
imaginary parts of the most unstable eigenvalue using the FFH method. (c,d) Same with α = 1.
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6.2. The O(ε4) problem
At O(ε4), the spectral problem (4.14) becomes

(L0 − λ0R0) w4 =
⎛
⎝ 2∑

j=0

λ4−jRj

⎞
⎠w0 +

⎛
⎝ 1∑

j=0

λ3−jRj

⎞
⎠w1 + λ2R0w2

−
3∑

j=0

(
L4−j − λ0R4−j

)
wj. (6.6)

After some manipulation, the solvability conditions of (6.6) can be written as(
2 i𝔰3,n

2γ0 2
(
λ3 + iμ3cg,−1(n + p + μ0)

))(λ4
γ1

)
+ iγ2

(
0

𝔱4,n+p

)

= −2i
(

μ4cg,1(n + μ0) − 𝔭4,n
γ0
(
μ4cg,−1(n + p + μ0) − 𝔭4,n+p

)) . (6.7)

Using the solvability conditions at the previous order and the collision condition (4.21),
one can show 𝔱4,n+p ≡ 0. Then, (6.7) reduces to a linear system for λ4 and γ1.

For μ3 ∈ (−M3, M3) with M3 given by (6.2), the determinant of (6.7) simplifies to

det
(

2 i𝔰3,n
2γ0 2

(
λ3 + iμ3cg,−1(n + p + μ0)

)) = 8λ3,r, (6.8)

where λ3,r = Re(λ3). Provided α /=α2, (6.7) is invertible for all μ3 ∈ (−M3, M3).
Solving (6.7) for λ4,

λ4 = i

[(
λ3 + iμ3cg,−1(n + p + μ0)

) (
cg,1(n + μ0) − 𝔭4,n

)
2λ3,r

+
(
λ3 + iμ3cg,1(n + μ0)

) (
cg,−1(n + p + μ0) − 𝔭4,n+p

)
2λ3,r

]
. (6.9)

Since 𝔭4,j, μ4 ∈ R, the real and imaginary parts of λ4 = λ4,r + iλ4,i are

λ4,r = μ3
(
cg,−1(n + p + μ0) − cg,1(n + μ0)

)
4λ3,r

[−μ4
(
cg,−1(n + p + μ0) − cg,1(n + μ0)

)
+ 𝔭2,n+p − 𝔭2,n

]
, (6.10a)

λ4,i = −1
2

[
μ4
(
cg,−1(n + μ0) + cg,1(n + μ0)

)− (𝔭4,n+p + 𝔭4,n
) ]

. (6.10b)

Given (6.10a)–(6.10b), we invoke the regular curve condition, first introduced in
Creedon et al. (2021a,b). According to this condition, all eigenvalue corrections must be
bounded over the closure of μ3 ∈ (−M3, M3). Notice λ3,r → 0 as |μ3| → M3. Thus, λ4,r
is bounded only if

μ4 = 𝔭4,n+p − 𝔭4,n

cg,−1(n + p + μ0) − cg,1(n + μ0)
. (6.11)

Hence,

λ4 = −i
(𝔭4,n+pcg,1(n + μ0) − 𝔭4,ncg,−1(n + p + μ0)

cg,−1(n + p + μ0) − cg,1(n + μ0)

)
. (6.12)
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REMARK 6.2. If α = α2, then 𝔰3,n = 0 and λ3 = 0 = μ3. Applying the Fredholm
alternative to (6.7), one arrives at (6.11) and (6.12), but the constants γ0 and γ1 remain
arbitrary at this order.

Equations (6.11) and (6.12) give the fourth-order drifts in the Floquet parameterization
and imaginary part of the p = 3 isola, respectively. The eigenvalues asymptotic to this
isola form the ellipse

λ(μ3; ε) = λ0 + λ2ε
2 + λ3(μ3)ε

3 + λ4ε
4, (6.13)

which agrees better with the numerically computed isola than at the previous order, see
figures 12 and 13.

7. Conclusion

Building on previous work by Akers (2015) and Creedon et al. (2021a,b), we have
developed a formal perturbation method to compute high-frequency instabilities of
small-amplitude Stokes wave solutions of Euler’s equations in arbitrary depth. This
method allows one to approximate an entire high-frequency isola.

We explicitly obtain the leading-order behaviour of the isolas closest to the origin in the
complex spectral plane (p = 2, 3) for all depths, including

(i) the Floquet exponents that parameterize the isola;
(ii) the real and imaginary parts of the most unstable eigenvalue on the isola; and

(iii) the curve asymptotic to the isola.

These expressions are compared directly with numerical computations of the isolas
using the FFH method. Excellent agreement is found for the p = 2 isola. The p = 3 isola
achieves similar agreement if higher-order corrections of the imaginary part and Floquet
parameterization are computed using the regular curve condition, as defined in § 6.

According to our asymptotic results, Stokes waves of all aspect ratios, except κh = α1
and κh = α2, are unstable to the p = 2 and p = 3 high-frequency instabilities, respectively.
Stokes waves are also unstable to high-frequency instabilities in infinite depth (h = ∞),
although this requires a higher-order calculation than in finite depth. Based on these
findings, we conjecture that Stokes waves of all depths and all wavenumbers are spectrally
unstable to high-frequency instabilities, extending recent work by Hur & Yang (2020),
where the existence of the p = 2 high-frequency instability is proven only if κh ∈
(0.86430 . . . , 1.00804 . . . ). The effect of the high-frequency instabilities on the Stokes
waves has been illustrated in Deconinck & Oliveras (2011).

The perturbation method developed in this work is readily extended to higher-order
isolas ( p ≥ 4). It appears this method yields the first real-part correction of the isola at
O(εp). In contrast, corrections to the imaginary part and Floquet parameterization of the
isola appear at O(ε2). Thus, we expect isolas further from the origin to have increasingly
smaller widths, while their centres drift along the imaginary axis like O(ε2).

If correct, this conjecture highlights one of the primary challenges for analytical and
numerical investigations of high-frequency instabilities: each isola is smaller than the
previous, and each isola drifts from its known zeroth-order behaviour quickly relative to
its size. Our hope is that the perturbation method developed in this work can be used as a
starting point for future proofs of high-frequency instabilities as well as improvements to
the numerical resolution of high-frequency isolas far away from the origin in the complex
spectral plane.
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Appendix A. Stokes wave expansions

The Stokes waves of (2.3a)–(2.3b) have velocity

c(ε) = c0 + c2ε
2 + c4ε

4 + O
(
ε6
)

, (A1)

where

c2
0 = tanh(α), (A2a)

c2 = 6 + 2 cosh(2α) + cosh(4α)

16c0 sinh3(α) cosh(α)
, (A2b)

c4 = 212 + 55 cosh(2α) − 98 cosh(4α) − 23 cosh(6α) + 14 cosh(8α) + 2 cosh(10α)

2048c0 sinh9(α) cosh(α)
,

(A2c)

and take the form

ηS(x; ε) = ε cos(x)+ε2N̂2,2 cos(2x)+ε3N̂3,3 cos(3x) + ε4
(

N̂4,2 cos(2x) + N̂4,4 cos(4x)
)

+ O
(
ε5
)

, (A3a)

qS,x(x; ε) = ε

c0
cos(x) + ε2

(
Q̂2,0 + Q̂2,2 cos(2x)

)
+ ε3

(
Q̂3,0 cos(x) + Q̂3,3 cos(3x)

)
+ ε4

(
Q̂4,0 + Q̂4,2 cos(2x) + Q̂4,4 cos(4x)

)
+ O

(
ε5
)

, (A3b)

where

N̂2,2 = 5 cosh(α) + cosh(3α)

8 sinh3(α)
, (A4a)

N̂3,3 = 3(14 + 15 cosh(2α) + 6 cosh(4α) + cosh(6α))

256 sinh6(α)
, (A4b)

N̂4,2 = 215 − 418 cosh(2α) − 472 cosh(4α) + 10 cosh(6α) + 17 cosh(8α)

3072c2
0 sinh8(α)

, (A4c)
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N̂4,4 = 203 + 347 cosh(2α) + 158 cosh(4α) + 76 cosh(6α) + 23 cosh(8α) + 3 cosh(10α)

768c2
0(2 + 3 cosh(2α)) sinh8(α)

,

(A4d)

Q̂2,0 = 1

4 sinh2(α)
, (A4e)

Q̂2,2 = 3 + 2 cosh(2α) + cosh(4α)

8c0 sinh3(α) cosh(α)
, (A4f )

Q̂3,1 = −
(

cosh(2α) (2 + cosh(2α))

16c0 sinh4(α)

)
, (A4g)

Q̂3,3 = 3 (26 − 3 cosh(2α) + 10 cosh(4α) + 3 cosh(6α))

256c0 sinh6(α)
, (A4h)

Q̂4,0 = 48 + 47 cosh(2α) − 20 cosh(4α) − 3 cosh(6α)

512c0 sinh7(α) cosh(α)
, (A4i)

Q̂4,2 = −
(

240 + 82 cosh(2α) + 688 cosh(4α) + 309 cosh(6α) − 16 cosh(8α) − 7 cosh(10α)

6144c0 sinh9(α) cosh(α)

)
, (A4j)

Q̂4,4 = 408+638 cosh(2α)+230 cosh(4α)+171 cosh(6α)+124 cosh(8α) + 43 cosh(10α) + 6 cosh(12α)

1536c0(2 + 3 cosh(2α)) sinh9(α) cosh(α)
.

(A4k)

The Stokes expansions in infinite depth are obtained from the above with α → ∞.

Appendix B. Detailed calculations of the p = 3 instability

For explicit representations of the asymptotic expressions derived in this appendix, see the
Data Availability Statement at the end of this manuscript.

B.1. The O(ε) problem
At O(ε), the spectral problem takes the form (5.3). The solvability conditions simplify to

λ1 = 0 = μ1, (B1)

and the normalized solution of the O(ε) problem is

w1 =
n+p+1∑
j=n−1

j /= n,n+p

Ŵ1,jeijx + γ1

⎛
⎝ 1

i
ω(n + p + μ0)

⎞
⎠ ei(n+p)x, (B2)

where the coefficients Ŵ1,j depend on α (possibly through intermediate dependencies on
known zeroth-order results) and at most linearly on γ0. At this order, γ1 ∈ C is a free
parameter.
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B.2. The O(ε2) problem
At O(ε2), the spectral problem takes the form (5.11). The solvability conditions are

λ2 + i𝔠2,1,n = 0, (B3a)

γ0
(
λ2 + i𝔠2,−1,n+p

) = 0, (B3b)

where 𝔠2,σ,j = μ2cg,σ (j + μ0) − 𝔭2,j, as in § 5 (although the quantities 𝔭2,j evaluate
differently than those for the p = 2 isolas). Since γ0 /= 0, the solution of (B3a)–(B3b)
is

λ2 = −i
(𝔭2,n+pcg,1(n + μ0) − 𝔭2,ncg,−1(n + p + μ0)

cg,−1(n + p + μ0) − cg,1(n + μ0)

)
, (B4a)

μ2 = 𝔭2,n+p − 𝔭2,n

cg,−1(n + p + μ0) − cg,1(n + μ0)
. (B4b)

Since λ2 is purely imaginary, no instabilities are found at this order. The normalized
solution of the O(ε2) problem is

w2 =
n+p+2∑
j=n−2

Ŵ2,jeijx + γ2

⎛
⎝ 1

i
ω(n + p + μ0)

⎞
⎠ ei(n+p)x, (B5)

where the coefficients Ŵ2,j depend on α (possibly through intermediate dependencies on
known zeroth- and first-order results) and at most linearly on γ0 and γ1. At this order,
γ2 ∈ C is a free parameter.

B.3. The O(ε3) problem
At O(ε3), the spectral problem becomes

(L0 − λ0R0) w3 = (λ2R1 + λ3R0) w0 −
2∑

j=0

(
L3−j − λ0R3−j

)
wj, (B6)

with the aid of (B1). The solvability conditions are

2
(
λ3 + iμ3cg,1(n + μ0)

)+ iγ0𝔰3,n = 0, (B7a)

2γ0
(
λ3 + iμ3cg,−1(n + p + μ0)

)+ i𝔰3,n+p + iγ1𝔱3,n+p = 0. (B7b)

Using the solvability conditions (B3a)–(B3b) and the collision condition (4.21), it can be
shown that

𝔱3,n+p ≡ 0. (B8)

As in the p = 2 case (§ 5), the product of 𝔰3,n and 𝔰3,n+p is related to a perfect square

𝔰3,n𝔰3,n+p = − S2
3

ω(n + μ0)ω(n + p + μ)
, (B9)

where
S3 = T3,1 + T3,2N̂2,2 + T3,3Q̂2,2 + T3,4N̂3,3 + T3,5Q̂3,3. (B10)

The expressions T3,j are functions only of α, as are the Stokes wave corrections N̂2,2,
Q̂2,2, N̂3,3 and Q̂3,3, see Appendix A. When fully expanded, S3 involves several hundred
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terms, but each term depends only on α. The full expression of S3 can be found in
the appropriate Mathematica notebook provided in the Data Availability Statement. The
remaining calculations at this order appear in § 6.
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