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Using recently developed adjoint methods for computing the shape derivatives of
functions that depend on magnetohydrodynamic (MHD) equilibria (Antonsen et al.,
J. Plasma Phys., vol. 85, issue 2, 2019; Paul et al., J. Plasma Phys., vol. 86, issue 1, 2020),
we present the first example of analytic gradient-based optimization of fixed-boundary
stellarator equilibria. We take advantage of gradient information to optimize figures of
merit of relevance for stellarator design, including the rotational transform, magnetic
well and quasi-symmetry near the axis. With the application of the adjoint method,
we reduce the number of equilibrium evaluations by the dimension of the optimization
space (∼50–500) in comparison with a finite-difference gradient-based method. We
discuss regularization objectives of relevance for fixed-boundary optimization, including
a novel method that prevents self-intersection of the plasma boundary. We present several
optimized equilibria, including a vacuum field with very low magnetic shear throughout
the volume.
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1. Introduction

The improved confinement of modern stellarators is largely attributed to the numerical
optimization of the magnetic field. With the technique pioneered by Nührenberg & Zille
(1988), the shape of the plasma boundary, SP, is optimized for certain properties of the
magnetohydrodynamic (MHD) equilibrium,

(∇ × B)× B = μ0∇p, in VP, (1.1a)

B · n̂ = 0, on SP, (1.1b)

where SP = ∂VP, p(ψ) is the prescribed pressure profile and n̂ is the unit normal. For the
past three decades, stellarator optimization has largely proceeded with this fixed-boundary
approach with codes such as STELLOPT (Lazerson et al. 2020) and ROSE (Drevlak et al.
2018), resulting in the W7-X (Beidler et al. 1990), HSX (Anderson et al. 1995) and NCSX
(Zarnstorff et al. 2001) configurations. We use the term ‘fixed-boundary’ to describe this
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approach as the equilibrium is computed with a specified boundary, although the boundary
is varied throughout the optimization.

Although there has been significant success with this approach, there are several ways to
improve the performance of fixed-boundary optimization. Specifically, the incorporation
of derivative information could be transformative. Fixed-boundary optimization has
previously relied on derivative-free methods, such as genetic algorithms (Miner et al.
2001), differential evolution (Mynick, Pomphrey & Ethier 2002) and Brent’s algorithm
(Drevlak et al. 2018), or derivative-based methods with finite-difference gradients. While
global derivative-free algorithms may prevent the optimization from terminating in
local minima, they are only effective for smaller problems (Nocedal & Wright 2006).
Gradient-based optimization with finite-difference gradients requires excessive function
evaluations in high-dimensional spaces and suffers from error that enters due to the choice
of step size. If the step size is too small, the error is dominated by round-off error, and if
it is too large it is dominated by nonlinearity (Sauer 2012). Owing to the requirement
of excessive function evaluations and the unreliability of the gradient information,
gradient-based optimization with finite-difference derivatives is not always effective.
In this work, we present the first example of analytic gradient-based, fixed-boundary
optimization of stellarator equilibria.

With a local gradient descent approach, each iteration reduces to a one-dimensional
line search (Nocedal & Wright 2006); thus, the further incorporation of derivative
information eliminates restrictions on the size of the optimization space. There is some
evidence from the machine learning community that overparameterization of the space
can accelerate optimization (Oymak & Soltanolkotabi 2018). Therefore, it is possible that
increasing the Fourier resolution of the plasma boundary may similarly eliminate local
minima.

There are several ways that this derivative information can be obtained. For sufficiently
simple figures of merit, the objective can be analytically differentiated and implemented
by hand. Alternatively, the derivatives can be obtained programmatically using automatic
differentiation tools. When a given objective function depends on the solution of a
set of equations, such as the MHD equilibrium equations (1.1), the derivatives can be
obtained more efficiently using an adjoint method. With this technique, the solution
of only one additional equation, known as the adjoint equation, is required. Once the
adjoint solution is obtained, the derivative of a given objective can be obtained with
respect to any optimization parameter, eliminating the need to solve a perturbed set of
equations. In this way, the cost associated with obtaining a high-dimensional gradient is
reduced significantly. In this work, we employ adjoint-based gradients of functions which
depend on the MHD equilibrium equations. This adjoint method results from a generalized
self-adjointness property of the MHD force operator (Antonsen, Paul & Landreman 2019).
This technique has been demonstrated for computing the shape derivatives of several
figures of merit relevant for stellarator design, including the magnetic well, rotational
transform, and magnetic ripple (Paul et al. 2020). Each of these objective functions have
been included in modern stellarator designs (Beidler et al. 1990; Anderson et al. 1995;
Zarnstorff et al. 2001; Henneberg et al. 2019). We also employ analytic gradients for
objectives that do not depend on the MHD equilibrium equations, such as the volume
and properties of the surface curvatures.

There have been several recent applications of derivative information to other related
problems in stellarator design. The FOCUS (Zhu et al. 2018) and FOCUSADD (McGreivy,
Hudson & Zhu 2021) codes optimize coil shape to be consistent with a given plasma
boundary with gradients obtained from analytic and automatic differentiation methods,
respectively. Our work is distinct from the FOCUS approach, as we use gradients to
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optimize properties of the equilibrium rather than using gradients to optimize coils in
order to match the boundary of a given equilibrium. Adjoint methods have recently
been applied to directly optimize coils for quasi-symmetry near the magnetic axis in a
vacuum field (Giuliani et al. 2020). In contrast, our approach can be applied to optimize
equilibria with arbitrary pressure. Furthermore, we have developed adjoint methods for
direct optimization of coil shapes for properties of an MHD equilibrium (Antonsen et al.
2019; Paul et al. 2020), although its application to optimization is not presented in this
work. Adjoint methods have also been used to optimize the local magnetic field for
neoclassical properties (Paul et al. 2019) and the coil winding surface for properties of
the current potential (Paul et al. 2018).

We discuss the new gradient-based fixed-boundary optimization tool in § 2. In
§ 3, we present regularization terms for fixed-boundary optimization, including a
constraint on the curvature of the boundary that prevents self-intersection. In § 4, we
present several optimization demonstrations, including obtaining a low magnetic shear
configuration (§ 4.1), a configuration with a magnetic well (§ 4.2), and a configuration
with quasi-symmetry near the magnetic axis (§ 4.3). We conclude in § 5.

2. Overview of ALPOpt optimization tool

As with the STELLOPT and ROSE codes, the ALPOpt1 tool optimizes the boundary
of VMEC (Hirshman & Whitson 1983) equilibria. The VMEC code obtains solutions
of (1.1) under the assumption of nested toroidal magnetic surfaces. The plasma
boundary is described by a set of Fourier coefficients of the cylindrical coordinates,
{Rc

m,n,Zs
m,n},

R(θ, φ) =
∑
m,n

Rc
m,n cos(mθ − nNPφ), (2.1a)

Z(θ, φ) =
∑
m,n

Zs
m,n sin(mθ − nNPφ), (2.1b)

where θ is a poloidal angle, φ is the cylindrical toroidal angle and NP is the number
of field periods. Therefore, the optimization space is taken to be the set of coefficients
{Rc

m,n,Zs
m,n}. The pressure profile p(ψ) and another function of flux, either the rotational

transform ι(ψ) or enclosed toroidal current IT(ψ), are prescribed and fixed. (For all of
the examples in this work, IT(ψ) is fixed.) The optimization code interfaces with VMEC
through python, and optimization is performed with the scipy2 and NLOPT (Johnson 2014)
packages.

The optimization tool takes advantage of the adjoint method for obtaining the shape
gradient of MHD equilibria (Antonsen et al. 2019; Paul et al. 2020). Here the perturbation
to the magnetic field due to a perturbation of the boundary is expressed as

δB1 = ∇ × (
ξ 1 × B

)− δι1(ψ)∇ψ × ∇φ, (2.2)

where the displacement vector satisfies ξ 1 · n̂ = δx · n̂ on the boundary for a given normal
perturbation to the surface and δι1(ψ) is the perturbation to the rotational transform profile
that may arise due to the constraint of fixed IT(ψ). This perturbed magnetic field can be
related to an adjoint perturbed magnetic field, δB2, through a generalized self-adjointness

1See https://github.com/ejpaul/ALPOpt
2See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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relation,∫
VP

d3x
(
ξ 1 · F 2 − ξ 2 · F 1

)− 2π

∫
VP

dψ
(
δIT,2(ψ)δι1(ψ)− δIT,1(ψ)δι2(ψ)

)
− 1
μ0

∫
SP

d2x n̂ · (ξ 2δB1 − ξ 1δB2
) · B = 0, (2.3)

where the linearized force operator is

F 1,2 =
(∇ × δB1,2

)× B
μ0

+ (∇ × B)× δB1,2

μ0
+ ∇ (

ξ 1,2 · ∇p
)
. (2.4)

The adjoint approach is as follows: rather than directly computing the perturbed magnetic
field δB1 by perturbing the boundary of a fixed-boundary equilibrium or solving a
set of linearized equilibrium equations, the adjoint magnetic field is computed. The
adjoint magnetic field has no perturbation to the boundary (ξ 2 · n̂ = 0) but may have a
perturbation to the toroidal current profile (δIT,2(ψ)) or a bulk force perturbation (F 2).
In this work, we consider figures of merit whose derivatives can be computed with a
perturbation to the toroidal current profile or a bulk force perturbation which takes the
form of the gradient of a scalar function of flux or the divergence of an anisotropic pressure
tensor.

Rather than consider a set of linearized equations, we add a small perturbation to a
nonlinear VMEC equilibrium in the form of a perturbation to the pressure profile, toroidal
current profile, or an anisotropic pressure tensor. In the case of the addition of a pressure
tensor, the ANIMEC (Cooper et al. 1992) code is used to evaluate the adjoint equilibrium.
The resulting shape gradient, G, of a given objective function f , is defined through,

δf (SP; δx) =
∫

SP

d2x δx · n̂G. (2.5)

Here δf (SP; δx) is the shape derivative of f with respect to a normal perturbation of
the surface, δx · n̂. Given the shape gradient, which quantifies the local sensitivity to
normal perturbations of the surface, the derivatives with respect to the parameters Ω =
{Rc

m,n,Zs
m,n} are computed,

∂f
∂Ω

=
∫

SP

d2x
∂x
∂Ω

· n̂G. (2.6)

2.1. Managing code failures
The equilibrium code may return with an error for a given plasma boundary. There
are many reasons for these failures, such as the flux coordinate Jacobian becoming
ill-conditioned or the number of iterations exceeding the maximum prescribed value.
When such a failure is experienced during the optimization, the objective function is set
to an arbitrarily large value (e.g. 1012) to enforce an effective constraint. The approach
of assigning a very large fictitious objective value at unevaluable points is common in
the optimization literature (Rasheed, Hirsh & Gelsey 1997; Emmerich et al. 2002) and is
employed in the STELLOPT code (Lazerson et al. 2020).

As encountering such unevaluable points makes the parameter space non-smooth, it is
prudent to try to avoid code failures by placing additional constraints on the parameter
space. Such a technique has been employed in the optimization of aircraft by checking
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that simulation outputs match physical model assumptions, such as the drag coefficient
being non-negative (Gelsey 1995; Gelsey, Schwabacher & Smith 1998). In § 3, we
present constraints which prevent the surface from self-intersecting or from obtaining
large curvature, leading to an ill-conditioned Jacobian and code failure. Even in the
presence of such constraints, unevaluable points may still be present. Here the objective
function becomes discontinuous, which is problematic for optimizers which assume
function continuity. In this work we employ the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) quasi-Newton method with an Armijo–Wolfe line search, which assumes C2

continuity of the objective function (Nocedal & Wright 2006). Although convergence of
the BFGS algorithm is not guaranteed for non-smooth problems, it has been observed that
a reasonable approximation to the optimum is most often achieved (Lemaréchal 1982).
With the standard Armijo–Wolfe line search method, the gradient need not be evaluated
unless the objective function satisfies the sufficient decrease criterion. Thus the gradient
does not need to be evaluated at unevaluable points. In this way, as long as the line search
never returns a point where the objective is not differentiable, the BFGS method is well
defined. Although there are specialized quasi-Newton methods for non-smooth objective
functions (Lewis & Overton 2013), we have obtained acceptable results with a standard
BFGS method.

3. Regularization terms
3.1. Preventing surface self-intersection

We now describe a constraint which prevents self-intersection of the plasma boundary.
Given a surface described by the cylindrical coordinates R(θ, φ) and Z(θ, φ),
self-intersection of the boundary may occur if either:

(a) R(θ, φ) < 0 at any point; or
(b) the planar curve xφ0(θ) = {R(θ, φ0),Z(θ, φ0)} is self-intersecting for any φ0.

Condition (a) can be avoided using a penalty objective of the form,

fR(SP) = 1
AP

∫
SP

d2x exp
(

−(R − Rmin)

wR

)
, (3.1)

where wR is a weight which sets the gradient length scale of the objective, Rmin is the
minimum allowable major radius and AP is the area of SP.

Condition (b) can be avoided by introducing a constraint on the global radius of
curvature (Gonzalez & Maddocks 1999; Walker 2016) of each of the curves, xφ0(θ), which
will now be defined. The radius of the unique circumcircle containing any three points x1,
x2, and x3 (figure 1), can be computed from

ρ(x1, x2, x3) = |x1 − x2‖x1 − x3‖x2 − x3|
4A(x1, x2, x3)

, (3.2)

where A(x1, x2, x3) is the area of a triangle with vertices x1, x2, and x3. Under the
assumption that these points lie on a non-self-intersecting smooth curve, C such that
x1 = x(l1), x2 = x(l2), and x3 = x(l3), then the radius of the circumcircle satisfies
ρ(x(l1), x(l2), x(l2)) ≤ ρ(x(l1), x(l2), x(l3)). This limiting case can be computed from

ρ(x(l1), x(l2), x(l2)) = lim
l2→l3

ρ(x(l1), x(l2), x(l3)) = |x(l1)− x(l2)|

2

√
1 −

(
t̂(x(l2)) · x(l1)− x(l2)

|x(l1)− x(l2)|
)2
,

(3.3)
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(a) (b)

FIGURE 1. (a) The circumcircle containing x1, x2 and x3 with radius ρ(x1, x2, x3). (b) The
points x1, x2, and x3 lie on a closed elliptical curve C (blue). The point tangent radius for points
x1 and x2 and points x1 and x3 are displayed. The global radius of curvature at x1 is SC(x1, x2).

where t̂ is the unit tangent. This is the radius of the circle that passes through x(l1) and is
tangent to C at x(l2), which we define as the self-contact function between these points,

SC(x1, x2) = |x1 − x2|

2

√
1 −

(
t̂(x2) · (x1 − x2)

|x1 − x2|
)2
, (3.4)

the radius of the so-called point-tangent circle (figure 1).
In the limit that l2, l3 → l1, we obtain

lim
l2,l3→l1

ρ(x(l1), x(l2), x(l3)) = ρC(x(l1)), (3.5)

where ρC(x(l1)) is the local radius of curvature of C at x(l1). We define the global radius
of curvature as

ρG(x1) = min
x2,x3∈C

ρ (x1, x2, x3) = min
x2∈C

SC. (3.6)

This can be thought of as a generalization of the local radius of curvature, as we have
the inequality 0 ≤ ρG(x) ≤ ρC(x). At a given point, the minimizer in (3.6) will either
be a point where (x1 − x2) · t̂(x2) = 0 or ρC(x2) = SC(x1, x2) (Smutny 2004). In other
words, at a given point x1, the point on the curve that has the smallest self-contact function
containing x1 will be where the local radius of curvature is equal to the point-tangent radius
or the displacement of the points (x1 − x2) is orthogonal to the curve at x2.

If the inequality
min
x1∈C

ρG(x1) = min
x1,x2∈C

SC(x1, x2) ≥ R (3.7)

is satisfied, this implies that the curve can be ‘thickened’ to a tube without self-contact
surrounding C such that at any given point, the cross-section of the tube is a circle in the
plane perpendicular to the local tangent vector of radius R (Gonzalez & Maddocks 1999).
For this reason, the concept of the global radius of curvature has been employed for the
shape optimization of finite-thickness knots (Gonzalez & Maddocks 1999; Carlen et al.
2005; Walker 2016).
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We enforce the inequality constraint (3.7) to prevent the self-intersection of every planar
curve xφ0(θ) with a penalty function of the form

fS = 1
AP

∫ 2π

0
dφ
∫ 2π

0
dθ
∣∣∣∣ ∂r
∂θ

× ∂r
∂φ

∣∣∣∣
∫ 2π

0
dθ ′ exp

(
−
(SC

(
xφ(θ), xφ(θ ′)

)− R)
wS

)
,

(3.8)
where R is the minimum allowable global radius of curvature and wS is a weight function.
In addition to preventing self-intersection of the boundary, this objective improves the
regularity of the surface by reducing the curvature of the poloidal cross-sections. A
demonstration of this penalty function is presented in § 3.3.

3.2. Surface curvature constraint
While constraining the self-contact function reduces the curvature of the cross-sections
of the plasma boundary, we include additional terms which improve the regularity of the
plasma boundary. First, we place an effective constraint on the magnitude of the principal
curvatures,

|κ1| ≤ κmax,1 |κ2| ≤ κmax,2, (3.9a,b)

by including a penalty function of the form,

fκ =
∫

SP
d2x

(
exp

(
(|κ1|2 − κ2

max,1)/w
2
k

)+ exp
(
(|κ2|2 − κ2

max,2)/w
2
k

))
AP

. (3.10)

A similar constraint on the principal curvatures is employed in the ROSE code (Drevlak
et al. 2018). We assume the convention that κ1 ≤ κ2 and κ1,2 < 0 indicates concavity.

We additionally add a penalty on the smallest principal curvature,

fκ̄ =
∫

SP
d2x κ2

1

AP
. (3.11)

As large concavity is associated with coil complexity (Paul et al. 2018), this regularization
becomes critical in the two-staged optimization approach. Also, regularity of the boundary
improves the convergence of the VMEC code. If the boundary is not close to being a star
domain, indicating that there exists a coordinate axis such that the line segment connecting
the axis and any point on the boundary is contained within the boundary, then the solver
may fail to initialize a guess for the magnetic axis. For highly shaped boundaries, the
coordinate surfaces may begin to overlap. Thus, the inclusion of these regularization
terms prevents code failures during optimization and improves the convergence toward
the optimum. This advantage of curvature penalization is highlighted in the magnetic well
optimization in § 4.2.

3.3. Constrained volume optimization
To demonstrate the procedure described in § 3.1 for avoiding self-intersection, we define
an objective function,

f (SP) = VP + λS fS + λRfR + λκ fκ , (3.12)

where VP is the volume enclosed by the plasma boundary. For this example, we take
λS = λR = 103, Rmin = R = 0.2 m, wR = wS = 10−2, λκ = 1, κmax,1 = κmax,2 = 10 m−1
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(b)(a)

(c) (d )

FIGURE 2. Cross-sections of the initial (blue) and optimized surfaces obtained by minimizing
the objective function given by (3.12). The surface obtained without the constraints (λR = λS =
0) becomes self-intersecting (red), and the surfaced obtained with the constraints remains regular
(green).

and wk = 1. Here the volume is computed using a surface integral upon application of the
divergence theorem,

VP =
∫

d3x =
∫

SP

d2x Zn̂ · Ẑ , (3.13)

to avoid discretizing the volume.
We begin with a stellarator whose boundary is defined by a rotating ellipse,

R(θ, φ) = R0 + 0.5a (cos (θ − NPφ)+ cos(θ))

− 0.5b (cos (θ − NPφ)− cos(θ)) (3.14a)

Z(θ, φ) = 0.5b (sin(θ)+ sin (θ − NPφ))

+ 0.5a (sin(θ)− sin (θ − NPφ)) , (3.14b)

where a is the semi-major axis and b is the semi-minor axis. For this example, we take
R0 = 5, a = 2, b = 1 and NP = 3. We optimize f (SP) with respect to modes m ≤ 3 and
|n| ≤ 3 using the BFGS algorithm provided by SciPy. (This optimization algorithm is used
for all demonstrations in this work.)

We compare the surfaces obtained with and without (λS = λR = 0) the constraint terms,
shown in figure 2. Without the constraint, the boundary begins to self-intersect. Although
the volume is not well-defined for this surface, the discretized surface integral given by
(3.13) is reduced from its initial value of 197.39 to 4.18 m3 by minimizing the projection
of the normal vector in the Ẑ direction. With the constraint, the surface is reduced to an
axisymmetric torus with a nearly circular cross-section centred at a major radius R0 =
0.43 m with an averaged minor radius of 0.24 m and a volume of 0.50 m3.

In figure 3 we display the value of the global radius of curvature (3.6) for the initial
and final surfaces. On the initial surface, ρG is minimized at the endpoints of the
semi-major axis where the global radius of curvature matches the local radius of curvature.
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(a) (b)

FIGURE 3. The global radius of curvature (3.6) of the (a) initial surface (3.14) and (b) surface
optimized for minimal volume with regularity constraints (3.12).

The maximum value of ρG is obtained in the region near the endpoint of the ellipse’s
semi-minor axis, where the point-tangent radius is minimized for x2 on the opposite side
of the semi-minor axis. The optimized boundary features decreased values of ρG on the
outboard side, where ρG matches the local radius of curvature. We note that the minimum
value of SC on the optimized slightly violates the constraint at 0.15 m owing to the penalty
formulation.

4. Optimization demonstrations
4.1. Target rotational transform

We now discuss a demonstration of optimization to obtain a target rotational transform
profile. We consider a target function which quantifies the difference between the
rotational transform and a desired profile, ιtarget(ψ),

fι = 1
2

∫
VP

dψ
(
ι(ψ)− ιtarget(ψ)

)2
, (4.1)

in order to obtain a low shear stellarator. The gradient of this objective function is obtained
by computing an equilibrium with a perturbed toroidal current profile,

δIT(ψ) = w(ψ)(ι(ψ)− ιtarget(ψ)), (4.2)

as described in Antonsen et al. (2019). We present a benchmark problem in appendix A
to demonstrate that the gradient-based optimizer can converge to a known minimum of an
objective involving fι in a 2D space.

Although the VMEC code assumes nested surfaces such that the magnetic field is
integrable, the solution to Laplace’s equation with the prescribed boundary SP will not
generally have continuously nested surfaces. We can, however, aim to obtain a vacuum
field with a value of the rotational transform that improves the integrability of the ‘real’
vacuum field. (Note that although we can run VMEC with prescribed ι(ψ) rather than
IT(ψ), it will not generally be a vacuum field.) We choose ιtarget to be the ‘most irrational’
noble between p/q = 0/1 and p′/q′ = 1/2 (Greene, MacKay & Stark 1986),

ιtarget = p + γ p′

q + γ q′ ≈ 0.381966, (4.3)

where γ = (
√

5 + 1)/2 is the golden mean. This is a noble irrational, indicating that its
path in the Farey tree is eventually alternating. At a given level in the Farey tree, the
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path that changes direction is said to be ‘most irrational’ if a cantorus with this rotation
number has the smallest flux of field line trajectories (Meiss 1992). Thus, the value of ιtarget
is chosen to have the smallest flux for rotation numbers between p/q = 0/1 and p′/q′ =
1/2. According to the Kolmogorov–Arnold–Moser (KAM) theorem, invariant circles with
sufficiently irrational frequencies persist under small perturbations. Thus, choosing such a
value for the rotational transform is likely to result in a large volume of magnetic surfaces.
We remark that moderate shear may be desirable for certain stellarator design studies. Our
adjoint formalism is quite flexible, and the choice of ιtarget could be modified accordingly.

We define our objective function to be

f (SP) = fι + λRfR + λS fS, (4.4)

where λS = λR = 103, Rmin = R = 0.2 m and wR = wS = 10−2. We begin with a surface
given by a rotating ellipse with a non-planar axis,

R(θ, φ) = R0 + R0,1 cos(φ)+ 0.5a (cos (θ − NPφ)+ cos(θ))

− 0.5b (cos (θ − NPφ)− cos(θ)) (4.5a)

Z(θ, φ) = − R0,1 sin(φ)+ 0.5b (sin(θ)+ sin (θ − NPφ))

+ 0.5a (sin(θ)− sin (θ − NPφ)) , (4.5b)

with a = 2, b = 1, NP = 3, R0 = 5 and R0,1 = −0.5. We consider a vacuum field with
p(ψ) = IT(ψ) = 0.

To investigate the benefit of increasing the dimensionality of the optimization space,
we optimize with respect to the boundary harmonics m ≤ 3, |n| ≤ 3. We then use this
result to optimize with respect to m ≤ 4, |n| ≤ 4 and then with respect to m ≤ 5, |n| ≤ 5.
In comparison with the result of the initial optimization in the low-dimensional space,
we are able to reduce the objective function by 70 % (figure 4). We obtain a rotational
transform profile which very closely matches the target value with an objective value of
fι = 4.93 × 10−10. If the optimization space is further increased, the optimum is reduced
by less than 1 %. For the further analysis of the optimization in this section, we present
results from the optimization with respect to the modes m ≤ 5 and |n| ≤ 5.

We note that we were not able to reduce the gradient norm to the requested tolerance
of 10−8. This result can be attributed to approximations made in computing the gradient
with the adjoint method. As discussed in Antonsen et al. (2019) and Paul et al. (2020),
the adjoint equations are derived under the assumption that the VMEC code satisfies
MHD force balance (1.1). However, there is always some residual error in force balance
due to discretization error and the assumption of continuously nested flux surfaces. For
these calculations, we converged to a force balance tolerance of 10−11 with 99 flux
surfaces and mode numbers |m| ≤ 11, |n| ≤ 11. These resolution parameters were chosen
to strike a balance between an accurate adjoint solution and efficiency of the optimization.
Preliminary calculations indicate that increasing the resolution parameters over what was
used in this work does not cause a significant change in the optimum. Furthermore, the
linear adjoint solution is approximated by adding a small perturbation to the nonlinear
MHD force balance. This technique is effectively a forward-difference approximation of
the adjoint equation, which introduces an error that scales with the magnitude of the
perturbation. When there are small errors in the gradient, the computed gradient may no
longer be a descent direction, making convergence difficult near the optimum (Dekeyser
2014).

Nonetheless, we effectively eliminate the magnetic shear throughout the volume. In
figure 5 we display the initial and optimized boundaries (solid) along with an interior
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(a) (b)

(c)

FIGURE 4. (a) The fι objective value (4.1), (b) the L2 norm of the f (SP) objective (4.4) gradient
and (c) the initial and final profiles of the rotational transform. In (a,b) the optimization was
performed in a staged approach: first with respect to modes m ≤ 3 and |n| ≤ 3, then with respect
to m ≤ 4 and |n| ≤ 4 and, finally, with respect to m ≤ 5 and |n| ≤ 5.

surface at ψ/ψ0 = 0.06 (dashed) and the magnetic axis (star). We can consider some of
the features of the optimized surface in consideration of the expression for the rotational
transform near the magnetic axis (Mercier 1964; Helander 2014), which indicates that
rotating ellipticity and torsion of the axis contribute to the on-axis transform in a vacuum
field. We see that the interior surfaces become slightly more elliptical in order to increase ι
near the axis, whereas the ellipticity of the boundary is slightly decreased, becoming more
square. However, the torsion of the magnetic axis is maintained.

To analyse the effect of low shear on the integrability of the field, we compute the
vacuum field using the SPEC code (Hudson et al. 2012). The SPEC calculations are
performed with a single volume with Beltrami parameter μ = 0 such that the magnetic
field satisfies ∇ × B = 0 with a Neumann boundary condition (1.1b). In figure 6 we show
a Poincaré section for the initial field, which has a small island chain at the ι = 3/8
resonance. With the optimized boundary, we eliminate this island chain and obtain a large
volume of nested surfaces.

4.2. Magnetic well
We next consider an objective function which aims to obtain a magnetic well,

fw =
∫

VP
dψ (w1(ψ)V ′(ψ)− w2(ψ)V ′(ψ))∫

VP
dψ (w1(ψ)V ′(ψ)+ w2(ψ)V ′(ψ))

, (4.6)

with w1(ψ) = exp
(−(ψ/ψ0 − 1.0)2/0.12

)
and w2(ψ) = exp

(−(ψ/ψ0)
2/0.12

)
. When

V ′′(ψ) < 0, a magnetic well is said to be present, which provides a stabilizing term in
the Mercier criterion for interchange modes (Mercier & Luc 1974). We can consider fw
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(b)(a)

(c) (d )

FIGURE 5. Poloidal cross-sections of the initial boundary (4.5) and boundary which optimizes
(4.4) (solid) along with the surface at ψ/ψ0 = 0.06 (dashed) and magnetic axis (star).

(a) (b)

FIGURE 6. Poincaré section computed from the SPEC vacuum field using the initial boundary
(4.5) and boundary which minimizes (4.4): (a) initial; (b) optimized.

to be a normalized finite-difference approximation of V ′′(ψ); thus minimization of fw is
performed in order to achieve a magnetic well. A similar objective is employed in the
ROSE code (Drevlak et al. 2018), computed from integration along a field line. Some
experimental observations point toward a correlation between the existence of a magnetic
hill and the onset of fluctuations (Castellano et al. 2002). Nonetheless, we remark that the
existence of a magnetic well does not always imply ideal MHD stability (Watanabe et al.
2005).
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λκ κmax max(|κ1|, |κ2|) fw

102 7 m−1 6.55 m−1 −0.21
103 7 m−1 6.36 m−1 −0.07
100 8 m−1 7.84 m−1 −0.19
100 10 m−1 9.95 m−1 −0.16

TABLE 1. Parameters used for the optimization of the magnetic well and the resulting values of
the optimum objective function (4.8).

The gradient of this objective function is obtained by computing an equilibrium with a
perturbed pressure profile,

δp(ψ) = w1(ψ)− w2(ψ)− fw (w1(ψ)+ w2(ψ))∫
VP

d3x (w1(ψ)+ w2(ψ))
, (4.7)

as described in Paul et al. (2020).
We define our objective function to be

f (SP) = fw + λV

2

(
VP − V init

P

)2 + λS fS + λRfR + λκ fκ + λκ̄ fκ̄ , (4.8)

with λS = 10−3, λR = 102, wS = wR = 10−2, κmax ≡ κmax,1 = κmax,2 = 7 m−1, wκ = 1,
λκ̄ = λV = 1 and λκ = 102. Here V init

P is the volume of the initial surface. To determine
the importance of the maximum curvature regularization term, we optimize with four sets
of parameters as described in table 1. The values λκ = 102 and κmax = 7 m−1 were chosen
to balance the curvature and well metrics.

In addition to the regularization terms, we include a term in the objective function
which penalizes a change in the volume, as an increase in the inverse aspect ratio can
yield a Shafranov shift (§ 3.7 in Wesson & Campbell 2011). This shift in the flux surfaces
toward a smaller major radius implies that the volume of a flux surface increases less
rapidly than its cross-sectional area. Furthermore, the flux through a surface increases
more rapidly than its cross-sectional area because the geometric centre is moving into a
region of increased field strength (assuming the field is mostly toroidal). Thus, the volume
increases less rapidly than the flux, and a negative value of V ′′(ψ) can be achieved (Taylor
1965).

We begin with a boundary given by a rotating ellipse (A 2) with a = 2, b = 1, R0 = 5
and R0,1 = 0. We optimize the boundary with respect to the modes m ≤ 10 and |n| ≤ 10.
The equilibrium is computed with p(ψ) = 0 and IT(ψ) = 0 such that a vacuum field is
considered. We arrive at the boundary given in figure 7. With the addition of the volume
constraint, the aspect ratio remains roughly constant (3.54 for the initial boundary and 3.46
for the optimized boundary), so that the well is provided by the shaping of the boundary
rather than the Shafranov shift that arises due to the inverse aspect ratio. We note that the
optimized surface features triangularity that rotates from outward-pointing with horizontal
elongation to inward-pointing with vertical elongation.

To demonstrate the effect of the curvature regularization terms, we examine the
optimization with λκ = λκ̄ = 0. We converge to the boundary shown in figure 8. As can
be seen, regions of large curvature are exhibited, including a dimple-like feature on the
inboard side and a concave ‘pinching’ feature. Again the aspect ratio remains roughly
constant (3.46).
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(b)(a)

(c) (d )

FIGURE 7. Cross-sections of the boundary (orange) optimized for the magnetic well (4.8) with
regularization on the curvature (λκ = 102, λκ̄ = 1). Several interior surfaces are shown, along
with the location of the magnetic axis (blue star) and axis normal vector (black arrow). The
optimized boundary features rotating triangularity and elongation.

We can understand the geometric dependence of the magnetic well by considering the
expression for V ′′(ψ) on the axis that arises from the near-axis expansion in the inverse
coordinate representation (Landreman & Jorge 2020),

V ′′(ψ) ∝
∫ 2π

0
dϕB

1
B4

0

[
3(B2

1s + B2
1c)− 4B0B20

]
, (4.9)

where ϕB is the Boozer toroidal angle and we have made the assumption of a vacuum field.
The field strength near the axis is expanded as

B = B0(ϕB)+ r [B1c(ϕB) cos(ϑB)+ B1s(ϕB) sin(ϑB)]

+ r2 [B20(ϕB)+ B2c cos(2ϑB)+ B2s sin(2ϑB)] + O
(
r3) , (4.10)

where r ∝ √
ψ is the effective minor radius and ϑB is the Boozer poloidal angle.

As can be seen from (A34) in Landreman & Sengupta (2019), the poloidally independent
shift in the flux surface in the normal direction, X20, increases proportional to B20. Here, the
normal vector is n̂ = r′′(l)/|r′′(l)|, where r(l) is the position vector along the magnetic axis
parameterized by the length. In the axisymmetric limit, a positive value of X20 indicates a
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(b)(a)

(c) (d )

FIGURE 8. Cross-sections of the boundary optimized for the magnetic well (4.8) without
regularization on the principal curvature (λκ = λκ̄ = 0). Several interior surfaces are shown,
along with the location of the magnetic axis (blue star) and axis normal vector (black arrow).
The optimized boundary features a ‘dimple’ feature at the φ = 0 plane and regions of increased
concavity.

net shift of the surfaces’ geometric centre toward a smaller major radius. This correlation
between X20 and B20 is consistent with the statement that a Shafranov shift provides a
magnetic well. In figures 7 and 8 we display the magnetic axis (blue star) and normal
vector (black arrow) along with the shapes of several magnetic surfaces for the optimized
configurations. While both the unconstrained and constrained optima feature a net shift
in the geometric centre of the flux surfaces in the normal direction, this is achieved with
vastly different shaping of the boundary. Interestingly, both configurations feature negative
triangularity at the φ = 0.5 (2π/NP) plane.

We note that B20 arises owing to other shaping components of the surface
(Landreman & Sengupta 2019). In axisymmetry, negative values of B2c contribute to
positive (outward-pointing) triangularity (X2c < 0) ((B11) in Landreman 2021). Assuming
stellarator symmetry, negative values of B2c contribute to positive values of B20 if the
surface is vertically elongated, and positive values of B2c contribute to positive values of
B20 if the surface is horizontally elongated. This implies that positive triangularity coupled
with vertical elongation or negative triangularity coupled with horizontal elongation
contributes to the magnetic well in axisymmetry. These trends are consistent with the
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(a) (b)

(c)

FIGURE 9. Convergence of the optimization of the objective function (4.8) (a) with the
inclusion of the curvature constraints (λκ = 102, λκ̄ = 1) and (b) without the curvature
constraints (λκ = λκ̄ = 0). (c) With the inclusion of the curvature constraint, we achieve a deeper
magnetic well throughout the volume.

stability analysis of oblate plasmas with negative triangularity (Pogutse & Yurchenko
1982; Kesner, Ramos & Gang 1995; Medvedev et al. 2015). In three dimensions, the
connection between B20 and B2c is more complicated (Landreman & Sengupta 2019, (A41)
and (A42)). Nonetheless, we note that the magnetic well near the axis arises at second
order in the expansion parameter, which includes the effects of ellipticity and triangularity.
Thus, it is not surprising that the optimized boundary with curvature constraints features
rotating ellipticity and triangularity.

In comparing the convergence of the optimization with and without the curvature
constraints (figure 9), we see that the presence of the curvature objective prevents some
failures of the VMEC code. Each function evaluation that resulted in a VMEC failure is
visualized as a ‘spike’ that extends above |fw − f opt

w | = 1, as we artificially set the value of
the objective function to 1012 at these points. Although the constrained optimization still
features some VMEC failures (12 versus 19), the inclusion of the curvature constraints
improves the convergence toward the optimum, and a deeper magnetic well is achieved
throughout the volume.

4.3. Quasi-symmetry
We next consider optimization for quasi-symmetry near the magnetic axis. This is
quantified through the objective,

fQS =
∫

VP
d3x w(ψ)(B − B̄)2∫

VP
d3x B2

, (4.11)
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(a) (b)

FIGURE 10. (a) The pressure and (b) the integrated toroidal current profiles used for the
optimization of quasi-symmetry on the axis (4.13).

where B̄ = ∫
VP

d3x w(ψ)B and we take w(ψ) = exp
(−(ψ/ψ0)

2/0.12
)
. This objective

aims to make the field strength constant on the magnetic axis, which is a feature of
quasi-axisymmetric and quasi-helically symmetric equilibria. A similar objective function
has also been included in optimization for energetic particle confinement (Drevlak et al.
2014). The gradient of this objective function is obtained by computing an equilibrium
with the addition of an anisotropic pressure tensor, ∇ · P = p‖b̂b̂ + p⊥(I − b̂b̂) with

p‖(ψ,B) = w(ψ)(B − B̄)2 − fQSw(ψ)B2∫
VP

d3x w(ψ)B2
, (4.12a)

p⊥ = p‖ − B
∂p‖(ψ,B)

∂B
, (4.12b)

as described in Paul et al. (2020).
We take our objective function to be

f (SP) = fQS + λιfι + λκ̄ fκ̄ + λκ fκ + λS fS + λRfR, (4.13)

where ιtarget(ψ) is taken to be the initial rotational transform profile. We also take λι = 1,
λκ̄ = 10−3, λκ = 5 × 10−2, κmax,1 = κmax,2 = 10 m−1, wκ = 1, wS = wR = 10−1, λR = 103,
λS = 10−1, R = 0.5 m and Rmin = 0.2 m. The additional constraint on the rotational
transform is required to prevent the surface from becoming axisymmetric to reduce the
toroidal ripple on the axis.

We begin with a rotating ellipse boundary with torsion, given by

R(θ, φ) = R0 + R0,1 cos(φ)+ R0,2 cos(2φ)+ 0.5a (cos (θ − NPφ)+ cos(θ))

− 0.5b (cos (θ − NPφ)− cos(θ)) (4.14a)

Z(θ, φ) = R0,1 sin(φ)+ Z0,2 cos(2φ)+ 0.5b (sin(θ)+ sin (θ − NPφ))

+ 0.5a (sin(θ)− sin (θ − NPφ)) , (4.14b)

with R0 = 5, R0,1 = R0,2 = 0.3, a = 2, b = 1 and NP = 3. We perform optimization at
β = 1.2 % with the profiles shown in figure 10. We optimize with respect to the modes
m ≤ 10 and |n| ≤ 10 in a staged approach: first optimizing with respect to m ≤ 3 and
|n| ≤ 3, then with respect to m ≤ 6 and |n| ≤ 6, then with respect to the full set of modes.

We display the magnetic field strength on the initial and optimized boundaries in
figure 11. We note the initial configuration features a large toroidal variation of the field
strength, with increased field strength near the ‘corners’ that arise owing to the large
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(a) (b)

FIGURE 11. The magnetic field strength on (a) the initial boundary (4.14) and (b) the boundary
optimized for quasi-symmetry on the axis (4.13).

torsion of the axis. Although the axis ripple figure of merit (4.11) reduces the toroidal
variation of the field strength on the axis, which must vanish in both quasi-axisymmetry
and quasi-helical symmetry, we find that the optimized magnetic field is driven closer to
quasi-axisymmetry.

We remark that a design based solely on the objective (4.11) may be limited in that
quasi-symmetry is not targeted away from the axis. We therefore quantify the departure
from quasi-symmetry in the two configurations in two additional ways. The first is through
the figure of merit,

fTP(ψ) =

〈∣∣∣∣∂B
∂θ

∂

∂φ
(B · ∇B)− ∂B

∂φ

∂

∂θ
(B · ∇B)

∣∣∣∣
〉
ψ

〈B3〉ψ/rminor(ψ)
, (4.15)

where rminor(ψ) = √
A(ψ)/π is the averaged minor radius of a flux surface where A(ψ)

is the toroidally averaged cross-sectional area. (This is the same definition of the minor
radius used in the VMEC code.) The flux-surface average of a quantity Q is

〈Q〉ψ =
∫ 2π

0 dθ
∫ 2π

0 dφQ
√

g∫ 2π

0 dθ
∫ 2π

0 dφ
√

g
, (4.16)

where
√

g = (∇ψ × ∇θ · ∇φ)−1 is the flux coordinate Jacobian. Equation (4.15) is a
normalized figure of merit which employs the triple product form for quasi-symmetry
(Helander 2014; Rodriguez, Helander & Bhattacharjee 2020),

∇ψ × ∇B · ∇ (B · ∇B) = 0, (4.17)

and allows us to quantify the quasi-symmetry error without specifying the helicity of the
symmetry. We also perform a Boozer coordinate (ψ ,ϑB,ϕB) transformation (Sanchez et al.
2000) to obtain the Fourier harmonics of the field strength,

B(ψ, ϑB, ϕB) =
∑
m,n

Bm,n cos(mϑB − nϕB). (4.18)

The deviation from quasi-axisymmetry can then be quantified as

fQA(ψ) =
√∑

m,n�=0 Bm,n(ψ)2∑
m,n Bm,n(ψ)2

. (4.19)

Although quasi-symmetry was only targeted on the axis, we reduce the quasi-symmetry
error throughout the volume with respect to both metrics without introducing a reduction
in the rotational transform (figure 12).
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(a) (b) (c)

FIGURE 12. (a) The rotational transform, (b) the quasi-axisymmetric error (4.19) and (c) the
triple product error (4.15) for the initial boundary (4.14) and boundary optimized for small
magnetic ripple on the axis (4.13).

5. Conclusions

In this work, we have provided the first example of gradient-based, fixed-boundary
optimization of stellarator equilibria. We provide examples of several equilibria obtained
with the ALPOpt tool, including a vacuum field with ultra-low magnetic shear.
Furthermore, we have identified regularization terms for fixed-boundary optimization that
prevent self-intersection and reduce the surface curvature. These regularization terms
improve the convergence toward the optimum and may reduce the required coil complexity.
Another approach to reducing coil complexity would be to incorporate metrics related
to the properties of the current potential solution on a uniformly offset winding surface
(Carlton-Jones, Paul & Dorland 2020).

The availability of derivative information enables the optimization in high-dimensional
spaces. We present the optimization of the boundary with respect to the set of boundary
harmonics m ≤ 10, |n| ≤ 10 (441 modes). This dimensionality is significantly larger than
that of previous optimized efforts. For example, ESTELL was optimized with respect to
the modes m ≤ 4, |n| ≤ 4 (Drevlak et al. 2013) and NCSX was optimized with respect to
m ≤ 6 and |n| ≤ 4 (Zarnstorff et al. 2001). Such an increase in the optimization space may
enable further refinement of an optimum, as demonstrated in § 4.1.

Gradient information of equilibrium quantities is obtained using an adjoint method
(Antonsen et al. 2019; Paul et al. 2020) which requires solving a modified equilibrium
problem. For the objectives presented in this work, the rotational transform (§ 4.1),
the magnetic well (§ 4.2) and near-axis quasi-symmetry (§ 4.3), the adjoint equilibrium
problem requires the addition of a perturbation to the toroidal current profile, pressure
profile and the addition of an anisotropic pressure tensor of a specific form. For other
figures of merit, the adjoint equilibrium problem requires the addition of a bulk force
of a different form, such as an anisotropic pressure that cannot be handled by the
variational principle employed by the ANIMEC code (Cooper et al. 1992). In this case,
rather than approximating the linearized adjoint problem by adding a perturbation to the
nonlinear equilibrium solution, a linearized equilibrium solution can be computed. We
have demonstrated this technique for computing the shape gradient of the magnetic well
for axisymmetric equilibria (Paul 2020). In generalizing this approach to 3D equilibria,
there are additional challenges that arise. As regular singular points occur at every surface
where the rotational transform resonates with a mode included in the spectrum for the
solution vector, additional care must be taken in regularizing the equations. To avoid these
difficulties associated with 3D MHD equilibria, the adjoint equations for a vacuum or
force-free equilibrium model could instead be considered.
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We have presented several example configurations obtained with the set of figures of
merit for which derivative information is available. Although similar objective functions
can be minimized with derivative-free methods using codes such as STELLOPT and
ROSE, the availability of derivative information is known to improve convergence toward
the optimum, especially in high-dimensional spaces. A direct comparison between the
adjoint approach and derivative-free methods is left for future work. Upon further
advancement of adjoint methods, we hope that these numerical advances will enable the
identification of equilibria of experimental relevance. To conclude, we anticipate many
extensions of this work, such as applying the same adjoint principle for free-boundary
optimization.
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Appendix A. Target rotational transform optimization

In this section, we perform a benchmark to demonstrate the convergence of the
gradient-based optimization to a known minimum in a 2D space using the following
objective function,

f̃ι = 1
2 ( fι − 0.06)2 , (A 1)

defined with ιtarget = 0.618034 with the definition in (4.1). Although this target function is
not physically relevant, as there remains residual error in the rotational transform profile,
it allows us to easily identify a local optimum where fι = 0.06.

We begin with the boundary,

R(θ, φ) = R0 + R1,0 cos(θ)+ R1,1 cos(θ − NPφ), (A 2a)

Z(θ, φ) = Z1,0 sin(θ)+ Z1,1 sin(θ − NPφ), (A 2b)

with R0 = 5, R1,0 = 1.5 , R1,1 = 0.6, Z1,0 = 1.5 and Z1,1 = −0.6. We consider a vacuum
field with profiles p(ψ) = IT(ψ) = 0. We identify the minimum of f̃ι with respect to
R1,1 and Z1,1 by performing a scan over the local space. We achieve convergence to this
optimum in nine function evaluations (six BFGS iterations). In figure 13 we present the
convergence of the objective function in the 2D optimization space, with the optimum
denoted by the blue star. We are able to reduce the L2 gradient norm to 5.13 × 10−13.
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(a) (b)

FIGURE 13. (a) Convergence of BFGS optimization beginning at the orange star toward
optimum function value at R1,1 = 0.46 and Z1,1 = −0.47 (blue star). Each function evaluation
is denoted by a red dot. (b) Convergence of the L2 norm of the gradient of the objective function
(A 1).
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