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Capillary rise of a liquid displacing gas is analysed for both open and closed
capillaries. We include menisci mass and hysteresis, and show that oscillations
due to inertia are muted by friction at the advancing meniscus. From single-phase
numerical computations in a no-slip/slip capillary, we quantify losses due to entry,
flow development, meniscus slip, exit and acceleration of fluid within the reservoir.
For closed capillaries, determining viscous drag due to gas requires inclusion of
compressibility, and solving a moving boundary problem. This solution is derived
through perturbation expansion with respect to two different small parameters for
obtaining pressure above the liquid meniscus. Our rise predictions spanning a large
range of experimental conditions and fluids for both open and closed capillaries match
the data. The experimental data confirm the adequacy of the theoretically constructed
dimensionless groups for predicting oscillatory behaviour.
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1. Introduction
Capillarity is essential to the functioning of biological and botanical systems,

accumulation of oil and gas, fuel-cell operations and many chemical unit-operations.
Fluid intrusion in closed-end capillaries is used in liquid or dye-penetrant testing
for defects. Filling of dead-end or restricted capillaries is of interest in printing and
lithography.

Observations of capillary rise date back at least to da Vinci, but a quantitative
estimate for rise height was stated by Jurin (1717). The estimate relies on the Young–
Laplace–Gauss equation that relates pressure difference between two phases, interfacial
tension and the mean curvature of the interface as

p(A) − p(B) = σlg∇ · n. (1.1)

Here p(A) and p(B) are the fluid pressures in phases A and B, and the unit normal n
points into B; σlg is the liquid–gas surface tension.

This paper is concerned with time (t) dependent rise. The historical model
describing the rise height h(t) is based on the Lucas–Washburn equation
(Lucas 1918; Washburn 1921) where inertia is ignored. Liquid within the meniscus
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was not included, since small capillaries where inertia may be dropped have negligible
meniscus volume. In the Lucas–Washburn formalism, h(t) in an open vertical capillary
becomes

− 2
σlg

R
cos θ +

8
R2
µlh(t)

dh
dt
+ ρlgh(t)= 0. (1.2)

Here, θ is the static contact angle, ρl is the liquid density, µl is the dynamic viscosity,
g is the acceleration due to gravity and R is the capillary radius. Air pressure variation
due to flow or height is neglected in this formulation.

Inertial terms are added to the above equation by considering the rate of the change
of momentum of the liquid column. Many such modifications add ρl(d[h(dh/dt)]/dt)
to the left-hand side of (1.2) while ignoring momentum in and out fluxes and proper
consideration of reduced pressure at the inlet due to inertia (the earliest of such
was the paper of Bosanquet (1923); subsequent papers that adopt this approach
include those of Quéré (1997), Quéré, Raphaël & Ollitrault (1999), Zhmud, Tiberg &
Hallstensson (2000), Kornev & Neimark (2001), Hamraoui & Nylander (2002), Fries
& Dreyer (2008), Das & Mitra (2013), Masoodi, Languri & Ostadhossein (2013),
Katoh et al. (2015), Walls, Dequidt & Bird (2016) and Wu, Nikolov & Wasan
(2017)). In closed capillaries, a similar approach was adopted by Radiom, Chan &
Yang (2010) and Lim, Tripathi & Lee (2014). Although entry pressure corrections for
various tubular cross-sections are included, Xiao, Yang & Pitchumani (2006) obtained
only a slightly different differential equation with regard to coefficients. Inertia is
relevant in larger capillaries, where for a range of fluid properties and capillaries larger
than a fraction of a mm, oscillatory rise height is observed. For such capillaries, a
more precise accounting for inertia is necessary. Maggi & Alonso-Marroquin (2012)
captured the inflow and outflow momentum along with the reduced pressure over a
defined control volume, but their formulation differs from what is presented here and
is restricted to open capillaries.

Given the importance of rise dynamics, a number of authors have attempted to
improve the formulation for calculating pressure at entry. This correction has two
distinct contributions: losses within the container due to steady flow and acceleration
of mass within the container. Szekely, Neumann & Chuang (1971) included a
number of corrections to the Bosanquet equation where account was taken of
added mass within the container by assuming a fixed shape for the entry region
that gives rise to a (7/6)πρlR3(d2h/dt2) acceleration term. But the shape of this
region varies with the Reynolds number. Also, their formulation was based on energy
conservation; momentum balance is easier to formulate and more appropriate, since
temperature does not need to be accounted for. Zhmud et al. (2000), while adopting
the inertial formulation of Bosanquet (1923), also identified the need to consider
flow rearrangement at the meniscus. Maggi & Alonso-Marroquin (2012) considered
momentum balance and included the added fixed mass outside the capillary similar to
Szekely et al. (1971). Velocity at the entrance was uniform, and the pressure change
from the container boundary to the entrance was corrected by the Bernoulli equation,
but this is insufficient as we shall demonstrate. Gas viscosity and entry region for
gas was also included in the model. While momentum change from a uniform to
a parabolic profile was accounted for, no further recovery or loss due to uniform
advance at the meniscus was considered. Nevertheless, their model allowed one to
predict oscillatory and non-oscillatory behaviour, though quantitative differences in
the amplitudes and time period occur. Finally, because inertia is important only in
capillaries of large enough radius, mass within the meniscus must also be considered,
ignored in the literature cited.
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Dynamics in closed and open capillaries 7

For an improved quantitative agreement with experimental data, there is a need
to consider not only momentum entry and exit, but also the correct enumeration of
development and rearrangement pressure recovery and losses, variable added mass
including outer meniscus movement, loss due to unrecovered momentum at retraction
and the meniscus mass. It is quite important to specify the control boundaries over
which the boundary conditions are known or should be determined from other known
conditions for writing the momentum balance. The specification of the boundary
conditions is also quite different for rise and retraction. For long capillaries, since
inertia-induced oscillations may be suppressed by the gas column (Hultmark, Aristoff
& Stone 2011), pressure loss in this column must be considered. A comprehensive
differential equation for open capillaries that accounts for all of these mechanisms is
shown to predict rise data for several liquids, over a range of capillary sizes, with
a single physical parameter for describing dynamic contact angle; this parameter is
determined from rise data in a capillary of optimum proportions.

For closed-end capillaries, where the top is isolated from the atmosphere, similar
issues as above with respect to liquid inertia exist, but are less important. Gas
inertia is negligible. The main complexity arises from lack of viscous gas transport
correction, since a self-consistent model for a sealed tube with a moving boundary is
not available. Available models assume that gas pressure may be computed assuming
an equation of state (Radiom et al. 2010), i.e. they ignore gas viscosity. Lim et al.
(2014) modelled the gas column as a harmonic oscillator, with the conclusion that the
predicted oscillatory behaviour was not observed in the experiments of capillary rise
with tubes of radius 172 µm. To explain non-oscillatory behaviour, they hypothesized
a time-dependent contact angle (as opposed to capillary number dependent), with a
modified Poiseuille flow.

For predicting experimental observations in closed-end capillaries, in addition to the
inertia/loss and dynamic contact angle corrections, we formulate a moving boundary
problem that relates the liquid rise to gas flux at the meniscus. The solution to this
problem also needs to satisfy no flow at the outer end, wherein lies the difficulty
since no solution to Laplace’s equation assuming incompressible flow is possible.
Accounting for gas compressibility over a length scale L, we derive governing
equations consisting of two small parameters with respect to which we provide a
perturbation-expansion-based solution for gas pressure, allowing us to numerically
solve the liquid rise problem.

2. Formulation: statics

All of the analysis is for vertical and smooth capillaries. At static conditions,
the liquid–gas interface has a contact angle θ . A subscript d for θ implies
velocity-dependent dynamic angle. Wherever relevant, subscripts o and c imply open
and closed capillaries respectively. For the small buoyancy correction, inconsequential
density variation of gas with height is neglected. Density and viscosity are denoted
by ρ and µ respectively with subscripts s, l and g indicating solid, liquid and gas
phases respectively. A double subscript among these three represents an interface.
Immersion depth of the capillary within the reservoir is zero. We limit ourselves to
cases where the radius of the capillary R is sufficiently small for the meniscus to be
approximated by a sector of a sphere. For estimating the equilibrium rise height H,
this assumption has an error of order R2/H2 in comparison to unity, and is negligible.
For the worst of the cases considered (R = 1 mm), for θ = 0, the correction is less
than 0.3 %.
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πR2Pt

πR2P0

®lg(H + (1/3)Rf(œ))

ßsg2πR

ßsl2πR

Liquid

Capillary

Zero position

H

He

FIGURE 1. Free-body diagram for liquid in equilibrium within a capillary. The free-body
cylindrical boundary overlaps with the lateral solid surface, zero position and just above
the meniscus, and so liquid–solid surface tension does not appear. Based on force balance
at the contact line, σsl and σsg terms may be replaced by σlg cos θ . The solid arrows
indicate forces, and the dashed lines are surfaces or pointers. Note that the problem is
axisymmetric and solid–fluid surface tensions are on the lateral surface.

Consider the free-body diagram illustrated in figure 1. Pressure Pt above the
meniscus is kept as an unknown since its computation is quite different for open and
closed capillaries. P0 is the atmospheric pressure on the liquid–gas surface of the
container. At equilibrium, force balance for the column and the three-phase contact
curve requires that

πR2
{Pt − P0 + ρlgH + 1

3 Rf (θ)ρlg} = 2πR(σsg − σsl)= 2πRσlg cos θ, (2.1)

where (Verschaffelt 1919; Dorsey 1926),

f (θ) := (1− 3 sin2 θ + 2 sin3 θ) sec3 θ. (2.2)

Gas pressure variation along the meniscus is inconsequential. With H as the measured
meniscus position, defining an equivalent equilibrium height

He :=H + 1
3 Rf (θ) , (2.3)
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Dynamics in closed and open capillaries 9

we obtain for both open and closed tubes

He =
1
ρlg

{
P0 − Pt +

2
R
σlg cos θ

}
. (2.4)

For dynamic conditions, we replace f (θ) with f (θd). Additional meniscus correction
terms were derived by Verschaffelt (1919) as written by Dorsey (1926) and are
negligible for our purpose (see Hartland & Hartley (1976) and Liu, Li & Liu (2018)).
Our analysis is based on He since it correctly accounts for the weight of the liquid
column, and therefore also inertia. For an open capillary, neglecting variations in gas
pressure along the meniscus

Pt = Pto = P0 − ρggHeo, (2.5)

and therefore

Heo =
1

(ρl − ρg)g

{
2
R
σlg cos θ

}
−

1
3

Rf (θ). (2.6)

In a closed capillary, at equilibrium, Pt is known from an equation of state. Also,
the volume of liquid within the capillary is πR2Hec, and so for an ideal gas,

Pt = Ptc = P0
L

L−Hec
(2.7)

and

P0
Hec

L−Hec
+ ρlgHec =

2
R
σlg cos θ, (2.8)

where the gravity terms are neglected since the correction for density due to column
head scales as MwgL/(RT) in comparison to unity. (A more formal derivation is
carried out by calculating mass within the column before and after compression for
a gas of molecular weight Mw. This may be realized by starting with a column of
height L, with an initial pressure P0 at the bottom of the capillary. When compressed,
mass balance must be satisfied, and the pressure Pt can be calculated. In both cases,
we note that density may be obtained from PMw/(RT + gzMw), where P is the
original pressure before compression or Pt the final pressure at the meniscus when
the density profile is expressed after compression and R is the gas constant. In
the above expression, before compression z = 0 at the capillary bottom, and after
compression z= 0 is the meniscus position.) Therefore,

Hec =

P0 + ρlgL+
2σlg cos θ

R
−

√(
P0 + ρlgL+

2σlg cos θ
R

)2

−
8σlgρlgL cos θ

R
2ρlg

. (2.9)

For small capillary pressure compared to liquid-column weight over L or P0,

Hec =Hc +
1
3

Rf (θ)≈
2σlgL cos θ

2σlg cos θ + RρlgL+ RP0
. (2.10)

These results are used for choosing length scales in the capillary dynamics problem.
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10 T. S. Ramakrishnan, P. Wu, H. Zhang and D. T. Wasan

3. Capillary dynamics
With inertia, entry and exit losses, the differential equations for meniscus height

are quite nonlinear and direction dependent. (Directionality was also addressed by
Maggi & Alonso-Marroquin (2012).) In this paper, a single-phase computational flow
model without moving boundaries is used to infer the flow losses and the external
added mass. This enables the formulation of an ordinary differential equation for rise
height, without having to solve partial differential equations involving radius r, vertical
distance z and time t with a numerically ill-resolved phase interface.

For writing the mass and momentum equations, it is necessary to consider a
suitable control volume for which the boundary conditions are known. Guided by
computational results, this volume ends up being different for entrance and exit
problems. Since our aim is to construct an ordinary differential equation for capillary
rise, we consider the pressure to be uniform across the radius of the capillary. Any
variation from it due to entry or velocity profile readjustment due to meniscus
is lumped into losses (or gain) through suitable correction terms obtained from
steady-state numerical calculations. We first derive the equations for an open capillary
and amend them for the closed capillary. As illustrated in figure 2, for the entrance
problem, the control volume consists of two parts: the fluid reservoir and the capillary.
The effect of acceleration and deceleration of mass within the container is included
as an added mass term in the formulation. Reservoir pressure driving the fluid is
at P0 on the container fluid surface and the control volume exit is at the top of
the capillary at pressure P0 − ρggL. That this pressure is at ambient conditions is
confirmed by our steady-flow numerical simulations for the exit problem. Unlike the
entry problem, for the retraction or fluid exit the control volume is the capillary, for
reasons discussed in § 3.1.2.

The average upward (also the direction of z) velocity of the fluid is v̂. Generally,
v̂ varies with z and t. Mass conservation of the incompressible liquid implies for
effective height

dhe(t)
dt
= v̂(0, t), (3.1)

with
he(t) := h(t)+ 1

3 Rf (θd), (3.2)
where h(t) is the meniscus position. Mass conservation from z= 0 to z< h(t) gives

v̂(z, t)= v̂(0, t)= V̂(t), ∀z 6 h(t). (3.3)

3.1. Momentum balance – open capillary
For momentum balance across the capillary, we do not account for viscous normal
stress terms at the entry and exit for two reasons: (i) they are explicitly considered,
at least for the liquid, in the numerical computations of pressure loss of entry,
development and exit, and (ii) the capillary number (Ca) is quite small for the entire
range of experiments. (For example, we find that with a 1 mm capillary, even for the
upper limit of Reynolds number (Re) of 600 in our experiments, Ca=Reµ2

l /(2rσlgρl)
is only 0.005.)

Referring back to figure 2, it is convenient to consider a reservoir of nearly infinite
extent in relation to the capillary, with flow from infinity. Along a streamline from
the far field to the capillary inlet, pressure is reduced as per the Bernoulli equation
in addition to viscous losses. Strictly, pressure at the capillary inlet is non-uniform,
and different streamlines at the entry will have velocities differing from V̂(t). This is
not of consequence because the loss relationships take into account the deviation from
uni-dimensionality.
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Steady-state losses
are computed by

replacing a meniscus
with slip to no-slip wall

Dynamics includes
rate of change of momentum
in capillary and added mass

 Viscous loss, liquid

Gas exit momentum
parabolic profile

in liquid rise

Momentum loss and
pressure gain, parabolic

to uniform flow

Flow entry loss

Flow development loss

Zero velocity

Known pressure

Reversible pressure
reduction due to velocity

Liquid momentum influx

Pressure known

Capillary

Meniscus
pressure jump

Liquid
weight

Gas
weight

Viscous loss, gas

FIGURE 2. Contributions to the conservation of momentum for open-capillary rise. Loss
functions are based on computational results with a fixed interface corresponding to
each meniscus position represented by a slip to no-slip transition boundary condition at
the capillary wall. Added mass and any outer meniscus effects must be considered for
additional pressure loss within the container during unsteady flow resulting in acceleration.
The same is true for rate of change of momentum within the capillary.

3.1.1. Development and entry loss
For numerical estimation of loss, the single-phase flow problem is set by

considering a capillary of radius R at the surface of a reservoir of nearly infinite
extent, with a pressure, say Pf , in the far field. The capillary top is set at P0. In
the physical moving contact line, the velocity of the meniscus is V̂ , and at the
meniscus, streamlines rearrange from that of Poiseuille flow. The average kinetic
energy drops, resulting in pressure recovery. To mimic this in single-phase loss
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12 T. S. Ramakrishnan, P. Wu, H. Zhang and D. T. Wasan

calculations as closely as possible, for each he we construct a capillary whose walls
satisfy the no-slip boundary condition for z∈ [0, he). From he to L, the overall length
of the capillary, walls have perfect slip for a uniform velocity profile to evolve,
i.e. an artificial ‘hybrid capillary’ is constructed. At steady conditions, for a pressure
drive from infinity, pressure loss in excess of that due to Poiseuille flow may be
obtained from

Lfrl = Pf − P0 −
1
2
ρlV̂2
−

8µlV̂he

R2
. (3.4)

For each Pf for the above geometry, V̂ may be calculated from simulation. The
far-field kinetic energy at the driving pressure Pf is zero. The third term on the
right of (3.4) represents the reversible pressure loss at the capillary entrance due to
kinetic energy. Since the flow profile is assumed nearly uniform at the entrance to the
capillary in the momentum balance formulation in the following sections, the same
assumption for kinetic energy is also made in (3.4). (Numerical calculations show the
velocity profile to be slightly non-uniform but our formulation is self-consistent in the
sense that momentum flux at entry is also set to be ρlV̂2.) The momentum flux into
and out of the capillary are equal for the numerical simulations of single-phase flow
with the hybrid capillary and therefore need not be accounted for. Thus, Lfrl includes
any loss in momentum due to viscous drag caused by flow entry, development and
rearrangement. Gravity is not relevant in the single-phase loss calculation. Appendix A
discusses the numerical results in further detail, where it is quite clear that the
losses are different from those given in the literature (Maggi & Alonso-Marroquin
2012). In the appendix, we show that the non-dimensional form of Lfrl with respect
to kinetic energy may be correlated to Rel, the Reynolds number for the liquid.
Similarly, the non-dimensional form of rise loss of gas due to its entry from the
top during liquid exit may be correlated to Reg, where g is for gas. The correlating
function in the non-dimensional form is the same for liquid and gas and therefore
2Lfrl/(ρlV̂2) = 2Lfrg/(ρgV̂2) = fr(Re), where Re = Rel or Reg as the case may be.
Note that the process of carrying out this single-phase computational fluid dynamics
(CFD) calculation mimics all of the features of flow redistribution in the rise problem.
We allow for a parabolic profile to emerge from entry, unless the meniscus position
h is comparable to R and redistributes the flow to one of uniform velocity around
the meniscus. By computing loss for each position he, and noting that Lfrl is largely
independent of he/R (appendix A), only functionality with respect to Re is found to
be important.

3.1.2. Exit loss
The problem is quite different when the meniscus drops (see figure 3). Liquid

exits from the capillary, and this corresponds to a kinetic energy out-flux of ρV̂2,
but a momentum flux of (4/3)ρV̂2, since the velocity profile at exit is parabolic (see
appendix B). The inlet has a kinetic energy of (1/2)ρV̂2 and a momentum flux of
ρV̂2. Numerical calculations also show that the exit pressure is nearly P0, the far-field
pressure. The capillary inlet (top) pressure is kept at Pf . Pressure loss is

Lfel =

(
Pf + ρlV̂2

− P0 −
4
3
ρlV̂2
−

8µlV̂he

R2

)
, (3.5)

and is largely only a function of Re (appendix B). The near independence of Lfel
from he/R implies that proximity of the slip/no-slip location is of minor influence.
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Viscous loss, liquid

Gas momentum influx

Momentum gain and
pressure loss, uniform

to laminar flow

Gas flow entry loss

Flow development loss

Parabolic profile

Liquid momentum outflux

Pressure known,
far-field

Capillary

Meniscus
pressure jump

Liquid
weight

Reversible pressure
reduction due to velocity

Gas
weight

Viscous loss, gas

Known pressure

Dynamics includes
rate of change of momentum
in capillary and added mass

for gas entry.
Steady-state losses
are computed by

replacing a meniscus
with slip to no-slip wall

FIGURE 3. Various contributions to the conservation of linear momentum in the capillary
exit problem. At the exit, pressure is P0, and momentum of the liquid exiting does not
result in pressure recovery as illustrated in appendix B.

Through this enumeration, elaborate two-phase numerical calculations with a poorly
resolved moving boundary, and whose slip characteristics are not easily specified
as boundary conditions, have been avoided. Consistency is enforced when using
loss functions by including the same entry and exit momentum in the conservation
formulation as in (3.5).

Numerically, for both entry and exit, V̂ is determined from the numerical calculation
for a given Pf −P0 in order to use (3.4) or (3.5). We non-dimensionalize both Lfrl and
Lfel with respect to kinetic energy (1/2)ρlV̂2 and write the non-dimensional form as a
function of Rel and he/R (appendices A and B). Once Lfel is made dimensionless with
respect to (1/2)ρlV̂2 and correlated to Rel, the functionality applies to gas with Reg
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14 T. S. Ramakrishnan, P. Wu, H. Zhang and D. T. Wasan

replacing Rel, provided the non-dimensionlization of Lfe is carried out by replacing
ρl with ρg.

3.1.3. Added mass
Loss calculations are for steady-flow conditions. For rise dynamics, container fluid

acceleration is included through an added mass (Szekely et al. 1971). An equivalent
added mass mR that moves with the velocity V̂ is estimated from

mR =
ρ

πR3

1

V̂2

∫
∞

0

∫ 0

−∞

2πrv · v dz dr, (3.6)

where v is the local velocity and the integral is over the volume of the container. Here,
πR3 is the volume normalization with respect to the capillary cross-sectional area, per
unit radius, so that mR has units of density. For liquid entry ρ is replaced by ρl with
mR denoted by mRl, and for gas entry during retraction, ρ is replaced by ρg and mR
by mRg. Note that viscous losses within the reservoir and that associated with flow
development are included in Lfr. Also, mR varies with Re of the fluid (appendix B).

3.1.4. Rise dynamics
Consider conservation of momentum in a boundary defined by the capillary.

Per unit area, the rate of change of the liquid’s momentum within the capillary is
d[(RmRl + ρlhe)(dhe/dt)]/dt, and mRl depends on Rel. Similarly, during liquid rise,
for the air within the capillary the rate of change of momentum is d[ρg(L − he)

(dhe/dt)]/dt. Liquid momentum influx is ρlV̂2, and gas momentum out-flux is
(4/3)ρgV̂2. Loss due to entry and development normalized with kinetic energy is
2Lfrl/(ρlV̂2) and varies mostly with Rel (appendix A). Pressure at the top of the
capillary is P0− ρgLg and at the bottom is P0− (1/2)ρlV̂2. Viscous losses in pressure
due to liquid and gas Poiseuille flow are (8/R2)µlhe(t)V̂ and (8/R2)µg(L − he(t))V̂
respectively. Compressibility of gas has a negligible role for the open capillary. For
all practical purposes, the change in gas density due to pressure drop is irrelevant,
since 2σlg cos θd/R � P0. Finally, there are development losses for gas, which in
dimensionless form is governed by fe(Reg)= 2Lfeg/(ρgV̂2).

Force per unit cross-sectional area due to surface tensions and gravity are
2σlg cos θd/R and (ρl − ρg)ghe(t) respectively. With compactness in mind, dropping
the argument t in the differential equation for he(t), showing the time derivative by ′
and using (3.1) and (3.3), the rise dynamics governed by momentum conservation is

ρlheh′′e + ρlhe
′2
+ RmRlh′′e + Rm′Rlh

′

e + ρg(L− he)h′′e − ρgh′2e +
4
3
ρgh′2e − ρlh′2e

+Lfrl +Lfeg + (P0 − ρgLg)−
(

P0 −
1
2
ρlh′2e

)
+

8
R2
µlheh′e

+
8
R2
µg(L− he)h′e − 2

σlg

R
cos θd + ρlghe + ρgg(L− he)= 0. (3.7)

Any meniscus movement external to the capillary is added to mR as discussed below.
Terms containing mR are multiplied by R because mR is defined for a unit radius.

The initial conditions are that he(0)= 0, and h′e(0)= 0. Numerically, these lead to
h(t) being slightly negative at t= 0. The alternative of setting h(0)= 0 gives a positive
he(0) and is not correct either. The shape evolution of the meniscus is necessary to
resolve this paradox with both h(0) and he(0) equalling zero, and this problem is not
addressed here.
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Dynamics in closed and open capillaries 15

3.1.5. Exit dynamics
The exit dynamics is quite different: mRg is for the gas phase. The pressure at the

top is P0 − ρgLg− (1/2)ρgV̂2. Development and entry losses for gas are included via
Lfrg, and liquid losses during exit are contained in Lfel. Momentum flux at the capillary
exit is (4/3)ρlV̂2 because of the laminar flow profile. The pressure at the bottom of the
capillary is P0; the fluid falls as a jet at more or less constant pressure (appendix B).
Viscous drag and gravity terms remain the same as in rise. Momentum conservation
then leads to

ρlheh′′e +
1
2
ρlhe

′2
+ RmRgh′′e + Rm′Rgh′e + ρg(L− he)h′′e −

1
2
ρgh′2e −Lfrg −Lfel

+ (P0 − ρgLg)− P0 +
8
R2
µlheh′e +

8
R2
µg(L− he)h′e − 2

σlg

R
cos θd

+ ρlghe + ρgg(L− he)−
5
6
ρlh′2e = 0. (3.8)

The initial conditions are dictated by the preceding rise dynamics.

3.1.6. Consolidated equation
Defining the function S(x)=−1, 0 and 1, for x< 0, x= 0 and x> 0, respectively,

the consolidated equation for both rise and fall of the liquid is

1
2
ρlh′2e + ρlheh′′e −

1
2
ρgh′2e + ρg(L− he)h′′e + (RmRlh′′e + Rm′Rlh

′

e)

{
S(h′e)+ 1

2

}
− 2

σlg

R
cos θd +

8
R2
µlheh′e +

8
R2
µg(L− he)h′e + (ρl − ρg)ghe

+{Lfrl +Lfeg}

{
S(h′e)+ 1

2

}
− {Lfrg +Lfel}

{
−S(h′e)+ 1

2

}
+

5
6
ρgh′2e

S(h′e)+ 1
2

−
5
6
ρlh′2e

{
−S(h′e)+ 1

2

}
+{RmRgh′′e + Rm′Rgh′e}

{
−S(h′e)+ 1

2

}
= 0. (3.9)

3.1.7. Dynamic contact angle
To solve the above equations, we need to relate θd to θ . Many relationships

have been advanced, some based on hydrodynamics and others arising from kinetic
theory. Based on data in horizontal capillaries, Hoffman (1975) related apparent and
microscopic contact angles and the capillary number. Voinov (1976) and Cox (1986)
related the difference of a function of dynamic and microscopic contact angles to
capillary number with a parameter that is a ratio of macroscopic and microscopic
length scales. With additional assumptions as discussed by Wu et al. (2017), for
θd < 3π/4, this reduces to

θ 3
d − θ

3
= 9χVmµl/σlg, (3.10)

where χ is a coefficient fitted to data, and Vm is the meniscus velocity. This may be
compared with the form proposed by Brochard-Wyart & De Gennes (1992)

θd(θ
2
d − θ

2)= 6χVmµl/σlg. (3.11)
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16 T. S. Ramakrishnan, P. Wu, H. Zhang and D. T. Wasan

Yet another variant that represents tan θd(cos θd − cos θ) as a linear function of
capillary number for a given roughness predicts capillary rise of diethylene glycol in
PMMA capillaries and ethylene glycol in glass capillaries (Katoh et al. 2015). Several
discrepancies between data and functionalities of the form prescribed by Hoffman
(1975) were also observed by Katoh et al. (2015). Wu et al. (2017) have examined
the accuracy of various models. Model validity was also evaluated by Heshmati
& Piri (2014) based on data in circular and non-circular tubes with three liquids:
glycerol, water and soltrol. Our emphasis here is to predict the rise of hydrocarbons
in clean and dry glass capillaries, and we have specifically excluded liquids such as
water.

Blake and his coworkers (Blake & Haynes 1969; Blake 2006; Duvivier, Blake &
De Coninck 2013) analysed work of adhesion and force imbalance due to θ − θd. The
linearized version of their proposition in terms of a coefficient β is

cos θd =−
βµl

σlg
Vm(t)+ cos θ. (3.12)

Evaluation methods of contact angle models was suggested by Popescu, Ralston &
Sedev (2008). Based on rise data of silicone oils, various alkanes, siloxane and carbon
tetrachloride in small borosilicate glass tubes, Wu et al. (2017) concluded that many
of the models including (3.10) and (3.12) are adequate with an adjustable parameter
χ or β. All of their tests were conducted for wetting liquids with a precursor film,
i.e. θ was small, but θd may not be. They argued that β may be estimated for simple
molecules. Here, we assume (3.12), with a constant β for a given fluid–solid pair.
It has the advantage that analytical solutions may be obtained in the limit of inertia
becoming negligible. An evaluation of β from data is possible for an appropriately
chosen R, where dynamic contact angle is important but inertia is not.

The meniscus velocity is approximated by the rate of advance of the meniscus
position. Based on data gathered with dioxane, for which θ is >0◦, we find that this
is better quantified by h′e(t) rather than h′(t). Then,

cos θd ≈−
βµl

σlg
h′e(t)+ cos θ. (3.13)

Also, he(t) is related to h(t) through (3.2), and therefore

h′(t)= h′e(t)−
1
3

R
df (θd)

dt
. (3.14)

3.1.8. Outer meniscus
Observations indicate that the surface outside of the capillary oscillates. For

example, as shown in figure 4, a magnitude of about 3.5 mm in the inner capillary is
concomitant with an outer 0.3 mm in-phase fluctuation for about three cycles. Outer
meniscus distance amounts to about 3R (see figure 4 inset). For an outer meniscus
presumed to be a quarter sector of a spherical surface, the volume of revolution within
the meniscus is (2/3)(32 − 9π)πR3. Per unit area of the capillary, we approximate
this result to 8R/3. The velocity of the outer meniscus for oscillations roughly scales
as (0.3/3.5)V̂ , giving us a corrected value for the mass for momentum to be added to
mR as (8/35)ρ. We expect the mass to be added to be a multiple of this, comparable
to unity. Also,the outer meniscus is included only for h′e(t)> 0, because the retraction
model’s pressure boundaries are known at the capillary top and bottom.
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FIGURE 4. Menisci oscillations for diethyl ether (DEE) for L= 30 mm and R= 1000 µm.
Inset is a snapshot of the outer meniscus during capillary rise. The white dashed line is
the position of the meniscus tip, but is difficult to locate in every frame. All heights are
referenced with respect to the red line since only changes are important to identify the
scale. Measurement accuracy is about 34 µm.

3.1.9. Hysteresis
The relationship between θ and θd may differ for the advancing and receding

interface. Functionally,

β =

{
βa for h′m(t)> 0,
βr for h′m(t) < 0. (3.15)

Here, hm(t) is the meniscus position. Alternatively, one may consider that post first
contact of the liquid with the solid surface, β is assigned a new value, implying film
retention on the surface. Consider, h(t) < hM, where hM is the maximum h(t), with
h(tM)= hM. For this model, an algorithm to assign β is

β =

{
βa for t 6 tM,

βr for t> tM.
(3.16)

For computation, we first calculate he(t) assuming β = βa, and tM is located based
on either maximum h(t) or maximum he(t). In the second pass for integrating rise
dynamics equations, equation (3.16) is used, and the differential equations reintegrated
with the known initial condition of hM at tM with h′(tM) = 0. Implementation of
hysteresis was necessary to ascertain its importance. For matching experimental data,
no noticeable improvement was observed; therefore, our plots for h(t) are without
hysteresis.

3.1.10. Oscillations and dimensionless groups
An analysis may be carried out to infer whether oscillations in h(t) are likely.

While it is necessary to include gas-phase viscous pressure drop, an estimate without
it is quite revealing. We recognize two distinct time scales: one with consideration of
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18 T. S. Ramakrishnan, P. Wu, H. Zhang and D. T. Wasan

change of momentum and the other where the characteristic driving force is balanced
by a viscosity-induced pressure drop. We denote the latter TWo for open-capillary
Washburn time. For TWo estimate, we note that the scale for pressure is ρlgHeo. The
frictional pressure drop due to liquid viscosity is 8µlH2

eo/(R
2TWo). Equating the two,

we obtain TWo to be 8µlHeo/(ρlgR2). Approximating Heo with Ho and replacing Ho
such that capillary pressure is balanced by liquid-column weight, we get

TWo =
16µlσlg cos θ
ρ2

l g2R3
. (3.17)

This Washburn time estimate is appropriate when β is not materially important.
We contrast this to the time scale TIV that is determined by a balance between

inertia and viscous drag. Then with Ho in lieu of Heo, ρlH2
o/T

2
IV = 8µlH2

o/(R
2TIV) or

TIV =
ρlR2

8µl
. (3.18)

Our conjecture is that whenever TIV � TWo, the Washburn time scale determines
the process. When inertia dominates, the time scale TIV dominates the problem, and
therefore one would expect oscillations to manifest themselves. The cross-over is given
by the ratio TIV/TWo =N , which in terms of known properties is

N =
ρ3

l g2R5

128µ2
l σlg cos θ

. (3.19)

Roughly, N > 1 is expected to promote oscillation. (We are also assuming that when
TIV < TWo, the height is given by 2gT2

IV <Heo.)
When θ→ 0, this dimensionless group may be expressed as

N =
Bo2

128Oh2 , (3.20)

but accounting for contact angle we may also write Bo as the Bond number
= ρlgR2/(σlg cos θ), and Oh as the Ohnesorge number = µl/(

√
ρlRσlg cos θ).

Equivalently, N is proportional to the product of Bo and Galilei numbers, where
the latter is Ga= ρ2

l gR3/µ2
l . As long as µgL� µlHo, and β is small, we expect N

to be a good measure for identifying the importance of inertia. The group presented
in (3.20) was also identified by Fries & Dreyer (2008) and Masoodi et al. (2013)
(barring numerical coefficient), through different arguments. Fries & Dreyer (2008)
also represented the group as the product BoGa, but their differential equation is
quite different and is of the Bosanquet type. The time-scale cross-over was also
explicitly proposed by Quéré (1997).

The gas column suppresses oscillation. To include its effect, we replace µl in N
with

µe =µl +µg
L

Heo
. (3.21)

The altered dimensionless group for predicting oscillation becomes

Ne =
ρ3

l g2R5

128µ2
eσlg cos θ

. (3.22)

We tabulate both N and Ne for the data set. For large β, Ne overemphasizes inertia.
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Dynamics in closed and open capillaries 19

3.2. Momentum balance – closed capillary
Here, Hec tends to be small compared to Heo and is practically observable only for
R < 200 µm. Inertial effects, and therefore losses, are minor, and with β values for
a glass–organics interface, oscillation is suppressed. For the gas phase, inertial effects
may be entirely dropped. Closed-capillary rise dynamics, however, introduces some
intrinsic mathematical difficulties as a result of the no-flow boundary at the top. Our
aim is to derive an expression for Pt that includes viscous flow.

3.2.1. Gas pressure, Pt

The increase in gas pressure, though small in relation to P0, is comparable to
capillary pressure and therefore reduces He significantly. This necessitates capillaries
in the range of tens of microns for R and hundreds of mm in length for a rise height
of a few mm. Inertial terms causing entry and exit losses, and kinetic energy altering
entry pressure, are secondary for developing the requisite physics. Gas entry and exit
contributions are absent for closed capillaries.

For an ideal gas, the pressure change in the gas phase would scale as P0Hec/L�P0,
and therefore one would be tempted to regard the fluid as incompressible and solve
∂2P/∂z2

= 0, z being the vertical coordinate and P being the pressure varying with z.
Then the dependence on time is assumed to be pseudo-static. The solution having a
linear dependence on z cannot satisfy both of the flux conditions corresponding to a
moving boundary at the bottom and closed at the top. Including gas compressibility
is necessary.

A complete analytical solution to laminar compressible flow within a capillary is
unavailable, and is unnecessary given that the dominant dynamics is one-dimensional.
Since the pressure change causes negligible change in density on a length scale of
R, we may ignore compressibility on an R length scale (but not L), and express the
radially averaged local velocity of gas as

v̂g =−
R2

8µg

∂P
∂z
, (3.23)

v̂g varying with z and t. As explained earlier, gravity terms need not be considered
for the purpose of evaluating the pressure profile within the gas phase. Any correction
to pressure at the interface, due to gravity, scales with a magnitude of ρggH2

ec/(2P0L)
compared to unity and is not relevant. (With ρg=1 kg m−3, Hec=3 mm, L=100 mm,
this dimensionless quantity has a value of 4.5× 10−10.) From gas-phase continuity,

∂ρg

∂t
+
∂ρgv̂g

∂z
= 0. (3.24)

Since the compressibility factor is nearly unity at atmospheric conditions, the air
column is almost an ideal gas. Isothermal compressibility for the column is 1/P,
which to leading order is 1/P0. The pressure scale for the closed-capillary problem
is denoted Pc, and this scale applies to represent the deviation from P0. The change
in air pressure due to liquid rise is P0Hec/(L−Hec) for an ideal gas, and therefore

Pc = P0
Hec

L−Hec
. (3.25)

In contrast to gas-phase isothermal compressibility, defined to be

cg =
1
ρg

∂ρg

∂P
, (3.26)
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µg is nearly a constant over the small pressure change of magnitude Pc, and is
therefore fixed. For non-dimensionalization, equations (3.23) and (3.24) require length
and time scales. Unlike pressure, two different scales exist for both. The first is the
capillary rise time scale as per the Washburn equation, and denoted TWc. A second
time scale is the characteristic time for gas-phase pressure diffusion (TD) over L
analogous to pressure transients in porous media. The two length scales are Hec and
L. Their ratio

δ =
Hec

L
� 1 (3.27)

is a small parameter. A magnitude estimate of δ follows from (2.10), where the P0
term dominates the denominator. Then,

δ ≈
2σlg cos θ

RP0
. (3.28)

Where Hec is measurably relevant, δ < 0.02.
The Washburn time scale is quantified through the balance between an upward

force that is of magnitude ρlgHec (note that the magnitude is reflected by the rise
height causing a downward body force) and the dominant frictional viscous resistance,
resulting in

TWc =
8µlHec

ρlgR2
. (3.29)

Similarly, the diffusional time scale for gas pressure is

TD =
8µgL2

R2P0
, (3.30)

where we have recognized the validity of (3.23) for local velocity, with the leading
term for compressibility being 1/P0. We write

ε := TD/TWc =
µgρlgL2

µlP0Hec
� 1. (3.31)

When Hec is replaced from (2.10), we get

ε ≈
µgρlgLR
µl2σlg cos θ

, (3.32)

and it is less than 0.1 for the L values used. Replacing v̂g from (3.23) in (3.24), and
using the expression for isothermal compressibility,

∂P
∂t
=

R2

8µg
P
∂2P
∂z2
+

R2

8µg

(
∂P
∂z

)2

. (3.33)

The dimensionless pressure ψ is scaled with respect to δ for it to be order unity, i.e.

ψ =
1
δ

P− P0

P0
or P= P0(1+ δψ). (3.34a,b)

Note that ψ is to be regarded as a function of the dimensionless time relevant to
capillary rise,

τW := t/TWc =
ρlgR2t
8µlHec

, (3.35)
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the dimensionless time relevant to diffusion,

τD := t/TD =
P0R2t
8µgL2

, (3.36)

and ζ , the dimensionless distance from the closed end, i.e.

ζ :=
L− z

L
. (3.37)

The dimensionless form of (3.33) is

ε
∂ψ

∂τW
= (1+ δψ)

∂2ψ

∂ζ 2
+ δ

(
∂ψ

∂ζ

)2

, (3.38)

where we seek only the functional dependence of ψ on τW and ζ , since TWc � TD.
For solving (3.38), we satisfy zero flow at the top (ζ = 0) and that the velocity of
liquid must equal the velocity of gas at the meniscus. The first boundary condition is

∂ψ

∂ζ
= 0, at ζ = 0. (3.39)

For the second boundary condition, we observe that the dimensionless rise height,
he(t)/Hec, must be a function only of τW . We define

η(τW) :=
he(t)
Hec

. (3.40)

Then, at the bottom moving boundary of the air column,

dhe(t)
dt
=−

R2

8µg

∂p
∂z
, at z= he(t). (3.41)

In dimensionless form, this translates to

∂ψ

∂ζ
= ε

dη(τW)

dτW
, at ζ = 1− δη(τW). (3.42)

Also the initial condition for pressure in a column of length L is

P= P0, at τW = 0. (3.43)

Furthermore, for mass conservation

P0L=
∫ L−he(t)

0
P dy= P0L(1− δη(τW))+ P0Lδ

∫ 1−δη(τW )

0
ψ dζ , (3.44)

since P is proportional to density. In dimensionless form, this reduces to∫ 1−δη(τW )

0
ψ dζ = η(τW). (3.45)
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We seek an ansatz solution of the form

ψ =ψ0 + ε(ψ1 + δψ2)+ · · · , (3.46)

for which the differential equation (3.38) becomes

ε
∂ψ0

∂τW
+ ε2 ∂ψ1

∂τW
=
∂2ψ0

∂ζ 2
+ ε

∂2ψ1

∂ζ 2
+ δψ0

∂2ψ0

∂ζ 2
+ δ

(
∂ψ0

∂ζ

)2

+ εδ

(
∂2ψ2

∂ζ 2
+ψ1

∂2ψ0

∂ζ 2
+ψ0

∂2ψ1

∂ζ 2
+ 2

∂ψ0

∂ζ

∂ψ1

∂ζ

)
+ · · · .

(3.47)

The leading-order differential equation is

∂2ψ0

∂ζ 2
= 0, (3.48)

the solution to which is

ψ0(ζ , τW)= A(τW)ζ + F(τW), (3.49)

where A and F are to be determined. The boundary condition at ζ =0 implies A(τW)=
0, or

ψ0(ζ , τW)= F(τW). (3.50)

Physically, for leading order, or ε= 0, the only acceptable solution is that the pressure
is a constant in the air column for a given τW . From (3.45) we get

F(τW)=
η(τW)

1− δη(τW)
. (3.51)

At ζ = 1− δη(τW), the required boundary condition (3.42) becomes

∂ψ0

∂ζ
= 0. (3.52)

This is automatically satisfied by (3.50).
Recognizing (3.50), or ∂ψ0/∂ζ = 0, and matching terms of order ε,

∂2ψ1

∂ζ 2
=
∂ψ0

∂τW
=

η′(τW)

{1− δη(τW)}2
, (3.53)

which when integrated results in

∂ψ1

∂ζ
=

η′(τW)

{1− δη(τW)}2
ζ +G(τW). (3.54)

From the boundary condition at ζ = 0, ∂ψ/∂ζ = 0 or G(τW)= 0. Then

ψ1(ζ , τW)=
η′(τW)

{1− δη(τW)}2

ζ 2

2
+M(τW), (3.55)
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and M(τW) may be determined from mass conservation. Following (3.45), we find that

M(τW)=−
η′(τW)

6
. (3.56)

The solution is

ψ(τW, ζ )=
η(τW)

1− δη(τW)
+ ε

[
η′(τW)

{1− δη(τW)}2

ζ 2

2
−
η′(τW)

6

]
+ · · · . (3.57)

Expanding the boundary condition (3.42), we have

∂ψ0

∂ζ
+ ε

∂ψ1

∂ζ
+ · · · = ε

dη(τW)

dτW
, at ζ = 1− δη(τW). (3.58)

This is satisfied by the result in (3.57), since they match to the order of ε. Now,
matching δε terms, we get

∂2ψ2

∂ζ 2
+ψ1

∂2ψ0

∂ζ 2
+ψ0

∂2ψ1

∂ζ 2
+ 2

∂ψ0

∂ζ

∂ψ1

∂ζ
= 0. (3.59)

But in the above equation, we see that the second and fourth terms are zero, for
∂ψ0/∂ζ = 0. We may also replace the ∂2ψ1/∂ζ

2 term with the result from (3.53). The
differential equation simplifies to

∂2ψ2

∂ζ 2
=−

η(τW)η
′(τW)

{1− δη(τW)}3
. (3.60)

We may again use the ζ = 0 boundary condition to infer that

∂ψ2

∂ζ
=−

η(τW)η
′(τW)

{1− δη(τW)}3
ζ (3.61)

or

ψ2 =−
η(τW)η

′(τW)

{1− δη(τW)}3

ζ 2

2
+N(τW), (3.62)

where N(τW) needs to be determined. As before, from the mass conservation criterion,

N(τW)=
η(τW)η

′(τW)

6{1− δη(τW)}
. (3.63)

The solution then is

ψ(τW, ζ ) =
η(τW)

1− δη(τW)
+ ε

[
η′(τW)

{1− δη(τW)}2

ζ 2

2
−
η′(τW)

6

]

+ εδ

[
η(τW)η

′(τW)

6{1− δη(τW)}
−

η(τW)η
′(τW)

{1− δη(τW)}3

ζ 2

2

]
+ · · · . (3.64)

Now,

∂ψ

∂ζ
(τW, 1− δη(τW))= ε

η′(τW)

1− δη(τW)
− εδ

[
η(τW)η

′(τW)

{1− δη(τW)}2

]
= εη′(τW)+ o(εδ). (3.65)
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The boundary condition is correct to the order of the expansion sought. At this order,
the expansion far exceeds the resolution or the reproducibility of the experiment. For
rise dynamics formulation, the pressure at the interface in dimensionless form is

ψ(τW, 1− δη(τW))=
η(τW)

1− δη(τW)
+ ε

η′(τW)

3
− εδ

η(τW)η
′(τW)

3{1− δη(τW)}
+ o(εδ). (3.66)

Air pressure just above the meniscus is then

P(t, he(t))= P0

[
L

L− he(t)
+

8µg{L− he(t)}
3R2P0

dhe(t)
dt
−

h2
e(t)

L− he(t)
8µg

3R2P0

dhe(t)
dt
+ · · ·

]
.

(3.67)
The third term may be neglected since it is numerically inconsequential. The
equilibrium pressure Ptc is the first term. Since P(t, he(t)) is Pt, we have

Pt ∼ Ptc +
8µg{L− he(t)}

3R2

dhe(t)
dt

. (3.68)

Note that the closed-capillary gas flow viscous-drag term has 8/3 numerical prefactor.

3.2.2. Consolidated formulation
While the liquid loss terms survive from the open-capillary analysis, the gas

terms are no longer applicable. The derivation for Pt ignores inertia in the gas
phase. Additionally, the gravity term in the gas phase has already been shown to be
negligible. With Pt explicitly known, the dynamics in a closed capillary is then

1
2
ρlh′2e (t)+ ρlhe(t)h′′e(t)+ (RmRl(Rel)h′′e(t)+ Rm′Rl(Rel)h′e(t))

{
S(h′e(t))+ 1

2

}
− 2

σlg

R
cos θd +

8
R2
µlhe(t)h′e(t)+

P0he(t)
L− he(t)

+
8µg

3R2
(L− he(t))h′e(t)

+ ρlghe(t)+Lfrl(Rel)

{
S(h′e(t))+ 1

2

}
−Lfel(Rel)

{
−S(h′e(t))+ 1

2

}
−

5
6
ρlh′2e

{
−S(h′e(t))+ 1

2

}
= 0. (3.69)

3.2.3. Closed-capillary dimensionless groups
For the closed-capillary problem, the inertial–viscous time scale is unaltered and is

TIV =
ρlR2

8µl
. (3.70)

Replacing Hec in (3.29) with 2σlgL cos θ/(RP0) (see (2.10)), we get

TWc =
16σlgµlL cos θ
ρlgP0R3

. (3.71)

Along the lines of the open-capillary problem, the ratio TIV/TW is defined to be

M=
ρ2

l R5gP0

128µ2
l σlgL cos θ

. (3.72)
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When gas-phase pressure drop affects rise rate, for closed capillaries we let

µe =µl +µg
L

3Hec
(3.73)

to reflect the 8/3 coefficient in expression (3.68) so that

Me =
ρ2

l R5gP0

128µ2
eσlgL cos θ

. (3.74)

Analogous to the open-capillary problem, one might have expected Me to be a
good indicator of oscillations, if one ignores the shift from θ to θd. But unlike the
open-capillary problem where Heo is sufficiently large to be greater than 2gT2

IV , here
Hec is small enough for one to consider the ratio of TIV to

TIg =

√
σlgL cos θ

RP0g
. (3.75)

The ratio of TIV to TIg is

S =
ρl

8µl

√
gR5P0

σlgL cos θ
. (3.76)

We expect more pronounced oscillatory behaviour (in the absence of β), as S
increases, although the precise threshold for oscillatory behaviour has to be computed.
Not surprisingly, S is directly proportional to

√
M.

4. Numerical integration
The second-order differential equation for he(t) has functions that are discontinuous

with respect to h′e(t). The equation is also complicated by the description of θd,
particularly with hysteresis. The initial conditions when mRl > 0 are that

he(0)= 0 and h′e(0)= 0. (4.1a,b)

In the absence of added mass (mR = 0), an approximate velocity at an initial time
ti may be evaluated by dropping entry and exit terms, letting ρg = 0 and µg = 0 and
setting he(0)=0. The resulting differential equation for early time (from (3.9) or (3.69)
and (3.13) and ignoring difference between h′e(t) and h′m(t)) is

1
2
ρlh′2e (t)− 2

σlg

R

(
−
βµl

σlg
h′e(t)+ cos θ

)
∼ 0, t→ 0. (4.2)

The early time solution is

h′e(t)=−
2βµl

Rρl
+ 2

√(
βµl

Rρl

)2

+
σlg cos θ

Rρl
, t→ 0. (4.3)

Thus, the integration may be started at an arbitrarily small time with

he(t)= t

−2βµl

Rρl
+ 2

√(
βµl

Rρl

)2

+
σlg cos θ

Rρl

 , t→ 0. (4.4)
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The differential equation (3.9) is integrated using the NDSolve algorithm in
Mathematica (from Wolfram Research). The algorithm is well suited to solving
problems with discontinuous coefficients that change with the solution. When the
model includes hysteresis, we carry out a two-pass computation, as summarized in
the hysteresis section.

5. Experimental results

We chose borosilicate glass capillaries from VitroCom (Mountain Lakes, NJ, USA).
At different points along the length for randomly chosen samples, the capillary radius
measured with OLYMPUS LEXT OLS4000 showed no discernible differences. Before
use, all the capillaries were cleaned by immersing in acetone for 24 h and blower
dried for 600 s. For the chosen organic liquids, acid washing was unnecessary.

For imaging, we used a Nikon-D800E and a SONY-DSC-RX100M5 concurrently.
Nikon was used with a 1 : 1 micro lens 105/f2.8. For a 30 µm resolution, field of
view was limited to 5.7 mm× 3.24 mm for 60 f.p.s. For a still picture, the resolution
can be pushed to about four times the video mode for the same field of view. The
second camera is run at 960 f.p.s. for pinning down time zero if needed, although
the resolution drops to 1244× 420 and with a much larger field of view. Therefore,
increased resolution in time is compromised by poor h(t) resolvability. For accuracy
in time, we captured a video of an independent and verified stop watch with the
high-resolution camera to ensure that 60 frames were captured in a second. The
entire system was rigidly mounted on a vibration-free table. At the conclusion of
each experiment, we process each frame for separating the RGB components. The G
component is then analysed for gradient magnitudes; the first peak as one approaches
top from bottom corresponds to the lower position of the meniscus, h(t). The pixel
position is translated to height and corrected for zero offset (see below).

5.1. Open capillaries
Four different liquids (decane, toluene, diethyl ether and dioxane) were used in
capillaries of different lengths and radii and compared to the solution of (3.9). At the
temperature of the experiment, surface tension, density and viscosity are fixed. Surface
tension was also measured independently with a KRÜSS Wilhlemy plate tensiometer,
and was close to the literature value. Based on the meniscus shape, the contact angle
for all of the liquids except dioxane was 0◦. For dioxane, it was between 5◦ and
10◦. Since contact angle is difficult to estimate through a capillary and the precise
rise height is also affected by zero offset and small variability in surface tension,
the measurement is preferably repeated with and without pre-wetting of the capillary
with the liquid. The pre-wetted capillary is assumed to have a contact angle of 0◦.
Since σlg remains the same, the ratio between the first and the second height is a
measure of cos θ . The temperature for all of the experiments was 21–22 ◦C, except
diethyl ether for which it was 13 ◦C. For all of the rise calculations, we used µg of
18.5 µPa s and a gas density of 1.19 kg m−3. To infer the unknown parameter β,
a constant for each fluid–solid pair, we use the largest capillary where inertia is
inconsequential. Numerical values of properties are tabulated in table 1.

For decane, data were obtained for {R,L} pairs {1000, 30}, {1000, 300}, {1000, 600},
{856,127} and {486,127} with R in µm and L in mm. Four of the experimental results
are shown in figure 5. Rise transitions from pronounced oscillatory to monotonic as
indicated by the magnitude of Ne.
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FIGURE 5. Clockwise from (a), capillary rise height of decane in capillaries of
{R, L} = {486, 127}, {856, 127}, {1000, 30} and {1000, 600}, with zero offsets z0 =

0.193 mm, −0.217 mm, −0.208 mm and −0.156 mm. Mass added due to outer meniscus
is (8/35)ρlR per unit capillary area; this correction is negligible. See table 2 for
dimensionless groups.

σlg (mN m−1) µl (mPa s) ρl (kg l−1) θ β

Decane 23.8 0.888 0.729 0◦ 60
Toluene 28.7 0.5503 0.8652 0◦ 70
Diethyl ether 18.0 0.267 0.722 0◦ 60
Dioxane 32.5 1.18 1.033 7.5± 2.5◦ 105

TABLE 1. Physical properties of the liquids, and liquid–liquid/solid.

To mark the surface position of the capillary for measuring h, we utilized the grey
scale in the magnified image of the capillary/container fluid interface. The transition
region in grey scale across the contact surface of the capillary results in a positional
uncertainty. Even with the highest resolution camera we used (Nikon D800E), a
fraction of a mm error is possible. Offset z0 is the difference between the equilibrium
height as predicted from (2.6) and the mean of the experimental data of all the runs
for a given {R, L}. This offset also compensates for surface tension variability.

In figure 5 for all {R,L} capillary rise is predicted correctly to very short time. Data
up to 2 s are shown to illustrate stability. For R= 856 µm and L= 127 mm, inertial
effects begin to be noticeable with the capillary rise exhibiting a small overshoot.
Both Ne and N are > 1, consistent with the observed oscillation. For R= 1 mm and
L = 600 mm, an otherwise pronounced oscillation is suppressed by a large L. Gas
viscosity, though small in relation to that of the liquid, affects rise, as Lµg/(Hµl)

becomes comparable to unity (see also Hultmark et al. (2011)). For Lµg/(Hµl)� 1,
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R (µm) L (mm) Bo Oh Oh2 Ga N Ne Peaks

Decane 486 127 0.071 0.0097 0.270 758 0.420 0.294 0
Decane 856 127 0.220 0.0073 0.064 4144 7.12 3.90 1
Decane 1000 30 0.300 0.0067 0.043 6607 15.50 12.84 2+
Decane 1000 300 0.300 0.0067 0.043 6607 15.50 3.93 1+
Decane 1000 600 0.300 0.0067 0.043 6607 15.50 1.75 1
Toluene 1000 30 0.296 0.0035 0.023 24235 55.96 41.84 4+
Toluene 1000 300 0.296 0.0035 0.023 24235 55.96 8.50 3
Toluene 1000 600 0.296 0.0035 0.023 24235 55.96 3.28 2
DEE 856 127 0.288 0.0025 0.017 44965 101. 15.5 4+
DEE 1000 30 0.393 0.0023 0.011 71689 220. 107. 6+
Dioxane 486 127 0.074 0.0093 0.247 862 0.500 0.376 0
Dioxane 1000 30 0.314 0.0065 0.039 7513 18.4 15.9 1

TABLE 2. Dimensionless groups and oscillation summary in terms of peaks in data.

pressure above the liquid meniscus is nearly equal to P0− ρgghe(t). This is illustrated
best by fixing R and reducing L. As one approaches a sufficiently small L, gas
viscosity plays little role in reducing oscillatory behaviour. For L= 30 mm, oscillation
is more sustained with a pronounced overshoot. The accuracy of the theoretical
predictions is excellent although the time period for the oscillation is only about
200 ms. The dimensionless groups, and their efficacy for determining inertia’s
role in rise dynamics, are tabulated in table 2 for all experiments, including those
not displayed. The last column shows observed number of oscillatory peaks after
discounting the possible experimental imprecision.

For toluene, to ascertain the influence of the outer chamber, we carried out
experiments in which the container radius was either 2 cm or 4 cm for L= 30 mm,
so that the gas column influence was negligible. Experiments with the smaller
container are shown with a smaller marker for this case (figure 6a). Oscillations are
more pronounced, and extend over a few cycles. Except for a slight time mismatch
between the data and theory, peaks and valleys are quite well-matched. Sustained
oscillations are consistent with a large Ne of 41.8 and persist further for a larger
container (large marker). Thus, the container plays a role through the outer meniscus
for longer time scales over multiple oscillations, and it is only the first rise and
retraction that is dominated by capillary rise dynamics without considerations of
the outer meniscus. With an extended L of 600 mm and R fixed at R = 1000 µm,
we show the rise dynamics data and theoretical predictions in the same figure
(L = 300 mm is summarized in the table). Since toluene’s viscosity is smaller than
that of decane, the gas column has a more pronounced effect on reducing Ne and
reducing oscillations. In figure 6(c), we compare data for the short length tube, where
oscillations are prevalent, with three other computations: one without loss or added
mass but including inertia, another the Maggi & Alonso-Marroquin (2012) model
with the present dynamic contact angle equation, and finally the modified Maggi &
Alonso-Marroquin (2012) that includes meniscus mass. The no-loss model has the
smallest time period of oscillations, and oscillation amplitudes are larger. Numerical
magnitude increase is about 16 % for the case shown. The Maggi & Alonso-Marroquin
(2012) modified result accounting for meniscus mass has a maximal deviation of also
a similar magnitude. In figure 6(d), we also compare the experimental results with
two different theoretical calculations: one without an outer meniscus additional mass
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FIGURE 6. Clockwise from (a), capillary rise of toluene for capillaries of {R, L} =
{1000, 30}, {1000, 600}, {1000, 30} and {1000, 30}. With increasing L, offset corrections
are 0.0653 mm and 0.0327 mm. Comparison of models is shown in (c), with data as
markers. Outer meniscus correction is the same as in the previous figure, except for (d),
where two theoretical overlays of no correction and (40/35)ρlR are shown.

correction and the second with a correction of (40/35)ρlR per unit area of capillary.
A larger mass correction tends to stretch the time axis for the later oscillations,
matching the experimental data quite closely. The correction magnitude is computable
only if there are multiple strong oscillations present since the correction primarily
drives the time period. This also means that Ne should be � 1 for the outer meniscus
to be important, in addition to the requirement that the liquid wet the solid (θ→ 0).

A third liquid that is quite difficult to work with is diethyl ether because of its
low boiling point of 34.6 ◦C at P0; therefore evaporation lowers the experimental
temperature from the ambient. For a contact angle of 0◦, we first estimate surface
tension based on the equilibrium height, which is then translated to an approximate
temperature. Corresponding to this temperature, we may then calculate other properties
such as viscosity and density. For all of our runs, we used an approximate temperature
of 13 ◦C, close to the value of 15 ◦C measured at the capillary wall. The resulting
fluid and fluid–solid properties are tabulated in table 1. The {R, L} pairs were
{856, 127} and {1000, 30}. The calculations along with the theoretical predictions are
shown in figure 7. Predictions are excellent for the first three oscillations, beyond
which the theoretical calculations are muted compared to the experimental data. From
observations, it was quite clear that the container waves influence the later oscillations.
The example with R= 856 µm and L= 127 mm understandably has less pronounced
oscillatory behaviour but exhibits sufficient inertia and rise height to be a good test
for the model. Essentially, only three dominant oscillations are present and the lack
of discrepancy with predictions is not surprising.

The heterocyclic 1,4-dioxane (C4H8O2) does not strongly wet the capillary surface.
A large capillary experiment with R = 1000 µm required a sufficiently low L of
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FIGURE 7. Rise of diethyl ether in capillaries of (a) {R, L} = {856, 127} and (b)
{1000, 30}. The added mass per unit capillary area is (16/35)ρlR. Zero offset corrections
are 0.091 mm and −0.0226 mm for (a) and (b) respectively.
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FIGURE 8. Capillary rise of dioxane in capillaries of (a) {R, L} = {486, 127} and
(b) {1000, 30}. Agreement between theory and data is obtained without an outer
meniscus correction for both. Zero offset are 0.281 mm and −0.236 mm for (a) and (b)
respectively.

30 mm for manifesting measurable oscillation (see figure 8b). Our comparison
with the theoretical prediction matches data without any outer meniscus correction,
suggesting that a positive contact angle and a higher density are effective in
suppressing this effect. Furthermore, although Ne is 15.9 for {R, L} = {1000, 30},
oscillations are not sustained, since β is 105, and its effect is not considered in
Ne. Results of the experiments with R = 486 µm and L = 127 mm are shown in
figure 8(a). Inertial effects are minor and overlap between theory and experiment is
obtained with the same value of β.

5.2. Closed capillaries
For evaporation to be ignored, three different liquids, namely n-dodecane, n-
hexadecane and isocetane, all with a negligible vapour pressure were used. Experiments
were performed at room temperature, i.e. 21.9–22.9 ◦C. We list the properties close
to the experiment’s temperature in table 3. For preparing closed capillaries, we sealed
one end of the tube with wax, and waited at least half an hour before starting the
rise experiments.

In these experiments, one has to be careful that the temperature change is minimal
during the course of the experiment, since the gas column is isolated upon rise.
Atmospheric pressure variation during the liquid rise lasting a few seconds is
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FIGURE 9. Dodecane rise in a closed capillary for {R, L} = {75, 610}. S = 0.026, z0 =

−0.02865 mm, and Hec = 3.81 mm.

σlg (mN m−1) µl (mPa s) ρl (kg l−1) θ (deg.) β

Dodecane 24.9 1.4 0.7495 0 60
Hexadecane 27.0 3.0 0.773 0 75
Isocetane 24.1 3.6 0.783 0 56

TABLE 3. Physical properties of the liquids and liquid/solid.

negligible, and well within the noise of the measurement. Variation of P0 during
the course of all of the experiments was only 0.5 kPa (compare to 0.1015 MPa) and
so a mean value may be used. Any error in P0 from one experiment to another only
changes the (P0he(t))/(L− he(t)) term and that too by a negligible amount. Since
oscillatory motion is not present in any of the experimental observations, inertia
appears to play little role, and the outer meniscus correction was set to zero in the
calculations. Although our formulation would predict oscillatory behaviour for β = 0,
this is suppressed by velocity retardation due to non-zero β values as tabulated in
table 3. Values of β were inferred from an appropriately chosen open capillary. In
closed capillaries, the compression of gas limits the magnitude of Hec to a few mm
even in capillaries of less than 100 µm radius. Therefore, the largest radius in our
experiments was 75 µm.

A dodecane rise experiment in a closed capillary of R = 75 µm was conducted
twice, with a mean Hec of 3.81 mm. Figure 9 shows the two data sets and theoretical
predictions. The overlap substantiates the perturbation theory and the factor 8/3 for the
gas-phase pressure drop. Different radii of 25–75 µm and ranging from 200 mm to
600 mm in L were used for hexadecane. We show only the lengths >500 mm where
sensitivity to gas flow is noticeable for three different radii. Hexadecane’s viscosity is
only about twice that of dodecane, but its density and surface tension are comparable,
and it wets the capillary equally well. But hexadecane’s β is 25 % more than that
of dodecane. For a capillary radius of 25 µm, the rise is slow and runs for about
10 s. In figure 10, we show the data along with the theoretical computations. The
experimental results show minor variability, but the theory predicts the dynamics very
well. In particular, we also show a comparison of the present perturbation model for
gas flow with one without gas viscosity or when 8/3 is replaced by 8. In figure 10(d),
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FIGURE 10. For hexadecane, moving clockwise from (a), closed-capillary rise data are
compared with theory for {R, L} = {25, 600}, {75, 610} and {50, 500} with z0 = 0 mm,
−0.0112 mm and 0.00175 mm. In the same sequence S = 0.00079, 0.012 and 0.0049.
Panel (c) also compares results when Poiseuille flow or µg= 0 are used. Panel (d) graphs
theoretical computations illustrating suppression of oscillation by β (S = 0.19, {R, L} =
{175, 175}).

we also show theoretical results for three different values of β for hexadecane with
{R,L}= {175, 175}, emphasizing that oscillations present for β= 0 may be suppressed
by friction at the moving contact line.

For isocetane, experiments were limited to an R of 75 µm, but with L varying from
400 mm to 610 mm. Results for the shortest and longest L are shown in figure 11
illustrating agreement between theory and data. Note that on figure 11(a), the y-axis
is exaggerated, and the difference between theory and experiment is less than z0.

6. Conclusions

Universal models that predict capillary rise dynamics across a range of capillary
lengths and radii have been presented. With a self-consistent formulation, using results
from single-phase hybrid-capillary flow, we address entry and exit effects, and inner
and outer menisci movement. For the entry problem, the added mass inertia within
the container consists of two distinct parts: (i) acceleration of the container fluid due
to flow into the capillary and (ii) acceleration of the fluid due to the presence of an
outer meniscus. The latter appears necessary for capturing time periods correctly.

For gas flow, the closed-capillary problem requires multiple length and time scales.
New results for capillary rise based on a perturbation solution for laminar flow for
gas with moving and sealed boundary conditions have been derived. The resulting
perturbation solution, when included in the rise formulation, agrees with data in closed
capillaries for three different liquids over a range of capillary sizes.
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FIGURE 11. (a) Isocetane rise data for L = 400 mm and R = 75 µm along with the
theoretical prediction. The offset z0 is −0.123 mm, Hec is 2.45 mm and S is 0.013. (b)
Isocetane rise data for L = 610 mm and R = 75 µm and theory. Hec is 3.68 mm, z0 is
−0.136 mm, and S is 0.011.

Corrections from a static contact angle to a dynamic one with a fixed β appear to
be adequate for the liquids studied. Hysteresis models fit the data no better than a
single β value. In general, β decreases amplitude of oscillation or entirely suppresses
it. While the moving contact line problem is virtually intractable in its fine details,
the macroscopic rise dynamics given in this paper seems sufficient.

Appendix A. Entry loss
Capillary rise dynamics is a complex moving contact line problem, and is difficult

due to the rearrangement of streamlines near the moving interface to accommodate
uniform velocity. The additional friction of the ordered structure at the interface
contact line is taken into account through β, but here our aim is to infer entry loss
due to flow into a capillary from a container and the streamlines rearrangement. In
dimensionless form, this should be a function of Reynolds number, Rel, and he/R,
for a sufficiently large container size. Pressure loss for the rising liquid corresponds
to Lfrl. Gas retracts during liquid rise and this is addressed as a part of exit loss in
appendix B. Pressure loss during gas entry is labelled Lfrg and its functional form is
the same as Lfrl, except that Rel should be replaced by Reg in the argument.

For a quantitative estimate of Lfrl, we set a capillary of length of he along which
a no-slip boundary condition is satisfied. In the dynamic problem, he varies with t.
Since computing Lfrl is based on steady single-phase flow, he is fixed for numerical
simulation; therefore, the computation is rapid. We add a suitable length L − he of
capillary of the same radius R, on the surface of which, the liquid has perfect slip.
L is large enough that capillary outlet velocity is uniform. Thus pressure recovery
due to rearrangement from a parabolic profile to a plug-flow profile is automatically
included. At the outlet, pressure is at 0 Pa whereas the side and bottom boundaries
of the container are kept at an elevated pressure to cause flow through the capillary.
Note that this is with incompressible flow and therefore the datum pressure is arbitrary.
The elevated pressure fixes the flow rate. Once the velocity through the capillary is
numerically evaluated, Rel is known. We used COMSOL (trademark of COMSOL
Inc.) to carry out these calculations over a range of he and R.

The boundary value problem satisfies continuity, i.e. ∇ · v = 0, and the Navier–
Stokes equation in (r, z) (Bird, Stewart & Lightfoot 2002). We impose p = Pf as
r→∞ and z→−∞ in the container. Also p= P0 = 0 at z= L+ zr and 0 6 r 6 R,
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FIGURE 12. Axisymmetric velocity map on a rainbow scale for 10 Pa (a) and 1 Pa
(b) drive from the periphery. The capillary is 1 mm radius. In (a) Rel ≈ 75.5 and is
≈9 in (b). The no-slip/slip transition in the capillary is at z − zr of 20 mm. Notice the
flow rearrangement to uniform profile past this length. Also, the entry region below the
capillary is more hemispherical in (b), and its shape changes with Rel. Since the pressure
at the entry is different from Pf − (1/2)ρlV̂2 and is not uniform, one has to account for
flow losses outside and within the capillary. Maximum and minimum velocity magnitudes
are above and below the colour bar and are shown with up and down triangles.

i.e. at the capillary top. At the surface of the container, i.e. R 6∞, z = zr, shear
stress is zero to mimic the liquid–air interface. In the no-slip length of the capillary
of height he, v = 0 at r = R. The slip section of the capillary has zero shear at the
wall. Visualizing the boundary value problem follows from the results presented in this
appendix and appendix B. The container is sufficiently large that its size plays little
role in determining the losses. There is no need to consider gravity or body force
in these calculations, because in single-phase flow Pf may be regarded as a drive
potential. For each he, and for a given Pf , simulation may be used to calculate the
mass flow rate M. For this M, we calculate average velocity from V̂ = M/(πR2ρ).
Two different velocity maps, one with a drive of 10 Pa, and another with a drive of
1 Pa are shown in figure 12. As anticipated, a region of container having non-zero
inertia must be considered for describing the moving meniscus. The shape of this
region varies with Rel, and a fixed added mass is inadequate.
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FIGURE 13. (a) Simulation results translated to dimensionless loss in pressure as a
function of Rel and he/R are shown; 2Lfr/(ρV̂2) is approximately linear with respect to
1/Re. In (b) mR/ρ is shown to correlate to Re for different he/(2R) and for Pf from
0.05 Pa to 50 Pa.

In the absence of entry and flow rearrangement loss or gain, from the Bernoulli
equation, and laminar-flow-induced loss on the capillary wall of length he, since P0=

0 Pa,

Pf =
1
2
ρlV̂2
+

8µlV̂he

R2
for Lfrl = 0. (A 1)

Therefore, we calculate Lfrl from

Lfrl = Pf −
1
2
ρlV̂2
−

8µlV̂he

R2
. (A 2)

The dimensionless form of Lfrl may be written as

2Lfrl

ρlV̂2
= fr

(
Rel;

he

R

)
, (A 3)

where fr is the function whose first argument is Rel for Lfrl and Reg for gas entry;
for the latter the value computed is for 2Lfrg/(ρgV̂2). The values of Lfrl over kinetic
energy (per unit volume) are plotted with respect to 1/Rel in figure 13. The various
markers are for he/(2R) of 0.25, 0.5, 1, 2.5, 5 and 10. Fortunately, for the accuracy
desired in our predictive model, a correlation of the form

fr

(
Re;

he

R

)
≈ 0.54+ 27/Re (A 4)

is adequate. This is shown as the line fitted through the data points. The correlation
applies for liquid entry with Re=Rel, and for gas entry from the top with Re=Reg.

Along with the liquid rise calculation, we may also correlate (see figure 13b)
mR/ρl to Rel and he/R, by computing mR through (3.6); this is needed for expressing
the rate of change of momentum within the container with given external force or
pressure. The same correlation may be applied for gas intrusion from the capillary
top, by replacing Rel with Reg and ρl with ρg. Here he/R shows little influence. The
lognormal functional form of the correlation is

mR

ρ
= 0.8144+ 0.5006 exp

[
−

ln 1/(2.68Re)

3.536

]
. (A 5)

Since mR changes with V̂ , it is necessary to include m′R terms in the formulation.
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FIGURE 14. (a) Isobars for Pf = 25 Pa. The bottom of the capillary is close to 0 Pa,
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and above 25.01 Pa are left white. Speckling is due to discretization and contouring. (b)
Velocity map for a drive of 25 Pa. At exit, the velocity profile is non-uniform, nearly the
same as the developed parabolic profile.

Appendix B. Exit loss

For the exit problem, numerical simulations show that the capillary outlet is nearly
at 0 Pa, the pressure at the container periphery. The momentum outflow is lost.
Computed results are shown in figure 14: isobars in (a) and the velocity map in
(b). The exit velocity profile resembles a developed parabolic profile; therefore the
momentum outflow flux is (4/3)ρlV̂2, whereas the inflow is ρlV̂2. During retraction,
the liquid column height is assumed to be large enough for Poiseuille flow to develop
within the capillary and loss is computed as per (3.5). Pf is maintained at the top of
the capillary. A perfect-slip capillary wall is placed in the top section, followed by a
no-slip capillary of length he.

Numerical results for 2Lfel/(ρlV̂2) are described by a function fe(Rel;he/R) given by

2Lfel

ρlV̂2
= fe(Rel; he/R)= 1.07+

2985− 1.07
1+ (56.94Rel)1.185

. (B 1)

Dependence on he/R is quite weak. Dimensionless gas exit loss is also calculated
using fe, but with argument Reg. Here fe(Reg; he/R) is the ratio of Lfeg and (1/2)ρgV̂2.
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