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Abstract

This paper is concerned with the optimal number of redundant allocation to n-component
coherent systems consisting of heterogeneous dependent components. We assume that
the system is built up of L groups of different components, L ≥ 1, where there are ni

components in group i, and
∑L

i=1 ni = n. The problem of interest is to allocate vi active
redundant components to each component of type i, i = 1, . . . , L. To get the optimal
values of vi we propose two cost-based criteria. One of them is introduced based on the
costs of renewing the failed components and the costs of refreshing the alive ones at
the system failure time. The other criterion is proposed based on the costs of replacing
the system at its failure time or at a predetermined time τ , whichever occurs first. The
expressions for the proposed functions are derived using the mixture representation of
the system reliability function based on the notion of survival signature. We assume that
a given copula function models the dependency structure between the components. In
the particular case that the system is a series-parallel structure, we provide the formulas
for the proposed cost-based functions. The results are discussed numerically for some
specific coherent systems.

Keywords: Reliability; cost optimality; system maintenance; survival signature; active
redundancy; exchangeability
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1. Introduction

1.1. Motivation and related literature

In reliability engineering and system security, one of the most useful methods for enhancing
the reliability characteristics of a system is to allocate redundant components to the system. The
redundancy can be performed at the component level or the system level. In the former case
some redundant components are connected to each component, while in the latter case the orig-
inal coherent system fastens to some copies of itself. In a commonly used type of redundancy,
called active redundancy, the original component and the redundant ones work simultaneously
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Optimal redundancy allocation in coherent systems 1145

in parallel. In this case, the lifetime of the resulting parallel subsystem equals the maximum
lifetime of the connected components. This strategy is mostly applied when replacement of the
components during the operation time of the system is impossible. As redundancy allocation
is a widely used method for improving the performance of products, numerous researchers
have paid attention to developing the theories and applications of this subject. For example,
Li and Ding [21] investigated the allocation of active redundancies to a k-out-of-n system
in which the lifetimes of independent components are stochastically ordered. You et al. [32]
studied k-out-of-n redundant systems with dependent components. Eryilmaz and Ucum [8]
determined the optimal number of spare components for a weighted k-out-of-n. Bayramoglu
Kavlak [2] investigated the reliability and the mean residual life functions of coherent sys-
tems with active redundancies at the component and system levels. Zhang [34] investigated
the optimal allocation of active redundancies for weighted k-out-of-n systems. Zhang et al.
[35] compared the component redundancy versus system redundancy for coherent systems
with dependent and identically distributed components. Fang and Li [12] studied the alloca-
tion of one active redundancy to coherent systems consisting of heterogeneous and statistically
dependent components. Utilizing the minimal path decomposition, they proposed a necessary
and sufficient condition identifying a better allocating strategy from two candidates. Fang and
Li [13] investigated allocating multiple matched active redundant components to coherent sys-
tems. Fang and Li [14] studied the coherent systems with one active redundancy, using the
minimal cut decomposition of the system. Torrado et al. [31] studied the redundancy alloca-
tion for a coherent system formed by modules, under different settings related to dependency
and distribution of components. They stochastically compared the redundancies at the compo-
nent level versus redundancies at the module level. Torrado [30] considered a coherent system
having possibly dependent subsystems in which the components are connected in parallel or
in series. It is assumed that a number of possibly dependent components in each subsystem
are randomly selected from a heterogeneous population. Torrado stochastically compared such
systems with different numbers of components, based on majorization orders, and determined
the optimal numbers of components in each subsystem such that the system reliability is max-
imized. In particular, she examined the results for series-parallel systems. The redundancy
allocation in a series-parallel system has also been considered by some authors, among which
we refer to Soltani et al. [29], Karimi et al. [20], and Fang et al. [15].

It is worth noting that the redundant components can be added to the system as inactive
(cold and warm standby) components. Systems with cold and warm standby redundancy have
also been investigated in the reliability literature; see, for example, Eryilmaz [6], Finkelstein
et al. [17], Shen et al. [28], and Behboudi et al. [3].

1.2. Survival signatures of coherent systems

The first main step to assess the reliability and stochastic characteristics of an n-component
system is to get knowledge about the structure function of the system as well as the probability
distribution of component lifetimes. In this regard, a useful concept for assessing the reliability
of the system through the reliability of its components is the notion of survival signature. This
concept is particularly significant for describing the structures of coherent systems with multi-
ple types of components. Consider an n-component coherent system consisting of L different

types, such that there are ni components from the ith type, i = 1, . . . , L, and
∑L

i=1 ni = n. The
reliability function of the system, at any time t, can be represented as follows:

F̄T (t) =
n1∑

l1=0

· · ·
nL∑

lL=0

�(l1, . . . , lL) P(C1(t) = l1, . . . , CL(t) = lL), (1.1)
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where Ci(t) denotes the number of components of type i working at time t, and � is called the
survival signature and represents ‘the probability that the system is working when exactly li
components of type i is working’; see Coolen and Coolen-Maturi [4].

Suppose that the lifetimes of the components of the same type are exchangeable dependent
and the lifetimes of the components of different types are dependent. Commonly, the depen-
dency structure is modeled using a survival copula. In other words, if T (i)

j denotes the lifetime

of the jth component from type i, j = 1, . . . , ni, i = 1, . . . , L, and F̄i, i = 1, . . . , L denotes the
common reliability function for the components of the ith type, then there is a survival copula
Ĉ such that the joint reliability of T (i)

j can be written as

P
(
T (1)

1 > t(1)
1 , . . . , T (1)

n1
> t(1)

n1
, . . . , T (L)

1 > t(L)
L , . . . , T (L)

nL
> t(L)

nL

)
= Ĉ

(
F̄1
(
t(1)
1

)
, . . . , F̄1

(
t(1)
n1

)
, . . . , F̄L

(
t(L)
1

)
, . . . , F̄L

(
t(L)
nL

))
. (1.2)

See, for example, Navarro [24], Navarro et al. [25], and Fang and Li [14]. In this case it can be
shown that

F̄T (t) =
n1∑

l1=0

· · ·
nL∑

lL=0

n1−l1∑
i1=0

· · ·
nL−lL∑
iL=0

(−1)i1+···+iL

(
n1

l1

)
· · ·
(

nL

lL

)(
n1 − l1

i1

)
· · ·
(

nL − lL
iL

)

× �(l1, . . . , lL)Ĉ
(

F̄1(t)︸︷︷︸
i1+l1

, 1︸︷︷︸
n1−(i1+l1)

, . . . , F̄L(t)︸︷︷︸
iL+lL

, 1︸︷︷︸
nL−(iL+lL)

)
, (1.3)

where
u︸︷︷︸
m

denotes the m repetitions of u; see Eryilmaz et al. [9, 10]. If the components of the system are
independent, then the representation (1.1) is converted to the following expression:

F̄T (t) =
n1∑

l1=0

· · ·
nL∑

lL=0

�(l1, . . . , lL)
L∏

i=1

(
ni

li

)
[F̄i(t)]

li[Fi(t)]
ni−li . (1.4)

Many authors have considered the reliability properties of a coherent system with multi-
type components based on the survival signature, and for various applications. Among these we
mention recent papers by Feng et al. [16], Samaniego and Navarro [27], and Eryilmaz et al. [9,
10]. Huang et al. [19] used the notion of survival signature for the formulation of the reliability–
redundancy allocation problem. They considered the objective function to maximize the system
reliability under some constraints.

Zarezadeh and Asadi [33] studied the reliability and preventive maintenance of coherent
systems with multi-type components whose components are subject to failure according to
multiple external shocks. Hashemi et al. [18] proposed two maintenance strategies for optimal
preservation of coherent systems consisting of independent multi-type components.

1.3. Contributions of this paper

This paper aims to study the optimal number of redundancy allocation to n-component
coherent systems consisting of different components. It is assumed that the components of the
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system are dependent, where a given copula function models the dependency structure. We are
interested in allocating vi active redundant components to each component of type i, under the
constraint on the number of existing spare components. To get the optimal number of vi, we
propose two cost-based functions. More precisely, the contributions of the paper are as follows.

• We propose a mean cost rate function in terms of the costs of renewing the failed compo-
nents and the costs of refreshing the alive components at the time of the system failure.
Then we find the optimal number of redundant components, vi, to be added to each
component of type i, such that the proposed cost function is minimized.

• We introduce a mean cost rate function, relevant to an age replacement policy, in terms
of the costs of renewing (refreshing) the failed (alive) components at the failure time of
the system or at a predetermined time τ , whichever occurs first. Then the optimal values
of vi are obtained, such that the suggested cost-based function achieves its minimum
value.

• In the particular important case that the system is a series-parallel system, we provide
the formulas for the proposed mean cost rate functions. Then we investigate the optimal
number of the components for each parallel subsystem such that the proposed functions
are minimized.

The derivations of the paper are extensions of the results of Eryilmaz [7], who investigated
the optimal number of components in the case that the structure function is k-out-of-n with
independent components.

1.4. Organization of the paper

The remainder of the paper is arranged as follows. In Section 2, using the settings of Section
1.2, we present the formulation of the system reliability function (1.3) in the case that vi compo-
nents are added as active redundant to each component of type i, i = 1, . . . , L. Then, utilizing
this formulation, a mean cost rate function is introduced at the time of the system failure. Next,
a mean cost rate function is established based on the costs of replacing the system at its failure
time or at a predetermined time τ , whichever occurs first. The expressions for the proposed
mean cost rate functions are derived in terms of the reliability function (1.3). Some examples
of coherent systems are presented to illustrate the applications of the proposed approaches; a
6-component system consisting of two types of dependent components, and an 8-component
system composed of three types of components that are independent. The optimal number of
redundant components, based on the proposed cost-based functions, are discussed for each sys-
tem numerically. Section 3 is devoted to the particular case that the system is a series-parallel
system. In Section 2 we provide the formulas for the proposed mean cost rate functions for
such systems. Then we investigate the optimal number of the components for each parallel
subsystem such that the proposed cost functions are minimized. The results of this section are
numerically illustrated for a series-parallel system consisting of three parallel subsystems con-
nected in series. Some concluding remarks in Section 4 finalize the paper. Detailed proofs are
given in the Appendix.

2. Optimal number of redundant components

We consider an n-component coherent system consisting of multiple types of components
with the following description. The system is built up of L types of components, L ≥ 1, such
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that there are ni components of type i and
∑L

i=1 ni = n. We assume that the common reliability
function of the components of type i is F̄i(.), i = 1, 2, . . . , L. The lifetimes of the components
of the same type are exchangeable dependent and the lifetimes of the components of different
types are dependent. The assumed dependency structure is modeled by a survival copula given
in (1.2). To increase the reliability of the system, we wish to add vi active redundancies to each
component of type i, i = 1, . . . , L. Each original component in the system and its redundant
components are assumed to be independent and identically distributed (i.i.d.). Let TR denote the
lifetime of the system incorporated by redundant components. Because an original component
and its redundant ones make a parallel subsystem, one can easily show that the reliability
function of TR at time t can be represented as follows:

F̄TR (t) =
n1∑

l1=0

· · ·
nL∑

lL=0

n1−l1∑
i1=0

· · ·
nL−lL∑
iL=0

(−1)i1+···+iL

(
n1

l1

)
· · ·
(

nL

lL

)(
n1 − l1

i1

)
· · ·
(

nL − lL
iL

)

× �(l1, . . . , lL)Ĉ
(

1 − Fv1+1
1 (t)︸ ︷︷ ︸

i1+l1

, 1︸︷︷︸
n1−(i1+l1)

, . . . , 1 − FvL+1
L (t)︸ ︷︷ ︸

iL+lL

, 1︸︷︷︸
nL−(iL+lL)

)
.

In the case of independence of all components, this representation reduces to

F̄TR (t) =
n1∑

l1=0

· · ·
nL∑

lL=0

�(l1, . . . , lL)
L∏

i=1

(
ni

li

)[
1 − Fvi+1

i (t)
]li[Fvi+1

i (t)
]ni−li .

The problem of interest in this redundancy strategy is to determine the optimal number of
spares allocated to each component. In this paper our approach is to find v based on the min-
imization of a kind of cost criterion. In this regard we set up two mean cost rate functions to
obtain the optimal number of redundant components. One of them is imposed based on the
cost of the system failure, which depends on the number of failed components when a sys-
tem failure occurs. The other one is defined based on an age replacement policy. In the next
subsections, we describe these two functions with details.

Remark 2.1. Although the system considered above is described in the general case that the
component lifetimes of the same type are exchangeable dependent and the lifetimes of the com-
ponents of different types are dependent, in allocating the redundant components we assumed
that in the constructed parallel subsystem the components are i.i.d. This assumption seems
to be a restriction in some practical cases, but it should be noted that if we drop the i.i.d.
assumption for the redundant components, the computation of the system reliability would be
a challenging problem and potentially involve complex calculations. We believe that consider-
ing the problem of optimal redundancy under i.i.d. components in each subsystem, as is done
in this paper, could be a first step towards solving the more general cases; see also Samaniego
[26, pp. 76–77].

2.1. Cost function at system failure

Suppose that the system starts working at t = 0 and fails at a random time after t = 0.
Assume that when the system fails we have a cost ci for each failed component of type i
to replace it with a new one and a cost c∗

i for each unfailed component to refresh it so that it
becomes as good as new, where we assume that ci ≥ c∗

i , i = 1, . . . , L. Furthermore, we assume
that c∗∗ denotes the fixed overall cost for system failure. With TR as the lifetime of the system

https://doi.org/10.1017/jpr.2022.12 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.12


Optimal redundancy allocation in coherent systems 1149

after redundancy, let the random variable Xi(TR) denote the number of failed components of
type i at the time of system failure, i = 1, . . . , L. Then the mean cost rate function for a failed
system is defined as

Cost1(v) =
∑L

i=1 ciE(Xi(TR)) +∑L
i=1 c∗

i E(ni(vi + 1) − Xi(TR)) + c∗∗

E(TR)
, (2.1)

where v = (v1, . . . , vL). The numerator is the expected cost of the system failure, and the
denominator is the mean time to failure (MTTF) of the system, so Cost1 becomes the mean cost
per unit of time. Note that in the system after redundancy, there are altogether ni(vi + 1) com-
ponents of type i, i = 1, 2, . . . , L. The relation (2.1) can be rewritten in terms of the lifetime of
the original system without any redundancy, T , as

Cost1(v) =
∑L

i=1 ci(vi + 1)E(Xi(T)) +∑L
i=1 c∗

i (vi + 1)E(ni − Xi(T)) + c∗∗

E(TR)

=
∑L

i=1 (ci − c∗
i )(vi + 1)E(Xi(T)) +∑L

i=1 c∗
i (vi + 1)ni + c∗∗

E(TR)
. (2.2)

Lemma 2.1. The quantity E(Xi(T)) in (2.2) can be expressed as follows:

E(Xi(T))

= ni

∫ ∞

0
lim
δ→0

1

δ

n1∑
m1=0

· · ·
ni−1∑
mi=0

· · ·
nL∑

mL=0

�(m1, . . . , mi−1, mi + 1, mi+1, . . . , mL)

×
(

n1

m1

)
· · ·
(

ni − 1

mi

)
· · ·
(

nL

mL

)
A(i)

m (t, δ) dt,

where

A(i)
m (t, δ) = P

(
T (1)

1 > t, . . . , T (1)
m1

> t, T (1)
m1+1 ≤ t, . . . , T (1)

n1
≤ t,

. . . , t < T (i)
1 ≤ t + δ, T (i)

2 > t, . . . , T (i)
mi+1 > t, T (i)

mi+2 ≤ t, . . . , T (i)
ni

≤ t,

. . . , T (L)
1 > t, . . . , T (L)

mL
> t, T (L)

mL+1 ≤ t, . . . , T (L)
nL

≤ t
)
. (2.3)

Proof.

E(Xi(T)) =E

( ni∑
j=1

I
(
T (i)

j ≤ T
))

=
ni∑

j=1

P
(
T (i)

j ≤ T
)= niP

(
T (i)

1 ≤ T
)

= ni

∫ ∞

0
lim
δ→0

P
(
T > t, t < T (i)

1 ≤ t + δ
)

δ
dt,
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where the third equality follows from the exchangeability of the components of type i,
i = 1, . . . , L. By conditioning on the number of live components of each type, we obtain

P
(
T > t, t < T (i)

1 ≤ t + δ
)

=
n1∑

m1=0

· · ·
ni−1∑
mi=0

· · ·
nL∑

mL=0

P
(
T > t, t < T (i)

1 ≤ t + δ, Cj(t) = mj, j = 1, . . . , L
)

=
n1∑

m1=0

· · ·
ni−1∑
mi=0

· · ·
nL∑

mL=0

�(m1, . . . , mi−1, mi + 1, mi+1, . . . , mL)

(
n1

m1

)
· · ·
(

ni − 1

mi

)
· · ·
(

nL

mL

)

× A(i)
m (t, δ). (2.4)

The last equality in (2.4) holds because the components of the same type have a common
failure time distribution. �

In the following theorem, (2.3) is represented based on the survival copula of the component
lifetimes.

Theorem 2.1. Using the inclusion–exclusion rule, A(i)
m (t, δ) can be represented as follows:

A(i)
m (t, δ)

=
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

(−1)j1+···+jL

(
n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

×
[

Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−(m1+j1)

, . . . , F̄i(t)︸︷︷︸
mi+ji+1

, 1︸︷︷︸
ni−(mi+ji+1)

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−(mL+jL)

)

− Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−(m1+j1)

, . . . , F̄i(t)︸︷︷︸
mi+ji

, F̄i(t + δ), 1︸︷︷︸
ni−(mi+ji+1)

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−(mL+jL)

)]
.

Proof. See Appendix A. �

Note that in the particular case of independence of all components, we get

E(Xi(T))

= ni

n1∑
m1=0

· · ·
ni−1∑
mi=0

· · ·
nL∑

mL=0

�(m1, . . . , mi−1, mi + 1, mi+1, . . . , mL)

×
(

n1

m1

)
· · ·
(

ni − 1

mi

)
· · ·
(

nL

mL

)

×
∫ ∞

0
F̄m1

1 (t)Fn1−m1
1 (t)· · ·F̄mi

i (t)Fni−mi−1
i (t)· · ·F̄mL

L (t)FnL−mL
L (t) dFi(t). (2.5)
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In order to minimize the mean cost rate function Cost1(v), we impose the constraint that there
are at most Mi components of type i as spares, i = 1, . . . , L. This means that the number
of the components that can be connected in parallel at the ith group satisfies the inequal-
ity nivi ≤ Mi, i = 1, . . . , L. To determine the optimal values of vi, we do the following: for
given values of ni, ci, c∗

i , and Mi, i = 1, . . . , L, and c∗∗, we evaluate Cost1(v) for all possible
choices of v1, . . . , vL such that for all i, nivi ≤ Mi. Then the optimal values of v1, . . . , vL can
be determined as the values for which the corresponding mean cost rate function Cost1(v) is
minimum.

Remark 2.2. If the system has a k-out-of-n structure with independent components from mul-
tiple type components, then (2.5) reduces to the result of Eryilmaz [7]. This is so because for
such systems the survival signature is obviously given by

�(l1, . . . , lL) =
{

1,
∑L

j=1 lj ≥ k,

0, otherwise,

i.e. the system works if at least k components are alive.

2.2. Cost function based on preventive replacement

In this section we propose a kind of age replacement preventive maintenance policy for the
system with multiple types of components described in Section 1.2. The policy of renewing
the system performed by the operator is such that it is replaced at failure time or at a predeter-
mined time τ , whichever occurs first. There are many papers on age replacement strategy; the
interested reader can refer to Zhao et al. [36], Ashrafi and Asadi [1], and Mizutani et al. [23],
for example. Mannai and Gasmi [22] found the optimal configuration of a k-out-of-n system
so that the expected total costs of the system under some generalized age replacement policies
are minimized.

Here, suppose that the operator has Mi components of type i available as spares, and he/she
decides to add vi components to each of the components of type i, where nivi ≤ Mi. Under the
implemented policy here, the aim is to find the optimal number of v such that the mean cost
rate we impose below is minimized.

If the replacement occurs after the system failure, i.e. TR ≤ τ , then, considering the costs ci,
c∗

i , and c∗∗ as defined in the previous subsection, the average cost of renewing the system is
obtained as

M1(v) =
L∑

i=1

ciE(Xi(TR) | TR ≤ τ ) +
L∑

i=1

c∗
i E(ni(vi + 1) − Xi(TR) | TR ≤ τ ) + c∗∗

=
L∑

i=1

(vi + 1)ciE(Xi(T) | T ≤ τ ) +
L∑

i=1

(vi + 1)c∗
i E(ni − Xi(T) | T ≤ τ ) + c∗∗

=
L∑

i=1

(ci − c∗
i )(vi + 1)E(Xi(T) | T ≤ τ ) +

L∑
i=1

(vi + 1)c∗
i ni + c∗∗,

where T is the lifetime of the system before redundancy allocation.
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If the system is replaced before failure, i.e. TR > τ , then, by the costs ci and c∗
i , i = 1, . . . , L

for renewing the failed components and refreshing the alive components of type i, respectively,
the system will be as good as the new condition. Let Ni(τ ) be the number of failed components
of type i on [0, τ ]. Then the average cost of renewing the system is defined as

M2(v) =
L∑

i=1

ciE(Ni(τ ) | TR > τ ) +
L∑

i=1

c∗
i E(ni(vi + 1)) − Ni(τ ) | TR > τ )

=
L∑

i=1

(ci − c∗
i )(vi + 1)E(Ni(τ ) | T > τ ) +

L∑
i=1

(vi + 1)c∗
i ni.

Consequently, the mean cost rate function of the system renewing at time min(τ, TR) is
achieved as

Cost2(v) = M1(v) P(TR ≤ τ ) + M2(v) P(TR > τ )

E(min(τ, TR))
, (2.6)

where it is attained that

E(min(τ, TR)) =
∫ τ

0
F̄TR (y) dy.

To compute (2.6), we need to calculate E(Ni(τ ) | T > τ ) and E(Xi(T) | T ≤ τ ). For the first one,
we have

E(Ni(τ ) | T > τ )

= 1

F̄T (τ )

ni∑
ji=0

jiP(Ni(τ ) = ji, T > τ )

= 1

F̄T (τ )

n1∑
j1=0

· · ·
nL∑

jL=0

jiP(T > τ | N1(τ ) = j1, . . . , NL(τ ) = jL) P(N1(τ ) = j1, . . . , NL(τ ) = jL)

= 1

F̄T (τ )

n1∑
j1=0

· · ·
nL∑

jL=0

ji�(n1 − j1, . . . , nL − jL)

(
n1

j1

)
· · ·
(

nL

jL

)
B(τ, j1, . . . , jL), (2.7)

where

B(τ, j1, . . . , jL) = P
(
T (1)

1 ≤ τ, . . . , T (1)
j1

≤ τ, T (1)
j1+1 > τ, . . . , T (1)

n1
> τ,

. . . , T (L)
1 ≤ τ, . . . , T (L)

jL
≤ τ, T (L)

jL+1 > τ, . . . , T (L)
nL

> τ
)
. (2.8)

Using a method similar to that used in Lemma 2.1, we can calculate E(Xi(T) | T ≤ τ ),
i = 1, . . . , L as follows:

E(Xi(T) | T ≤ τ ) = niP
(
T (i)

1 ≤ T | T ≤ τ
)= ni

P
(
T (i)

1 ≤ T, T ≤ τ
)

1 − P(T > τ )
, j = 1, . . . , L.
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Now we can write

P
(
T (i)

1 ≤ T, T ≤ τ
)=

∫ τ

0
lim
δ→0

P
(
s < T ≤ τ, s < T (i)

1 ≤ s + δ
)

δ
ds, i = 1, . . . , L,

for which we have

P
(
s < T ≤ τ, s < T (i)

1 ≤ s + δ
)

=
n1∑

m1=0

· · ·
ni−1∑
mi=0

· · ·
nL∑

mL=0

m1∑
l1=0

· · ·
mL∑

lL=0

P
(
s < T ≤ τ | s < T (i)

1 ≤ s + δ, C1(τ ) = l1,

. . . , Ci(τ ) = li, CL(τ ) = lL, C1(s) = m1, . . . , Ci(s) = mi, . . . , CL(s) = mL
)

× P
(
s < T (i)

1 ≤ s + δ, C1(τ ) = l1, . . . , Ci(τ ) = li, CL(τ ) = lL, C1(s) = m1, . . . , Ci(s) = mi,

. . . , CL(s) = mL)
)

=
n1∑

m1=0

· · ·
ni−1∑
mi=0

· · ·
nL∑

mL=0

m1∑
l1=0

· · ·
mL∑

lL=0

[�(m1, . . . , mL) − �(l1, . . . , lL)]

[
L∏

j=1,j �=i

(
nj

mj

)(
mj

lj

)]

×
(

ni − 1

mi

)(
mi

li

)
A(i)

m,l(s, s + δ, τ ),

where

A(i)
m,l(s, s + δ, τ )

= P
(
T (1)

1 > τ, . . . , T (1)
l1

> τ, s < T (1)
l1+1 ≤ τ, . . . , s < T (1)

m1
≤ τ, T (1)

m1+1 ≤ s, . . . , T (1)
n1

≤ s, . . . ,

T (i)
1 > τ, . . . , T (i)

li
> τ, s < T (i)

li+1 ≤ τ, . . . , s < T (i)
mi

≤ τ, s < T (i)
mi+1 ≤ s + δ,

T (i)
mi+2 ≤ s, . . . , T (i)

ni
≤ s, . . . , T (L)

1 > τ, . . . , T (L)
lL

> τ, s < T (L)
lL+1 ≤ τ, . . . , s < T (L)

mL
≤ τ,

T (L)
mL+1 ≤ s, . . . , T (L)

nL
≤ s
)
. (2.9)

In the following theorem, the probabilities in (2.8) and (2.9) are represented based on the
survival copula of component lifetimes.

Theorem 2.2. Using the inclusion–exclusion rule, we obtain the following expressions for
B(τ, j1, . . . , jL) and A(i)

m,l(s, s + δ, τ ), respectively:

B(τ, j1, . . . , jL)

=
j1∑

b1=0

· · ·
jL∑

bL=0

(−1)b1+···+bL

(
j1
b1

)
· · ·
(

jL
bL

)
Ĉ
(

F̄1(τ )︸ ︷︷ ︸
n1−j1+b1

, 1︸︷︷︸
j1−b1

, . . . , F̄L(τ )︸ ︷︷ ︸
nL−jL+bL

, 1︸︷︷︸
jL−bL)

)
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and

A(i)
m,l(s, s + δ, τ )

=
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

(−1) j1+···+jL

(
n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

×
m1−l1∑
d1=0

· · ·
mi−li∑
di=0

· · ·
mL−lL∑
dL=0

(−1)d1+···+dL

(
m1 − l1

d1

)
· · ·
(

mL − lL
dL

)

×
[

Ĉ
(

F̄k(τ )︸ ︷︷ ︸
lk+dk

, F̄k(s)︸︷︷︸
mk−lk+jk−dk

, 1︸︷︷︸
nk−mk−jk

, 1 ≤ k ≤ L, k �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li+ji−di+1

, 1︸︷︷︸
ni−mi−ji−1

)

− Ĉ
(

F̄k(τ )︸ ︷︷ ︸
lk+dk

, F̄k(s)︸︷︷︸
mk−lk+jk−dk

, 1︸︷︷︸
nk−mk−jk

, 1 ≤ k ≤ L, k �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li+ji−di

, F̄i(s + δ), 1︸︷︷︸
ni−mi−ji−1

)]
.

Proof. See Appendix B. �

Corollary 2.1. For the particular case of independent components, it can be deduced that

E(Ni(τ ) | T > τ ) = 1

F̄(τ )

n1∑
j1=0

· · ·
nL∑

jL=0

ji�(n1 − j1, . . . , nL − jL)
L∏

l=1

(
nl

jl

)
Fjl

l (τ )F̄nl−jl
l (τ ).

(2.10)

Also, in this case we have

A(i)
m,l(s, s + δ, τ ) =

{
L∏

j=1,j �=i

F
nj−mj
j (s)[F̄j(τ ) − F̄j(s)]mj−lj F̄

lj
j (τ )

}

× [F̄i(s) − F̄i(s + δ)]Fni−mi−1
i (s)[F̄i(τ ) − F̄i(s)]mi−li F̄li

i (τ ),

which in turn implies that

E(Xi(T) | T ≤ τ )

= ni

1 − F̄T (τ )

n1∑
m1=0

· · ·
ni−1∑
mi=0

· · ·
nL∑

mL=0

m1∑
l1=0

· · ·
mL∑

lL=0

[�(m1, . . . , mL) − �(l1, . . . , lL)]

×
[

L∏
j=1,j �=i

(
nj

mj

)(
mj

lj

)](
ni − 1

mi

)(
mi

li

)

×
∫ τ

0

{
L∏

j=1,j �=i

F
nj−mj
j (s)[F̄j(τ ) − F̄j(s)]mj−lj F̄

lj
j (τ )

}

× Fni−mi−1
i (s)[F̄i(τ ) − F̄i(s)]mi−li F̄li

i (τ ) dFi(s). (2.11)
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FIGURE 1. The system in Example 2.1 with two types of components.

It is worth noting that if the structure of the system is k-out-of-n whose components are
independent, then (2.10) and (2.11) are reduced to the results that appeared in Eryilmaz [7].

For given values ni, ci, c∗
i , Mi, i = 1, . . . , L, c∗∗ and τ , we aim to determine the optimal

values of vi under the constraints nivi ≤ Mi, i = 1, . . . , L, such that the mean cost rate function
Cost2 is minimized.

In the following, we present two examples to examine the aforementioned theoretical
results.

Example 2.1. Consider the system depicted in Figure 1, given in Feng et al. [16] and Eryilmaz
et al. [10]. The system consists of six components in which components 1, 2, and 5 are of type 1
and components 3, 4, and 6 are of type 2. The survival signature of the system is presented in
Table 1. Assume that the dependency structure of the component lifetimes is modeled by a
parametric family of copulas known as the Gumbel–Hougaard family, defined as

Ĉ(u1, . . . , un) = exp
(−[(−ln u1)α) + · · · + (−ln un)α)]1/α

)
,

where α ≥ 1 is the dependency parameter in the family. The value α = 1 corresponds to
the independent condition. Let the component lifetimes of the two types follow exponen-
tial distributions with reliability functions F̄i(t) = e−tθi , where we assume that θ1 = 0.2 and
θ2 = 0.3. If there are M1 = 9 and M2 = 6 components from type 1 and type 2, respectively,
as spares, then v1 ∈ {0, 1, 2, 3} and v2 ∈ {0, 1, 2}. To find the optimal number of redundant
components for each type, we use the following values for the replacement costs: c1 = 3,
c2 = 2, c∗

1 = 1.5, c∗
2 = 1, and c∗∗ = 10. To compute the numerator of (2.2), we need to compute

E(Xi(T)), i = 1, 2. From Lemma 2.1 and Theorem 2.1, we have

E(X1(T)) = n1

∫ ∞

0
lim
δ→0

1

δ

n1−1∑
m1=0

n2∑
m2=0

�(m1 + 1, m2)

(
n1 − 1

m1

)(
n2

m2

)
A(1)

m (t, δ) dt,

where

A(1)
m (t, δ) =

n1−m1−1∑
j1=0

n2−m2∑
j2=0

(−1)j1+j2

(
n1 − m1 − 1

j1

)(
n2 − m2

j2

)

× [
e−[(m1+j1+1)(tθ1)α+(m2+j2)(tθ2)α]1/α − e−[(m1+j1)(tθ1)α+((t+δ)θ1)α+(m2+j2)(tθ2)α]1/α ]

.
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TABLE 1. Survival signature of the system in Figure 1.

l1 l2 �(l1, l2) l1 l2 �(l1, l2)

0 0 0 2 0 0
0 1 0 2 1 0
0 2 0 2 2 4/9
0 3 0 2 3 2/3
1 0 0 3 0 1
1 1 0 3 1 1
1 2 1/9 3 2 1
1 3 1/3 3 3 1

Thus we get

E(X1(T))

= n1

n1−1∑
m1=0

n2∑
m2=0

(
n1 − 1

m1

)(
n2

m2

)
�(m1 + 1, m2)

×
n1−m1−1∑

j1=0

n2−m2∑
j2=0

(−1)j1+j2

(
n1 − m1 − 1

j1

)(
n2 − m2

j2

)

× θα
1

[
(m1 + j1 + 1)θα

1 + (m2 + j2)θα
2

]−1.

Similarly, we have

E(X2(T))

= n2

n1∑
m1=0

n2−1∑
m2=0

(
n1

m1

)(
n2 − 1

m2

)
�(m1, m2 + 1)

×
n1−m1∑
j1=0

n2−m2−1∑
j2=0

(−1)j1+j2

(
n1 − m1

j1

)(
n2 − m2 − 1

j2

)

× θα
2

[
(m1 + j1)θα

1 + (m2 + j2 + 1)θα
2

]−1.

Also, the denominator of (2.2) can be written as follows:

E(TR) =
∫ ∞

0
F̄TR(t) dt

=
n1∑

l1=0

n2∑
l2=0

(
n1

l1

)(
n2

l2

)
�(l1, l2)

n1−l1∑
i1=0

n2−l2∑
i2=0

(−1)i1+i2

(
n1 − l1

i1

)(
n2 − l2

i2

)

×
∫ ∞

0
e−[(i1+l1)(−ln (1−(1−exp [−tθ1])v1+1))α+(i2+l2)(−ln (1−(1−exp [−tθ2])v2+1))α]1/α

dt,
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TABLE 2. The values of Cost1(v) and Cost2(v) in Example 2.1 in the case of dependent components
(α = 2) and independent components (α = 1).

Cost1(v1, v2) Cost2(v1, v2) Cost1(v1, v2) Cost2(v1, v2)
v1 v2 α = 2 α = 2 α = 1 α = 1

0 0 6.33927 8.2455 9.36071 9.70214
0 1 6.81922 9.44774 9.38725 10.3790
0 2 7.5289 11.3022 9.87544 11.9363
1 0 5.20719 7.77258 7.09069 8.48716
1 1 5.82298 9.2981 7.51217 9.7885
1 2 6.35331 10.7302 7.98448 11.3693
2 0 4.99041 9.13115 6.56325 9.88167
2 1 5.58924 10.7299 7.06002 11.4307
2 2 6.13251 12.28921 7.53562 13.0756
3 0 5.04518 11.137 6.48197 12.035
3 1 5.59315 12.7178 6.98476 13.6766
3 2 6.11375 14.2941 7.45447 15.3508

which should be evaluated numerically by suitable softwares such as Mathematica. The values
of Cost1(v) for different combinations of v1 and v2 are presented in Table 2 for two values
α = 2 (dependent components) and α = 1 (independent components). It is seen that v1 = 2
and v2 = 0 are the optimal choices for the number of redundant components of types 1 and 2,
respectively, under the criterion Cost1 in the case α = 2, and v1 = 3 and v2 = 0 are the optimal
numbers in the case α = 1.

Suppose that the described system is maintained under the aforementioned age replacement
policy, where we assume that τ = 2, i.e. the replacement time of the system is min(TR, 2).
From equations (2.7) and (2.8) the mean number of failed components of ith type at time τ ,
before system failure, is evaluated by the following expression:

E(Ni(τ ) | T > τ )

= 1

F̄T (τ )

n1∑
j1=0

n2∑
j2=0

ji�(n1 − j1, n2 − j2)

(
n1

j1

)(
n2

j2

) j1∑
b1=0

j2∑
b2=0

(−1)b1+b2

(
j1
b1

)(
j2
b2

)

× exp
[−τ

(
θα

1 (n1 − j1 + b1) + θα
2 (n2 − j2 + b2)

)1/α]
, i = 1, 2,

where from (1.3) we get

F̄T (τ ) =
n1∑

l1=0

n2∑
l2=0

n1−l1∑
i1=0

n2−l2∑
i2=0

(−1)i1+i1

(
n1

l1

)(
n2

l2

)(
n1 − l1

i1

)(
n2 − l2

i2

)
�(l1, l2)

× exp
[−τ

(
(i1 + l1)θα

1 + (i2 + l2)θα
2

)1/α].
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Next, for the mean number of failed components at the time of the system failure given that
the system has failed before τ , we have

E(X1(T) | T ≤ τ )

= n1

1 − F̄T (τ )

n1−1∑
m1=0

n2∑
m2=0

m1∑
l1=0

m2∑
l2=0

[�(m1, m2) − �(l1, l2)]

(
n1 − 1

m1

)(
m1

l1

)(
n2

m2

)(
m2

l2

)

×
n1−m1−1∑

j1=0

n2−m2∑
j2=0

(−1)j1+j2

(
n1 − m1 − 1

j1

)(
n2 − m2

j2

)

×
m1−l1∑
d1=0

m2−l2∑
d2=0

(−1)d1+d2

(
m1 − l1

d1

)(
m2 − l2

d2

)

× θα
1

[
e−τ ((l1+d1)θα

1 +(l2+d2)θα
2 )1/α − e−τ ((m1+j1+1)θα

1 +(m2+j2)θα
2 )1/α ]

(m1 − l1 + j1 − d1 + 1)θα
1 + (m2 − l2 + j2 − d2)θα

2

and

E(X2(T) | T ≤ τ )

= n2

1 − F̄T (τ )

n1∑
m1=0

n2−1∑
m2=0

m1∑
l1=0

m2∑
l2=0

[�(m1, m2) − �(l1, l2)]

(
n1

m1

)(
m1

l1

)(
n2 − 1

m2

)(
m2

l2

)

×
n1−m1∑
j1=0

n2−m2−1∑
j2=0

(−1)j1+j2

(
n1 − m1

j1

)(
n2 − m2 − 1

j2

)

×
m1−l1∑
d1=0

m2−l2∑
d2=0

(−1)d1+d2

(
m1 − l1

d1

)(
m2 − l2

d2

)

× θα
2

[
e−τ ((l1+d1)θα

1 +(l2+d2)θα
2 )1/α − e−τ ((m1+j1)θα

1 +(m2+j2+1)θα
2 )1/α ]

(m1 − l1 + j1 − d1)θα
1 + (m2 − l2 + j2 − d2 + 1)θα

2
.

By substituting these results in (2.6), the mean cost rate of replacement strategy can be evalu-
ated. In Table 2 the values of Cost2(v) are calculated for different combinations of v1 and v2,
for both dependent and independent situations. It follows from the results of the table that for
v1 = 1 and v2 = 0, the mean cost rate Cost2(v) is minimized, in both cases α = 1, 2.

In order to investigate the robustness of our strategies concerning the model parameters,
we calculate some numerical results based on these parameters. The results in Table 3 shows
the effect of the dependency parameter α on the optimal values of v1 and v2, for different
values of α. As can be seen, when α increases (i.e. we get far from independence), the number
of redundant components decreases based on the objective function Cost1(v1, v2) but remain
unchanged under the Cost2(v1, v2). This makes sense since under more dependency the MTTF
is increased and the need to spare components reduces. Also, it should be noted that the higher
the α, the lower the mean cost rates. To explore the sensitivity of the proposed models with
respect to component costs, c = (c1, c2) and c∗ = (c∗

1, c∗
2), we have provided some numerical
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TABLE 3. The optimum values of v by minimizing Costi(v1, v2), i = 1, 2, for different α in Example 2.1.

α 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

v1 3 3 2 2 2 2 2 2 2 2 2
v2 0 0 0 0 0 0 0 0 0 0 0
Cost1(v1, v2) 6.48 5.98 5.63 5.36 5.15 4.99 4.86 4.75 4.66 4.58 4.52

v1 1 1 1 1 1 1 1 1 1 1 1
v2 0 0 0 0 0 0 0 0 0 0 0
Cost2(v1, v2) 8.48 8.28 8.11 7.98 7.87 7.77 7.69 7.62 7.57 7.50 7.46

TABLE 4. The optimum values of v by minimizing Cost1 for different costs in Example 2.1.

c c∗ v1 v2 Cost1 c c∗ v1 v2 Cost1

(1.6, 1.1) (1.5,1) 3 0 4.0492 (6, 5.5) (5.9, 5.4) 1 0 11.9478
(1.7, 1.2) (1.5,1) 3 0 4.1278 (6, 5.5) (5.7, 5.2) 1 0 11.7509
(1.8, 1.3) (1.5,1) 3 0 4.2065 (6, 5.5) (5.5, 5.0) 1 0 11.5540
(1.9, 1.4) (1.5,1) 2 0 4.2845 (6, 5.5) (5.3, 4.8) 1 0 11.3571
(2, 1.5) (1.5,1) 2 0 4.3599 (6, 5.5) (5.1, 4.6) 2 0 11.1543
(2.5, 2) (1.5,1) 2 0 4.7369 (6, 5.5) (5, 4.5) 2 0 11.0493
(3, 2.5) (1.5,1) 2 0 5.1139 (6, 5.5) (4.5, 4) 2 0 10.5245
(3.5, 3) (1.5,1) 2 0 5.4908 (6, 5.5) (4, 3.5) 2 0 9.9997
(4, 3.5) (1.5,1) 2 0 5.8678 (6, 5.5) (3.5, 3) 2 0 9.4750
(4.5, 4) (1.5,1) 2 0 6.2448 (6, 5.5) (3, 2.5) 2 0 8.9502

(1.5, 2) (1, 1.5) 3 0 3.7874 (5.5, 6) (5, 5.5) 2 0 11.1232
(2, 2.5) (1, 1.5) 3 0 4.1807 (5.5, 6) (4.5, 5) 2 0 10.5984
(2.5, 3) (1, 1.5) 3 0 4.5740 (5.5, 6) (4, 4.5) 2 0 10.0737
(3, 3.5) (1, 1.5) 3 0 4.9673 (5.5, 6) (3.5, 4) 2 0 9.5489
(3.5, 4) (1, 1.5) 3 0 5.3606 (5.5, 6) (3, 3.5) 2 0 9.0241
(4, 4.5) (1, 1.5) 3 0 5.7539 (5.5, 6) (2.5, 3) 2 0 8.4992
(4.5, 5) (1, 1.5) 3 0 6.1472 (5.5, 6) (2, 2.5) 2 0 7.9745
(5, 5.5) (1, 1.5) 3 0 6.5405 (5.5, 6) (1.5, 2) 2 0 7.4497
(5.5, 6) (1, 1.5) 2 0 6.9249 (5.5, 6) (1, 1.5) 2 0 6.9249
(6, 6.5) (1, 1.5) 2 0 7.0550 (5.5, 6) (0.5, 1) 3 0 6.3664
(6.5, 7) (1, 1.5) 2 0 7.4320 (5.5, 6) (0, 0.5) 3 0 5.7991

results in Table 4 for α = 2. In the top left panel of the table, we observe that for fixed values
of c∗

1 = 1.5 and c∗
2 = 1, the increase in costs c1 and c2 results in a reduction in the number of

optimal values of v1 and v2. In the bottom left panel of the table, the costs ci and c∗
i , i = 1, 2,

of the two types are swapped. In this case, when the costs c∗
1 and c∗

2 are fixed as c∗
1 = 1 and

c∗
2 = 1.5, we again observe that the increase in the costs c1 and c2 results in a decline in the

number of optimal values of v1 and v2. In the top right panel of the table it can be seen that
for fixed values of renewing failed components as c1 = 6, c2 = 5.5, the decrease in the costs
c∗

1 and c∗
2 results in an increase to the number of optimal values of v1 and v2. As shown in the
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TABLE 5. The optimum values of v by minimizing Cost1 for different costs in Example 2.1.

c c∗ v1 v2 Cost1 c c∗ v1 v2 Cost1

(3,2) (1.5,1) 2 0 4.9904 (2,3) (1,1.5) 3 0 4.2859
(4,2) (2,1) 2 0 5.9203 (2,4) (1,2) 3 0 4.5832
(6,2) (3,1) 1 0 7.5921 (2,6) (1,3) 3 0 5.1778
(8,2) (4,1) 1 0 9.1824 (2,8) (1,4) 3 0 5.7725
(10,2) (5,1) 0 1 10.6840 (2,10) (1,5) 3 0 6.3671
(12,2) (6,1) 0 1 11.7883 (2,12) (1,6) 3 0 6.9617
(14,2) (7,1) 0 1 12.8925 (2,14) (1,7) 3 0 7.5563
(16,2) (8,1) 0 1 13.9967 (2,16) (1,8) 3 0 8.1509
(18,2) (9,1) 0 1 15.1009 (2,18) (1,9) 3 0 8.7456
(20,2) (10,1) 0 1 16.2052 (2,20) (1,10) 3 0 9.3402

bottom right panel, the same result holds by swapping the costs of the components of type 1
and type 2. It is seen that in all four parts of Table 4 the value of costs and the numbers of spare
components are inversely related to each other. Table 5 shows the behavior of the number of
redundant components from another point of view. In the left panel of the table we have kept
c2(c∗

2) constant and have increased the values of c1(c∗
1). In fact, we have assumed that c1 = ωc2

and c∗
1 = ωc∗

2 for ω = 1.5, 2, 3, . . . , 10. As seen, when ω increases the optimal value of the
redundant component v1 decreases and the optimal value of v2 increases. In the right panel of
the table we exchange the costs of type 1 and type 2, i.e. we assume c2 = ωc1 and c∗

2 = ωc∗
1.

In this case we observe no changes in the number of redundant components v1, v2 when ω

increases.
In this example the distributions of the component lifetimes are ordered such that F̄1(t) ≥

F̄2(t), for all t > 0, i.e. the reliability (and subsequently the MTTF) of the components of type 1
is more than type 2. Note that according to the system structure, it is revealed that the compo-
nents of type 1 are generally in more critical positions than those of type 2. Hence one should
intuitively expect that the optimal solution, according to the cost criterion, would be the case
in which one allocates more components of type 1 than type 2.

To see whether this fact affects the number of vi, we let F̄∗
2(t) = e−0.07t2 , t > 0, be the relia-

bility function of the components of type 2. In this case the two reliability functions cross each
other such that F̄1(t) < F̄∗

2(t) for t < 2.86 and F̄1(t) > F̄∗
2(t) for t > 2.86. Note that the MTTF

for components of type 2 in this new case is the same as the previous one. By fixing the other
parameters as before, we get the results given in Table 6. We see that although the distributions
cross each other, the optimal numbers of components in Table 6 are mostly the same as those
in Table 3, perhaps since the MTTFs have not been changed in either case.

As a final point, to see the effect of the survival copula on the optimal numbers of v1 and v2,
we suppose that the dependency structure is followed by the Clayton copula with the following
form:

Ĉ(u1, . . . , un) = (
u−1/α

1 + · · · + u−1/α
n − n + 1

)−α
, α > 0.

The parameter α manages the dependency degree of the copula, and the limiting case α = 0
gives the independence. We obtain the optimal values of redundant components for some val-
ues of α in Table 7. As can be seen, by increasing α, the values of v1 and v2 and also the mean
cost rate show increase, which is in contradiction to the results in Table 3. Hence the output of
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TABLE 6. The optimum values of v by minimizing Cost1(v1, v2), for different values of α in
Example 2.1.

α 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

v1 3 2 2 2 2 2 2 2 2 2 2
v2 0 0 0 0 0 0 0 0 0 0 0
Cost1(v1, v2) 6.53 6.06 5.71 5.45 5.25 5.08 4.95 4.85 4.76 4.68 4.62

TABLE 7. The optimum values of v by minimizing Cost1(v1, v2) for different α under the Clayton copula
in Example 2.1.

α 0.001 0.1 1 2 3 4

v1 2 2 2 2 3 3
v2 0 0 0 0 0 0
Cost1(v1, v2) 3.71 3.97 5.26 5.75 5.98 6.09

FIGURE 2. The system in Example 2.2.

the optimization problem strongly pertains to the functional structure of dependence, not only
to the dependency parameter.

In the following example we consider an 8-component system consisting of three types of
components. For fixed values of vi, we minimize the function Cost1 and also the function Cost2
in the case that the replacement time of the unfailed system, τ , is considered as the variable of
interest.

Example 2.2. Consider the system depicted in Figure 2, given in Huang et al. [19]. The system
has eight components from which three components (1, 2, and 3) are of type 1, three compo-
nents (4, 5, and 7) are of type 2, and two components (6 and 8) are of type 3. The values of the
system survival signature are computed in [19], to which we refer the reader for the details.

Suppose here that all the components are independent, where the components of type i have
common Weibull reliability functions F̄i(t) = e−βitαi , αi, βi > 0 for i = 1, 2, 3. In Table 8 we
present the mean cost rate Cost1(v1, v2, v3) for given values of β1 = 3, β2 = 4, β3 = 2, α1 = 2,
α2 = 3, α3 = 1 when the cost parameters are c1 = 1.5, c2 = 1, c3 = 2, c∗

1 = 0.75, c∗
2 = 0.4,

c∗
3 = 1, and c∗∗ = 10. Assume that we have M1 = 7, M2 = 4, and M3 = 5 components from

types 1, 2, and 3, respectively, as spares. Hence we can choose v1 ∈ {0, 1, 2}, v2 ∈ {0, 1}, and
v3 ∈ {0, 1, 2} as the redundancy for each type, respectively.
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TABLE 8. The values of Cost1(v) and Cost2(v) in Example 2.2.

v1 v2 v3 Cost1(v1, v2, v3) τopt Cost2(v1, v2, v3)

0 0 0 39.0424 0.300 29.5929
0 1 0 37.4142 0.375 28.9959
1 0 0 42.1779 0.365 34.7858
1 1 0 39.0422 0.450 31.1106
2 0 0 47.4998 0.405 42.0378
2 1 0 43.0531 0.490 36.3495
0 0 1 42.2553 0.326 38.2377
0 1 1 41.2034 0.367 37.6403
1 0 1 44.1149 0.391 41.3141
1 1 1 41.9973 0.463 37.8883
2 0 1 48.5362 0.445 47.7900
2 1 1 45.5179 0.503 42.4445
0 0 2 45.5246 0.350 46.7613
0 1 2 44.8865 0.410 46.1258
1 0 2 46.1353 0.412 47.6364
1 1 2 44.8022 0.480 44.4306
2 0 2 49.7090 0.455 53.1287
2 1 2 47.7961 0.520 48.2148

In the left panel of Table 8, the values of Cost1 are computed for different combinations of
vi. As can be seen, by adding v1 = 0, v2 = 1, and v3 = 0 as the redundant components to groups
1, 2, and 3, respectively, we get the minimum value for the mean cost rate Cost1(v1, v2, v3).

Under the assumption that τ is the variable of interest, in the right panel of the table we have
minimized Cost2(v1, v2, v3) in terms of τ and have reported the optimum value of τ , in the case
that the values of vi are kept fixed and known. It is observed that among all minimized values
of Cost2, the least value is obtained for the case that the number of redundant components are
v1 = 0, v2 = 1, and v3 = 0, for which we have τ = 0.375.

3. Optimal number of components in series-parallel systems

An important subclass of coherent systems is the class of series-parallel systems. A series-
parallel system is a series structure of L parallel subsystems, L ≥ 1; see e.g. Figure 3. The
purpose here is to find the optimal number of the components in the lth parallel subsystem,
under the condition that there are available Ml components of type l, where the compo-
nents in the lth subsystem are exchangeable dependent having common reliability function F̄l,
l = 1, . . . , L. Furthermore, suppose that the random failure times of the components of differ-
ent types are dependent. The dependency structure in the system is built with a copula function
Ĉ, as described in Section 2. Under the mean cost rate criteria defined in Section 2, the problem
of optimal allocation is to find the optimal values of nl for each subsystem so that (2.1) or (2.6)
is minimized.
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FIGURE 3. A series-parallel system with three subsystems.

In the following we provide the corresponding expressions for the cost-based functions in a
series-parallel system. First note that for this system we have

�(l1, . . . , lL) =
⎧⎨
⎩1 for all j ∈ {1, . . . , L} : lj ≥ 1,

0 otherwise.

Hence from (1.3) we get

F̄T (t) =
n1∑

l1=1

· · ·
nL∑

lL=1

n1−l1∑
i1=0

· · ·
nL−lL∑
iL=0

(−1)i1+···+iL

(
n1

l1

)
· · ·
(

nL

lL

)(
n1 − l1

i1

)
· · ·
(

nL − lL
iL

)

× Ĉ
(

F̄1(t)︸︷︷︸
i1+l1

, 1︸︷︷︸
n1−(i1+l1)

, . . . , F̄L(t)︸︷︷︸
iL+lL

, 1︸︷︷︸
nL−(iL+lL)

)
,

and in the special case of independent components, we derive from (1.4)

F̄T (t) =
L∏

l=1

(1 − [1 − F̄l(t)]
nl).

3.1. Cost function at system failure

In a similar manner to Section 2.1, the mean cost rate function for system failure is
defined as

Cost3(n) =
∑L

i=1 ciE(Xi(T)) +∑L
i=1 c∗

i E(ni − Xi(T)) + c∗∗

E(T)
, (3.1)

where n = (n1, . . . , nL), and

E(Xi(T)) = ni

n1∑
m1=1

· · ·
ni−1∑
mi=0

· · ·
nL∑

mL=1

(
n1

m1

)
· · ·
(

ni − 1

mi

)
· · ·
(

nL

mL

) ∫ ∞

0
lim
δ→0

A(i)
m (t, δ)

δ
dt, (3.2)
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in which A(i)
m (t, δ) is introduced in (2.3). For the independent components, (3.2) reduces to the

following expression:

E(Xi(T)) = ni

∫ ∞

0

L∏
l=1,l �=i

(1 − (1 − F̄l(t))
nl) dFi(t). (3.3)

If L = 1 then the system becomes a parallel system with n1 components, and hence in this case
E(X1(T)) = n1.

For the considered series-parallel system in which the components of subsystems are inde-
pendent, Eryilmaz et al. [11] gained a similar result for E(Xi(T)) in (3.3). Subsequently, they
found the optimal numbers of components in each subsystem based on the minimization of cost
function (3.1) under the constraints on the total allotted cost for replacing failed components
and the total allotted cost for rejuvenation of unfailed ones. Hence our results in this subsec-
tion may be considered as an extension of their work to the case of dependent components.
Also, Dembinska and Eryilmaz [5] discussed a similar problem for the case that the lifetime
distributions of components are discrete; in particular, they obtained some results for discrete
phase-type distribution.

3.2. Cost function based on preventive replacement

The mean cost rate function of the system for age replacement at time min(τ, T) is
defined as

Cost4(n) = M1(n) P(T ≤ τ ) + M2(n) P(T > τ )

E(min(τ, T))
,

where

M1(n) =
L∑

i=1

ciE(Xi(T) | T ≤ τ ) +
L∑

i=1

c∗
i E(ni − Xi(T) | T ≤ τ ) + c∗∗

and

M2(n) =
L∑

i=1

ciE(Ni(τ ) | T > τ ) +
L∑

i=1

c∗
i E(ni − Ni(τ ) | T > τ ).

Using the formula for the survival signature of the series-parallel system, from the results given
in Section 2.2, we get the following expressions:

E(Ni(τ ) | T > τ ) = 1

F̄(τ )

n1−1∑
j1=0

· · ·
nL−1∑
jL=0

ji

(
n1

j1

)
· · ·
(

nL

jL

)
B(τ, j1, . . . , jL)

and for ni ≥ 2

E(Xi(T) | T ≤ τ ) = ni

1 − F̄T (τ )

[ n1∑
m1=1

· · ·
ni−1∑
mi=1

· · ·
nL∑

mL=1

m1∑
l1=0

· · ·
mL∑

lL=0

[
L∏

j=1,j �=i

(
nj

mj

)(
mj

lj

)]
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×
(

ni − 1

mi

)(
mi

li

) ∫ τ

0
lim
δ→0

1

δ
A(i)

m,l(s, s + δ, τ ) ds −
n1∑

m1=1

· · ·
ni−1∑
mi=1

· · ·
nL∑

mL=1

m1∑
l1=1

· · ·
mL∑

lL=1[
L∏

j=1,j �=i

(
nj

mj

)(
mj

lj

)](
ni − 1

mi

)(
mi

li

) ∫ τ

0
lim
δ→0

1

δ
A(i)

m,l(s, s + δ, τ ) ds

]
. (3.4)

If ni = 1 then it is easily deduced that

E(Xi(T) | T ≤ τ ) = Fi(τ )

1 − F̄T (τ )
.

Example 3.1. Consider a series-parallel system with L = 3 subsystems and assume that there
are M1 = 2, M2 = 3, and M3 = 3 components from types 1, 2, and 3, respectively, to construct
the system. Suppose that the joint reliability function of the component lifetimes follow the
multivariate Pareto model given by

P
(
T (1)

1 > t(1)
1 , . . . , T (1)

n1
> t(1)

n1
, . . . , T (L)

1 > t(L)
L , . . . , T (L)

nL
> t(L)

nL

)
=
[

1 + θ1

n1∑
i=1

t(1)
i + · · · + θL

nL∑
i=1

t(L)
i

]−α

for θi > 0, i = 1, . . . , L, and α > 0. In fact the corresponding survival copula is

Ĉ(u1, . . . , un) = (
u−1/α

1 + · · · + u−1/α
n − n + 1

)−α
,

and the marginal reliability functions of the components in the subsystems are F̄i(t) = (1 +
θit)−α , i = 1, 2, . . . , L.

First note that for the described system we have

∫ ∞

0
lim
δ→0

A(i)
m (t, δ)

δ
dt

=
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

(−1)j1+···+jL

(
n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

× θi

θi(mi + ji + 1) +∑L
l=1,l �=i θl(ml + jl)

.

By replacing these expressions in (3.2), E(Xi(T)), i = 1, 2, 3 are obtained.
Let θ = (0.4, 0.2, 0.3), c = (1.5, 2, 3), c∗ = (0.3, 0.75, 1), c∗∗ = 8, and α = 2. The values of

the mean cost rate function Cost3 are obtained for all combinations of n1, n2, and n3, such
that n1 ∈ {1, 2}, n2 ∈ {1, 2, 3}, and n3 ∈ {1, 2, 3}. Also, under the age replacement strategy in
τ = 1, the values of mean cost rate function Cost4 are calculated for different values n1, n2,
and n3.
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TABLE 9. The values of Cost3(n) and Cost4(n) in Example 3.1.

n1 n2 n3 Cost3(n1, n2, n3) Cost4(n1, n2, n3)

1 1 1 10.3750 18.2784
1 1 2 9.6460 18.6515
1 1 3 10.0967 21.2331
1 2 1 9.7277 18.1732
1 2 2 8.8857 18.1463
1 2 3 9.1886 20.4388
1 3 1 10.0842 19.8532
1 3 2 9.0989 19.5615
1 3 3 9.3157 21.7702
2 1 1 8.7073 16.2100
2 1 2 7.9885 16.1742
2 1 3 8.2879 18.3280
2 2 1 8.0593 15.8127
2 2 2 7.4747 12.2278
2 2 3 7.4835 13.5080
2 3 1 8.2888 17.1959
2 3 2 7.4068 13.0874
2 3 3 7.5279 14.2977

To compute Cost4(τ ), we use the following simplified expressions:

E(Ni(τ ) | T > τ )

= 1

F̄T (τ )

n1−1∑
j1=0

n2−1∑
j2=0

n3−1∑
j3=0

ji

(
n1

j1

)(
n2

j2

)(
n3

j3

) j1∑
b1=0

j2∑
b2=0

j3∑
b3=0

(−1)b1+b2+bL

(
j1
b1

)(
j2
b2

)(
j3
b3

)
[1 + θ1τ (n1 − j1 + b1) + θ2τ (n2 − j2 + b2) + θ3τ (n3 − j3 + b3)]−α,

for i = 1, 2, 3, where

F̄T (τ )

=
n1∑

l1=1

n2∑
l2=1

n3∑
l3=1

n1−l1∑
i1=0

n2−l2∑
i2=0

n3−l3∑
i3=0

(−1)i1+i2+i3

(
n1

l1

)(
n2

l2

)(
n3

l3

)(
n1 − l1

i1

)(
n2 − l2

i2

)(
n3 − l3

i3

)

(1 + θ1τ (i1 + l1) + θ2τ (i2 + l2) + θ3τ (i3 + l3))−α .

Also, we obtain E(Xi(T) | T ≤ τ ), i = 1, 2, 3 by placing the following quantity in (3.4):

∫ τ

0
lim
δ→0

1

δ
A(i)

m,l(s, s + δ, τ ) ds
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=
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

(−1) j1+···+jL

(
n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

×
m1−l1∑
d1=0

· · ·
mi−li∑
di=0

· · ·
mL−lL∑
dL=0

(−1)d1+···+dL

(
m1 − l1

d1

)
· · ·
(

mL − lL
dL

)

× θi
[(

1 + τ (
∑L

k=1 θk(lk + dk))
)−α − (

1 + τ (θi(mi + ji + 1) +∑L
k=1,�=i θk(mk + jk))

)−α]
θi(mi − li + ji − di + 1) +∑L

k=1,�=i θk(mk − lk + jk − dk)
.

The results are given in Table 9. It is seen from the results that based on the objective
function Cost3(.) the optimal series-parallel system has n1 = 2, n2 = 3, n3 = 2 components.
Since the reliability of type 2 is greater than the other two types, it is expected that more
components for the second subsystem will lead to a reduction in the mean cost rate of system
failure. Also, n1 = 2, n2 = 2, n3 = 2 are the optimal number of components in the subsystems
so as to minimize the average cost rate of the age replacement policy.

4. Conclusions

In this paper we have studied the optimal number of redundancy allocation in an
n-component coherent system consisting of heterogeneous components. We assumed that the
system has been built up of L different types of components, L ≥ 1, where there are ni compo-
nents of type i and

∑L
i=1 ni = n. We assumed that the components of the different types in the

system are statistically dependent. The system reliability function was modeled by the notion
of survival signature in terms of a given survival copula function. We further assumed Mi com-
ponents available as spares for the components of type i. We investigated the number of active
redundant components vi, nivi ≤ Mi, that can be added to each component of type i such that
the imposed cost functions are minimized, i = 1, . . . , L. We first proposed a cost function in
terms of the costs of renewing the failed components and the costs of refreshing the alive com-
ponents at the time of the system failure. Subsequently, we proposed a cost-based function in
terms of the costs of the renewing (refreshing) the failed (alive) components at the system fail-
ure time or at a predetermined time τ , whichever occurs first. In the last part of the paper, using
the settings of the first part, we studied the particular case that the system is a series-parallel
system. We derived the formulas for the proposed cost functions and used them to investigate
the optimal number of the components in each parallel subsystem. The expressions for the
proposed cost functions were derived using the mixture representation of the system reliability
function based on the notion of survival signature. The results were examined numerically for
some particular coherent systems. The proposed mean cost rate functions simultaneously con-
sider the cost of the system and its MTTF (which is directly related to its reliability). Hence
this optimization problem can be viewed as a bi-objective reliability–redundancy allocation
problem but with a more comfortable setup. In this study we considered the general case that
the components of the same group are exchangeable and the components of different groups
and dependent. Although these assumptions are more realistic and hence increase the range of
applications of our results, they obviously lead to greater complexity of the formulas. An even
more realistic case is the situation that the components in each group are dependent in a more
general sense than that of exchangeability. Developing results in this direction may be con-
sidered for future study. Here we assumed active redundancy for components. Allocating the
other variants of spares, i.e. cold and warm standby, for coherent systems may be investigated
as interesting problems for future studies.
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Appendix A. Proof of Theorem 2.1

Define the events M, Nc, and LC as follows:

M ≡ {
T (1)

1 > t, . . . , T (1)
m1

> t, T (i)
2 > t, . . . , T (i)

mi+1 > t, T (L)
1 > t, . . . , T (L)

mL
> t
}
,

Nc ≡ {
T (1)

m1+1 < t, . . . , T (1)
n1

< t, T (i)
mi+2 < t, . . . , T (i)

ni
< t, T (L)

mL+1 < t, . . . , T (L)
nL

< t
}
,

Lc ≡ {
t < T (i)

1 < t + δ
}
.

Then A(i)
m (t, δ) is equal to the following:

A(i)
m (t, δ) = P(M ∩ Nc ∩ Lc) = P(M) − P(M ∩ N) − P(M ∩ L) + P(M ∩ N ∩ L). (A.1)

Evidently we have

P(M) = Ĉ
(

F̄1(t)︸︷︷︸
m1

, 1︸︷︷︸
n1−m1

, . . . , F̄i(t)︸︷︷︸
mi+1

, 1︸︷︷︸
ni−mi−1

, . . . , F̄L(t)︸︷︷︸
mL

, 1︸︷︷︸
nL−mL

)

and

P(M ∩ L) = Ĉ
(

F̄1(t)︸︷︷︸
m1

, 1︸︷︷︸
n1−m1

, . . . , F̄i(t)︸︷︷︸
mi

, F̄i(t + δ), 1︸︷︷︸
ni−mi−1

, . . . , F̄L(t)︸︷︷︸
mL

, 1︸︷︷︸
nL−mL

)
.

Note that we can write

N = ∪n1
j=m1+1

{
T (1)

j > t
}∪· · ·∪ni

j=mi+2

{
T (i)

j > t
}∪· · ·∪nL

j=mL+1

{
T (L)

j > t
}
.

Therefore we can easily see that

P(M ∩ N)

=
n−∑L

i=1 mi−1∑
l=1

(−1)l+1
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

j1+···+jL=l

(
n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

× Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−m1−j1

, . . . , F̄i(t)︸︷︷︸
mi+ji+1

, 1︸︷︷︸
ni−mi−ji−1

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−mL−jL

)
.

If we subtract P(M) from both sides of this equation, then we have

P(M ∩ N) − P(M)

=
n−∑L

i=1 mi−1∑
l=1

(−1)l+1
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

j1+···+jL=l

(
n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)
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× Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−m1−j1

, . . . , F̄i(t)︸︷︷︸
mi+ji+1

, 1︸︷︷︸
ni−mi−ji−1

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−mL−jL

)

−
[

Ĉ
(

F̄1(t)︸︷︷︸
m1

, 1︸︷︷︸
n1−m1

, . . . , F̄i(t)︸︷︷︸
mi+1

, 1︸︷︷︸
ni−mi−1

, . . . , F̄L(t)︸︷︷︸
mL

, 1︸︷︷︸
nL−mL

)]

=
n−∑L

i=1 mi−1∑
l=0

(−1)l+1
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

j1+···+jL=l

(
n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

× Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−m1−j1

, . . . , F̄i(t)︸︷︷︸
mi+ji+1

, 1︸︷︷︸
ni−mi−ji−1

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−mL−jL

)

=
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

(−1)j1+···+jL+1
(

n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

× Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−m1−j1

, . . . , F̄i(t)︸︷︷︸
mi+ji+1

, 1︸︷︷︸
ni−mi−ji−1

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−mL−jL

)
. (A.2)

Similarly we have

P(M ∩ N ∩ L)

=
n−∑L

i=1 mi−1∑
l=1

(−1)l+1
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

j1+···+jL=l

(
n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

× Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−m1−j1

, . . . , F̄i(t)︸︷︷︸
mi+ji

, F̄i(t + δ), 1︸︷︷︸
ni−mi−ji−1

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−mL−jL

)
,

P(M ∩ N ∩ L) − P(M ∩ L)

=
n−∑L

i=1 mi−1∑
l=0

(−1)l+1
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

j1+···+jL=l

(
n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

× Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−m1−j1

, . . . , F̄i(t)︸︷︷︸
mi+ji

, F̄i(t + δ), 1︸︷︷︸
ni−mi−ji−1

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−mL−jL

)

=
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

(−1)j1+···+jL+1
(

n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

× Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−m1−j1

, . . . , F̄i(t)︸︷︷︸
mi+ji

, F̄i(t + δ), 1︸︷︷︸
ni−mi−ji−1

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−mL−jL

)
. (A.3)
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Then, replacing (A.2) and (A.3) in (A.1), we have

A(i)
m (t, δ)

= −
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

(−1)j1+···+jL+1
(

n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

× Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−m1−j1

, . . . , F̄i(t)︸︷︷︸
mi+ji+1

, 1︸︷︷︸
ni−mi−ji−1

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−mL−jL

)

+
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

(−1)j1+···+jL+1
(

n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

× Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−m1−j1

, . . . , F̄i(t)︸︷︷︸
mi+ji

, F̄i(t + δ), 1︸︷︷︸
ni−mi−ji−1

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−mL−jL

)

=
n1−m1∑
j1=0

· · ·
ni−mi−1∑

ji=0

· · ·
nL−mL∑
jL=0

(−1)j1+···+jL

(
n1 − m1

j1

)
· · ·
(

ni − mi − 1

ji

)
· · ·
(

nL − mL

jL

)

×
[

Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−m1−j1

, . . . , F̄i(t)︸︷︷︸
mi+ji+1

, 1︸︷︷︸
ni−mi−ji−1

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−mL−jL

)

− Ĉ
(

F̄1(t)︸︷︷︸
m1+j1

, 1︸︷︷︸
n1−m1−j1

, . . . , F̄i(t)︸︷︷︸
mi+ji

, F̄i(t + δ), 1︸︷︷︸
ni−mi−ji−1

, . . . , F̄L(t)︸︷︷︸
mL+jL

, 1︸︷︷︸
nL−mL−jL

)]
.

Appendix B. Proof of Theorem 2.2

Let us define the following events:

M ≡ {
T (j)

1 > τ, . . . , T (j)
lj

> τ, T (j)
lj+1 > s, . . . , T (j)

mj
> s, 1 ≤ j ≤ L, j �= i,

T (i)
1 > τ, . . . , T (i)

li
> τ, T (i)

li+1 > s, . . . , T (i)
mi+1 > s

}
,

Nc ≡ {
T (j)

mj+1 < s, . . . , T (j)
nj

< s, 1 ≤ j ≤ L, j �= i, T (i)
mi+2 < s, . . . , T (i)

ni
< s
}
,

Lc ≡ {
T (j)

lj+1 < τ, . . . , T (j)
mj

< τ, 1 ≤ j ≤ L,
}
,

Kc ≡ {
T (i)

mi+1 < s + δ
}
.

Hence

A(i)
m,l(s, s + δ, τ )

= P(M ∩ Nc ∩ Lc ∩ Kc)

= P(M) − P(M ∩ N) − P(M ∩ L) − P(M ∩ K) + P(M ∩ N ∩ L) + P(M ∩ N ∩ K)

+ P(M ∩ K ∩ L) − P(M ∩ N ∩ L ∩ K). (B.1)
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It can be easily shown that

P(M) = Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj

, F̄j(s)︸︷︷︸
mj−lj

, 1︸︷︷︸
nj−mj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li

, F̄i(s)︸︷︷︸
mi−li+1

, 1︸︷︷︸
ni−mi−1

)
,

P(M ∩ K) = P
(
M ∩ {T (i)

mi+1 > s + δ}})
= Ĉ

(
F̄j(τ )︸ ︷︷ ︸

lj

, F̄j(s)︸︷︷︸
mj−lj

, 1︸︷︷︸
nj−mj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li

, F̄i(s)︸︷︷︸
mi−li

, F̄i(s + δ), 1︸︷︷︸
ni−mi−1

)
.

Note also that the event N (the complement of Nc) can be represented as

N = ∪L
j=1,j �=i ∪nj

kj=mj+1

{
T (j)

kj
> s
}∪ ∪ni

ki=mi+2

{
T (i)

ki
> s
}
,

Thus we get

P(M ∩ N)

=
n−∑L

i=1 mi−1∑
l=1

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj

, F̄j(s)︸︷︷︸
mj−lj+rj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li

, F̄i(s)︸︷︷︸
mi−li+ri+1

, 1︸︷︷︸
ni−mi−ri−1

)
,

and hence

P(M ∩ N) − P(M)

=
n−∑L

i=1 mi−1∑
l=0

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj

, F̄j(s)︸︷︷︸
mj−lj+rj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li

, F̄i(s)︸︷︷︸
mi−li+ri+1

, 1︸︷︷︸
ni−mi−ri−1

)

=
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

(−1)r1+···+rL+1
(

n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj

, F̄j(s)︸︷︷︸
mj−lj+rj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li

, F̄i(s)︸︷︷︸
mi−li+ri+1

, 1︸︷︷︸
ni−mi−ri−1

)
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and

P(M ∩ N ∩ K)

=
n−∑L

i=1 mi−1∑
l=1

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj

, F̄j(s)︸︷︷︸
mj−lj+rj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li

, F̄i(s)︸︷︷︸
mi−li+ri

, F̄i(s + δ), 1︸︷︷︸
ni−mi−ri−1

)

=
n−∑L

i=1 mi−1∑
l=0

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj

, F̄j(s)︸︷︷︸
mj−lj+rj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li

, F̄i(s)︸︷︷︸
mi−li+ri

, F̄i(s + δ), 1︸︷︷︸
ni−mi−ri−1

)

+ P(M ∩ K).

Similarly, we have

L = {∪L
j=1 ∪mj

kj=lj+1

{
T (j)

kj
> τ

}}
.

Therefore we get

P(M ∩ L) =
∑L

j=1 (mj−lj)∑
y=1

(−1)y+1
m1−l1∑
d1=0

· · ·
mL−lL∑
dL=0

d1+···+dL=y

(
m1 − l1

d1

)
· · ·
(

mL − lL
dL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj+dj

, F̄j(s)︸︷︷︸
mj−lj−dj

, 1︸︷︷︸
nj−mj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li−di+1

, 1︸︷︷︸
ni−mi−1

)

and

P(M ∩ L ∩ K)

=
∑L

j=1 (mj−lj)∑
l=1

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj+rj

, F̄j(s)︸︷︷︸
mj−lj−rj

, 1︸︷︷︸
nj−mj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li+ri

, F̄i(s)︸︷︷︸
mi−li−ri

, F̄i(s + δ), 1︸︷︷︸
ni−mi−1

)
.
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Also, after some manipulations, one can verify that P(M ∩ N ∩ L) and P(M ∩ N ∩ L ∩ K),
respectively, can be written as

P(M ∩ N ∩ L)

=
n−∑L

j=1 mj−1∑
l=1

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

×
∑L

j=1 (mj−lj)∑
y=1

(−1)y+1
m1−l1∑
d1=0

· · ·
mL−lL∑
dL=0

d1+···+dL=y

(
m1 − l1

d1

)
· · ·
(

mL − lL
dL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj+dj

, F̄j(s)︸︷︷︸
mj−lj+rj−dj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li+ri+1−di

, 1︸︷︷︸
ni−mi−ri−1

)

=
n−∑L

j=1 mj−1∑
l=0

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

×
∑L

j=1 (mj−lj)∑
y=1

(−1)y+1
m1−l1∑
d1=0

· · ·
mL−lL∑
dL=0

d1+···+dL=y

(
m1 − l1

d1

)
· · ·
(

mL − lL
dL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj+dj

, F̄j(s)︸︷︷︸
mj−lj+rj−dj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li+ri+1−di

, 1︸︷︷︸
ni−mi−ri−1

)

+ P(M ∩ L)

=
n−∑L

j=1 mj−1∑
l=0

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

×
∑L

j=1 (mj−lj)∑
y=0

(−1)y+1
m1−l1∑
d1=0

· · ·
mL−lL∑
dL=0

d1+···+dL=y

(
m1 − l1

d1

)
· · ·
(

mL − lL
dL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj+dj

, F̄j(s)︸︷︷︸
mj−lj+rj−dj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li+ri+1−di

, 1︸︷︷︸
ni−mi−ri−1

)

+
n−∑L

i=1 mi−1∑
l=0

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj

, F̄j(s)︸︷︷︸
mj−lj+rj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li

, F̄i(s)︸︷︷︸
mi−li+ri+1

, 1︸︷︷︸
ni−mi−ri

)

+ P(M ∩ L)
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and

P(M ∩ N ∩ L ∩ K)

=
n−∑L

j=1 mj−1∑
l=1

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

×
∑L

i=1 (mi−li)∑
y=1

(−1)y+1
m1−l1∑
d1=0

· · ·
mL−lL∑
dL=0

d1+···+dL=y

(
m1 − l1

d1

)
· · ·
(

mL − lL
dL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj+dj

, F̄j(s)︸︷︷︸
mj−lj+rj−dj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li+ri−di

, F̄i(s + δ), 1︸︷︷︸
ni−mi−ri−1

)

=
n−∑L

j=1 mj−1∑
l=0

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

×
∑L

i=1 (mi−li)∑
y=1

(−1)y+1
m1−l1∑
d1=0

· · ·
mL−lL∑
dL=0

d1+···+dL=y

(
m1 − l1

d1

)
· · ·
(

mL − lL
dL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj+dj

, F̄j(s)︸︷︷︸
mj−lj+rj−dj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li+ri−di

, F̄i(s + δ), 1︸︷︷︸
ni−mi−ri−1

)

+ P(M ∩ L ∩ K)

=
n−∑L

j=1 mj−1∑
l=0

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

×
∑L

i=1 (mi−li)∑
y=0

(−1)y+1
m1−l1∑
d1=0

· · ·
mL−lL∑
dL=0

d1+···+dL=y

(
m1 − l1

d1

)
· · ·
(

mL − lL
dL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj+dj

, F̄j(s)︸︷︷︸
mj−lj+rj−dj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li+ri−di

, F̄i(s + δ), 1︸︷︷︸
ni−mi−ri−1

)

+
n−∑L

j=1 mj−1∑
l=0

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj

, F̄j(s)︸︷︷︸
mj−lj+rj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li

, F̄i(s)︸︷︷︸
mi−li+ri

, F̄i(s + δ), 1︸︷︷︸
ni−mi−ri−1

)

+ P(M ∩ L ∩ K).
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Finally, by replacing the obtained expressions in (B.1), we have

A(i)
m,l(s, s + δ, τ )

=
n−∑L

j=1 mj−1∑
l=0

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)

· · ·
(

nL − mL

rL

)
×
∑L

j=1 (mj−lj)∑
y=0

(−1)y+1
m1−l1∑
d1=0

· · ·
mL−lL∑
dL=0

d1+···+dL=y

(
m1 − l1

d1

)
· · ·
(

mL − lL
dL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj+dj

, F̄j(s)︸︷︷︸
mj−lj+rj−dj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li+ri+1−di

, 1︸︷︷︸
ni−mi−ri−1

)

−
n−∑L

j=1 mj−1∑
l=0

(−1)l+1
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

r1+···+rL=l

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

×
∑L

i=1 (mi−li)∑
y=0

(−1)y+1
m1−l1∑
d1=0

· · ·
mL−lL∑
dL=0

d1+···+dL=y

(
m1 − l1

d1

)
· · ·
(

mL − lL
dL

)

× Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj+dj

, F̄j(s)︸︷︷︸
mj−lj+rj−dj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li+ri−di

, F̄i(s + δ), 1︸︷︷︸
ni−mi−ri−1

)

=
n1−m1∑
r1=0

· · ·
ni−mi−1∑

ri=0

· · ·
nL−mL∑
rL=0

(−1)r1+···+rL

(
n1 − m1

r1

)
· · ·
(

ni − mi − 1

ri

)
· · ·
(

nL − mL

rL

)

×
m1−l1∑
d1=0

· · ·
mL−lL∑
dL=0

(−1)d1+···+dL

(
m1 − l1

d1

)
· · ·
(

mL − lL
dL

)

×
[

Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj+dj

, F̄j(s)︸︷︷︸
mj−lj+rj−dj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li+ri+1−di

, 1︸︷︷︸
ni−mi−ri−1

)

− Ĉ
(

F̄j(τ )︸ ︷︷ ︸
lj+dj

, F̄j(s)︸︷︷︸
mj−lj+rj−dj

, 1︸︷︷︸
nj−mj−rj

, 1 ≤ j ≤ L, j �= i, F̄i(τ )︸ ︷︷ ︸
li+di

, F̄i(s)︸︷︷︸
mi−li+ri−di

, F̄i(s + δ), 1︸︷︷︸
ni−mi−ri−1

)]
.
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