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We consider flow in partially saturated heterogeneous porous media with uncertain
hydraulic parameters. By treating the saturated conductivity of the medium as a
random field, we derive a set of deterministic equations for the statistics (ensemble
mean and variance) of fluid pressure. This is done for three constitutive models
that describe the nonlinear dependence of relative conductivity on pressure. We
use the Kirchhoff transform to map Richards equation into a linear PDE and
explore alternative closures for the resulting moment equations. Regardless of the
type of nonlinearity, closure by perturbation is more accurate than closure based on
the non-perturbative Gaussian mapping. We also demonstrate that predictability of
unsaturated flow in heterogeneous porous media is enhanced by choosing either the
Brooks–Corey or van Genuchten constitutive model over the Gardner model.

1. Introduction
Modelling fluid flow and transport in natural porous media, such as soils, aquifers,

oil and gas reservoirs, is complicated by the high degree of heterogeneity combined
with insufficient data characterizing the relevant medium properties. These properties
and parameters can be conveniently described by random fields, whose statistics are
usually inferred from experimental data. This renders the corresponding flow and
transport equations stochastic (Dagan 1989; Gelhar 1993; Cushman 1997; Dagan &
Neuman 1997). While significant progress has been made in analysing linear
phenomena in random porous media, such as flow in fully saturated media (Batchelor
1974; Rubinstein 1986; Rubinstein & Torquato 1989; Indelman 1996) and transport
of conservative solutes (Winter, Newman & Neuman 1984; Koch & Brady 1987;
Dagan 1991; Rubin et al. 1999; Indelman & Dagan 1999), there are considerably
fewer rigorous studies of nonlinear random phenomena.

Multiphase flows, in general, and unsaturated flow, in particular, are typical
examples of such nonlinear phenomena. Consider Richards equation,

∂θ

∂t
= −∇ · q + f, q = −K(x, ψ)∇(ψ + x3), (1.1)

which is commonly used to describe unsaturated flow (flow in partially saturated
porous media). Here θ(ψ) is the normalized saturation of a medium, q is the macro-
scopic (Darcian) flux of a fluid, ψ is the fluid pressure, and f represents a source
term. The vertical coordinate x3 accounts for gravitational force. At full saturation, the
medium conductivity K ≡ Ks is a property of the porous medium only. For partially
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saturated media, it also depends on the fluid pressure, so that K(ψ) = KsKr (ψ) where
the relative conductivity Kr (ψ) � 1.

We concetrate on quantifying uncertainty that is caused by saturated conductivity
Ks , since its random effects are multiplicative. Driving forces (the source term f and
boundary conditions) often serve as additional sources of randomness, but their effects
are additive and thus are easier to analyse. For flow in porous media, the uncertainty
in Ks and the multiplicative noise it induces are ubiquitous. This is in contrast to
statistical hydrodynamic models that typically arise from the Landau and Lifshitz
theory of hydrodynamic fluctuations (Landau & Lifshitz 1959), which adds a random
component to the otherwise deterministic fluxes. Such models roughly correspond to
(1.1) wherein Ks is deterministic so that f is the only source of randomness. Except
for simple flow scenarios amenable to analytical treatment, a standard approach is to
use the linearization Kr (ψ) ≈ κ = constant (e.g. Garcia et al. 1987).

Similarly, most moment analyses of unsaturated flow (Yeh, Gelhar & Gutjahr
1985; Mantoglou & Gelhar 1987; Russo 1995; Zhang, Walstrom & Winter 1998) use
Taylor expansion of the relative conductivity Kr (ψ) around a mean pressure 〈ψ〉 to
linearize Richards equation (1.1) by setting 〈Kr (ψ)〉 ≈ Kr (〈ψ〉). For these approaches
to be workable, it is necessary that the corresponding infinite Taylor series can be
accurately approximated by a finite number of terms (often just by the leading term).
This requires, in turn, that pressure variance σ 2

ψ , or more precisely the coefficient of
variation σψ/〈ψ〉 be small. Clearly, this condition cannot be verified a priori, since it
involves the unknown pressure statistics. Moreover, the random pressure field is expec-
ted to be statistically non-homogeneous leading to non-uniform accuracy throughout
the flow domain. The Kirchhoff mapping (Tartakovsky, Neuman & Lu 1999) and a
Gaussian approximation (Amir & Neuman 2001) have been successfully used to derive
differential equations for statistical moments of ψ (and flux q) without linearization.

Excepting Zhang et al. (1998), existing ensemble moment analyses of Richards
equation employ the Gardner model of relative conductivity, Kr (ψ) = exp(−αψ),
where α is the inverse of capillary length. While convenient mathematically, the
Gardner model often fits experimental data poorly and hence is rarely used in
practical applications. The main goal of this study is to investigate the effects of
using more realistic models of relative conductivity, such as the Brooks–Corey and
van Genuchten models, on the quality of prediction of unsaturated flow in randomly
heterogeneous porous media. Unlike Zhang et al. (1998), we do so without linearizing
Kr (ψ), which allows us to isolate the nonlinearity effects.

We start by formulating a set of stochastic partial differential equations (PDEs) that
describe flow in unsaturated randomly heterogeneous porous media in § 2. In § § 3–5
we employ the Kirchhoff mapping to derive, without linearizing the constitutive law
Kr (ψ), a set of deterministic PDEs for the ensemble mean and variance of pressure
head. The accuracy of the closure approximations, which are required to derive these
equations, is analysed in § 6 by comparing, for two-dimensional flow, the solutions
of our moment equations with Monte Carlo simulations. A specific focus of this
analysis is the influence of nonlinearities (i.e. of the constitutive model) on our ability
to quantify uncertainty in the fluid behaviour in heterogeneous porous media.

2. Problem formulation
In a steady-state regime and in the absence of gravity, Richards equation reads

∇ · [K(x, ψ)∇ψ] + f = 0. (2.1)
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Nonlinear flows in heterogeneous porous media 49

The stochastic flow equation (2.1) is subject to the boundary conditions,

ψ(x) = Ψ (x), x ∈ ΓD, (2.2a)

K(x, ψ)∇ψ · n(x) = Q(x), x ∈ ΓN, (2.2b)

where Ψ (x) is a randomly prescribed pressure head on Dirichlet boundary segments
ΓD , Q(x) is a randomly prescribed flux across Neumann boundary segments ΓN ,
n = (n1, n2, n3)

T is a unit outward normal to the boundary Γ = ΓD ∪ ΓN of the flow
domain Ω . Though it is not strictly necessary, we assume for simplicity that the
source and boundary functions f (x), Ψ (x) and Q(x) are prescribed in a statistically
independent manner.

While neglecting gravity limits the applicability of the model (1.1), it allows us to
conduct a rigorous analysis of the effects of nonlinearity in Kr (ψ) on the statistical
moments of pressure ψ . Despite its theoretical and practical importance, this subject
has not been previously addressed. In particular, the following questions remain
unanswered. How does a choice of the constitutive model Kr (ψ) influence our ability to
estimate (predict) fluid flow behaviour in heterogeneous porous media with uncertain
hydraulic parameters? What is its impact on uncertainty estimates?

Among physical phenomena described by (2.1) are unsaturated flow in horizontal
fractures, vertical infiltration into soils whose saturated zone is thick and is not
influenced by the water table (Gelhar 1993, p. 183) and moisture redistribution in
heavy soils with high pressure gradients (Childs & Collis-George 1950). It is also
used to infer soil–water diffusivity from laboratory experiments (Bruce & Klute
1956). Equally important are other applications, such as real gas flow (Tartakovsky &
Guadagnini 2001) and nonlinear heat (Carslaw & Jaeger 1959) and electrical (Jang,
Barber & Hu 1998) conductance.

To complete the description of unsaturated flow given by (2.1), it is necessary
to specify the functional dependence Kr (ψ). We will consider three commonly used
models: the Gardner model,

Kr (ψ) = e−αψ, (2.3)

the Brooks–Corey model,

Kr (ψ) =

∣∣∣∣ ψ

ψc

∣∣∣∣
−ω

for ψ � ψc, Kr (ψ) = 1 for ψ < ψc, (2.4)

and the van Genuchten model,

Kr (ψ) = (1 + |βψ |n)−5m/2[(1 + |βψ |n)m − |βψ |n−1]2, m = 1 − 1

n
. (2.5)

(As defined above, the pressure ψ is non-negative throughout the flow domain and is
often referred to as suction.) A particular constitutive model is usually selected based
on experimental data. While most analytical studies of unsaturated flow in porous
media use the Gardner model because of its simplicity, the Brooks–Corey and van
Genuchten models usually fit data better. Hence, they are most often used in practical
applications.

All or none of the fitting parameters α, ψc, ω, β and n can be considered random,
depending on field-based information. However, unlike the parameter α in the Gardner
model, whose statistical properties have been classified for a wide variety of soil
types, little is known about the statistics of the fitting parameters which appear in
the Brooks–Corey and van Genuchten models. Hence, we assume these parameters
to be deterministic, so that Ks and f are the only sources of randomness. Treating
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the fitting parameters as correlated random variables is relatively straightforward, but
cumbersome (Lu et al. 2002).

To make a meaningful comparison between the pressure statistics computed with
alternative models (2.3), (2.4) or (2.5) we use the equivalence criteria established in
Morel-Seytoux et al. (1996). It requires the preservation of the maximum value of the
effective capillary drive, also referred to as a macroscopic capillary length,

Hc =

∫ ∞

0

Kr (s) ds, (2.6)

and relates the fitting parameters between models. Effective capillary drive is directly
related to the Kirchhoff transform used in our subsequent analysis.

Randomness of (or, equivalently, uncertainty in) the medium’s conductivity Ks and
driving forces f , Ψ and Q render the pressure dynamics random (uncertain). The
optimal unbiased estimate of pressure head ψ in the L2 norm is provided by the
ensemble mean 〈ψ〉, while the uncertainty associated with such an estimate is
quantified by pressure variance σ 2

ψ . Our main goal is to derive and analyse determini-
stic equations for these two quantities, thus eliminating the need for computationally
expensive Monte Carlo simulations.

3. Stochastic averaging
For any Kr (ψ), the Kirchhoff mapping,

Φ[ψ(x)] =

∫ ∞

ψ

Kr (s) ds, (3.1)

transforms (2.1) into a linear stochastic PDE,

∇ · [Ks(x)∇Φ(x)] + f = 0. (3.2)

Transformation of the boundary conditions (2.2) yields

Φ(x) = H (x), x ∈ ΓD, (3.3a)

Ks(x)∇Φ(x) · n(x) = Q(x), x ∈ ΓN, (3.3b)

where H is the Kirchhoff transform of Ψ . We use Reynolds decomposition A =
〈A〉 + A′ to represent a random field A as the sum of its mean, 〈A〉, and a zero-
mean random fluctuation, A′. Then stochastic averaging of the transformed flow
equation yields

∇ · [〈Ks〉∇〈Φ〉] + ∇ · r + 〈f 〉 = 0. (3.4)

We obtain a closure approximation for the cross-product term r(x) ≡ 〈K ′
s∇Φ ′〉 through

the perturbation expansion in σ 2
Y , the variance of the log conductivity Y = lnKs .

Despite some earlier reservations (e.g. Frisch 1968), applying this approach to linear
stochastic PDEs like (3.2), proved to be remarkably robust even for relatively high
values of σ 2

Y (Guadagnini & Neuman 1999b). (Note that if Ks were deterministic,
i.e. if the randomness were due to the additive noise f only, the Kirchhoff mapping
(3.1) would yield the exact averaged equation for Φ . This relatively simple setting
corresponds, for example, to flow of water in natural environments, where the major
source of uncertainty is recharge or evapotranspiration.)

Consider an asymptotic series 〈Φ〉 = 〈Φ (0)〉 + 〈Φ (1)〉 + O(σ 4
Y ). Let Kg ≡ exp(〈Y 〉)

denote the geometric mean of Ks and G( y, x) denote the zeroth-order mean Green’s
function defined by ∇· [Kg∇G]+δ(x − y) = 0 subject to the appropriate homogeneous
boundary conditions. Since 〈Ks〉 = Kg(1 + σ 2

Y /2 + · · ·), the first two terms in this
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expansion (i = 1, 2) satisfy

∇ ·
[
Kg∇

〈
Φ (i)

〉]
+ Fi =0, (3.5)

where the source terms are F0 ≡ 〈f 〉 and F1 ≡ ∇ · [Kg(σ
2
Y /2)∇〈Φ (0)〉 + r (1)]. The first-

order approximation of the mixed moment r is given by (Guadagnini & Neuman
1999a)

r (1) =

∫
Ω

KgCY ∇ y∇T
x G∇ y

〈
Φ (0)

〉
d y, (3.6)

where CY ( y, x) = 〈Y ′( y)Y ′(x)〉 is the two-point covariance function of Y . Equation (3.5)
is subject to the boundary conditions〈

Φ (i)
〉

= Hi , x ∈ ΓD, (3.7a)

Kg∇
〈
Φ (i)

〉
· n = Qi , x ∈ ΓN, (3.7b)

where the boundary terms are H0 ≡ 〈H 〉, H1 ≡ 0, Q0 ≡ 〈Q〉, and Q1 ≡ −n ·[Kg(σ
2
Y /2)

∇〈Φ (0)〉 + r (1)].
Two important points regarding this approach deserve to be mentioned. First,

it allows for statistically heterogeneous (non-stationary) random fields Ks . Secondly,
unlike closures based on the direct interaction approximation or the Corsin conjecture
(Kraichnan 1987; Neuman & Orr 1993), the recursive approximation does not result
in a non-local, integro-differential equation. Hence, there is no need for localization
of (3.6).

4. Uncertainty quantification
We use σ 2

Φ , the variance of the Kirchhoff variable Φ , to quantify the uncertainty
associated with our estimate 〈Φ〉. A set of deterministic partial differential equations
for the first-order approximations of the covariance CΦ(x, y) ≡ 〈Φ ′(x)Φ ′( y)〉 and
the cross-covariance CKΦ(x, y) ≡ 〈K ′

s(x)Φ ′( y)〉 are obtained from (3.2)–(3.3) as
(Guadagnini & Neuman 1999a)

∇x ·
[
Kg∇xC

(1)
Φ (x, y) + C

(1)
KΦ(x, y)∇x

〈
Φ (0)(x)

〉]
= 0, (4.1)

subject to the boundary conditions

C
(1)
Φ (x, y) = 0, x ∈ ΓD, (4.2a)

n(x) ·
[
Kg∇xC

(1)
Φ (x, y) + C

(1)
KΦ(x, y)∇x

〈
Φ (0)(x)

〉]
=0, x ∈ ΓN, (4.2b)

and

C
(1)
KΦ(x, y) = −Kg

∫
Ω

KgCY (ξ, x)∇ξG(ξ, y) · ∇ξ

〈
Φ (0)(ξ )

〉
dξ . (4.3)

The Kirchhoff transform variance σ 2
Φ(x) is calculated by taking the limit of CΦ(x, y)

as y → x once (4.1)–(4.3) have been solved. Note that these equations are valid
for a deterministic source function f . The extension to random f is straightforward
(Tartakovsky & Neuman 1999).

5. Statistical moments of pressure
The statistics of the Kirchhoff transform, Φ , derived in the previous section are

independent of the constitutive law, Kr (ψ). Since the Darcian velocity (mass flux) q is
readily expressed in terms of the Kirchhoff transform as q = −Ks∇Φ , estimating its
averaged behaviour and quantifying the corresponding uncertainty does not require
further approximations. This is of particular importance for transport phenomena in
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porous media, since the Darcian velocity q and its statistics serve as input parameters
in the advection or advection–dispersion equations (Dagan 1991; Indelman & Dagan
1999).

At the same time, the pressure distribution estimates do depend on the constitutive
law, Kr (ψ). We explore two alternative strategies to obtain the statistics of pressure
ψ . The first relies on perturbation expansions of the inverse Kirchhoff mapping. The
second is based on the assumption that the Kirchhoff variable Φ is Gaussian. Both
approaches are compared with Monte Carlo simulations, which are treated as exact.

5.1. Perturbation solution

5.1.1. Gardner model

For the Gardner model of relative conductivity (2.3), the first-order approximations
of the pressure estimate, 〈ψGR〉, and the pressure variance, σ 2

ψGR
, are given by equations

(45)–(47) of Tartakovsky et al. (1999).

5.1.2. Brooks–Corey model

Evaluating the Kirchhoff transform (3.1) of the Brooks–Corey model (2.4) and its
inverse yields

ψBC =




ωψc

ω − 1
− Φ,

ψc

ω − 1
� Φ �

ωψc

ω − 1
≡ Hc,

ψc

(
ω − 1

ψc

Φ

)1/(1−ω)

, 0 � Φ <
ψc

ω − 1
.

(5.1)

Then mean pressure is approximated by 〈ψ [1]
BC〉 = 〈ψ (0)

BC〉 + 〈ψ (1)
BC〉, where

〈
ψ

(0)
BC

〉
=




ωψc

ω − 1
−

〈
Φ (0)

〉
,

ψc

ω − 1
�

〈
Φ (0)

〉
� Hc,

ψc

(
ω − 1

ψc

〈
Φ (0)

〉)1/(1−ω)

, 0 �
〈
Φ (0)

〉
<

ψc

ω − 1
,

(5.2)

and

〈
ψ

(1)
BC

〉
=




−
〈
Φ (1)

〉
,

ψc

ω − 1
�

〈
Φ [1]

〉
� Hc,(〈

Φ (1)
〉〈

Φ (0)
〉 +

ω

1 − ω

[
σ 2

Φ

](1)

2
〈
Φ (0)

〉2

) 〈
ψ

(0)
BC

〉
1 − ω

, 0 �
〈
Φ [1]

〉
<

ψc

ω − 1
.

(5.3)

The pressure variance is given to the first order by

[
σ 2

ψBC

](1)
=




[
σ 2

Φ

](1)
,

ψc

ω − 1
�

〈
Φ [1]

〉
� Hc,

1

(1 − ω)2

(〈
ψ

(0)
BC

〉〈
Φ (0)

〉
)2 [

σ 2
Φ

](1)
, 0 �

〈
Φ [1]

〉
<

ψc

ω − 1
.

(5.4)

5.1.3. Van Genuchten model

Owing to the complexity of the van Genuchten model (2.5), its Kirchhoff transform
(3.1) cannot be evaluated analytically. To derive the inverse mapping we expand (3.1)
in a Taylor series about 〈ψ〉,

Φ(ψ) =

∫ ∞

〈ψ〉
Kr (s) ds + ψ ′Kr (〈ψ〉) +

ψ ′2

2

dKr

ds |s=〈ψ〉

+ · · · . (5.5)
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Expanding the ensemble mean of (5.5) in a Taylor series about the zeroth-order
approximation, 〈ψ (0)〉, gives the implicit perturbation solutions〈

Φ (0)
〉

=

∫ ∞

〈ψ (0)
vG〉

Kr (s) ds, (5.6)

and 〈
Φ (1)

〉
= Kr

(〈
ψ

(0)
vG

〉)〈
ψ

(1)
vG

〉
+

[
σ 2

ψvG

](1)

2

dKr

ds |
s=〈ψ(0)

vG
〉

. (5.7)

In a similar fashion, the first-order approximation of the pressure head variance, σ 2
ψvG

,
is obtained from (5.5) as [

σ 2
Φ

](1)
=

[
σ 2

ψvG

](1)
K2

r

(〈
ψ

(0)
vG

〉)
. (5.8)

The perturbative nature of our solutions formally limits their applicability to small
pressure variances, i.e. to a flow scenario with σ 2

ψ � 1. However, numerical simulations
reported in the following sections demonstrate that both pressure estimates and the
uncertainty measures remain accurate for rather large values of σ 2

ψ . This remarkable
accuracy might be due to the smoothing nature of the Laplacian in the linear flow
equation (see, for example, the discussion of figure 6 in Glimm et al. 1992).

5.2. Gaussian approximation

The Gaussian approximation assumes that the Kirchhoff variable Φ is normal with
mean 〈Φ(x)〉 and variance σ 2

Φ(x). Since Φ is defined on the interval [0, Hc], its
distribution is normalized with

A(x) =
1√

2πσ 2
Φ

∫ Hc

0

exp

(
− [φ − 〈Φ〉]2

2σ 2
Φ

)
dφ. (5.9)

For the Gardner and Brooks–Corey models, explicit expressions relating ψ and Φ

are available, e.g. (5.1), and calculating the moments of ψ requires a simple evaluation
of numerical quadratures. For the van Genuchten model, the procedure to calculate
the moments of ψ is similar, but uses an implicit dependence of ψ on Φ .

The accuracy and robustness of these approximations depend on the particular
functional form of Kr (ψ) in (2.3)–(2.5). We investigate this question in the following
example by comparing our numerical solutions with Monte Carlo simulations. The
latter are treated as exact.

6. Computational example
As an example, we consider two-dimensional flow in a heterogeneous medium

whose saturated conductivity Ks is modelled as a statistically homogeneous, lognormal
random field with an isotropic Gaussian covariance function,

CY (r) = σ 2
Y exp(−πr2/4λ2), (6.1)

where r = ‖x − y‖ is the separation distance and λ is the correlation length. In all
simulations, we set λ=1 and 〈Y 〉 =0. The degree of heterogeneity varies from mild
(σ 2

Y = 0.1) to moderate (σ 2
Y = 1.0) to relatively high (σ 2

Y = 2.0).
Consider flow within a square domain, Ω = [L × L], whose vertical boundaries

(x1 = 0, L) are impermeable and the lower boundary (x2 = 0) is maintained dry
(ψ = ∞). The upper boundary (x2 = B) is subdivided into three equal segments. The
Dirichlet condition ψ = 0 is prescribed on the central segment L/3 � x1 � 2L/3, while
the remaining two segments 0 � x1 <L/3 and 2L/3 < x1 � L are impermeable.
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Model parameters α ψc ω β n

Gardner 0.01
Brooks–Corey 77.27 4.40
van Genuchten 7.46 × 10−3 4.8

Table 1. The model parameters for the Gardner (2.3), Brooks–Corey (2.4), and
van Genuchten (2.5) models. These parameters satisfy (2.6) with Hc = 100.
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Figure 1. Mean Kirchhoff variable 〈Φ〉 computed with MCS (solid line) and the
perturbation closure of the moment equations (dash-dotted line) for σ 2

Y = 1.

We prescribe an effective capillary drive of Hc = 100 on the Dirichlet segment of
the upper boundary. Following Morel-Seytoux et al. (1996), (2.6) gives rise to the
values of the fitting parameters in (2.3)–(2.5) that are summarized in table 1.

Moment equations (3.5)–(4.3) are solved by the non-local Galerkin finite elements
algorithm (Guadagnini & Neuman 1999a) on the uniform grid consisting of 100×100
elements, whose size is ∆x1

= ∆x2
= 0.25λ. To gauge accuracy of the perturbation

closure of the moment equations, we compare their solutions with those obtained
from Monte Carlo simulations (MCS). The MCS consist of (i) generating multiple
realizations of the saturated conductivity field Ks(x), (ii) solving the (deterministic)
flow equation for each realization, and (iii) obtaining the statistics of these solutions.
Realizations of the random Ks(x) fields were generated by means of the Gaussian
sequential simulator SGSIM (Deutsch & Journel 1992). Depending on the value of
σ 2

Y , between 2000 and 4000 realizations are required to obtain the prescribed ensemble
statistics. Following standard practice, we treat the MCS results as exact.

Figures 1 and 2 compare the first-order approximations of the mean Kirchhoff trans-
form, 〈Φ [1]〉 = 〈Φ (0)〉 + 〈Φ (1)〉, and its variance, [σ 2

Φ][1] with their MCS counterparts.
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Figure 2. Variance of the Kirchhoff variable σ 2
Φ computed with MCS (solid line) and the

perturbation closure of the moment equations (dash-dotted line) for σ 2
Y = 1.

In these and other figures we set σ 2
Y = 1. While the perturbation solutions are formally

valid for σ 2
Y � 1, the agreement is excellent. The maximum discrepancies between the

two methods are 0.05% for the mean and 2% for the variance.
The statistics of Φ and accuracy of their approximations remain the same regardless

of the choice of the functional relationship Kr (ψ). In contrast, the pressure statistics
are highly sensitive to such a choice. Figure 3 shows the ensemble mean of the
pressure, 〈ψ〉, computed via both the perturbation approximations (PA) of § 5.1 and
the Gaussian approximation (GA) of § 5.2 for the Brooks–Corey model. Also added
for comparison is 〈ψ〉 obtained via a simple mean field approximation (MF ) that
replaces the random conductivity field with its geometric mean. The latter coincides
with the zeroth-order solution of the perturbation method. We can see that all
approximations compare favourably with MCS and yield virtually indistinguishable
solutions.

The accuracy of each approximation (A = PA, GA, or MF ) is reported in terms
of its relative error against the MCS results (MC),

EA =
〈ψ〉A − 〈ψ〉MC

〈ψ〉MC
× 100%. (6.2)

For σ 2
Y = 1, the errors introduced by the perturbation approximation EPA do not

exceed 3% throughout the flow domain. Although not shown here, the perturbation
closure remains remarkably accurate even for σ 2

Y = 2. In this case, the maximum EPA

is about 10% in the vicinity of the lower boundary x2 = 0 and remains below 5%
elsewhere. The non-perturbative Gaussian approximation proves to be less accurate.
We will explain this finding later in the paper. For σ 2

Y = 1, the corresponding relative
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Figure 3. Mean pressure head 〈ψ〉 for the Brooks–Corey model computed with MCS (solid
line), perturbation closure (dash-dotted line), Gaussian approximation (dashed line), and mean
field approximation (dotted line).
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Figure 4. Pressure variance σ 2
ψ for the Brooks–Corey model computed with MCS (solid

line), the perturbation closure (dash-dotted line) and Gaussian approximation (dashed line).

error EGA reaches the maximum value of 9% close to the upper boundary and does
not exceed 4% elsewhere. For σ 2

Y = 2, EGA reaches a maximum value of 20% close
to the upper boundary and does not exceed 7% elsewhere.
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Figure 5. The Brooks–Corey model: vertical cross-section, x1 = 0.5L, of (a) the mean pressure
〈ψBC〉 and (b) pressure variance σ 2

ψBC
computed with the perturbation closure (dashed line)

and Gaussian approximation (dashed-dotted line).

Note that a much simpler mean-field approximation performs as well as the
Gaussian one. Thus for σ 2

Y = 1, the maximum global error of EMF ≈ 9% is introduced
by the mean field approximation and occurs close to the lower boundary. It does not
exceed 5% elsewhere. This explains why rough estimates of pressure distributions,
that treat the medium as homogeneous, often prove to be accurate. However, such
analyses fail to quantify the predictive uncertainty. Moreover, the accuracy of the
mean-field approximation deteriorates rapidly with increasing σ 2

Y .
Figure 4 provides a similar comparison for the pressure variance, σ 2

ψ . The accuracy
of the perturbation closure is much superior to those obtained by the Gaussian
approximation with the maximum errors EPA ≈ 35% versus EGA ≈ 250%. Increasing
σ 2

Y to 2 does not alter this pattern significantly.
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Figure 6. The van Genuchten model: vertical cross-section, x1 = 0.5L, of (a) the mean pressure
〈ψvG〉 and (b) pressure variance σ 2

ψvG
computed with the perturbation closure (dashed line)

and Gaussian approximation (dashed-dotted line).

Figures 5–7 demonstrate the fluid behaviour along the vertical cross-section x1 = 0.5
for the Brooks–Corey, van Genuchten and Gardner models, respectively. The pressure
estimates corresponding to the Brooks–Corey and van Genuchten models are very
close, while the Gardner model gives rise to significantly higher mean pressure
gradients. More important, the Brooks–Corey and van Genuchten constitutive laws
result in mean pressure gradients that vary slowly in space over significant parts of
the flow domain. As has been demonstrated in Tartakovsky et al. (1999), this is a
necessary condition for the existence of effective relative permeability. The Gardner
model results in more variable mean pressure gradients.

Another important feature revealed by figures 5–7 is that, regardless of the choice
of the constitutive law, the pressure variance σ 2

ψ peaks in the vicinity of the lower
boundary. This implies that dispersion of a conservative solute is largest when it is
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Figure 7. The Gardner model: vertical cross-section, x1 = 0.5L, of (a) the mean pressure
〈ψGR〉 and (b) pressure variance σ 2

ψGR
computed with the perturbation closure (dashed line)

and Gaussian approximation (dashed-dotted line).

released close to the dry condition. Uncertainty in the pressure estimates, as quantified
by σ 2

ψ , is highest for the Gardner model. However, for all three constitutive laws the
coefficient of variation, σψ/〈ψ〉, is less than one. For the Brooks–Corey and van
Genuchten models, it varies between 0.01 and 0.02 and is an order of magnitude
higher for the Gardner model. This indicates that predictability of flow in partially
saturated porous media is enhanced by choosing either the Brooks–Corey or van
Genuchten model.

Figures 5–7 also exhibit the relative errors in the pressure moments calculated with
alternative approximations. The errors introduced by the Gaussian approximation
increase with the proximity to the boundaries, while the perturbation closure remains
accurate throughout the flow domain. To analyse in detail the breakdown of the
non-perturbative Gaussian closure, we conduct a χ2 test for Gaussianity on the
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Kirchhoff variable distributions, Φ(x), obtained from the Monte Carlo simulations.
Not surprisingly, Φ(x) passes the χ2 test with a significance level of 1% away from
the boundaries (the region between the two vertical dashed lines on figures 5–7) and
fails the test otherwise. The Kirchhoff variable is highly non-Gaussian when the mean
flow is strongly non-uniform (x2 → 1).

Overall, the perturbation closure performs remarkably well for all three constitutive
models even for relatively large values of conductivity variance σ 2

Y . The simple mean
field approximation leads to accurate estimates of the ensemble mean pressure head
for the Brooks–Corey and van Genuchten models, and to less accurate estimates of
mean pressure for the Gardner model (although the relative errors might be acceptable
for practical estimation purposes). For all three constitutive models, the perturbation
closure provides more accurate estimates of pressure variance than does the Gaussian
approximation. The sole exception is the mean pressure estimate corresponding to
the van Genuchten model, which is computed most accurately with the Gaussian
approximation (figure 6). However, even in this case, the maximum relative error of
2% introduced by the perturbation approximation should be considered negligibly
small.

7. Conclusions
We have analysed statistically flow in partially saturated heterogeneous porous

media whose hydraulic parameters are uncertain. By treating saturated hydraulic
conductivity as a random field, and the corresponding flow equations as stochastic,
we have derived deterministic equations for the mean and variance of the pressure
head. The former serves as the best estimate of pressure, while the latter quantifies
uncertainty associated with such an estimate. We have used two alternative
approximations to close these moment equations: closure by perturbation and
Gaussian approximation. Monte Carlo simulations were used as a yardstick against
which we compared the accuracy of each approximation. Our analysis leads to the
following major conclusions.

(i) Kirchhoff mapping of the stochastic, nonlinear Richards equation and the
subsequent closure by perturbation allow for accurate and robust approximations of
the ensemble mean, 〈ψ〉, and variance, σ 2

ψ , of the pressure head. These approximations
remain accurate for moderately large values of log-conductivity variance.

(ii) Accuracy and robustness of the closure approximations are influenced by
the functional dependence of relative conductivity on pressure, Kr (ψ). Regardless
of the choice of Kr (ψ), perturbation closure is more accurate than the Gaussian
approximation. Gaussian approximation works well away from the flow domain
boundaries and singularities, where flow is almost uniform in the mean.

(iii) The coefficient of variation, σψ/〈ψ〉, for the Gardner constitutive law is an
order of magnitude higher than that for the Brooks–Corey and van Genuchten
laws. This indicates that predictability of flow in partially saturated porous media is
enhanced by choosing either the Brooks–Corey or van Genuchten models.

(iv) The pressure estimates corresponding to either Brooks–Corey and van
Genuchten models are close and differ significantly from that corresponding to
the Gardner model.

(v) Reliance on effective constitutive models is more accurate for the Brooks–
Corey or van Genuchten constitutive laws than for the Gardner law. This is so,
because the former two give rise to mean pressure gradients that vary slower in space
than the mean pressure gradients arising from the latter.
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Regardless of the constitutive law used and the closure approximation employed,
the accuracy of pressure predictions and uncertainty estimates decreases in the vicinity
of the flow domain boundaries. This study only begins to address this issue, while
leaving a more complete analysis for future work.

The authors are grateful to the two anonymous reviewers for their comments and
help in improving the original draft of the manuscript. This work was performed under
the auspices of the US Department of Energy (DOE) through DOE/BES (Bureau of
Energy Sciences) Program in the Applied Mathematical Sciences Contract KC-07-01-
01. This work made use of shared facilities supported by SAHRA (Sustainability of
semi-Arid Hydrology and Riparian Areas) under the STC Program of the National
Science Foundation under agreement EAR-9876800.

REFERENCES

Amir, O. & Neuman, S. P. 2001 Gaussian closure of one-dimensional unsaturated flow in randomly
heterogeneous soils. Transport Porous Media 44, 355–383.

Batchelor, G. K. 1974 Transport properties of two-phase materials with random structure. Annu.
Rev. Fluid Mech. 6, 227–255.

Bruce, R. R. & Klute, A. 1956 The measurement of soil–water diffusivity. Soil Sci. Soc. Am. Proc.
20, 458–462.

Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids , 2nd Edn. Oxford University
Press.

Childs, E. C. & Collis-George, N. 1950 The permeability of porous materials. Proc. R. Soc. Lond.
A 201, 392–405.

Cushman, J. H. 1997 The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles .
Kluwer.

Dagan, G. 1989 Flow and Transport in Porous Formations . Springer.

Dagan, G. 1991 Dispersion of a passive solute in nonergodic transport by steady velocity fields in
heterogeneous formations. J. Fluid Mech. 233, 197–210.

Dagan, G. & Neuman, S. P. (ed.) 1997 Subsurface Flow and Transport: a Stochastic Approach .
Cambridge University Press.

Deutsch, C. V. & Journel, A. G. 1992 Geostatistical Software Library and User’s Guide. Oxford
University Press.

Frisch, U. 1968 Wave propagation in random media. In Probabilistic Methods in Applied
Mathematics (ed. A. T. Bharucha-Reid), vol. 1, pp. 75–198. Academic.

Garcia, A. L., Mansour, M. M., Lie, G. C. & Clementi, E. 1987 Numerical integration of the
fluctuating hydrodynamics equations. J. Staist. Phys. 47, 209–228.

Gelhar, L. W. 1993 Stochastic Subsurface Hydrology . Prentice-Hall.

Glimm, J., Lindquist, B., Pereira, F. & Peierls, R. 1992 The multi-fractal hypothesis and
anomalous diffusion. Matematica Aplicada e Computacional 11, 189–207.

Guadagnini, A. & Neuman, S. P. 1999a Nonlocal and localized analyses of conditional mean
steady state flow in bounded, randomly nonuniform domains, 1, Theory and computational
approach. Wat. Resour. Res. 35, 2999–3018.

Guadagnini, A. & Neuman, S. P. 1999b Nonlocal and localized analyses of conditional mean
steady state flow in bounded, randomly nonuniform domains, 2, Computational examples.
Wat. Resour. Res. 35, 3019–3040.

Indelman, P. 1996 Averaging of unsteady flows in heterogeneous media of stationary conductivity.
J. Fluid Mech. 310, 39–60.

Indelman, P. & Dagan, G. 1999 Solute transport in divergent radial flow through heterogeneous
porous media. J. Fluid Mech. 384, 159–182.

Jang, Y. H., Barber, J. R. & Hu, S. J. 1998 Electrical conductance between conductors with
dissimilar temperature-dependent material properties. J. Phys. D: Appl. Phys. 31, 3197–3205.

Koch, D. L. & Brady, J. F. 1987 A non-local description of advection–diffusion with application
to dispersion in porous media. J. Fluid Mech. 180, 387–403.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

53
8X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200300538X


62 D. M. Tartakovsky, A. Guadagnini and M. Riva

Kraichnan, R. H. 1987 Eddy viscosity and diffusivity: exact formulas and approximations. Complex
Syst. 1, 805–820.

Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics . Pergamon.

Lu, Z., Neuman, S. P., Guadagnini, A. & Tartakovsky, D. M. 2002 Conditional moment analysis
of steady state unsaturated flow in bounded, randomly heterogeneous soils. Wat. Resour. Res.
38, 9.1–9.15.

Mantoglou, A. & Gelhar, L. W. 1987 Stochastic modeling of large-scale transient unsaturated
flow system. Wat. Resour. Res. 23, 37–46.

Morel-Seytoux, H. J., Meyer, P. D., Nachabe, M., Touma, J., van Genuchten, M. T. &

Lenhard, R. J. 1996 Parameter equivalence for the Brooks–Corey and van Genuchten
soil characteristics: preserving the effective capillary drive. Wat. Resour. Res. 32, 1251–1258.

Neuman, S. P. & Orr, S. 1993 Prediction of steady state flow in nonuniform geologic media
by conditional moments: exact nonlocal formalism, effective conductivities, and weak
approximation. Wat. Resour. Res 29, 341–364.

Rubin, Y., Sun, A., Maxwell, R. & Bellin, A. 1999 The concept of block-effective macrodispersivity
and a unified approach for grid-scale- and plume-scale-dependent transport. J. Fluid Mech.
395, 161–180.

Rubinstein, J. 1986 Effective equations for flow in random porous media with a large number of
scales. J. Fluid Mech. 170, 379–383.

Rubinstein, J. & Torquato, S. 1989 Flow in random porous media: mathematical formulation,
variational principles, and rigorous bounds. J. Fluid Mech. 206, 25–46.

Russo, D. 1995 Stochastic analysis of the velocity covariance and the displacement covariance
tensors in partially saturated heterogeneous anisotropic porous formations. Wat. Resour. Res.
31, 1647–1658.

Tartakovsky, D. M. & Guadagnini, A. 2001 Prior mapping for nonlinear flows in random
environments. Phys. Rev. E 64, 5302(R)–5305(R).

Tartakovsky, D. M. & Neuman, S. P. 1999 Extension of ‘Transient flow in bounded randomly
heterogeneous domains 1. Exact conditional moment equations and recursive approximations’.
Wat. Resour. Res. 35, 1921–1925.

Tartakovsky, D. M., Neuman, S. P. & Lu, Z. 1999 Conditional stochastic averaging of steady state
unsaturated flow by means of Kirchhoff transformation. Wat. Resour. Res. 35, 731–745.

Winter, C. L., Newman, C. M. & Neuman, S. P. 1984 A perturbation expansion for diffusion in a
random velocity field. SIAM J. Appl. Maths 44, 411–424.

Yeh, T.-C. J., Gelhar, L. W. & Gutjahr, A. L. 1985 Stochastic analysis of unsaturated flow in
heterogeneous soils, 1. Statistically isotropic media. Wat. Resour. Res. 21, 447–456.

Zhang, D., Walstrom, T. C. & Winter, C. L. 1998 Stochastic analysis of steady-state unsaturated
flow in heterogeneous media: comparison of the Brooks–Corey and Gardner–Russo models.
Wat. Resour. Res. 34, 1437–1449.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

53
8X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200300538X

