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Abstract. It is proved that each Gaussian cocycle over a mildly mixing Gaussian transfor-
mation is either a Gaussian coboundary or sharply weak mixing. The class of non-singular
infinite direct products T of transformations Tn, n ∈ N, of finite type is studied. It is
shown that if Tn is mildly mixing, n ∈ N, the sequence of Radon–Nikodym derivatives
of Tn is asymptotically translation quasi-invariant and T is conservative then the Maharam
extension of T is sharply weak mixing. This technique provides a new approach to the
non-singular Gaussian transformations studied recently by Arano, Isono and Marrakchi.
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1. Introduction
The original motivation of this paper was to tackle a problem (stated in [LeLeSk]) that is
related to the theory of Gaussian dynamical systems. Let T be an ergodic (equivalently,
weakly mixing) Gaussian transformation on a standard probability space (X, B, μ) and let
H be the corresponding invariant Gaussian subspace of the real Hilbert space L2

0(X, μ).

Conjecture. For each function f ∈ H , either f is a T -coboundary (equivalently, a
Gaussian coboundary) or the skew product transformation Tf acting on X × R is ergodic.

In this paper we obtain an affirmative answer under an assumption which is slightly
stronger than weak mixing. We say that an ergodic conservative non-singular transforma-
tion R is sharply weak mixing if the direct product of R with each ergodic conservative
transformation is either totally dissipative or ergodic. We also recall that Tf is conservative
for each f ∈ H [At].
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THEOREM 1.1. If T is mildly mixing and f is not a coboundary for T then Tf is sharply
weak mixing.

To prove Theorem 1.1 we note that there exists a decomposition of T into direct
product of mildly mixing transformations Tn in a such a way that f splits into a sum of
coboundaries fn := an − an ◦ Tn for Tn, n ∈ N. Moreover, the sequence of distributions
of the transfer functions (an)∞n=1 satisfies a certain property that we call asymptotic
translation invariance (ATI) in Definition 2.2. Then Theorem 1.1 follows from the
following result.

THEOREM 1.2. Given a locally compact second countable abelian groupG, a sequence of
mildly mixing dynamical systems (Xn, νn, Tn) and a sequence of functions fn : Xn→ G,
n ∈ N, consider the infinite direct product (X, ν, T ) :=⊗∞

n=1(Xn, νn, Tn). Suppose that a
function f (x) :=∑∞

n=1(fn(Tnxn)− fn(xn)) ∈ G is well defined for ν-almost every (a.e.)
x = (xn)∞n=1 ∈ X. If the sequence of distributions (νn ◦ f−1

n )n∈N on G is asymptotically
translation invariant and the f -skew product extension Tf : X ×G→ X ×G of T is
conservative then Tf is sharply weak mixing.

The proof of Theorem 1.2 is based on the two ideas.
• The mild mixing and the product structure of Tf yield that each Tf -invariant subset is

also invariant under a large group of ‘finitary’ transformations, that is, transformations
that ‘move’ finitely many coordinates only.

• The ATI property implies that this finitary group is ergodic via techniques related to
computation of the essential values of cocycles.

The former idea was inspired by the proof [ArIsMa, Theorem D] of ergodic properties of
some non-singular Gaussian group actions.

We then turn to classical problems of non-singular ergodic theory. We mention recent
progress in providing natural examples for non-singular ergodic theory: non-singular
Bernoulli and Markov shiftwise actions (see [DaLe, BjKoVa, KoSo, Av, MaVa] and
references therein), non-singular Gaussian systems [ArIsMa] and non-singular Poisson
systems [DaKoRo1, DaKoRo2]. In the present work we introduce one more natural
family of non-singular transformations. We say that a non-singular transformation T on
a standard probability space (X, μ) is an infinite direct product of finite types (IDPFT) if
there is a sequence of ergodic probability-preserving dynamical systems (Xn, νn, Tn) and
a sequence of probability measures μn on Xn, n ∈ N, such that μn ∼ νn for each n and
(X, μ, T ) =⊗∞

n=1(Xn, μn, Tn). Kakutani’s theorem [Ka] provides a criterion where μ is
quasi-invariant under T . We are interested in the case where μ ⊥ ν and μ does not admit
an equivalent T -invariant probability. It is possible that (X, μ, T ) is totally dissipative.

THEOREM 1.3. Let (Xn, νn, Tn) be mildly mixing for each n > 0. If T is μ-conservative
and the sequence of distributions of the random variables log(dμn/dνn), n ∈ N, is
asymptotically translation quasi-invariant then T is ergodic of stable type Krieger’s type
III1. Moreover, the Maharam extension of T is sharply weak mixing.

The asymptotic translation quasi-invariance (ATQI) property (see Definition 3.8) in the
statement of Theorem 1.3 is an analogue of ATI though neither ATI implies ATQI nor
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vice versa. The scheme of the proof of Theorem 1.3 is similar to that of Theorem 1.2 and
we again use the aforementioned two ideas. However, there is a ‘non-singular’ nuance.
Namely, a formal repetition of the proof of Theorem 1.2 yields that the group of finitary
transformations is ergodic with respect to the ‘wrong’ measure. Hence, it does not work.
We recall that there are two different (mutually singular) natural measures associated with
an IDPFT system: ν (invariant) and μ (quasi-invariant). Therefore a certain additional
argument and the ATQI property rather than ATI are needed to prove ergodicity for the
‘right’ measure. We also provide examples of rigid IDPFT systems T of Krieger’s type
IIIλ for an arbitrary λ ∈ (0, 1).

We have already mentioned that non-singular Gaussian systems were recently studied
in [ArIsMa]. However, the exposition there is based heavily on affine geometry and often
uses a non-standard (from the dynamical viewpoint) terminology. Therefore, we decided to
provide here an alternative exposition of this important topic. We define the non-singular
Gaussian systems as transformations on Hilbert spaces H furnished with Gaussian
measures stressing the fact that the systems are compositions of classical Gaussian
automorphisms and totally dissipative transformations (given by non-singular rotations).
Connections with the underlying Fock space, the first chaos and the exponential map
are explicitly made. We also explain interrelation between non-singular Gaussian systems
and non-singular Poisson systems. Our main observation is that Gaussian transformations
(except for a ‘small’ family of degenerate ones) are a subclass of IDPFT systems. Hence we
deduce [ArIsMa, Theorem D] (we consider only the case of Z-actions) from Theorem 1.2.
H0 below is a linear subspace of H endowed with a new inner product; see §4.

THEOREM 1.4. Let an orthogonal operator V of a real Hilbert space H0 be mildly
mixing. Let f ∈ H0 not be a V -coboundary (that is, f �= V a − a for any a ∈ H0).
If the non-singular Gaussian transformation T(f ,V ) associated with the pair (f , V ) is
conservative then the Maharam extension of T(f ,V ) is sharply weak mixing. In particular,
T(f ,V ) is of type III1.

The outline of the paper is as follows. In §2 we introduce important definitions:
Hellinger distance, weak mixing properties for non-singular actions, the ATI property,
skew product extension, essential value of a cocycle, etc. Then we prove Theorem 1.2
(see Theorem 2.5) and deduce Theorem 1.1 from it (see Theorem 2.6). We also provide
a generalization of Theorem 1.1 (see Conjecture II and discussion preceding it). In
§3 we consider non-singular versions of the problems studied in §2. IDPFT systems
are introduced in Definition 3.2. Radon–Nikodym cocycles, Maharam extensions and
Krieger’s types IIIλ, 0 ≤ λ ≤ 1, are discussed there. We show that each IDPFT system
is either conservative or totally dissipative (Corollary 3.7), introduce the ATQI property
(Definition 3.8) and prove Theorem 1.3 (Theorem 3.10). Type IIIλ rigid IDPFT systems
are also constructed there for each λ ∈ (0.1) (Proposition 3.12). The final §4 is devoted
to non-singular Gaussian systems. We first recall the definition of Gaussian measure in a
separable Hilbert space. Then we discuss the main properties of the related Fock space
and exponential map. Given an orthogonal operator V in a Hilbert space H0 and a vector
f ∈ H0, we associate a non-singular transformation T(f ,V ) acting on the corresponding
Hilbert space H ⊃ H0 equipped with a Gaussian measure μ. We show that T(f ,V ) is the
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composition of the classic Gaussian μ-preserving transformation associated to V with the
(totally dissipative) rotation by f . It is well known that the non-singular transformation
group {T(f ,0) | f ∈ H0} generated by the rotations is ergodic (see, for example, [Gu]) but
Krieger’s type has not been specified so far. We prove that it is III1 (Theorem 4.7). We
show that the Koopman operator generated by T(f ,V ) is the Weyl operator associated to the
pair (f/2, V ). A criterion for the existence of an invariant equivalent probability measure
for T(f ,V ) is established in Theorem 4.9 (cf. [DaKoRo1, Proposition 6.4] and [ArIsMa,
Theorem 6.3(i)]). Theorem 1.4 in proved in this section (Theorem 4.12).

After completion of this paper we learnt of a work [MaVa] devoted to non-singular
Gaussian actions of arbitrary groups. It was written independently of but at the same
time as our work†. Some of our results overlap with theirs. For example, Theorem 4.7
is [MaVa, Theorem 3.1] and Theorem 1.1, though stated in a more general form, is, in fact,
equivalent to [MaVa, Theorem 9.1(3)] in the case of Z-actions. Our proofs are different.
They are based solely on elementary techniques of the non-singular ergodic (measurable
orbit) theory. We do not use affine geometry, representation theory or harmonic analysis.

2. Weak mixing cocycles of product type
2.1. Hellinger distance and Kakutani’s theorem. Let γ and δ be two equivalent prob-
ability measures on a standard Borel space (Y , C). The square of the Hellinger distance
between γ and δ is

H 2(γ , δ) := 1
2

∫
Y

(
1−
√
dγ

dδ

)2

dδ = 1−
∫
Y

√
dγ

dδ
dδ.

By the Cauchy–Schwarz inequality, 0 ≤ H(γ , δ) < 1. We also recall [Ni] the following
inequalities between the Hellinger distance and the total variation:

H 2(γ , δ) ≤ ‖γ − δ‖1 := sup
C∈C

|γ (C)− δ(C)| ≤ √2H(γ , δ). (2.1)

We now state the Kakutani theorem on equivalence of infinite products of probability
measures [Ka].

THEOREM A. Let μn and νn be two equivalent probability measures on a standard Borel
space (Xn, Bn) for each n ∈ N. Let μ and ν denote the infinite product measures

⊗
n∈N μn

and
⊗

n∈N νn respectively on the standard Borel space (X, B) :=⊗n∈N(Xn, Bn). If
∞∏
n=1

(1−H 2(μn, νn)) > 0 or, equivalently,
∞∑
n=1

H 2(μn, νn) <∞ (2.2)

then μ ∼ ν,
∏∞
n=1(1−H 2(μn, νn)) = 1−H 2(μ, ν) and (dμ/dν)(x) =∏

n∈N(dμn/dνn)(xn) at a.e. x = (xn)n∈N ∈ X. If (2.2) does not hold then μ ⊥ ν.

2.2. Weak mixing properties of non-singular actions. We recall that, given a
non-singular transformation R of a standard Borel probability space (Y , C, ν), there is
a unique decomposition Y = D(R)  C(R) (called Hopf’s decomposition) of Y into two

† The two papers appeared on arXiv on two successive days. We thank S. Vaes for informing us about [MaVa].
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Borel sets such that D(R) is the disjoint union of the orbit of a wandering set W , that
is, D(R) =⊔n∈Z RnW and C(R) = Y \D(R) contains no non-trivial wandering set.
If C(R) = Y then R is called conservative and if D(R) = Y then R is called totally
dissipative. As both parts C(R) and D(R) are R-invariant, each ergodic R is either
conservative or totally dissipative. An ergodic conservative non-singular transformation
R is called weakly mixing if, for each ergodic probability-preserving transformation S,
the Cartesian product R × S is ergodic. We now introduce a stronger concept of weak
mixing.

Definition 2.1. An ergodic conservative non-singular transformation R is called sharply
weak mixing if, for each ergodic conservative non-singular transformation S, the direct
product R × S is either totally dissipative or ergodic.

If S in the above definition admits an equivalent invariant probability measure (that is, S
is of type II1) then T × S is conservative (see [Aa, Proposition 1.1.6, part 2]). HenceR × S
is ergodic according to Definition 2.1. Thus, every sharply weak mixing transformation is
weakly mixing. It follows from [SiTh] that every conservative non-singular transformation
with propertyK is sharply weak mixing (see also [AaLiWe, Theorem 6.7] for other exam-
ples). In [AdFrSi, Da] examples of weakly mixing infinite measure-preserving rank-one
transformations R were constructed such that R × R is conservative but not ergodic.
Hence R is not sharply weak mixing. We recall that an ergodic probability-preserving
transformation R defined on a space (Y , C, ν) is called mildly mixing ([FuWe], see also
[AaLiWe] and [ScWa]) if every function f ∈ L∞(ν) such that ‖f ◦ T ni − f ‖1 → 0 for
some sequence ni →∞ is constant.

We will utilize the following result from [ScWa].

THEOREM B. Let R be a mildly mixing transformation of a standard probability space
(Y , C, ν) and let C be a conservative non-singular transformation of a standard probabil-
ity space (Z, F, τ). If a function F ∈ L∞(Y × Z, ν ⊗ τ) is invariant under R × C then
there is f ∈ L∞(Z, τ) such that F(y, z) = f (z) almost everywhere.

We note that Theorem B was proved in [ScWa] for the ergodic conservative C only, but
the proof remains valid for an arbitrary conservative C as well. Direct products of finitely
(and countably) many mildly mixing transformations are mildly mixing.

It follows from Theorem B that an ergodic finite measure-preserving transformation
is sharply weak mixing if and only if it is mildly mixing. In Theorems 2.5 and 2.6
below we provide examples of mildly mixing transformations (including the zero-entropy
case) which have locally compact group extensions that are sharply weak mixing infinite
measure-preserving (and hence not mildly mixing).

2.3. ATI property. Fix a locally compact second countable abelian group G. Denote by
λG a Haar measure on G.

Definition 2.2. A sequence (ξn)∞n=1 of probability Borel measures on G is called asymp-
totically translation invariant if
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lim
m→∞ ‖ξn ∗ ξn+1 ∗ · · · ∗ ξn+m ∗ δa − ξn ∗ ξn+1 ∗ · · · ∗ ξn+m‖1 = 0

for each n ∈ N and a ∈ G.

Example 2.3. Let Na,σ 2 denote the normal distribution on R with parameters a and σ 2,

that is, N̂a,σ 2(t) = eiat−(1/2)σ 2t2 for all t ∈ R. We leave verification of the formula

H 2(Na,σ 2 , Nb,τ 2) = 1−
√

2στ
σ 2 + τ 2 e

−(1/4)((a−b)2/(σ 2+τ 2)) for all a, b, σ , τ ∈ R,

as an exercise for the reader. Given two sequences (an)n∈Z and (σn)∞n=1 of reals such that∑∞
n=1 σ

2
n = +∞, the sequence of probabilities (Nan,σ 2

n
)∞n=1 is asymptotically translation

invariant. Indeed,

Nan,σ 2
n
∗ · · · ∗Nan+m,σ 2

n+m = N∑n+m
k=n ak ,

∑n+m
k=n σ 2

k
,

Nan,σ 2
n
∗ · · · ∗Nan+m,σ 2

n+m ∗ δa = Na+∑n+m
k=n ak ,

∑n+m
k=n σ 2

k
and

H 2
(
Na+∑n+m

k=n ak ,
∑n+m
k=n σ 2

k
, N∑n+m

k=n ak ,
∑n+m
k=n σ 2

k

)
= 1− e−(1/8)·a2/(

∑n+m
k=n σ 2

k )→ 0

as m→∞. Hence (ξn)∞n=1 is asymptotically translation invariant in view of (2.1).

2.4. Ergodic cocycles of ergodic transformation groups. Given a standard Borel σ -finite
measure space (Y , C, ν), we denote by Aut(Y , ν) the group of all ν-non-singular invertible
Borel transformations on Y . Let Aut0(Y , ν) denote the subgroup of ν-preserving transfor-
mations from Aut(Y , ν). Let � be an ergodic countable subgroup in Aut(Y , ν). The full
group [�] of � is defined by

[�] := {θ ∈ Aut(Y , ν) | θy ∈ {γy | γ ∈ �} at a.e. y ∈ Y }.
Let G be a locally compact second countable abelian group and let λG be a Haar measure
on G. A measurable map α : � × Y → G is called a cocycle of � if

α(γ1γ2, y) = α(γ1, γ2y)+ α(γ2, y) at a.e. y ∈ Y (2.3)

for all γ1, γ2 ∈ �. From now on we assume that � is free, that is, if γ ∈ � \ {I } then
γy �= y for a.e. y. Then α can be ‘extended’ to [�] if we set

α(θ , y) := α(γ , y) where γ is defined uniquely by θy = γy.

It is straightforward to verify that (2.3) holds if we replace γ1 and γ2 with arbitrary
elements from [�]. A cocycle α is a coboundary if there is a measurable map a : Y → G

such that

α(γ , y) = a(γy)− a(y) at a.e. y ∈ Y
for all γ ∈ �. Given a pair (�, α), we can construct a transformation group �α := {γα |
γ ∈ �} ⊂ Aut(Y ×G, ν × λG), where

γα(y, g) := (γy, α(γ , y)+ g) for all y ∈ Y , g ∈ G.

The group �α is called the α-skew product extension of �. If � preserves ν then �α
preserves the product measure ν ⊗ λG. If �α is ergodic then α is called ergodic. A
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coboundary is never ergodic (unless G is a singleton). It is easy to verify that if � = {Rn |
n ∈ Z} for a transformation R ∈ Aut(Y , ν) then each measurable function f : Y → G

uniquely defines a cocycle αf of � via the condition

αf (R, y) := f (y) for each y ∈ Y .

For brevity we will write Rf for the αf -skew product extension Rαf of R.
We now recall an important concept of essential value for a cocycle.

Definition 2.4. Suppose that � preserves ν. An element g ∈ G is called an essential value
of α if, for each subset A ⊂ Y of positive measure and a neighborhood U of g, there are a
Borel subset B ⊂ A and an element γ ∈ � such that ν(B) > 0, γB ⊂ A and α(γ , y) ∈ U
for all y ∈ B.

It appears that the set r(α) of all essential values of a cocycle is a closed subgroup of
G. Our interest in the essential values of α is explained by the fact that α is ergodic if and
only if r(α) = G [Sc]. It is often easier to check the aforementioned condition on essential
values not for each subset A ∈ C of positive measure but only for a dense subfamily of
subsets in C. However, in this case we have to strengthen this condition. More precisely,
we will use the following folklore lemma.

LEMMA C. Let (Y , C, ν) be a standard probability space, A a dense subset in C, � an
ergodic countable subgroup of Aut0(Y , ν) and α : � × Y → G a Borel cocycle of �. If,
for some a ∈ G and each subset B ∈ A and each neighborhood U of 0 in G, there are a
measurable subset D ⊂ B and an element θ ∈ [�] such that θD ⊂ B, ν(D) > 0.5ν(B)
and α(θ , x) ∈ a + U for all x ∈ D then a is an essential value of α.

2.5. Sharp weak mixing of skew products for cocycles of product type. In this subsection
we prove the following theorem.

THEOREM 2.5. Let Tn be a mildly mixing transformation of a standard probability space
(Xn, Bn, νn) for each n ∈ N. Let

(X, B, ν, T ) :=
⊗
n∈Z

(Xn, Bn, νn, T ).

Suppose that, for a measurable function f : X→ G, there are functions fn : Xn→ G

such that f (x) =∑n∈N(fn(Tnxn)− fn(xn)) at ν-a.e. x = (xn)∞n=1 ∈ X and the sequence
of measures (νn ◦ f−1

n )n∈N is asymptotically translation invariant. If the skew product
extension Tf : X ×G→ X ×G of T is conservative then Tf is sharply weak mixing.

Proof. Let C be an ergodic conservative transformation of a standard probability space
(Z, Z, κ). Suppose that Tf × C is not totally dissipative. Then it follows from [Aa,
Proposition 1.2.4] that Tf × C is conservative. All that remains is to show that Tf × C
is ergodic.

Let a function F ∈ L∞(X ×G× Z, μ⊗ λG ⊗ κ) be invariant under Tf × C. We first
show that F is also invariant under a huge group of transformations. Fix n > 0. For each
x ∈ X, we write xn1 := (x1, . . . , xn) ∈ X1 × · · · ×Xn and x∞n+1 := (xn+1, xn+2, . . .) ∈
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Xn+1 ×Xn+2 × · · · . Then x = (xn1 , x∞n+1). We define a measure-preserving auto-
morphism En of (X ×G× Z, μ⊗ λG ⊗ κ) and a non-singular automorphism Vn of
(
⊗∞

k=n+1(Xk , νk))⊗ (G, λG)⊗ (Z, κ) respectively by setting

En(x, g, z) :=
(
x, g +

n∑
k=1

fk(xk), z
)

and

Vn((xk)
∞
k=n+1, g, z) :=

(
(Tkxk)

∞
k=n+1, g +

∑
k>n

(fk(Tkxk)− fk(xk)), Cz
)

.

A straightforward verification shows that

E−1
n (Tf × C)En = (T1 × · · · × Tn)× Vn.

Since Vn is a factor of the transformation E−1
n (Tf × C)En and the latter transformation

is conservative, it follows that Vn is conservative. On the other hand, the function F ◦ En
is invariant under E−1

n (Tf × C)En. Utilizing these two facts, we deduce from Theorem B
that F ◦ En does not depend on the coordinates x1, . . . , xn. Hence, for each transformation
S ∈ Aut0(X1 × · · · ×Xn,

⊗n
k=1 νk), we have that F ◦ En ◦ (S × I ) = F ◦ En. Therefore

F is invariant under the transformation En(S × I )E−1
n ∈ Aut0(X ×G× Z, μ⊗ λG ⊗ κ)

and

En(S × I )E−1
n (x, g, z) = (Sxn1 , x∞n+1, g − An(xn1 )+ An(Sxn1 ), z), (2.4)

where An stands for the mapping

X1 × · · · ×Xn � (x1, . . . , xn) �→ An(x1, . . . , xn) :=
n∑
k=1

fk(xk).

Thus, we have shown that F is invariant under each transformation from the set

G :=
⋃
n>0

En

(
Aut0

(
X1 × · · · ×Xn,

n⊗
k=1

νk

)
× {I }

)
E−1
n .

We now consider a new dynamical system. The space of this system is the product
(X, B, μ). Denote by � the group of transformations of this space generated by mutually
commuting measure-preserving transformations T̂1, T̂2, . . . , where

T̂nx = (xn−1
1 , Tnxn, x∞n+1), n ∈ N.

Then � is countable, abelian† and ergodic. For each n > 0, we consider a coboundary

αn : X � x �→ αn(x) := fn(Tnxn)− fn(xn) ∈ G
of T̂n. It is straightforward to verify‡ that the αn-skew product extensions (T̂n)αn of T̂n,
n ∈ N, mutually commute. It follows that a cocycle α : � ×X→ G of � with values in
G is well defined by the formula

α(T̂n, x) := αn(x), n ∈ N.

† It is isomorphic to
⊕∞

n=1 Z.
‡ This follows from the fact that each function αn depends only on a single coordinate xn, n = 1, 2, . . . .
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Since αn(x) = An((I × Tn)xn1 )− An(xn1 ), it follows from (2.4) that

En(I × Tn × I )E−1
n = (T̂n)αn × IZ .

Hence (T̂n)αn × IZ ∈ G. Although, each αn is a coboundary for the Z-action given by Tn,
the cocycle α is not a coboundary for �. In fact, we will now show the following claim.

CLAIM I. The cocycle α of � is ergodic.

Proof. For this purpose we show that each element a ∈ G is an essential value of α. Given
n > 0 and a subset B ⊂ X1 × · · · ×Xn, denote by [B]n1 ⊂ X the corresponding cylinder
with ‘head’B, that is, [B]n1 := {x ∈ X | xn1 ∈ B}. LetU be a symmetric neighborhood of 0
inG. Choose a countable partition P ofG into Borel subsets� such that g − h ∈ U for all
g, h ∈ � and each� ∈ P . Let ψk := νk ◦ f−1

k for each k > 0. Using the ATI assumption,
we can find m > n such that

‖ψn+1 ∗ · · · ∗ ψm ∗ δa − ψn+1 ∗ · · · ∗ ψm‖1 < ε. (2.5)

For each � ∈ P , we let

A� :=
{
y = (yk)mk=n+1 ∈ Xn+1 × · · · ×Xm

∣∣∣∣ m∑
k=n+1

fk(yk) ∈ �
}

and

B� :=
{
y = (yk)mk=n+1 ∈ Xn+1 × · · · ×Xm

∣∣∣∣ a + m∑
k=n+1

fk(yk) ∈ �
}

.

(2.6)

Then {A�}�∈P and {B�}�∈P are two measurable partitions of Xn+1 × · · · ×Xm. It
follows from (2.5) that∑
�∈P

|νmn+1(A�)− νmn+1(B�)| =
∑
�∈P

|ψn+1 ∗ · · · ∗ ψm ∗ δa(�)− ψn+1 ∗ · · · ∗ ψm(�)|

≤ ‖ψn+1 ∗ · · · ψm ∗ δa − ψn+1 ∗ · · · ∗ ψm‖1

< ε,

where νmn+1 denotes the direct product
⊗m

k=n+1 νk . We can find subsets A′� ⊂ A� and
B ′� ⊂ B� such that

νmn+1(A
′
�) = νmn+1(B

′
�) = min(νmn+1(A�), ν

m
n+1(B�)). (2.7)

Note that the group �n+1,m generated by m− n mutually commuting transformations
Tn+1 × I × · · · × I , I × Tn+2 × I × · · · × I , . . . , I × · · · × I × Tm ∈ Aut0(Xn+1 ×
· · · ×Xm, νmn+1) is ergodic. Hence, in view of (2.7), Hopf’s lemma [HaOs, Lemma 10]
yields that there is a transformation S0 ∈ [�n+1,m] such that S0A

′
� = B ′� for each � ∈ P .

(We recall that Hopf’s equivalence lemma claims that, given an ergodic conservative
measure-preserving countable transformation group � of a standard σ -finite measure
space (Y , Y, ω) and two subsets A, B ∈ Y with ω(A) = ω(B), there is a transformation
γ ∈ [�] such that γA = B mod ω. The lemma is proved via the standard exhaustion
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argument.) We note that∑
�∈P

νmn+1(A� \ A′�) ≤
∑
�∈P

|νmn+1(A�)− νmn+1(B�)| < ε.

It follows that νmn+1(
⊔
�∈P A′�) > 1− ε. On the other hand, in view of (2.6), for each

y ∈ A+ :=⊔�∈P A′�,( m∑
k=n+1

fk

)
(y)−

( m∑
k=n+1

fk

)
(S0y) ∈ a + U .

We now ‘extend’ S0 to a transformation S ∈ Aut0(X, μ) by setting

Sx := (xn1 , S0x
m
n+1, x∞m+1) ∈ X for all x ∈ X.

Then S ∈ [�] and

α(S, x) ∈ a + U whenever xmn+1 ∈ A+. (2.8)

Then we have that [B × A+]m1 ⊂ [B]n1, S[B × A+]m1 ⊂ [B]n1, μ([B × A+]m1 ) >
1
2μ([B]n1) and (2.8) holds for all x ∈ [B × A+]m1 . Since the set of all cylinders is dense in
B, it follows from Lemma C that a is an essential value of α. Thus, Claim I is proved.

To complete the proof of the theorem, we have already noticed that (T̂n)αn × IZ ∈ G
for each n ∈ N. Hence F(γα(x, g), z) = F(x, g, z) at a.e. (x, g, z) ∈ X ×G× Z for each
γ ∈ �. Claim I yields that there is a function M : Z→ R such that F(x, g, z) = M(z)
at a.e. (x, g, z) ∈ X ×G× Z. Since F is invariant under Tf × C, we obtain that M is
invariant under C. Since C is ergodic, M is constant almost everywhere and hence F is
constant almost everywhere, that is, Tf × C is ergodic.

We call the cocycle f in the statement of Theorem 2.5 a cocycle of product type.

2.6. Application to Gaussian cocycles. Let (X, B, μ, T ) be an ergodic Gaussian dynam-
ical system. It is completely determined by a restriction of the corresponding Koopman
unitary operator UT to a closed (real) Gaussian subspace H ⊂ L2

0(X, μ), called the first
chaos (see, for example, [LePaTh] for the definitions). Let κ denote the maximal spectral
type of UT � H . It is known that T is ergodic if and only if T is weakly mixing if and only
if κ is non-atomic [Mar]. Take f ∈ H . Then the measurable map f : X→ R considered
as a cocycle of T is called a Gaussian cocycle. It was shown in [LeLeSk] that if f is a
T -coboundary, that is, f = h ◦ T − h for a measurable function h : X→ R, then h ∈ H .
We now recall a conjecture from [LeLeSk].

Conjecture I. If a Gaussian cocycle f is not a coboundary then f is ergodic.

We now prove this conjecture (in fact, we prove a stronger result) under an additional
assumption that T is mildly mixing.

THEOREM 2.6. If T is a mildly mixing Gaussian transformation and f is a Gaussian
cocycle of T which is not a coboundary then Tf is sharply weak mixing.
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Proof. Since f ∈ H , it follows that
∫
X
f dμ = 0. Hence, by Atkinson’s theorem [At], Tf

is conservative. Consider now the spectral decomposition for the pair (H , UT ):

H =
∫ ⊕
T

Hz dκ(z) and UT =
∫ ⊕
T

zIz dκ(z), (2.9)

where T � z �→ Hz is the corresponding measurable field of Hilbert spaces and Iz is
the identity operator in Hz. In other words, we can consider an element h of H as a
measurable map T � z �→ h(z) ∈ Hz such that ‖h‖2 = ∫

T
‖h(z)‖2dκ(z) <∞. We now

let �n := {z ∈ T | (1/(n+ 1) < |z− 1| ≤ (1/n)}. Then we obtain a countable partition⊔∞
n=1 �n of T \ {1}. Since κ({1}) = 0, this countable partition generates a decomposition

of H into a direct sum
⊕

n∈N Hn of closed UT -invariant subspaces Hn consisting of
the measurable maps h : T � z �→ h(z) ∈ Hz such that ‖h‖ <∞ and h(z) = 0 whenever
z �∈ �n. This decomposition induces a decomposition of (X, μ, T ) into the infinite direct
product (X, μ, T ) =⊗∞

n=1(Xn, μn, Tn), where (Xn, μn, Tn) is the Gaussian dynamical
system associated with the pair (Hn, UT � Hn) for each n ∈ N. Now we can expand f
into an orthogonal sum f =⊕∞

n=1 fn with fn ∈ Hn for each n ∈ N. We claim that, for
each n > 0, there is an ∈ Hn such that fn = UT an − an. Indeed, it follows from this
equation and (2.9) that if we represent fn as a measurable map �n � z �→ fn(z) ∈ Hz

then fn(z) = zan(z)− an(z) for a.e. z ∈ �n. Solving this equation, we obtain that an(z) =
(z− 1)−1fn(z) for a.e. z ∈ �n. Since |z− 1|−1 < n+ 1 for all z ∈ �n, we obtain that
an ∈ Hn. This yields an expansion

f =
∞⊕
n=1

(UT an − an) =
∞⊕
n=1

(an ◦ T −1
n − an) (2.10)

of f into an infinite sum of Tn-coboundaries. Of course,
∑
n∈N ‖an‖2 = +∞. Otherwise,

the series
∑
n∈N an converges inH and hence f would be a coboundary, which contradicts

the assumption of the theorem. We have that μn ◦ a−1
n = N0,‖an‖2 for each n ∈ N.

Passing, if necessary, to a subsequence, we may assume without loss of generality that
the convergence in (2.10) is almost everywhere. Example 2.3 yields that the sequence
(μn ◦ a−1

n )∞n=1 is asymptotically translation invariant. It now follows from Theorem 2.5
that Tf is sharply weak mixing.

Consider now the general case. Then there is a maximal (with respect to κ) subset
A of T such that UT restricted to the closed subspace

∫ ⊕
A

Hzdκ(z) of H is mildly
mixing. We note that A is symmetric. Then κ decomposes into a sum of two orthogonal
measures: κmm := κ � A (the mildly mixing part of κ) and κr := κ � (T \ A) (the rigid
part of κ). This decomposition defines a decomposition of (X, μ, T ) into a direct
product (X1, μmm, M)× (X2, μr , R), where (X1, μmm, M) is the Gaussian dynamical
system corresponding to the pair (

∫ ⊕
A

Hzdκmm(z), UT ) and (X2, μr , R) is the Gaussian
dynamical system corresponding to the pair (

∫ ⊕
T\A Hzdκr(z), UT ). Also, we obtain a

decomposition of f into a sum fmm + fr , where fmm := f 1A and fr = f 1T\A. There
are two possible cases: either fmm is a coboundary or fmm is not a coboundary. In the first
case Tf is isomorphic toQ× Rfr . Moreover, fr is not a coboundary because otherwise f
would be a coboundary. Since Q is mildly mixing and Tf is conservative, Tf is ergodic if
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and only if Rfr is ergodic. In the second case, Tf is isomorphic to Qfmm × Rfr and Qfmm

is sharply weak mixing by Theorem 2.5. Since Tf is conservative, it follows that Tf is
ergodic if and only if Rfr is ergodic. Thus, we have reduced the conjecture from [LeLeSk]
as follows.

Conjecture II. If a Gaussian cocycle f is not a coboundary and κ has only rigid part then
f is ergodic.

In [LeLeSk], there were constructed some concrete rigid Gaussian transformations
admitting ergodic Gaussian cocycles. In [MaVa] this result was extended to arbitrary rigid
Gaussian transformations which have at least one Gaussian non-coboundary. However, it is
unknown whether ergodicity holds for each Gaussian non-coboundary in those examples.

3. Krieger’s type of infinite direct products of dynamical systems of finite type
3.1. IDPFT systems. Let Tn be a non-singular invertible transformation of a standard
probability space (Xn, Bn, μn) for each n ∈ N. Denote by T the infinite direct product
of Tn, n ∈ N, acting on the infinite product space (X, B, μ) :=⊗n∈Z(Xn, Bn, μn). By
Theorem A, T is μ-non-singular if and only if

∞∏
n=1

(1−H 2(μn ◦ T −1
n , μn)) > 0 or

∞∑
n=1

H 2(μn ◦ T −1
n , μn) <∞. (3.1)

If (3.1) does not hold then μ ◦ T −1 ⊥ μ. If T is μ-non-singular then

dμ ◦ T −1

dμ
(x) =

∞∏
n=1

dμn ◦ T −1
n

dμn
(xn) at a.e. x ∈ X.

Suppose now that Tn is of finite type, that is, that there exists a μn-equivalent probability
measure νn which is invariant under Tn for each n ∈ N. We then put φn := dμn/dνn. Since

1−H 2(μn ◦ T −1
n , μn) =

∫
Xn

√
((φn ◦ T −1

n )/φn)φndνn, formula (3.1) and Theorem A
yield the following corollary.

COROLLARY 3.1. T is μ-non-singular if and only if
∞∏
n=1

∫
Xn

√
φn · φn ◦ T −1

n dνn > 0. (3.2)

μ ⊥ ν if and only if
∞∏
n=1

∫
Xn

√
φndνn = 0. (3.3)

Definition 3.2. If T is μ-non-singular and Tn is of finite type for all n > 0 then we say
that the dynamical system (X, B, μ, T ) is an infinite direct product of finite types.

Our purpose in this section is to investigate dynamical properties of IDPFT systems.
The first result is about ergodicity of conservative IDPFT systems under the mild mixing
assumption on the factors.
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PROPOSITION 3.3. Let (Xn, νn, Tn) be mildly mixing for each n > 0 and (3.2) and (3.3)
hold. Suppose that T is μ-conservative. Then T is μ-sharply weak mixing and μ ⊥ ν.

Proof. Let S be an ergodic conservative transformation of a standard probability space
(Y , C, ν). By [Aa, Proposition 1.2.4], T × S is either totally dissipative or conservative.
Suppose that T × S is conservative. We have to prove that it is ergodic. Let a subset
A ∈ B⊗ C be invariant under T × S. It follows from Theorem B that, for each n > 0, A
belongs to the σ -algebra {∅, X1 × · · · ×Xn} ⊗ Bn+1 ⊗ Bn+2 ⊗ · · · ⊗ C (When applying
Theorem B, we consider the measure (

⊗n
k=1 νk)⊗ (

⊗
k>n μk)⊗ ν on X × Y . This

measure is equivalent to μ⊗ ν.). By the Kolmogorov 0–1 law, the intersection of these
σ -algebras is N⊗ C, where N is the trivial σ -algebra on X. Thus A = X ×D for some
subset D ∈ C. Since A in invariant under T × S, it follows that D is invariant under S.
Since S is ergodic, we obtain that either μ⊗ ν(A) = 0 or μ⊗ ν(A) = 1.

Remark 3.4. In §4 we give examples of (X, ν, T ) and μ such that (X, μ, T ) is of type III1.
In particular, there is no μ-equivalent invariant probability measure. On the other hand, we
do not know of examples where (X, μ, T ) is of type II1, that is, T is mildly mixing with
respect to a μ-equivalent invariant probability measure.

3.2. Radon–Nikodym cocycle and type III1. Let � be an ergodic countable subgroup of
Aut(Y , ν). Denote by ρν : � × Y → R the logarithm of the Radon–Nikodym cocycle of
�, that is,

ρν(γ , y) := log
dν ◦ γ
dν

(y).

The ρν-skew product extension �ρν of � is called the Maharam extension of R. We note
that �ρν preserves an equivalent σ -finite measure ν ⊗ κ , where κ is a Lebesgue absolutely
continuous σ -finite measure on R such that dκ(t) = e−t dt for all t ∈ R. Similar to the
finite measure-preserving case, ρν ‘extends’ to the full group [�] in such a way that the
cocycle identity holds. Moreover, we do not need the freeness condition for � to define this
extension.

We note that ρν is a coboundary if and only if there is a �-invariant ν-equivalent σ -finite
measure on (Y , C).

By the Maharam theorem (see [Sc]), �ρν is conservative if and only if � is conservative.
However, if � is ergodic then �ρν is not necessarily ergodic. If the Maharam extension
of � is ergodic then � is called of Krieger’s type III1. If, for each homomorphism
ϑ : �→ Aut0(Y , ν) such that the image {ϑ(γ ) | γ ∈ �} is ergodic, the direct product
{γ × ϑ(γ ) | γ ∈ �} is ergodic and of type III1 then � is said to be of stable Krieger’s
type III1.

It is possible to define essential values of ρν in the same way as in the finite
measure-preserving case.

Definition 3.5. An element g ∈ R is called an essential value of ρν if, for each subset
A ⊂ Y of positive measure and a neighborhood U of g, there are a Borel subset B ⊂ A
and an element γ ∈ � such that ν(B) > 0, γB ⊂ A and ρν(γ , y) ∈ U for all y ∈ B.

https://doi.org/10.1017/etds.2020.145 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.145


Ergodic cocycles of IDPFT systems and non-singular Gaussian actions 1637

We refer to [Sc, HaOs] for the proof of the following results:
• The set r(ρν) is a closed subgroup in R.
• � is of type III1 if and only if r(ρν) = R.

If there is λ ∈ (0, 1) such that r(ρν) = {n log λ | n ∈ Z} then � is said to be of Krieger’s
type IIIλ.

We will need the following analog of Lemma C. We do not provide a proof of the lemma
because it is routine.

LEMMA D. An element a ∈ R is an essential value of ρν if there exists δ > 0 such that
for each ε > 0 and each subset B from a dense collection C0 of subsets in C, there are
a subset B0 ⊂ B and a transformation θ ∈ [�] such that ν(B0) > δν(B), θB0 ⊂ B and
either |ρν(θ , y)− a| ≤ ε for all y ∈ B0 or |ρν(θ , y)+ a| ≤ ε for all y ∈ B0.

3.3. On conservativeness of IDPFT systems. In this subsection we first establish a
general result on conservativeness of infinite direct product systems. We note that the
argument used below to prove conservativeness of IDPFT systems is similar to the
argument used in [Ko, Da] to prove ergodicity of non-singular Bernoulli and Markov
systems.

PROPOSITION 3.6. Let (Xn, Bn, μn, Tn) be an ergodic non-singular dynamical system
on a standard probability space for each n ∈ N and let (3.1) hold. Let (X, B, μ, T ) :=⊗∞

n=1(Xn, Bn, μn, Tn). If, for each n ∈ N, there is a function αn : Xn→ [1, +∞) such
that, for each k ∈ N,

αn(x)
−1 ≤ dμn ◦ T k

dμn
(x) ≤ αn(x) at a.e. μn-a.e. x ∈ Xn

then the dynamical system (X, B, μ, T ) is either conservative or totally dissipative.
Moreover, if (Y , C, ν, S) is an ergodic conservative non-singular dynamical system then
the direct product T × S is either conservative or totally dissipative.

Proof. We will prove the second claim only. By the Hopf criterion [Aa, Proposition 1.3.1],

D(T × S) =
{
(x, y) ∈ X × Y

∣∣∣∣ ∞∑
k=1

d(μ⊗ ν) ◦ (T × S)k
d(μ⊗ ν) (x, y) <∞

}
.

For each r > 0, we consider a transformation γr of X by setting γr(x1, x2, . . .) :=
(x1, . . . , xr−1, Trxr , xr+1, . . .). Of course, γr ∈ Aut(X, μ). Denote by � the transfor-
mation group generated by γr , r ∈ N. It follows from the Kolmogorov 0–1 law that �
is ergodic. We claim that D(T × S) is invariant under γr × I for each r . Let (x, y) ∈
D(T × S). Since, for each k > 0,

dμ ◦ T k
dμ

(γrx) = dμr ◦ T kr
dμr

(Trxr)

(
dμr ◦ T kr
dμr

(xr)

)−1 ∞∏
n=1

dμn ◦ T kn
dμn

(xn)

≤ αr(Trxr)αr(xr)−1 dμ ◦ T k
dμ

(x),
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it follows that

∞∑
k=1

d(μ⊗ ν) ◦ (T × S)k
d(μ⊗ ν) (γrx, y) =

∞∑
k=1

dμ ◦ T k
dμ

(γrx)
dν ◦ Sk
dν

(y)

≤ αr(Trxr)

αr(xr)

∞∑
k=1

dμ ◦ T k
dμ

(x)
dν ◦ Sk
dν

(y)

= αr(Trxr)

αr(xr)

∞∑
k=1

d(μ⊗ ν) ◦ (T × S)k
d(μ⊗ ν) (x, y) <∞.

Thus, (γrx, y) ∈ D(T × S). Since D(T × S) is invariant under I × S, we obtain that
D(T × S) is invariant under an ergodic transformation group on X × Y generated by
I × S and γ × I , γ ∈ �. Hence, either (μ⊗ ν)(D(T × S)) = 0 or (μ⊗ ν)(D(T × S)) =
1, as desired.

We now apply Proposition 3.6 to IDPFT systems.

COROLLARY 3.7. Let (Xn, Bn, μn, Tn) be an ergodic non-singular dynamical system on a
standard probability space for each n ∈ N and let (3.1) hold. Suppose that, for each n ∈ N,
there is a μn-equivalent Tn-invariant probability measure on Xn. Let (X, B, μ, T ) :=⊗∞

n=1(Xn, Bn, μn, Tn). Then the dynamical system (X, B, μ, T ) is either conservative
or totally dissipative. Moreover, if (Y , C, ν, S) is an ergodic conservative non-singular
dynamical system then the direct product T × S is either conservative or totally
dissipative.

Proof. Let φn := dμn/dνn for each n > 0. If, for each n > 0, there is a real αn ≥ 1
such that α−1

n ≤ φn ≤ αn almost everywhere then the claim of the corollary follows
directly from Proposition 3.6. We now show that the general case can be reduced to the
‘bounded’ case. Indeed, for each n > 0, we can find a probability measure μ̃n ∼ μn such
that H 2(μ̃n, μn) ≤ 2−n and the Radon–Nikodym derivative dμ̃n/dνn is bounded from
above and separated from 0 from below (For that purpose, take the Radon–Nikodym
derivative dμn/dνn and change it on a subset of very small measure to get the bound-
edness. The ‘modified’ function will be the Radon–Nikodym derivative dμ̃n/dμn.). Since∑∞
n=1 H

2(μ̃n, μn) <∞, it follows from Theorem A that μ ∼ μ̃ :=⊗∞
n=1 μ̃n. All that

remains is to note that the conservativeness of a dynamical system does not depend on the
choice of quasi-invariant measure within its equivalence class.

3.4. Sharp weak mixing for Maharam extensions of IDPFT systems. We first introduce
a ‘non-singular analogue’ of the ATI property (cf. Definition 2.2).

Definition 3.8. A sequence (ξn)∞n=1 of probability non-atomic Borel measures on G

is called asymptotically translation quasi-invariant if, for each a ∈ G, there exists
ζa > 0 such that, for every n ∈ N, there are m > n and a Borel subset Wn,m ⊂ G
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such that

ζa ≤ (ξn ∗ ξn+1 ∗ · · · ∗ ξn+m)(Wn,m),
ξn ∗ ξn+1 ∗ · · · ∗ ξn+m ∗ δa ≺ ξn ∗ ξn+1 ∗ · · · ∗ ξn+m and

ζa ≤ d(ξn ∗ ξn+1 ∗ · · · ∗ ξn+m ∗ δa)
d(ξn ∗ ξn+1 ∗ · · · ∗ ξn+m) (t) for each t ∈ Wn,m.

We will need the following lemma on continuous measures.

LEMMA 3.9. Given a standard non-atomic probability space (Y , C, ν), a non-negative
function φ ∈ L1(Y , ν) and δ ∈ (0, 1), then

max
{ ∫

A

φ dν

∣∣∣∣ ν(A) = δ} ≥ δ

2

∫
Y

φ dν.

Proof. Let α := max{∫
A
φdν | ν(A) = δ}. Find n ≥ 1 such that δ ≤ (1/n). Then there is

a partition Y = Y1  · · ·  Yn+1 of Y into subsets Yk such that ν(Yk) = δ for each k =
1, . . . , n and μ(Yn+1) ≤ δ. We now have∫

Y

φ dν = (n+ 1)α ≤ (δ−1 + 1)α <
2
δ
α.

The next theorem is a non-singular analogue of Theorem 2.5. The skeleton of the proof
is similar to that of Theorem 2.5.

THEOREM 3.10. Let a dynamical system (Xn, Bn, νn, Tn) be mildly mixing for each n > 0.
Let μn be a probability on Xn such that μn ∼ νn for each n ∈ N. Let φn := dμn/dνn and
(3.2) hold. We set

(X, B, ν, T ) :=
⊗
n∈N

(Xn, Bn, νn, Tn)

and μ :=⊗∞
n=1 μn. If T is μ-conservative and the sequence of probability measures

(νn ◦ (log φn)−1)∞n=1 is asymptotically translation quasi-invariant then T ∈ Aut(X, μ) is
ergodic of stable type III1. Moreover, the Maharam extension of T is sharply weak mixing.

Proof. By the Maharam theorem, the Maharam extension Tρμ is conservative. Let C be
an ergodic conservative transformation of a standard probability space (Z, Z, η). As in the
proof of Theorem 2.5, we see that Tρμ × C is either totally dissipative or conservative.
Suppose that it is conservative and prove that it is ergodic.

Let a function F ∈ L∞(X × R× Z, μ⊗ κ ⊗ η) be invariant under Tρμ × C. We first
show that F is also invariant under a huge group of transformations. Fix n > 0. We define
a non-singular automorphism T (n) of (

⊗
k>n Xk , μ

(n)), where μ(n) :=⊗∞
k=n+1 μk , and a

measure-preserving isomorphism En of (X × R× Z, μ⊗ κ ⊗ η) onto the product space
(X × R× Z, (

⊗n
k=1 νk)⊗ μ(n) ⊗ κ ⊗ η) by setting

T (n)(xk)
∞
k=n+1 := (Tkxk)∞k=n+1 and

En(x, t , z) :=
(
x, t +

n∑
k=1

log φk(xk), z
)

.
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Since

Tρμ(x, t) =
(
T1x1, T2x2, . . . , t +

∞∑
k=1

log
dμk ◦ Tk
dμk

(xk)

)

=
(
T1x1, T2x2, . . . , t +

∞∑
k=1

(log φk(Tkxk)− log φk(xk))
)

,

it follows that

E−1
n (Tρμ × C)En = (T1 × · · · × Tn)× (T (n))ρ

μ(n)
× C. (3.4)

Since Tρμ × C is conservative, it follows from (3.4) that the product (T (n))ρ
μ(n)
× C is also

conservative. On the other hand, the function F ◦ En is invariant under E−1
n (Tf × C)En.

Utilizing these two facts plus the mild mixing of the transformation T1 × · · · × Tn, we
deduce from Theorem B that F ◦ En does not depend on the coordinates x1, . . . , xn.
Hence, for each transformation S ∈ Aut0(X1 × · · · ×Xn,

⊗n
k=1 νk), we have that F ◦

En ◦ (S × I × IZ) = F ◦ En. Therefore F is invariant under the transformation En(S ×
I × IZ)E−1

n ∈ Aut0(X × R× Z, μ⊗ κ ⊗ η) and

En(S × I × IZ)E−1
n = (S × I )ρμ × IZ . (3.5)

Denote by � the group of non-singular transformations of (X, B, μ) generated by I ×
Tn × I , n ∈ N. Then � is an ergodic abelian countable subgroup of Aut(X, μ) and F is
invariant under {γρμ × IZ | γ ∈ �} by (3.5).

CLAIM II. We claim that � is of type III1.

Proof. Equivalently, we will show that each a ∈ R is an essential value for the cocycle ρμ
of �. For that purpose, fix n > 0, ε > 0 and a Borel subset B ⊂ X1 × · · · ×Xn. Denote
by ψk the pushforward of νk under log φk for each k > 0. By ATQI, there is ζa > 0 (which
does not depend on n), m > n and a subset Wn+1,m ⊂ R such that

ζa ≤ (ψn+1 ∗ · · · ∗ ψm)(Wn+1,m),
ψn+1 ∗ · · · ∗ ψm ∗ δa ≺ ψn+1 ∗ · · · ∗ ψm and

ζa ≤ d(ψn+1 ∗ · · · ∗ ψn+m ∗ δa)
d(ψn+1 ∗ · · · ∗ ψn+m) (t) for each t ∈ Wn+1,m.

(3.6)

Choose a countable partition P of Wn+1,m into subsets of diameter no more than ε. For
each � ∈ P , we let

A� :=
{
y = (yk)mk=n+1 ∈ Xn+1 × · · · ×Xm

∣∣∣∣ m∑
k=n+1

log φk(yk) ∈ �
}

and

B� :=
{
y = (yk)mk=n+1 ∈ Xn+1 × · · · ×Xm

∣∣∣∣ a + m∑
k=n+1

log φk(yk) ∈ �
}

.

Let μmn+1 :=⊗m
k=n+1 μk , ν

m
n+1 :=⊗m

k=n+1 νk and φmn+1 := dμmn+1/dν
m
n+1. Dropping

off some atoms of P if necessary, we may assume without loss of generality that
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νmn+1(A�) > 0 (and hence νmn+1(B�) > 0 in view of (3.6)) for each � ∈ P . Note that the
group �n+1,m generated bym− nmutually commuting transformations Tn+1 × I × · · · ×
I , I × Tn+2 × I × · · · × I , . . . , I × · · · × I × Tm ∈ Aut0(Xn+1 × · · · ×Xm, νmn+1) is
ergodic. Suppose that νmn+1(A�) > νmn+1(B�) for some� ∈ P . We now apply Lemma 3.9
to the space A� equipped with the conditional measure νmn+1(·)/νmn+1(A�), the function
νmn+1(A�)φ

m
n+1 and δ := νmn+1(B�)/ν

m
n+1(A�). Then there is a Borel subset A′� ⊂ A�

such that νmn+1(A
′
�)/ν

m
n+1(A�) = δ and∫

A′�
φmn+1dν

m
n+1 ≥

δ

2

∫
A�

φmn+1dν
m
n+1.

In other words, μmn+1(A
′
�) ≥ (δ/2)μmn+1(A�). It follows from (3.6) that

δ = νmn+1(B�)

νmn+1(A�)
= (ψn ∗ ψn+1 ∗ · · · ∗ ψn+m ∗ δa)(�)

(ψn ∗ ψn+1 ∗ · · · ∗ ψn+m)(�) ≥ ζa .

Therefore μmn+1(A
′
�) ≥ (ζa/2)μmn+1(A

′
�). By Hopf’s lemma, there is a transformation

S0 ∈ [�n+1,m] such that
• S0A� ⊂ B� if νmn+1(A�) ≤ νmn+1(B�) and
• S0A

′
� = B� if νmn+1(A�) > νmn+1(B�), because in this case we have that νmn+1(A

′
�) =

δνmn+1(A�) = νmn+1(B�).
Let

A+ :=
⊔

νm
n+1(A�)≤νmn+1(B�)

A� 
⊔

νm
n+1(A�)>ν

m
n+1(B�)

A′�.

Then μmn+1(A
+) ≥ (ζa/2)μmn+1(

⊔
�∈P A�) = (ζa/2)(ψn+1 ∗ · · · ∗ ψm)(Wn+1,m) ≥

(ζ 2
a /2). Of course, for each y ∈ A+,( m∑

k=n+1

log φk

)
(y)−

( m∑
k=n+1

log φk

)
(S0y) = a ± ε. (3.7)

We now ‘extend’ S0 to a transformation S ∈ Aut(X, μ) by setting

S := I × S0 × I .

Then S ∈ [�] and, in view of (3.7),

ρμ(S, x) = −a ± ε whenever xmn+1 ∈ A+. (3.8)

We now have that

[B × A+]m1 ⊂ [B]n1, S[B × A+]m1 ⊂ [B]n1, μ([B × A+]m1 ) ≥
ζ 2
a

2
μ([B]n1)

and (3.8) holds for all x ∈ [B × A+]m1 . Since the set of all cylinders is dense in B, it follows
from Lemma D that a is an essential value of α. Thus, Claim II is proved.

The assertion of the theorem follows from Claim II in the very same way as the assertion
of Theorem 2.5 follows from Claim I (in the proof of Theorem 2.5).
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Remark 3.11. In this remark we clarify some subtle points in the proof of Theorem 3.10.
Let B0 stand for the collection of all cylinders in X. Then B0 is dense in B both with
respect to μ and with respect to ν. Though μ ⊥ ν, the two measures are equivalent on
B0, that is, μ(B) = 0 if and only if ν(B) = 0 whenever B ∈ B0. Given a transformation
θ ∈ Aut(X, μ), the Radon–Nikodym derivative (dμ ◦ θ)/dμ is defined up to a subset
of zero μ-measure. Hence it makes no sense as a function on (X, ν). However, if we
consider transformations of a specific product structure, say γ ∈ �, then (dμ ◦ γ )/dμ is
defined, in fact, up a subset of zero μ-measure from B0. Therefore, (dμ ◦ γ )/dμ is well
defined as a measurable function on (X, ν) as well. Thus, the cocycle ρμ : � ×X→ R is
well defined simultaneously on (X, μ) and on (X, ν). Another observation is that given a
transformation S0 ∈ [�n+1,m], the extension S := I × S0 × I of S0 to X is a well-defined
transformation from Aut(X, μ) as well as from Aut0(X, ν). Thus, although an element
of the full group [�] is defined up to subset of zero measure, the relation S ∈ [�] is well
defined with respect to μ as well as with respect to ν.

3.5. On type IIIλ for rigid IDPFT systems. We would like to emphasize that the
conclusion of Theorem 3.10 does not hold if we drop the mild mixing condition on Tn and
the ATQI property. We illustrate this on a family of IDPFT systems consisting of infinite
products of periodic transformations. Let (pn)∞n=1 be a sequence of mutually coprime
positive integers such that pn > 2p1 · · · pn−1 for each n ∈ N. Below we will specify more
conditions on the growth of (pn)∞n=1. For n ∈ N, we set Xn := {0, 1, . . . , pn − 1} and
identify Xn with the cyclic group Z/pnZ. Then Tn : Xn→ Xn, given by Tnx = x + 1
(mod pn), is a bijection of Xn. The infinite product T =⊗∞

n=1 Tn is a minimal rotation
on the compact totally disconnected abelian group X :=⊗∞

n=1 Xn. Of course, the Haar
measure ν on X is the only T -invariant Borel probability measure on X. This measure is
the infinite direct product of the equidistributions on Xn, n ∈ N.

Fix λ ∈ (0, 1). For each n > 0, let μn denote the unique probability measure onXn such
that:
• μn(j) = μn(0) for each j ≤ pn/2;
• μn(j) = μn(pn − 1) for each j > pn/2;
• μn(pn − 1)/μn(0) = λ.
It is straightforward to verify that H 2(μn, μn ◦ T −1

n )→ 0 as n→∞. Hence, passing to
a subsequence in (pn)∞n=1, we may assume without loss of generality that
(◦) ∑∞

n=1 H
2(μn, μn ◦ T −1

n ) <∞.
We now let

Yn :=
{
xn ∈ Xn | xn < pn

2
−∏n−1

k=1 pk

}
∪
{
xn ∈ Xn | pn2 < xn < pn −∏n−1

k=1 pk

}
,

Zn := {xn ∈ Xn | p1 · · · pn−1 < xn < pn/2}.

Passing to a further subsequence in (pn)
∞
n=1, we will assume that the following two

conditions are satisfied:
(•) μn(Yn) > 1− 2−n−1 for each n > 0;
(�) μn(Zn) > (1/(2(λ+ 1))) for each n > 0.
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Of course, (◦) is satisfied for this subsequence as well. We now let μ =⊗∞
n=1 μn. By

Theorem A, in view of (◦), T is μ-non-singular (Although the topological system (X, T )
is a topological odometer, that is, a minimal rotation on a monothetic compact totally
disconnected abelian group, the non-singular system (X, μ, T ) should not be confused
with the non-singular product odometers which have been well studied in the literature
(see, for example, [DaSi, HaOs, Sc]) because μ does not split into an infinite product
when X is written in the product form suitable for the odometer ‘addition with carry’.). It
follows from the Kolmogorov 0–1 law that T is μ-ergodic.

PROPOSITION 3.12. (X, μ, T ) is of Krieger’s type IIIλ.

Proof. Since log(dμ ◦ T −1/dμ)(x) ∈ {n log λ | n ∈ Z} at a.e. x ∈ X, it suffices to show
that log λ is an essential value of the Radon–Nikodym cocycle ρμ of T . For each n > 0,
denote by ln the positive integer such that lnp1 · · · pn−1 ≤ pn/2 < (ln + 1)p1 · · · pn−1.
For a Borel subset B ⊂ X1 × · · · ×Xn, we set A := B × Zn+1 × Yn+2 × Yn+3 × · · · ⊂
X. Then A is a Borel subset of the cylinder [B]n1. Of course, T p1···pn [B]n1 = [B]n1 and
hence T p1···pnln+1A ⊂ [B]n1. Since
• T

p1···pn
m = I for each m = 1, . . . , n,

• (dμn+1 ◦ T p1···pnln+1)/(dμn+1)(xn+1) = λ if xn+1 ∈ Zn+1 and
• ((dμm ◦ T k)/dμm)(xm) = 1 if xm ∈ Ym and 0 ≤ k ≤ p1 · · · pm−1 and every m >

n+ 1,
it follows that, for each x = (xm)∞m=1 ∈ A,

dμ ◦ T p1···pnln+1

dμ
(x) =

∞∏
m=1

dμm ◦ T p1···pnln+1
m

dμm
(xm) = λ.

We also note that μ(A) > (μ([B]n1)/2(λ+ 1))
∏∞
m=1(1− 2−m−1) in view of (•) and (�).

Since the family of Borel cylinders {[B]n1 | B ⊂ X1 × · · · ×Xn, n ∈ N} generates a dense
subring of the entire Borel σ -algebra on X, it follows from Lemma D that log λ is an
essential value of ρμ.

4. Gaussian dynamical systems
4.1. Integration in Hilbert spaces. Let H denote a separable infinite-dimensional
real Hilbert space. Given a Borel probability measure μ on H, we denote by μ̂ the
characteristic functional of μ, that is,

μ̂(y) :=
∫
H
ei〈x,y〉dμ(x), y ∈ H.

We note that each Borel probability measure on H is defined completely by its character-
istic functional. If there is a vector h ∈ H and a bounded linear operator B > 0 in H such
that μ̂(y) = ei〈h,y〉−(1/2)〈By,y〉 for all y ∈ H thenμ is called the (non-degenerate) Gaussian
measure with covariance operator B and mean h. Then, for each t ∈ R and y ∈ H,∫

R

eits d(μ ◦ 〈·, y〉−1)(s) =
∫
H
ei〈x,ty〉 dμ(x) = eit〈h,y〉−(1/2)t2〈By,y〉.
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Therefore the continuous linear functional H � x �→ 〈x, y〉 has normal distribution
N〈h,y〉,〈By,y〉. In particular, each continuous linear functional belongs to L2(H, μB). By
the Minlos–Sazonov theorem, B is a nuclear operator, that is, tr(B) <∞ [Sk, Theorem
1 and Example from §4]. Conversely, each strictly positive nuclear operator B in H
determines a unique Gaussian measure on H with zero mean and covariance operator
B. We denote this measure by μB . Thus μ̂B(y) = e−(1/2)〈By,y〉 for all y ∈ H. We note that∫
H〈x, y〉dμB(y) = 0 for each h ∈ H. It is well known (see, for instance, [DalFo, Ch. II,

§1.2]) that ∫
H
〈x, y〉〈z, y〉 dμB(y) = 〈Bx, z〉

and hence tr(B) = ∫H ‖y‖2 dμB(y). We now let H0 := B1/2H ⊂ H and define an inner
product and the corresponding norm on H0 by setting

〈x, y〉0 := 〈B−(1/2)x, B−(1/2)y〉 and ‖x‖2
0 := 〈x, x〉0 for x, y ∈ H0.

Then (H0, 〈., .〉0) is a Hilbert space. We now show that there is a canonical isometric
embedding of H0 into L2(H, μB). To do so, we first take θ ∈ BH ⊂ H0. Then the
mapping

lθ : H � y �→ 〈B−1θ , y〉
is a continuous linear functional on H. Moreover, for all θ , η ∈ BH,

〈lθ , lη〉L2(H,μB) =
∫
H
〈B−1θ , y〉〈B−1η, y〉 dμB(y) = 〈θ , B−1η〉 = 〈θ , η〉0.

In particular, the linear mapping

l : BH � θ �→ lθ ∈ L2(H, μB)

is isometric†. We note that BH is dense in H0. Indeed, since the linear span L of the
orthonormal basis in H consisting of eigenvectors forB is dense in H, it follows thatB1/2L
is dense in H0 because B1/2 is an isometric isomorphism of (H, 〈, .〉) onto (H0, 〈, .〉0).
All that remains is to observe that B1/2L = BL = L. Since BH is dense in H0, the
isometry l extends by continuity to an isometry from H0 to L2(H, μB). Thus, for each
y ∈ H0, there is a sequence (θn)∞n=1 of elements from BH such that ‖y − θn‖0 → 0 and
the sequence (lθn)

∞
n=1 converges to some element ly ∈ L2(H, μB). Hence a subsequence

(lθnk )
∞
k=1 converges to ly almost everywhere. Let Dy denote the set of all x ∈ H such that

the sequence (lθnk (x))
∞
k=1 converges. It is easy to verify thatDy is a (Borel) linear subspace

of H, μB(Dy) = 1 and ly is linear on Dy . That is why ly is often called a measurable
linear functional on H. Moreover, Dy ⊃ H0 and ly is defined uniquely by the restriction
to H0 even though μB(H0) = 0. It is often convenient to write 〈B−1y, x〉 instead of
ly(x) for μB -a.e. x ∈ H. We note that the distribution of lθ is N0,〈θ ,B−1θ〉 = N0,‖θ‖2

0
for

each θ ∈ BH. Passing to a limit, we obtain that the distribution of ly is N0,‖y‖2
0

for
each y ∈ H0.

† If BH is furnished with ‖.‖0.
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For each y ∈ H, we denote by Ly the rotation by y, that is, Lyx = x + y for all x ∈ H.
By the Cameron–Martin theorem (see [Gu, Corollary 7.4], [Sk]),

H0 = {y ∈ H | μB ∼ μB ◦ L−1
y } and, for each y ∈ H0,

dμB ◦ L−1
y

dμB
(x) = e〈B−1y,x〉−(1/2)‖y‖2

0 at a.e. x ∈ H.
(4.1)

4.2. Fock space and exponential map. Given a separable Hilbert space K, the (bosonic)
Fock space F(K) built over K is the Hilbert space

⊕∞
n=0 K�n. The subspace K�n of F(K)

is called the n-chaos in F(K), n ∈ Z+. Given h ∈ K, we let exph :=⊕∞
n=0(h

⊗n/
√
n!) ∈

F(K). In particular, exp0 = (1, 0, 0, . . . , ) is called the vacuum vector in F(H). The
map exp : K � h �→ exph ∈ F(K) is called the exponential map. It satisfies the following
properties [Gu]:
(i) exp is continuous;
(ii) 〈exph, expk〉F(K) = e〈h,k〉K for all h, k ∈ K;
(iii) the set {exph | h ∈ K} is linearly independent and total in F(K).
Given an orthogonal operator V in K, we can define a linear operator exp V of F(K),
called the second quantization of V , by setting

(exp V )h⊗n := (V h)⊗n for all n ≥ 0 and h ∈ K.

Then exp V preserves each chaos in F(K) and the restriction of exp V to the first chaos
is V . Of course, (exp V ) exph = expV h for each h ∈ K. The most important property of
the Fock spaces is the following: given a decomposition K =⊕∞

j=1 Kj of K into an
orthogonal sum of subspaces Kj , there is a unique unitary isomorphism� of (F(K), exp0)

onto
⊗∞

j=1(F(Kj ), exp0) such that

�(exp⊕∞
j=1 hj

) =
∞⊗
j=1

�(exphj )

for each vector
⊕∞

j=1 hj ∈ K such that hj = 0 for all but finitely many j [Gu,
Proposition 2.3] (We consider the infinite tensor product in the category of Hilbert
spaces furnished with unit vectors (see [Gu, Appendix A]). It is assumed that the unitary
isomorphism in this category intertwines the corresponding unit vectors.).

Denote the orthogonal group of K by O(K). Let Aff(K) := K �O(K) stand for the
group of affine operators in K. We recall that an operator A = (f , V ) ∈ Aff(K) acts on
K by the formula Ah := f + V h. One can verify that the multiplication law in Aff(K) is
given by

(f , V )(f ′, V ′) := (f + Vf ′, VV ′).
We note that Aff(K) is a Polish group if endowed with the product of the norm topology
on K and the weak operator topology on O(K). We recall the well-known Weyl unitary
representation W = (W(f ,V ))(f ,V )∈Aff(K) of Aff(K) in F(K) [Gu, §2.2]:

W(f ,V ) exph := e−〈f ,V h〉K−(1/2)‖f ‖2
K expf+V h, h ∈ K. (4.2)

It is well defined due to (ii) and (iii). Of course, W(0,V ) = exp V for each V ∈ O(K).
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By [Gu, Theorem 7.1], there is a unique (canonical) unitary isomorphism of L2(H, μB)
with F(H0) such that (For simplicity, we write L2(H, μB) = F(H0) and hence identify
exph with an L2-function on (H, μB), h ∈ H0.)

exph(x) := e〈B−1h,x〉−(1/2)‖h‖2
0 , for a.e. x ∈ H. (4.3)

Moreover, the map H0 � h �→ lh ∈ L2(H, μB) identifies (isometrically) H0 with the first
chaos in L2(H, μB). It follows from (4.1) and (4.3) that

exph =
dμB ◦ L−1

h

dμB
for each h ∈ H0. (4.4)

It is straightforward to verify that the following additional properties for exp hold:
(iv) exph > 0 for each h ∈ H0;
(v) exph ∈⋂∞p=1 L

p(H, μB) because the map H � x �→ 〈B−1h, x〉 − (1/2)‖h‖2
0 has

normal distribution N−(1/2)‖h‖2
0,‖h‖2

0
and (4.3) holds;

(vi) ‖exph‖1 = 1 for each h ∈ H0;
(vii) the cone {∑n

k=1 akexphk | a1, . . . , an > 0, h1, . . . , hn ∈ H0, n ∈ N} is dense in
the cone L2+(H, μB) of non-negative functions from L2(H, μB);

(viii) exph · expk = e〈h,k〉0 exph+k for all h, k ∈ H0, and hence
(ix) √exph = e−(1/8)‖h‖2

0exph/2 for each h ∈ H0;

(x) exph ◦L−1
f = e−〈B−1h,f 〉 exph = e−〈h,f 〉0 exph for all h, f ∈ H0.

Remark 4.1.
(i) We recall that H0 is determined by the pair (H, B) (see §4.1). Conversely, if H0

is given beforehand as an abstract Hilbert space, then it uniquely determines the
probability space (H, μB) for some pair (H, B) such that H0 = B1/2H. Indeed, if
there is another Hilbert space K and a non-degenerated nuclear operator C > 0 on
K such that the space K0 := C1/2K furnished with the corresponding Hilbert norm
is unitarily isomorphic to H0 via some unitary isomorphism � then, according to
[Gu, Theorem 7.1] and (4.3), there is a unique unitary isomorphism� of L2(H, μB)
with L2(K, μC) which maps exph onto exp�−1h for each h ∈ H0. Hence in view
of (vii), � maps L2+(K, μC) onto L2+(K, μC). Moreover, �1 = 1. Therefore � is
spacial, that is, there is a measure-preserving isomorphism θ : (H, μB)→ (K, μC)
such that �h = h ◦ θ−1 for each h ∈ H.

(ii) Another useful observation is that, given a Hilbert space K0, there is another Hilbert
space K ⊃ K0 and a nuclear operatorC of K such thatC1/2 is a unitary isomorphism
of K onto K0.

Remark 4.2. Given a decomposition H0 =⊕∞
j=1 H0,j of H0 into an orthogonal sum of

subspaces H0,j , consider the corresponding decomposition H =⊕∞
j=1 Hj of H into an

orthogonal sum of subspaces Hj := B−(1/2)Hj ,0, j ∈ N. Let Pj : H→ Hj denote the
orthogonal projection of H onto Hj and let Bj := PjBP ∗j . Then Bj : Hj → Hj is a

nuclear operator and B1/2
j Hj = H0,j for each j ∈ N. Moreover, (H, μB) splits into the

direct product (H, μB) =⊗∞
j=1(Hj , μBj ) of Gaussian probability spaces (Hj , μBj ) in
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such a way that {exph | h ∈ H0,j } is total in L2(Hj , μBj ) and μBj = μB ◦ P ∗j for each
j ∈ N.

4.3. Non-singular Gaussian action of Aff H0. Let (Y , C, ν) be a standard non-atomic
probability space. Denote by U(L2(Y , ν)) the group of unitary operators in L2(Y , ν)
and by UR(L

2(Y , ν)) the subgroup of unitaries that preserve the subspace L2
R
(Y , ν) of

real-valued functions in L2(Y , ν). Let

U : Aut(Y , ν) � T �→ UT ∈ UR(L
2(Y , ν))

stand for the unitary Koopman representation of Aut(Y , ν) in L2(Y , ν). We recall that
UT f := f ◦ T −1

√
((dμ ◦ T −1)/dμ) for all f ∈ L2(Y , ν). The following results are well

known:
(•) {UT | T ∈ Aut(Y , ν)} = {V ∈ UR(L

2(Y , ν)) | VL2+(Y , ν) = L2+(Y , ν)};
(◦) {UT | T ∈ Aut0(Y , ν)} = {V ∈ UR(L

2(Y , ν)) | VL2+(Y , ν) = L2+(Y , ν), V 1 = 1}.
We also note that U is one-to-one and the image of U is closed in UR(L

2(Y , ν)) in the
weak (and the strong) operator topology.

Let R∗ denote the multiplicative group of reals. It is straightforward to verify that, for
each t ∈ R∗, the map αt : Aff(H0)→ Aff(H0) given by

(f , V ) �→ αt (f , V ) := (tf , V ) (4.5)

is a continuous automorphism of Aff(H0). Moreover, αt1αt2 = αt1t2 for all t1, t2 ∈ R∗.
It is straightforward to verify that, for each A ∈ Aff(H0), the corresponding Weyl

unitary operator WA (see (4.2)) preserves the cone{ n∑
k=1

ak exphk

∣∣∣∣ ak > 0, hk ∈ H0, for each k = 1, . . . , n and n ∈ N

}
.

Hence it preserves L2+(H, μB) in view of (vii) from §4.2. Therefore, by (•), there is a
(unique) transformation TA ∈ Aut(H, μB) such that UTA = Wα1/2(A).

Definition 4.3. TA is called the non-singular Gaussian transformation generated by A ∈
Aff(H0).

Since the image of Aff(H0) under the unitary Weyl representation is closed in the
unitary group of the space L2(H, μB) [Gu, Theorem 2.1], it follows that the group
{TA | A ∈ Aff(H0)} of non-singular Gaussian transformations is closed in Aut(H, μB).

PROPOSITION 4.4.
(i) If V ∈ O(H0) then T(0,V ) is the usual (classic) measure-preserving Gaussian

transformation generated by the orthogonal operator V , that is,UT(0,V ) = exp V (see
[LePaTh, Lemma 2]).

(ii) If f ∈ H0 then T(f ,I ) = Lf .

Proof. (i) We note that

UT(0,V )exph = W(0,V )exph = expV h = (exp V ) exph .

Hence UT(0,V ) = exp V .
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(ii) Using (4.4) and (viii)–(x) from 4.2, we obtain that

ULf exph =
√
dμB ◦ L−1

f

dμB
exph ◦ L−1

f

= √expf e
−〈f ,h〉0 exph

= e−(1/8)‖f ‖2
0expf/2 e

−〈h,f 〉0 exph

= e−(1/8)‖f ‖2
0−〈f ,h〉0+(1/2)〈f ,h〉0 expf/2+h.

Hence ULf exph = e−(1/8)‖f ‖2
0−(1/2)〈f ,h〉0expf/2+h = W(f/2,I )exph = UT(f ,I )exph. It fol-

lows that T(f ,I ) = Lf .

COROLLARY 4.5. Every non-singular Gaussian transformation T(f ,V ) is the composition
of the classic μB -preserving Gaussian transformation T(0,V ) and a μB -non-singular
translation Lf = T(f ,I ) which is totally dissipative (Let K stand for the orthogonal com-
plement in H to the one-dimensional subspace generated by f . Then the set {sf + k | 0 ≤
s < 1, k ∈ K} ⊂ H is a Borel fundamental domain for Lf .). These two transformations
commute if and only if Vf = f .

Remark 4.6. Let (X, B, μ) be a standard σ -finite non-atomic measure space. Let a
transformation S ∈ Aut(X, μ) be such that

√
(dμ ◦ S−1)/dμ− 1 ∈ L2(X, μ). Then a

non-singular Poisson suspension S∗ of S is well defined on a standard probability space
(X∗, B∗, μ∗) [DaKoRo1]. Let A := (US ,

√
((dμ ◦ S−1)/dμ)− 1) ∈ Aff(L2(X, μ)). It

was shown in [DaKoRo1] that US∗ is unitarily equivalent to WA. It follows that each
non-singular Poisson transformation is unitarily equivalent to a non-singular Gaussian
transformation: S∗ is unitarily equivalent to Tα2(A) (see (4.5)). The converse is not true
even in the classic (finite measure preserving) case: there is no II∞ automorphism which is
spectrally isomorphic to a Gaussian–Kronecker automorphism (see [Ro, Theorem 4.13]).

It is well known that the transformation group {T(f ,I ) | f ∈ H0} ⊂ Aut(H, μB) is
ergodic (see [Gu, Sk]). However, its Krieger’s type has not been determined so far. We
will show that it is type III1, that is, a dense countable subgroup of it is of type III1 (hence
every dense countable subgroup is of type III1).

THEOREM 4.7. {T(f ,I ) | f ∈ H0} is of type III1.

Proof. Let {en | n ∈ N} be an orthonormal basis of H consisting of the eigenvectors of
B. As B is positive and nuclear, Ben = λnen, λn > 0 for each n ∈ N and

∑∞
n=1 λn <∞.

Denote by � the group generated by translationsL√λkek
for all k ∈ N. Then � is an ergodic

countable abelian subgroup of Aut(H, μB). We will show that � is of type III1.
Denote by Bn the smallest Borel σ -algebra on H such that the map H � x �→ 〈x, ek〉 ∈

R is Bn-measurable for each k = 1, . . . , n. Then B1 ⊂ B2 ⊂ · · · and the union
⋃
n>0 Bn

is dense in B. We deduce from (4.3) and (4.4) that, for each n > 0,

log
dμB ◦ L√λn+1en+1

dμB
(x) = 〈x, en+1〉√

λn+1
− 1

2
.
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Take a ∈ R and ε > 0. We now let

Dn :=
{
x ∈ H

∣∣∣∣ a + 1
2
− ε < 〈x, en+1〉√

λn+1
< a + 1

2
+ ε
}

.

Since en+1 ⊥ ek for each k = 1, . . . , n and the random variable H � x �→ 〈x, ek〉 ∈ R is
Gaussian for all k = 1, . . . , n+ 1 (and the joint distribution is also Gaussian), it follows
that Dn is independent of Bn. Moreover, the measure

μB(Dn) = 1√
2πλn+1

∫
(a+(1/2)−ε,a+(1/2)+ε)·√λn+1

e−(t2/2λn+1)dt

= 1√
2π

∫
(a+(1/2)−ε,a+(1/2)+ε)

e−(t2/2)dt

of Dn does not depend on n (We use here the fact that the random variable 〈·, en+1〉 has
normal distribution N0,λn+1 .). We denote it by δ > 0. Since each subset A ∈ Bn depends
only on the ‘first n coordinates’ x1, . . . , xn while the translation Len+1 changes only the
(n+ 1)th coordinate, we have that Len+1A = A and hence
• (A ∩Dn) ∪ Len+1(A ∩Dn) ⊂ A,
• μB(A ∩Dn) = μB(A)μB(Dn) = δμB(A) and
• log((dμB ◦ Len+1)/dμB)(x) = a ± ε for each x ∈ A ∩Dn.
It follows from Lemma D that a is an essential value of the logarithm of the
Radon–Nikodym cocycle of �. Since a is an arbitrary element of R, the Radon–Nikodym
cocycle is ergodic, that is, � is of type III1.

4.4. When non-singular Gaussian systems are of type II1. We recall a standard
definition.

Definition 4.8. Given V ∈ O(H0), we say that a vector f ∈ H0 is a V -coboundary if there
is a ∈ H0 such that f = a − V a.

In this subsection we prove the following statement (cf. [DaKoRo1, Proposition 6.4]
and [ArIsMa]).

THEOREM 4.9. Let (f , V ) ∈ Aff(H0). For n ∈ Z, we define f (n) ∈ H0 by setting
(f , V )n = (f (n), V n). The following statements are equivalent.
(i) T(f ,V ) admits an equivalent invariant probability measure.
(ii) f is a V -coboundary.
(iii) The affine operator (f , V ) has a fixed point.
(iv) The sequence (f (n))n∈Z is bounded in H0.

Proof. (ii) ⇐⇒ (iv) is classic; see [BeKaVal, Proposition 2.2.9], for a proof.
(ii) ⇐⇒ (iii) is obvious because the equality (f , V )a = a for some a ∈ H0 means f +

V a = a, that is, f is a V -coboundary.
(ii) �⇒ (i). In view of Proposition 4.4 and Corollary 4.5,

dμB ◦ T −1
(f ,V )

dμB
= d(μB ◦ T −1

(0,V )) ◦ T −1
(f ,I )

dμB
= dμB ◦ T −1

(f ,I )

dμB
= dμB ◦ L−1

f

dμB
.
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Therefore, by (4.4), we obtain that

dμB ◦ T −1
(f ,V )

dμB
= expf .

Let f = a − V a for some a ∈ H0. We claim that

expf =
expa

expa ◦ T −1
(f ,V )

. (4.6)

Indeed, applying Proposition 4.4 and (viii) and (x) from 4.2, we obtain that

expf expa ◦ T −1
(f ,V ) = expf expa ◦ T(0,V )−1 ◦ L−1

f

= expf ((exp V ) expa) ◦ L−1
f

= expf expV a e
−〈V a,f 〉

= expf+V a
= expa .

Since expa ∈ L1(H, μB), (i) follows from (4.6).
(i) �⇒ (iv). We first note that, for each h ∈ H0,

‖√exph‖1 = e−(‖h‖2
0/8).

We now have

〈(UT(f ,V ))
n1, 1〉 = 〈UT

(f (n) ,V n)
1, 1〉

=
〈√√√√dμB ◦ T −1

(f (n),V n)

dμB
, 1

〉
= ‖√expf (n)‖1

= e−(‖f (n)‖2
0/8).

The rest of the argument is almost a repetition of the proof that (4) implies (1) in
[DaKoRo1, Proposition 6.4]. Suppose that the sequence (f (n))∞n=1 is unbounded. Then
there is an increasing sequence n1 < n2 < · · · such that ‖f (nk)‖2

0 →+∞ as k→∞.
Hence 〈(UT(f ,V ))

nk1, 1〉 → 0 as k→∞. Since the operator UT(f ,V ) is positive with respect
to the coneL2+(H, μB), it follows thatUnkT(f ,V )

→ 0 weakly as k→∞. Since T(f ,V ) admits
an equivalent invariant probability measure, UT(f ,V ) is unitarily equivalent to the Koopman
operator of a probability-preserving transformation. The latter does not have subsequences
weakly converging to zero because 1 is a fixed point of this operator.

Remark 4.10. In fact, we showed more: if f = a − V a and ν is a μB -equivalent
T(f ,V )-invariant measure then dν/dμB = expa .
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4.5. Gaussian transformations as IDPFT systems. Suppose that we are given an affine
operator (f , V ) ∈ Aff(H0). Suppose also that V has no non-trivial invariant vectors†.
Using the spectral decomposition of V , as in the proof of Theorem 2.6, we can choose
an orthogonal decomposition H0 =⊕∞

r=1 H0,r of H0 in such a way that VH0,r = H0,r

and the orthogonal projection fr of f onto H0,r is a V -coboundary for each r ∈ N. Let
Vr := V � Hr . Then (fr , Vr) ∈ Aff(H0,r ) for each r ∈ N and (f , V ) =⊕∞

r=1(fr , Vr).
Let Hr and μr stand for the Hilbert space and a Gaussian measure on Hr respectively
such that F(H0,r ) is canonically isomorphic to L2(Hr , μr) (see Remark 4.1(ii)). Then the
standard probability space (H, μB) is isomorphic to the infinite product

⊗∞
r=1(Hr , μr)

according to Remark 4.2. It follows that

(H, μB , T(f ,V )) =
∞⊗
r=1

(Hr , μr , T(fr ,Vr )). (4.7)

Since fr is a Vr -coboundary, there is ar ∈ H0,r such that fr = ar − Vrar for each r ∈ N.
By Theorem 4.9, the system (Hr , μr , T(fr ,Vr )) admits an equivalent invariant probability
measure νr . Moreover, dμr/dνr = exp−ar for each r ∈ N in view of Remark 4.10. Thus,
we have shown that each non-singular Gaussian dynamical system (H, μB , T(f ,V )) such
that V has no non-trivial invariant vectors is IDPFT (see (4.7)). Therefore, Corollary 3.7
yields the following result.

COROLLARY 4.11. If V has no non-trivial invariant vectors then the non-singular
Gaussian dynamical system (H, μB , T(f ,V )) is either conservative or totally dissipative.
In fact, if (Y , C, ν, S) is an ergodic conservative non-singular dynamical system then the
direct product T(f ,V ) × S is either conservative or totally dissipative.

The following theorem was first proved in [ArIsMa] in the case of mixing V . We extend
it to the mildly mixing case with a different proof.

THEOREM 4.12. Let T(0,V ) be mildly mixing and let f not be a V -coboundary. If T(f ,V ) is
conservative then the Maharam extension of T(f ,V ) is sharply weak mixing. In particular,
T(f ,V ) is of type III1.

Proof. Since T(f ,V ) is conservative, it follows from (4.7) and Proposition 3.3 that
T(f ,V ) is sharply weak mixing. Let ar , μr and νr be as above in this subsection. Since
dμr/dνr = exp−ar for each r ∈ N, it follows from (4.1) and (4.4) that the distribution
ψr of log(dμr/dνr) defined on (H0,r , νr) is N−‖ar‖2

0/2,‖ar‖2
0
. Hence, for all m > n, we

have

ψn+1 ∗ · · · ∗ ψm = N−0.5
∑m
r=n+1 ‖ar‖2

0,
∑m
r=n+1 ‖ar‖2

0
and

ψn+1 ∗ · · · ∗ ψm ∗ δa = Na−0.5
∑m
r=n+1 ‖ar‖2

0,
∑m
r=n+1 ‖ar‖2

0

† Equivalently, the measure of maximal spectral type of V has no atom at 1.
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for each a ∈ R. We will show that the sequence (ψr)∞r=1 is asymptotically translation
quasi-invariant. First, it is straightforward to verify that, for each σ ∈ R and b > 0,

log
(
dNb−σ 2/2,σ 2

dN−σ 2/2,σ 2
(t)

)
= b(2t + σ 2 − b)

2σ 2 = bt

σ 2 +
b(σ 2 − b)

2σ 2 , t ∈ R.

Hence, if t ≥ −σ 2 and σ 2 ≥ 2b then

dNb−σ 2/2,σ 2

dN−σ 2/2,σ 2
(t) ≥ e−b+(b(σ 2−b)/2σ 2) > e−(3b/4). (4.8)

Moreover, ∫ +∞
−σ 2

dN−σ 2/2,σ 2(t) = 1

σ
√

2π

∫ +∞
−σ 2

e−(1/2)((t+σ 2/2)/σ )2dt

= 1

σ
√

2π

∫ +∞
−σ 2/2

e−(t2)/2σ 2
dt

= 1√
2π

∫ +∞
−σ/2

e−(t2/2)dt ,

that is, N−σ 2/2,σ 2((−σ 2, +∞)) = N0,1((−σ/2, +∞)). Obviously, we have

ψn+1 ∗ · · · ∗ ψm ∗ δa ∼ ψn+1 ∗ · · · ∗ ψm for all n < m.

We now set ζa := e−(3a/4). Next, we note that f is not a V -coboundary if and only if∑∞
r=1 ‖ar‖2

0 = ∞. Hence for each n > 0, there is m > n such that
∑m
r=n+1 ‖ar‖2

0 > 2a.
Let Wn+1,m := [−∑m

r=n+1 ‖ar‖2
0, +∞) ⊂ R. Then (4.8) yields that

d(ψn+1 ∗ · · · ∗ ψm ∗ δa)
d(ψn+1 ∗ · · · ∗ ψm) (t) ≥ ζa for all t ∈ Wn+1,m.

Moreover, (ψn+1 ∗ · · · ∗ ψm)(Wn+1,m) = N0,1((−0.5
√∑m

r=n+1 ‖ar‖2
0, +∞)) ≈ 1 if m

is large. Hence (ψr)∞r=1 is asymptotically translation quasi-invariant. It follows now from
Theorem 3.10 that the Maharam extension of T(f ,V ) is sharply weak mixing.

4.6. One-parametric family of non-singular Gaussian systems. We note that (4.5)
determines a one-to-one homomorphism R∗ � t �→ αt from the multiplicative group R∗ to
the group of continuous automorphisms of Aff(H0). Therefore, for eachA ∈ Aff(H0), one
can consider a one-parametric family of non-singular Gaussian transformations Tαt (A) ∈
Aut(H, μB), t ∈ R∗†. Our purpose is this section is to investigate how the dynamical
properties of Tαt (A) depend on t . It is straightforward to verify that the linear operator
−I of H preserves μB and conjugates Tαt (A) with Tα−t (A). Therefore it suffices to consider
only the transformations Tαt (A) with t ∈ R∗+.

PROPOSITION 4.13. [ArIsMa] GivenA = (f , V ) ∈ Aff(H0) such that V has no non-zero
invariant vectors, there is tdiss(A) ∈ [0, +∞] such that the transformation Tαt (A) is
conservative if 0 < t < tdiss(A) and totally dissipative if t > tdiss(A).

† We note that the map R∗ � t �→ Tαt (A) is not a group homomorphism
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Proof. Let A = (f , V ) with f ∈ H0 and V ∈ O(H0). It is sufficient to show that
if TA is totally dissipative then, for each t > 1, the Gaussian transformation Tαt (A)

is totally dissipative. Since TA is totally dissipative, the Hopf criterion yields that∑∞
n=0((dμB ◦ T nA)/dμB)(x) =

∑∞
n=0 e

〈B−1f (n),x〉−(1/2)‖f (n)‖2
0 <∞ for μB -a.e. x ∈ H.

Hence, there is Nx > 0 such that 〈B−1f (n), x〉 − 1
2‖f (n)‖2

0 < 0 for all n > Nx . It follows
that

〈tB−1f (n), x〉 − t2‖f (n)‖2
0

2
< t

(
〈B−1f (n), x〉 − ‖f

(n)‖2
0

2

)
< 〈B−1f (n), x〉 − ‖f

(n)‖2
0

2

for all n > Nx . Hence
∑∞
n=0 e

〈tB−1f (n),x〉− 1
2 ‖tf (n)‖2

0 <∞ for μB -a.e. x ∈ H. Since tf (n) =
(tf )(n), we deduce from the Hopf criterion that Tαt (A) is dissipative, as desired.

We recall that the Poincaré exponent of A = (f , V ) ∈ Aff(H0) [ArIsMa] is

δA := inf
{
α > 0 |

∞∑
n=1

e−α‖f (n)‖2
0 < +∞

}
∈ [0, +∞].

For completeness of our argument we give a proof of the following proposition.

PROPOSITION 4.14. [ArIsMa]
√

2δA ≤ tdiss(A) ≤ 2
√

2δA.

Proof [ArIsMa]. Let t > tdiss(A). Since Tαt (A) is isomorphic to Tα−t (A), the two
transformations are dissipative. Therefore, by the Hopf criterion,

∞∑
n=0

et〈B−1f (n),x〉−(t2/2)‖f (n)‖2
0 <∞ and

∞∑
n=0

e−t〈B−1f (n),x〉−(t2/2)‖f (n)‖2
0 <∞

at a.e. x. Since et〈B−1f (n),x〉 + e−t〈B−1f (n),x〉 ≥ 2 for each x ∈ X, it follows that∑∞
n=0 e

−(t2/2)‖f (n)‖2
0 <∞, that is, δA ≤ t2/2 and hence δA ≤ tdiss(A)

2/2.
On the other hand, if t < tdiss(A) then Tαt (A) is conservative and hence

∞∑
n=0

et〈B−1f (n),x〉−(t2/2)‖f (n)‖2
0 = +∞.

Therefore,

+∞ =
∞∑
n=0

∫
H
e(1/2)t〈B−1f (n),x〉−(t2/4)‖f (n)‖2

0dμB(x) =
∞∑
n=0

e−(t2/8)‖f (n)‖2
0 .

Hence δA ≥ (t2/8) and therefore δA ≥ (tdiss(A)
2/8).
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