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In this paper we address the extension problem for quantal measures of path-integral type,

concentrating on two cases: sequential growth of causal sets and a particle moving on the

finite lattice Zn. In both cases, the dynamics can be coded into a vector-valued measure µ on

Ω, the space of all histories. Initially, µ is just defined on special subsets of Ω called cylinder

events, and we would like to extend it to a larger family of subsets (events) in analogy to the

way this is done in the classical theory of stochastic processes. Since quantally µ is generally

not of bounded variation, a new method is required. We propose a method that defines the

measure of an event by means of a sequence of simpler events that in a suitable sense

converges to the event whose measure we are seeking to define. To this end, we introduce

canonical sequences approximating certain events, and we propose a measure-based criterion

for the convergence of such sequences. Applying the method, we encounter a simple event

whose measure is zero classically but non-zero quantally.

1. Introduction

In order to define area, even for something as simple as a disk of unit radius, we need

to invoke an extension theorem. In a systematic development (Kolmogorov and Fomin

1961) of plane measure, we begin by defining the measure µ of an arbitrary rectangle,

and then seek to extend the set-function µ unambiguously to subsets of the plane that

can be made from rectangles through countable processes of union and complementation

(these sets comprising the σ-algebra generated by the rectangles). The unit disk is such

a subset, and (if we take it to be open) it can obviously be built up as the disjoint

union of a countable family of rectangles. But this can be done in an infinite number

of different ways, and we need to know that the net area of the rectangles is always

the same, no matter which decomposition we choose and no matter what order we

choose to perform the resulting sum. The theorem that guarantees this consistency is

known as the Kolmogorov–Carathéodory extension theorem, but it might also be called
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the ‘fundamental theorem of classical measure theory’. Not only is it used to construct

Lebesgue measure, but it plays a central role in defining stochastic processes like the

Wiener process, which is a mathematical model of Brownian motion that also describes

the Wick rotated path-integral for a non-relativistic free particle on the line.

In this sort of application, we are dealing with a probability measure on a space of

paths or, more generally, ‘histories’, and the possible values of µ are therefore positive real

numbers between 0 and 1. However, when we try to define a genuine path integral in real

time (as opposed to Wick-rotated, imaginary time), we encounter complex amplitudes that

can be arbitrarily large and of any phase. Once again, there are some especially simple

sets of paths, called ‘cylinder sets’, which are analogues of the rectangles, and from which

the more general sets of interest can be built up. However, the sums that arise in this case

no longer converge absolutely. In technical terms, the complex measure we are trying to

extend is not of bounded variation, and the available extension theorems cannot be used†.

The problems we face vary, depending on the context. There are ‘ultraviolet’ problems

springing from the infinite divisibility of the paths or ‘histories’ we are trying to sum over,

and there are ‘infrared’ problems arising in connection with histories that are unbounded

in time. By limiting ourselves to spatio-temporally discrete processes, we nullify the

former problems, and that will be the context of the rest of this paper, where we will only

encounter discrete histories like those that occur in a random walk. We will thus only be

occupied by issues of infinite time.

The concrete instances we will consider will be of one of two types, which we can

characterise by the kind of ‘sample space’ or ‘history space’, Ω, that we build on. The

first instance arises in the context of quantum gravity and, more specifically, within the

causal set programme. There the discreteness reflects the finiteness of Planck’s constant,

and the underlying physical process is a kind of ‘birth’ or ‘accretion’ process by means of

which the causal set is built up or ‘grows’. The corresponding sample-space of ‘completed’

causal sets consists of all the countable, past-finite partial orders P ; and we seek to define

a certain type of vector-valued measure µ on it.‡ In the second type of example, the

elements of Ω will be discrete-time trajectories moving in a lattice that will be either the

integers modulo n (Zn) or just the integers as such (Z). These examples correspond to a

widely studied class of processes known as ‘quantal random walks’, but for us they will be

important primarily as simplified analogues of causal set growth processes. In that role,

they are particularly illuminating because their sample spaces are essentially the same as

those investigated in ‘descriptive set theory’.

But how certain are we that the quantal measures in all these instances really need

to be defined in a new way? With the lattices, the dynamical laws in question are

those of the evolution generated by a unitary operator or ‘transfer matrix’. In their

† See unpublished notes Path Integrals by R.Geroch available at http://www.perimeterinstitute.ca/

personal/rsorkin/lecture.notes/geroch.ps.)
‡ The dynamics determines µ only up to a unitary transformation. The object of direct physical interest is

not µ itself but a certain scalar-valued set-function belonging to the class of strongly positive decoherence

functionals or quantal measures on Ω. However, any such functional can be represented (Dowker et al. 2010)

as a measure on Ω that is valued in some Hilbert space H.
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path-integral formulation, such unitary laws inevitably lead to measures of unbounded

variation (Dowker et al. 2010), and Kolmogorov–Carathéodory-type theorems are thus

guaranteed to fail. In the more important, causal set case, however, there remains some

doubt, especially given the anticipated breakdown of unitary evolution in that case. The

only fully developed dynamics we have for causal sets is that of the classical sequential

growth (CSG) models, which in themselves are not quantal in nature. For them, the

usual extension theorems do suffice because we are dealing with a classical probability

measure (Brightwell et al. 2003). But if we complexify the parameters of a CSG model,

we straightforwardly obtain a family of quantal measures (decoherence functionals) that

are in general neither unitary nor of bounded variation (Dowker et al. 2010). Although

none of these complexified CSG dynamics is likely to exhibit quite the type of interference

required by quantum gravity, the fact that the measures that arise are not of bounded

variation suggests that this might turn out to be a general feature of quantal causal sets,

just as it is a general feature of quantal path integrals in other contexts. Nevertheless, it

is worth bearing in mind the possibility that the physically appropriate quantal measures

for causal set dynamics will turn out to be σ-additive in the traditional sense. Were that to

happen, quantum gravity would have revealed itself to be more tractable mathematically

than the nominally much ‘simpler’ non-relativistic free particle! The problems addressed

in the present paper would then be pseudo-problems, as far as quantum gravity went.

In our current state of ignorance, however, it seems prudent not to count on so much

good fortune. And, besides, we might still like to have a well-defined path-integral for

systems like the free particle, but without having to embed them in a full-blown theory

of quantum gravity. What, then, can we do when bounded variation fails? As argued

in Dowker et al. (2010), such a failure need not be the end of the story because in a

concrete physical situation, the space of histories has more structure than is available in an

arbitrary measure space. Indeed, physicists routinely work with infinite sums and integrals

that converge only conditionally. Typically, they introduce a ‘cutoff’ or integrating factor

in a manner mandated by physical considerations, in effect, doing the sums or integrals

in a particular order so that their convergence need not be absolute. In the case of the

planar disk, for example, instead of expressing it as a disorganised sum of an infinite

number of rectangles, we might think to employ a definite sequence of approximations,

each consisting only of rectangles bigger than a certain size ε. The area would then be

given by the ε→ 0 limit of these approximations.

In our situation, we can attempt something similar by considering ‘late-time’ cylinder

sets to be ‘finer’ than ‘early-time’ ones. In order to implement this idea, we will first, for any

given set A ⊆ Ω of histories or paths, look for a ‘canonical’ sequence of approximations

An to A in terms of cylinder sets, and this sequence should be as near to unique as feasible.

Then, given such a sequence, we will try to decide what further convergence properties

it ought to have in order that we can form a limit µ(A) of the individual µ(An) and

consistently attribute this limit to A as its quantal measure.

In the following, we will only take a few steps in the direction indicated, pointing out

along the way various pitfalls we will need to avoid. Hopefully, this can at least illustrate

the kind of approach we might take to the extension problem for quantal measures.

Sections 6 and 7 are the heart of the paper. In Section 6, we will define canonical
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approximations for a limited class of events, as (sufficiently regular) subsets A ⊆ Ω are

normally designated. We will then introduce a convergence criterion for an approximating

sequence An in Section 7, and prove that the resulting extension of µ is additive for

disjoint unions of open sets. Limited as our approximation scheme will be, it will at least

embrace the type of event A that is most important for the sake of causal sets, namely the

covariant stem event. Among all the sets of histories we might wish to assign a measure

to, these are the only indispensable ones. Without them, it would be nearly impossible

to produce a generally covariant dynamical scheme in any useful sense (Brightwell et al.

2002; Brightwell et al. 2003).

An appendix lists some of the symbols used in the body of the paper.

2. Sample-spaces and amplitudes for causal sets and the 2-site hopper

2.1. Causal sets

A causal set (or causet) (Bombelli et al. 1987; Sorkin 2005; Henson 2009; Dowker 2006;

Surya 2011) in its most general form can be any locally finite partial order or poset, but in

the context of the dynamics of sequential growth and quantal cosmology, no element of

the causet will possess more than a finite number of ancestors. For our present purposes,

we may thus define a causet as a past-finite countable poset, that is, a countable (possibly

finite) set of elements endowed with a transitive, acyclic order-relation, ≺, which I will

also take to be irreflexive. These concepts are described in greater detail in Rideout and

Sorkin (2000), where the notion of sequential growth is also explained. Here we will just

summarise the main definitions and introduce the notation we will use.

A sequential growth process proceeds as a succession of ‘births’ of new elements, and

in this sense is never ending. If, however, we idealise it as having ‘run to completion’,

it will have produced a completed causet as defined above: a countable set of elements,

each having a finite number of predecessors or ancestors but a possibly infinite number

of descendants. The set of all such causets constitutes the natural sample-space Ω for

this process. In fact, we must distinguish here two distinct sample spaces, which we

may call Ωgauge and Ωphysical . The latter, which in some sense is the true sample space,

consists of unlabelled causets, or, equivalently, isomorphism equivalence classes of causets.

The former, which we will normally simply denote by Ω, then consists of the naturally

labelled causets, where a natural labelling is a numbering, 0, 1, 2, . . . , of the elements that is

compatible with the defining order ≺: if x ≺ y, then y carries a bigger label than x. Here

again, of course, we really intend isomorphism equivalence classes of labelled causets (or,

if you like, the elements could be taken to be the integers themselves in this case).

The labels record the order of the respective births, and what is most important for

us here is that this order is supposed to be fictitious in the same sense as a choice of

coordinate system for a continuous space–time is fictitious. The physically meaningful

or covariant events will thus correspond to subsets of Ωphysical , whereas the measure µ

defining the growth process is in the first instance defined on Ωgauge. But even a very

simple subset of Ωphysical , even a singleton, will equate to a much less accessible subset

of Ωgauge, namely, the subset obtained by taking every possible natural labelling of every
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member of the original subset. In this way, the need arises for an extension of µ that will

assign well-defined measures to such ‘covariant’ subsets of Ωgauge. Unlike the case for the

example of the hopper to be discussed next, this is not just a matter of convenience if we

want to be in a position to ask truly label-independent questions about the causet.

For the rest of this paper, all causets will be labelled unless otherwise specified.

(Brightwell et al. (2003) used Ω to denote the true or ‘covariant’ sample space, and Ω̃ for

its labelled counterpart). Here, however, it seems simpler to use Ω for the latter since it is

the space we will usually be dealing with.

In Brightwell et al. (2003), the measures defining the CSG dynamical models were

defined rigorously by extending a probability measure given originally on the space Z of

cylinder events (or cylinder sets), where a cylinder event cyl(c) ∈ Z is by definition the

set of all completed causets containing a given, naturally labelled, finite causet c. A finite

causet will also be called a stem, and, on occasion, a ‘truncated history’. In conjunction

with these definitions, we will also define Ω(n), which is the space of all naturally labelled

causets of n elements, and Z(n) or Zn, which is the space of cylinder events of the form

cyl(c) for c ∈ Ω(n). The cylinder sets comprise what is called a ‘semiring’ of sets in the

sense that given any two cylinder sets, Z1 and Z2, their intersection, Z1Z2 ≡ Z1∩Z2, is

also a cylinder event, and their difference Z1\Z2 is the disjoint union of a finite number

of cylinder events. In fact, the cylinder events form an especially simple kind of semiring

because any two of them are either disjoint or nested.

To go through the definition of the CSG models in general would take us too far

afield, but the special case of ‘complex percolation’ is simple enough to be given here as

an illustration of the general scheme. The vector measure µ is determined in this case

by a single complex parameter p, and it takes its values in a one-dimensional Hilbert

space, which we may identify with C, so that µ(A) is itself just a complex number. Now

let c ∈ Ω(n) be a labelled causet of n elements and let Z = cyl(c) be the corresponding

cylinder set. Then µ(Z) = pL(1 − p)I , where L = L(c) is the number of links in c and

I = I(c) is the number of incomparabilities. Here an incomparability is simply a pair of

unrelated elements, and a link is a causal relation, x ≺ y, which is ‘nearest neighbour’ in

the sense that there exists no intervening z for which x ≺ z ≺ y.

Observe now that the collection of naturally labelled finite causets, that is, the space⋃
n Ω(n), has itself the structure of a poset in a natural way. Indeed this poset is actually

a tree T, because its elements are labelled. (The corresponding structure formed by the

unlabelled stems is a more interesting poset called poscau in Rideout and Sorkin (2000).)

Clearly, a particular realisation of the growth process, or, equivalently, the resulting

completed causet in Ω, can be thought of as an upward path through this tree. An

analogous concept will be possible for the two site hopper, and in this guise seems to

have been heavily exploited in descriptive set theory (Kechris 1995; Moschovakis 2009).

(See figures 1 and 2.)

Finally, we will define an event algebra to be a family of subsets of the sample space

Ω closed under the operations of intersection and complementation. An event algebra is

thus a Boolean algebra or ‘ring of sets’. To the extent that it can be achieved, we normally

want the domain of µ to be such an algebra, because, for example, if the events ‘A

happens’ and ‘B happens’ are of interest, then so also is the event ‘either A or B happens’.
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Fig. 1. The first 4 levels of the tree T of naturally labelled causets

The cylinder sets Z do not themselves form an algebra, but the family S of finite unions

of cylinder sets does – in fact, it is R(Z) the Boolean algebra generated by Z. In all cases

of interest, µ will automatically extend uniquely from Z to S, yielding a finitely additive

measure on it. The space S thus constitutes a minimum domain of definition for the

vector measure µ. The question then will be how far µ can be extended beyond S into

the σ-algebra generated by it, the hope being that the enlarged domain A will itself be

an event algebra, and that it will contain enough events such that, at a minimum, the

physically most important questions will become well posed. (Some noteworthy instances

of covariant questions/events will be discussed in the next section.)

2.2. n-site hopper

By ‘2-site hopper’ we mean the formalisation of a particle residing on a 2-site lattice

and at each of a discrete succession of moments, it either stays where it is or jumps

to the other site (Gudder and Sorkin 2012). For definiteness, we will assume that the

moments are labelled by the natural numbers and the sites by Z2, and that the hopper

begins at site 0 at moment 0. The definitions of sample space, cylinder event, and so on

are closely analogous to those given above for causets, and references to them should

be understandable for the moment without their formal definitions, which will be given

after the transition amplitudes have been specified. The full course of the motion, which

is idealised as having run to completion, will be called a path or ‘history’. Notice that,

modulo the small ambiguity in how a real number can be expressed as a ‘binary decimal’,

each such path can be identified uniquely with a point in the unit interval [0, 1] ⊆ R.
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Aside from having a simpler sample space than in the causet case, the hopper also

offers us a fuller illustration of the problems of defining the vector measure corresponding

to a path integral. Unlike the former case, where the correct choice of quantal amplitudes

is only conjectural, there exists for the hopper a choice that can be interpreted as

a straightforward discretisation of the Schrödinger dynamics of a non-relativistic free

particle moving on a circle (cf. Pearle (1973)).

These amplitudes can be understood more easily if we set them up, not just for two sites,

but for the more general case of the circular lattice Zn (‘n-site hopper’). They may look

more familiar if we present them as the unitary evolution operator or ‘transfer matrix’

analogous to the propagator that solves the Schrödinger equation in the continuous case.

To that end, let x ∈ Zn be the location of the particle at some moment t, let x′ be its

location at the next moment t′ = t+1, and for brevity write exp(2πiz) ≡ 1z . The amplitude

to go from x to x′ in a single step is then

1√
n

1(x−x′)2/n

for n odd, and

1√
n

1(x−x′)2/2n

for n even. For example, for n = 6 and with q = 11/12, the (un-normalised) amplitudes

to hop by 0, 1, 2 or 3 sites are q0 = 1, q1 = q, q4, and q9 = −i, respectively. For the 2-

and 3-site hoppers, the above amplitudes are particularly simple, yielding for n = 3 the

transfer matrix

1√
3

⎛
⎝1 ω ω

ω 1 ω

ω ω 1

⎞
⎠ (ω = 11/3)

and for n = 2 the transfer matrix

1√
2

(
1 i

i 1

)
. (1)

From these expressions and the definition of the decoherence functional, it is not hard

to construct the equivalent vector measure along the lines of Dowker et al. (2010). In

the simplest case of two sites, which will be our main example here, µ is valued in a

two-dimensional Hilbert space C
2 and, with a convenient choice of basis vectors, can

be expressed as follows. Let (0 x1 x2 x3 . . . xm) be a truncated path and Z ⊆ Ω be the

corresponding cylinder event. Then µ(Z) ≡ |Z〉 will be the two-component complex

vector vα where (with no summation implied)†

vα = (U−m)αxmUxmxm−1
· · ·Ux3x2

Ux2x1
Ux10, (2)

U being the unitary matrix of equation (1). Note, incidentally, that Uj is periodic with

period 8 and is very easy to compute explicitly, since U4 = −1 while U2 =
(
0 i

i 0

)
is also

very simple.

† Another notation for vα could be 〈α|0 x1 x2 x3 . . . xm〉
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Fig. 2. The first 4 levels of the tree T for the 2-site hopper

Finally, we will give the formal definitions for the 2-site hopper. A truncated history,

the counterpart of a finite causal set, is for the hopper an initial segment of a path, for

example, (0, 1, 1, 0, 1). (Recall our boundary condition that all paths begin at zero.) The

set of all such truncated histories with length n when the initial 0 is omitted will be Ω(n),

and the corresponding cylinder events will be the elements of Zn. The semiring Z will be

the union of the Zn. For example, cyl(0, 1, 1, 0, 1) ∈ Z4 is the set of all completed paths of

the form (0, 1, 1, 0, 1, x5, x6, · · · ). Exactly as above, S will be the Boolean algebra generated

by Z. We can check straightforwardly that µ, as defined by (2), extends uniquely and

consistently to each Sn, and therefore to S as a whole. Again, the truncated histories

can be construed as the nodes of a tree T, the ‘branches’ or ‘edges’ being given by path

extension. (See Figure 2.) For example, there will be an edge from (0, 1, 1, 0) to (0, 1, 1, 0, 1).

In the following, it will sometimes be enlightening to consider hopper-paths on the

infinite lattice Z. In that case, the paths will be restricted to move no more than one site

per step (‘random walk’) so that the resulting tree T continues to have a finite number of

branches emanating from each node.

For an extensive discussion of the quantal 2-site hopper, see Gudder and Sorkin (2012).

For more general sorts of quantal random walks, see Martin et al. (2005).

3. Some events whose measures we would like to define

The event algebra S generated by the cylinder events supplies enough events to allow us

to ask any question† about the process under consideration, as long as it does not refer

to happenings arbitrarily far into the future. But it is often the case that we do not want

† The words ‘event’ and ‘question’ are in a certain sense synonyms. For an event A ⊆ Ω there is a corresponding

question ‘Does A happen?’. Note in this connection that (except in the classical case) it would lead to

confusion if we read ‘A happens’ as ‘the path is an element of A’ – cf. Sorkin (2012).
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to be bound by this limitation, especially since in the causet case the ‘time’ referred to

contains a large element of gauge, as explained above.

To illustrate how ‘infinite-time’ events enter the story, we will now look at a few examples,

beginning with the n-site hopper. Perhaps the simplest and most familiar example of this

kind is the event R of return, which occurs if and when the particle returns to its starting

point at some later time. This event, in other words, is the set of all paths (0 x1 x2 . . . )

for which one of the xi = 0. Plainly, R is not in S, because the return, although it must

occur at a finite time if it occurs at all, can take place at an arbitrarily late time. For a

classical hopper on a finite lattice, we know that µ(R), the measure of the return event

(which classically is its probability), is unity, but in order to express this fact directly, we

need R to be in the domain of µ. Of course, we could avoid any direct reference to R

by introducing the finite-time event Rn that the particle returns on or before the nth step.

Instead of asserting that µ(R) = 1, we could then say ‘the sequence µ(Rn) converges to

1 as n→ ∞’. Plainly, the first formulation is simpler and less cumbersome to work with.

Notice in this case that not only at the level of the measures, but even at the level of the

events themselves, R is the limit of the Rn in a natural sense, since the latter are nested

and ‘increase monotonically to R’. That is, we have R1 ⊆ R2 ⊆ R3 · · · , with R itself being

the union of the Rn, or, logically speaking, their ‘disjunction’. Were µ a classical measure,

this would guarantee convergence of the µ(Rn) and consistent extension of the domain of

µ to include the event R; in the quantal case it guarantees nothing.

A similar event to ‘return’, but one that is related even less directly to any cylinder

event, is the event R∞ that the particle visits x = 0 infinitely often. This event also has a

well-defined probability of unity in the classical case. Since, however, it cannot come to

fruition at any finite time, it cannot, unlike the event R of simple return, be expressed as

a union of cylinder sets or other members of S. Instead, it is a countable intersection of

events, each of which is a countable union of events in S. For example, let E(j, k) for

j < k be the event that xk = 0. Then R∞ =
⋂
j

⋃
k E(j, k). (In words, for each moment

j there is a later moment k at which the particle visits the origin†.) To give meaning to

µ(R∞) by prolonging the initially defined measure with domain S, we would have to think

in terms of a limit of limits.

As a third example (restricted this time to one of the lattices, Z or Zn with n > 4),

consider the event that the particle visits x = 3 but never reaches x = 5. This is intermediate

between the two previous examples in its remoteness from S, and is naturally expressed

as the set-theoretic difference of two limits of finite-time events, the first being, naturally,

the event F that the particle reaches x = 3, and the second, G being the event that it

reaches x = 5. Just as with the return event R, the event F\G is, in a well-defined sense

to which we will return below, a limit of events in S, but it is not simply the union or

intersection of a monotonically increasing or decreasing sequence.

† We can often arrive at such combinations by beginning with a formal statement of what it means for the event

to happen. In this case, we might first write down what it means for R∞ not to occur: (∃n0)(∀n > n0)(xn �= 0),

and then negate it to obtain (∀n0)(∃n > n0)(xn = 0). The nested combination of unions and intersections is

basically just a translation of this second statement into set-theoretic language.
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It is useful at this point to introduce some further notation to help us discuss the types

of events we have just met. Let X be any collection of subsets of Ω closed under pairwise

union and intersection. Then
∨

X will be the family of events of the form
⋃∞
n=1Xn , where

Xn ∈ X and X1 ⊆ X2 ⊆ X3 · · · . It is easy to see that
∨

X is also closed under union and

intersection, and also that it would not change if we dropped the monotonicity condition,

X1 ⊆ X2 ⊆ X3 · · · . In words, the members of
∨

X are the unions of monotonically

increasing events in X. For the intersections of monotonically decreasing events in X, we

will write dually
∧

X. And for the Boolean algebra generated by X, we will write, as

above, R X or R(X) . Our first example, ‘return’, is then an element of
∨

S, our second

of
∧ ∨

S, and our third of R
∨

S, while for S itself, we have S = R(Z).

Turning now to events for causal sets, we will encounter some types that are very similar

to those just discussed. Foremost in importance are the unlabelled stem events mentioned

earlier. Given two causets c and c′, of which the first is finite, we say that c′ admits c as

a stem (or ‘partial† stem’) if c′ contains a downward-closed subset that is isomorphic to

c. In the context of sequential growth, this can also be expressed by saying that it might

have happened that elements of c were all born before any of the remaining elements of

c′. A stem thus generalises the notion of an ‘initial segment’. The stem event ‘ stem(c)’ is

then the set of all c′ ∈ Ω that admit c as a stem. The stem c that enters this definition is

taken to be unlabelled because our aim is to produce a label-independent or ‘covariant’

event. It is evident that stem(c) is indeed covariant in this sense, since the condition that

defines it does not refer to the labelling of c′.

The importance of the stem events physically is that, essentially, any covariant question

that we care to ask about the causet can in principle be phrased in terms of stem events.

The precise result proved in Brightwell et al. (2003) is that every covariant event is equal,

up to a set of measure zero, to a member of the σ-algebra generated by the stem events.

We can also prove that any covariant event that is open in the topology of Section 4 later

in this paper is a countable union of stem events, which is a purely topological result that

holds independently of any assumption about the measure µ. Ideally then, the domain of

µ would embrace the whole σ-algebra generated by the stem events. At a minimum, one

would hope that it would embrace the stem events themselves.

Now the event ‘ stem(c)’ does not belong to the domain S on which µ is initially defined

because it is not a finite-time event when referred to ‘label-time’. If it were, there would

exist some integer N such that if the growing causet c′ admitted c as a stem, it would

already admit it as soon as the first N elements had been born. But, in fact, there is

nothing in principle to stop the stem in question appearing at an arbitrarily late stage of

the growth process. Evidently, the situation is like that of the hopper event ‘return’. Based

on this analogy, we would expect the stem events to be found in
∨

S, and so they are,

and this follows directly from the fact that any stem event is a union of cylinder sets:

stem(c) =
⋃{

cyl( b̃ ) ∈ Z | b̃ admits c as a stem
}
. (3)

† We can also define ‘full stems’ (Rideout and Sorkin 2000), but there is no special reason to consider them

here.
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The problem of extending the vector measure µ from S to
∨

S is thus the most basic

one for causal sets.

Starting from the stem events, we can build up other covariant events, whose occurrence

or non-occurrence is of interest for cosmology. The simplest of these is the event that the

causet is ‘originary’, meaning that all its elements descend from a unique minimal element

or ‘origin’. To say that a completed causet is originary is simply to say that it contains

no second minimal element, for which it is necessary and sufficient that it fails to admit

the 2-element antichain as a stem. (An antichain is a set of elements that are mutually

unrelated or ‘spacelike’ to one another.) Thus, the event ‘originary’ is the complement of

the event ‘ stem(a)’, where a is the antichain of two elements. As such, it belongs to
∧

S,

since, as we have seen, the stem events all belong to
∨

S, and union turns into intersection

under complementation.

If an originary causet represents a certain kind of ‘big bang’, then a causal set containing

what is called in the combinatorics literature a post describes a ‘cosmic bounce’. (A post

is an element of a poset that is spacelike to no element.) In its degree of remoteness

from the elementary cylinder events, the post event is comparable to the event of ‘infinite

return’ in the case of a random walk, the similarity being even closer if we compare the

post event to the complement of the infinite return event. In fact, both events belong to∨ ∧
S, although it is less easy to demonstrate this for the post event than it is in the

case of return. To see why this is, nevertheless, true, imagine watching a succession of

births of causet elements, x0, x1, x2 . . . and waiting for a post to be born. If the birth in

question is that of element xn, then xn must have every previous element as an ancestor:

xj ≺ xn for all j < n. This renders xn momentarily a ‘candidate for becoming a post’, but

it does not guarantee that xn will remain a viable candidate forever. In order for that to

occur, every subsequent element, xn+1, xn+2, · · · , must arise as a descendant of xn, that is,

xj � xn for all j > n. By thinking of the post event P in this way, namely, as the set

of all sequences of births satisfying the condition that a candidate post appear at some

stage n and then not lose its viability at any later stage m > n, we can deduce that P

belongs to
∨ ∧

S. The most ‘covariant’ (albeit not the most direct) construction along

these lines proceeds by first expressing P in terms of stem events; this will also illustrate

the thesis that all covariant questions of interest can be expressed in terms of stem

events.

Proceeding in this way, note first that if x is a post, then its exclusive past T = {y | y ≺ x}
is not only a stem, but what has been called a ‘turtle’ (Varadarajan and Rideout 2006),

meaning in the present context a stem that wholly precedes its complement: (∀x ∈ T )(∀y /∈
T )(x ≺ y). Some thought reveals that a causet contains a turtle of n elements if and only

if every stem of cardinality n + 1 has a unique maximal element. Introducing the term

principal for such a stem, together with the terms n-stem (respectively, n-turtle) for a stem

(turtle) of n elements, we can say succinctly that a causet contains an n-turtle if and only

if every (n + 1)-stem is principal. Furthermore, it is easy to demonstrate that x is a post

if and only if both its exclusive and inclusive pasts are turtles (the exclusive past being

{y �= x | y ≺ x} and the inclusive past being {y | y � x}). Therefore, in a labelled causet,

element xn is a post if and only if every stem of either n+1 or n+2 elements is principal.

Let Pn be the event that this happens, then the post event itself is P = ∪∞
n=1Pn.
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Fig. 3. The non-principal 2- and 3-stems.

Now let us examine the event Pn more closely. It fails to happen if and only if some

(n + 1)-stem or (n + 2)-stem fails to be principal. Let Sn1 , S
n
2 , . . . , S

n
Kn

be an enumeration

of all such stems (there being only a finite number of n-stems, for any n), and let

Qnj = stem(Snj ) be the corresponding stem events. We then obtain Pn in the ‘manifestly

covariant’ form Pn = Ω\(∪jQ
n
j ) = Ω\(∪j stem(Snj )). P is thus a countable union of finite

Boolean combinations of stem events:

P =

∞⋃
n=0

(Ω \ (

Kn⋃
j=1

stem(Snj ))). (4)

If we knew how to take stem events as primitive, P would thus be a rather simple type of

event, inasmuch as the inner union only ranges over a finite number of events. But given

that the existing dynamical schemes all begin with labelled causets, we will still need to

trace everything back to the cylinder events Z.

First, though, a simple example might be in order, say for n = 1. (The event P0 is

just the originary event, which we might not even want to count as a post.) The event

P1 requires that all 2- and 3-stems be principal. The only 2-stem that can occur is thus

the 2-chain (a ≺ b), while the admissible 3-stems are the 3-chain (a ≺ b ≺ c) and the

‘Λ-order’ (a ≺ c, b ≺ c). The stems that must be excluded – those denoted above by

Snj – are correspondingly the 2- and 3-stems that are not principal: the 2-antichain, the

3-antichain, the ‘L-order’ (a ≺ b, c) and the ‘V-order’ (a ≺ b, a ≺ c) – see figure 3.

To complete the demonstration that P ∈
∨ ∧

S, let us return exclusively to labelled

causets, observing first that, in view of equation (4), it suffices to show that the complement

of a finite union of stem events belongs to
∧

S.† To this end, recall that any stem event

A is an increasing union of events in S. Its complement, Ω\A, is therefore a decreasing

intersection of complements of events in S, each of which is itself in S since the latter,

being a Boolean algebra, is closed under complementation. Hence, the complement of a

stem event belongs to
∧

S, and the same holds for the complement of a finite union of

stem events, such as occurs in (4).

† Strictly speaking, given the way we have defined the operation
∨

, we also need to convert the outer union

in (4) into an increasing countable union of events in
∧

S. That this is possible follows readily from the

relation (6) of Section 5, which informs us that, when An and Bn are both decreasing sequences of sets, the

union of their limits coincides with the limit of the decreasing sequence An∪Bn, in consequence of which,∧
S is closed under finite union, and we can replace a countable union ∪nFn of events Fn ∈

∧
S with the

increasing union ∪nF ′
n, where F ′

n = ∪m�nFn .
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For reasons that will become clear shortly, it is natural to designate the elements of S

as clopen, meaning ‘both closed and open’ in the sense of point-set topology†. The events

in
∨

S will then be open, those of
∧

S will be closed, and we will have expressed our post

event P ⊆ Ω as an increasing limit of closed subsets of Ω. Continuing in this vein, more

elaborate combinations of the clopen events can be formed, including, for example, the

event that infinitely many posts occur. But the physical relevance of such combinations

seems to shrink rapidly as their complexity grows. Indeed, we might feel that, questions

of convenience aside, no event more complicated than a finite Boolean combination of

stem events can claim to be indispensable. We might even go further and call into doubt

the status of complementation (negation), leaving unquestioned only those events formed

as finite unions and intersections of stem events.

4. Ω as a compact metric space

4.1. Open and closed sets

Whenever the idea of convergence plays a role, we can expect, almost by definition,

that topology will make an appearance. In the present situation we are talking about

convergence to a given event A ⊆ Ω of a sequence of approximating events An, where in

the first instance the An are formed as finite unions of cylinder events and thus belong

to the event algebra S. In setting up such a sequence of approximations, we would like,

as explained earlier, to regard those cylinder events that specify a greater portion of the

history as more ‘fine grained’ than those that specify a lesser portion. This leads very

naturally to a definition of distance between histories that makes Ω into a compact metric

space (Brightwell et al. 2003; Kechris 1995).

In the case of causal set growth processes, the definition runs as follows. For each pair

of completed labelled causets a, b ∈ Ω, we set

d(a, b) = 1/2n, (5)

where n is the largest integer for which the elements a0 a1 · · · an produce the same poset

(with the same labelling) as elements b0 b1 · · · bn. It is easy to verify that this yields a

metric on Ω. Indeed, d satisfies a condition stronger than the triangle inequality: for any

three causets a, b and c, we have d(a, c) = max(d(a, b), d(b, c)). This ‘ultrametric’ property

follows from the tree structure of the space Z of cylinder sets (or equivalently truncated

histories), as described earlier. The maximum distance between two causets is 1/2, and

occurs when their initial two elements already form distinct partial orders. Notice also

that the open balls in this metric are exactly the cylinder sets, with the radius of the ball

serving as a measure of ‘fineness’.

It is not difficult to see that with this metric, Ω becomes a compact topological space†.

Moreover, the cylinder sets, being the balls of some radius, are both open and closed, that

† In the context of abstract measure theory, the term ‘elementary sets’ was used in Kolmogorov and Fomin (1961)

to refer to events analogous to those of S.
† This will be proved explicitly in the next section.
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is, clopen. It follows by definition that Ω has a basis of clopen sets and that every open

set is a countable union of cylinder sets (there being only a countable number of cylinder

sets because the finite causets are only countable in number). Since each element of the

event algebra S is itself a (finite) union of cylinder sets, we can conclude that the open

sets are precisely the members of
∨

S, the closed sets, their complements, then being the

members of
∧

S. The events that belong to both these families are the clopen events,

and they clearly include all of S, because a finite union of open (respectively, closed) sets

is also open (respectively, closed). We will prove the converse, that is, that every clopen

event belongs to S.

Lemma 4.1.
∨

S ∩
∧

S = S

Proof. We are asked to prove that S comprises precisely the clopen subsets of Ω. Since

we already know that every A ∈ S is clopen, it suffices to verify that any clopen A, that

is, any A ∈
∨

S ∩
∧

S , also belongs to S. Let A ∈
∨

S. By definition, A is a union of

cylinder sets:

A = Z1 ∪ Z2 ∪ Z3 . . . .

Now, this sequence either terminates at a finite stage or it does not. If it terminates, then

A is a finite union of cylinder sets, and thus a member of S, and we are done. If it does

not terminate, we can find a sequence of points xj ∈ A that escape from every Zj , and

because Ω is compact, we can suppose that this sequence converges to some x ∈ Ω. This

x cannot lie in any given Zk because it is a limit of points xj that eventually belong to

the closed set Ω\Zk . Consequently, x /∈ A = ∪kZk . We have thus constructed a sequence

of points of A that converge to a point outside A, meaning that A is not closed, and thus

cannot be clopen. In other words, if it is clopen, we are back to the terminating sequence

and the conclusion that A ∈ S.

Turning to the 2-site hopper, we only need to make one change to what we wrote

above for causets. The histories are now sequences of digits, 0 or 1, beginning with 0, and

the integer n that occurs in the definition (5) is now the largest index such that the two

subsequences (0 a1 a2 · · · an) and (0 b1 b2 · · · bn) coincide. The rest is all the same. The

history space Ω is still a compact metric space, the cylinder sets are clopen and generate

the topology, and so on.

4.2. The tree of truncated histories

We have already seen in Section 2, that a point of Ω, that is to say a history, can be

construed as a path γ through the tree T, each node of which is a ‘truncated history’,

meaning, depending on the context, either a finite causet or a finite sequence of binary

digits†. From this correspondence between histories and paths through T, we get an

† The paths under consideration in the following will usually begin at the ‘root’ of T (corresponding to

the cylinder set Ω), but sometimes they will start at some other node of T. The two cases are actually

interchangeable because any path not starting at the root has a unique extension back to it since T is a tree.
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alternative way to characterise certain types of events, including the open sets
∨

S and,

more generally, the events in R
∨

S.

We first consider a cylinder set Z = cyl(h), where h ∈ Ω(n) is a truncated history and

ask which paths γ correspond to this cylinder set? By definition, they are just the paths

whose corresponding histories reproduce h when truncated at the nth stage, that is, they

are precisely the paths that pass through the node in T that represents h, which we will

either denote by h itself or by node(h) in order to emphasise the fact that h is being

treated as a node in T. Because T is a tree, such a path necessarily follows one of the

branches emanating from node(h), and then remains for ever in the ‘upward subset’ of

T consisting of all descendants (in T) of h. In this way, every open event A ⊆ Ω can be

represented by an upward-closed subset α ⊆ T, and vice versa, given such a subset the

paths that enter (and consequently remain in) α comprise an open event A ⊆ Ω. More

generally, every subset α ⊆ T gives rise to an event S(α) by the same rule.

Definition 4.2. S(α) = {γ | γ is eventually in α}.

Here, γ is a point of Ω, represented as a path γ = (h0, h1, h2 · · · ) through T, and the

statement that this path is eventually in α means that (∃n0)(∀n > n0)(hn ∈ α). It is clear

that S(·) commutes with the Boolean operations:

S(αβ) = S(α)S(β)

S(α\β) = S(α)\S(β)

S(α+ β) = S(α) + S(β),

and so on (where α+ β := (α ∪ β)\(αβ) is the Boolean operation of ‘addition modulo 2’).

As a further aid to intuition, we can think of certain types of events in terms of

‘properties’ acquired or lost in the course of the process under consideration. Formally,

this corresponds closely to the characterisation by sets of nodes in T, but it has a more

‘evolutionary’ feel to it. For example, consider the event of return analysed earlier. We can

cook up a ‘property’ that the particle possesses when, and only when, it has returned to

the origin. By definition, this property of ‘having returned’ is hereditary in the sense that,

once acquired, it can never be lost. Topologically, the set of all paths γ that acquire a

hereditary property yields an open subset of Ω – it is easy to corroborate this by thinking

through the definitions. Dually, a property that if it is once lost can never be regained,

but that every path begins with, corresponds to a closed set (a causet example of this is

being originary). And a property that can be acquired but never regained if lost yields

an event of the form A\B, where both A and B are open (a hopper example of this is

visiting x = 1 but not x = 2). Notice that this third type of property includes both of the

previous two as special cases. In terms of sets of nodes like the sets α discussed above, the

first type of property is an upward-closed subset of T, the second is a downward-closed

subset and the third is a convex subset, defined as a subset of T that contains, together

with nodes h1 and h2, every node that lies on some path from h1 to h2. In order-theoretic

language for the poset T, this just says that α includes the order-interval between any two
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of its elements.† In Sections 5 and 6, the events of the form S(α) for some convex α will

be among those for which we will able to produce a canonical representation as a limit

of clopen events.

As an application of some of these ideas, we can prove the assertion made earlier that

Ω is topologically compact. By a standard criterion for compactness, it suffices to prove

that any covering of Ω by cylinder sets has a finite sub-covering, so consider an arbitrary

collection of cylinder sets Z ∈ Z that covers Ω. In relation to T, such a covering is a

collection of nodes that no path γ can avoid forever. Now the (incomplete) paths that do

avoid these nodes fill out a subtree‡, T
′ of T , with the property that no path γ can remain

within T
′ forever. But it is well known that such a tree can only have a finite number

of nodes, assuming that no node has an infinite branching number (this has been called

the ‘infinity lemma’ of graph theory). The maximal elements of T
′ thus furnish a finite

collection of nodes that every path must encounter. In their guise as cylinder sets, these

nodes constitute a finite subcover of Ω.

5. Set-theoretic limits of events

The most elementary kind of limit we can imagine for a sequence of events is not metric,

topological or measure-theoretic, but purely set-theoretic. We have already seen how

increasing sequences of clopen sets yield the open sets
∨

S, while decreasing sequences

of clopen sets yield the closed sets
∧

S. In both cases the relevant limit concept emerges

more or less automatically. Going beyond these two types of approximation, we can

recognise a more general concept, of which
∨

and
∧

are special cases. We let Xj be a

sequence of subsets of Ω, and say that it is convergent if we have for any point x of Ω

that eventually x ∈ Xj or eventually x /∈ Xj . In such a case, we will write X = limXj ,

where, of course, X consists of those x that realise the first alternative of being eventually

in Xj . We will write Lim S for the set of all events obtainable in this way as limits of

events Aj ∈ S. Notice that ‘lim’ commutes with the Boolean operations:

lim(An ∪ Bn) = (limAn) ∪ (limBn), and so on. (6)

In trying to extend our vector measure µ beyond the clopen events, we might hope that

we could at least get as far as LimS. Were µ an ordinary measure, this would be true,

because limAj would be sandwiched between the measurable sets

lim supAj = ∩j ∪k>j Ak

lim inf Aj = ∪j ∩k>j Ak,

both of which are equal to limAj when the latter exists. This would ensure that limAj
was measurable and that

lim µ(Aj) = µ(limAj).

† The order-interval delimited by elements x and y of some poset is {z | x ≺ z ≺ y} .
‡ That is, a downward-closed subset of T.
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But this argument is not available with quantal measures, and it turns out that convergence

can fail already for certain decreasing sequences of clopen events whose measures diverge

to infinity (Gudder and Sorkin 2012). On the other hand, convergence succeeds for

many other sequences, and we might hope that the failures were confined to physically

uninteresting questions.

Of course, the failure of convergence in even some cases is likely to contaminate other

cases, which makes us doubt whether µ(A) can be defined without some further limitation

on the sequence Aj beyond the mere requirement that limAj = A. In the next two sections

we will investigate some restrictions of this sort. For the moment, we will just note that

for open sets A there exists a very naturally defined canonical sequence of events An ∈ Sn

converging to A. Namely, we can take for An the union of all the cylinder sets from Zn

that are contained within A. This yields a ‘best approximation to A at stage n’ in the sense

that An could not be enlarged without the sequence losing its increasing nature.

Dually, we immediately obtain a canonical choice of sequence for any closed event

B (just apply complementation to the sequence of clopen events approximating Ω\B).

However, having two different classes of canonical sequences in this way introduces an

ambiguity for events that are both open and closed. Fortunately, the ambiguity in this case

does no harm because a clopen event necessarily belongs to S according to Lemma 4.1,

so both the increasing and decreasing canonical sequences terminate at a finite stage: they

differ only transiently.

Leaving aside questions of convergence and uniqueness, we might wonder how many

events the above limit process can access, even in the best case. That is, how many of

the interesting questions even belong to LimS? With reference to the causal set case,

we first recall that we encounter all the stem events without ever leaving the open sets∨
S. Remembering also that LimS is closed under the Boolean operations, we can thus

say on the positive side that every finite logical combination of stem events is available

within LimS (as also is the entire event algebra R
∨

S of course). On the negative side,

however, events like the post event and (for the particle case) the event of infinite return

fall outside LimS as a consequence of the following lemma.

Lemma 5.1. Let A ⊆ Ω. If both A and Ω\A are dense subsets of Ω, then A /∈ LimS.

Proof. In the following, we write A⊥B to mean that A and B are disjoint. Suppose,

in order to show a contradiction, that A = limAn with An ∈ S, and write A n for its

complement Ω\An, also taking note of the fact that A n, like An itself, is clopen. We

will find inductively a subsequence An1
, An2

, An3
, · · · of the An and a matched sequence of

clopen sets B1 ⊇ B2 ⊇ B3 · · · such that Bj is alternately included in and disjoint from Anj :

(1) We begin by putting n1 = 1 and B1 = An1
, so we have B1 ⊆ A1.

(2) Since B1 is open and Ω\A is dense, there exists x ∈ B1 ∩ (Ω\A). Then, since x /∈ A =

limn An, there exists by hypothesis some n2 > n1 such that x /∈ An2
, that is, x ∈ A n2

.

We now put B2 = A n2
∩ B1, which is again clopen since both A n2

and B1 are clopen,

so B2 ⊆ B1 with B2 ⊥An2
.

(3) We now proceed exactly as in Step (2), but with the roles of A and Ω\A interchanged.

Specifically, since B2 is open and A is dense, there exists x ∈ B2 ∩ A. Then, since
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x ∈ A = limn An, there exists by hypothesis some n3 > n2 such that x ∈ An3
. We

now put B3 = An3
∩ B2, which is again clopen since both An3

and B2 are clopen, so

B3 ⊆ B2 ⊆ B1 with B3 ⊆ An3
.

We now proceed inductively to produce B4 ⊆ An4
, B5 ⊥An5

, and so on. Finally, we put

B = lim
n
Bn =

∞⋂
n=1

Bn

and note that B is non-empty since the Bn are all compact (indeed, every event in S is

compact, being a closed subset of the compact space Ω). We now pick any x ∈ B. For

odd j, we have

x ∈ Bj ⊆ Anj ⇒ x ∈ Anj ,

and for even j, we have

x ∈ Bj ⊥Anj ⇒ x /∈ Anj .

Thus the An alternate between including and excluding x, contradicting our assumption

that limAn exists.

The lemma applies to the post event because no matter how far the growth process

has proceeded, the growing causet ‘still has a free choice’ of whether to end up with or

without a post (and exactly the same thing can be said for the event of infinite return).

But this freedom means precisely that both the post event and its complement are dense

in Ω.

Lemma 5.1 shows that LimS is a long way from containing every event of potential

interest, but we might wonder exactly how far. One answer comes from Kechris (1995,

Exercise 22.17), according to which, LimS equals what is called ∆0
2, which is defined to

be the intersection of
∨ ∧

S and
∧ ∨

S. This places Lim S at a very low level of the

so-called ‘Borel hierarchy’, which continues on for ℵ1 steps beyond ∆0
2 before it exhausts

the Borel subsets of Ω. In this sense the limiting process ‘lim’ does not take us very far

beyond the clopen events. On the other hand, we have also seen that by applying ‘lim’

more than once, we can reach, for example, the post event. How many events can we

reach in this manner? Exercise 22.17, in combination with other results in Kechris (1995),

also answers this question by implying that (transfinite but still countable) iteration of the

‘lim’ operation suffices to produce any Borel set. In this sense, the lim operation is quite

far reaching, given that it would be hard to conceive of an event of interest that does not

fall within the Borel domain.

6. Canonical approximations for certain events

We have already discovered one canonical sequence An of approximations to A for an

event A ⊆ Ω that is open with respect to the topology defined in Section 4, that is, for

A ∈
∨

S. The cylinder sets Zn ‘at stage n’ provide a kind of ‘mesh’ in Ω whose fineness

increases with n, and our canonical choice of approximating event at stage n was

An =
⋃

{Z ∈ Zn |Z ⊆ A} , (7)
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which is the biggest member of Sn = RZn that can fit inside A. As we have seen, the

An converge to A in the sense defined in section 5, but, of course, there are many other

sequences Bn ∈ Sn that also converge to A in this sense, and when the vector measure

µ is not of bounded variation, there is no guarantee that the corresponding sequences

µ(An) and µ(Bn), if they converge at all, will converge to the same limit. In general, they

doubtless will not if Bn is chosen with sufficient malice. In the face of such ambiguity,

we might still hope to find some reasonably inclusive event algebra A ⊇ S, and for each

event A ∈ A a canonical approximating sequence of events An ∈ Sn with limAn = A such

that µ(An) is a convergent sequence in Hilbert space. The vector limn µ(An) could then be

adopted as the definition of µ(A).

One snag that this perspective encounters is already apparent for the case where we

are approximating open sets A and B, and our canonical approximations An and Bn are

the ones given by equation (7). From limAn = A and limBn = B, it does indeed follow,

as we have already noted, that

lim(An ∩ Bn) = A ∩ B
lim(An ∪ Bn) = A ∪ B.

For the case of intersection, it even follows that the events (An ∩Bn) provide the canonical

approximations to the open event A ∩ B, but the analogous conclusion fails for the case

of union because the canonical approximation (A ∪ B)n will, in general, be larger than

(An ∪ Bn), since some cylinder set Z ∈ Zn can, by ‘straddling the boundary’ between A

and B, be included in A ∪ B without being included in either A or B. We would thus

obtain different approximating sequences for A ∪ B depending on whether we regard

it as an open set in its own right or as the result of uniting A with B. In the next

section we will begin to see what it would take to render this kind of ambiguity harmless.

For now, however, we will ignore that issue and simply consider the question of finding

unambiguous approximating sequences for as many members of R
∨

S (= R
∧

S) as

possible.

To that end, we will return to the tree T of truncated histories and the method of

representing certain events by subsets α ⊆ T. Although we did not make it explicit earlier,

it is clear that a sequence of events An ∈ Sn is equivalent to a set of nodes α ⊆ T. Indeed,

each An is a union of cylinder sets Z ∈ Zn, and each such cylinder set corresponds to a

node in Tn, the nth level of T. This associates with each An a set of nodes at level n, and

amalgamating the nodes of all levels into a single collection yields α. Conversely, given

α ⊆ T, we obtain An as the union of the cylinder sets that correspond to the α-nodes

at level n. Since the correspondences between cylinder sets Z ∈ Zn, nodes in Tn and

truncated histories γ ∈ Ω(n) are so close, we will often identify all three with one another,

and speak, for example, of a cylinder set Z as a node in T. When this is done, we can

express the correspondence between node-sets α and approximating sequences (An) using

a simple formula by writing An =
⋃

(α ∩ Zn).

Now let α be any set of nodes and let the An be the corresponding sequence of events.

Recall that we defined S(α) as the event that γ is eventually in α:

S(α) = {γ | (∃N)(∀n > N)(γn ∈ α)} .
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Dually, we can also define S̃(α) as the event that γ is repeatedly in α:

S̃(α) = {γ | (∀N)(∃n > N)(γn ∈ α)} .

It then follows straightforwardly from the definitions that

S(α) = lim inf An

S̃(α) = lim supAn.
(8)

Since limAn exists if and only if lim inf An = lim supAn (in which case their common

value equals limAn), we learn that the events of the form limAn are precisely those for

which S(α) = S̃(α), which in turn are precisely those such that no path γ can leave and

re-enter α more than a finite number of times. It is clear that this property generalises the

concept of convexity we encountered earlier. Notice, incidentally, that equations (8) imply

that the forms S(α) and S̃(α) do not reach beyond
∨ ∧

S and
∧ ∨

S, which are known in

descriptive set theory as Σ0
2 and Π0

2, respectively. Roughly speaking, they reach as far as

events whose complexity is that of the post event. Very optimistically, we might hope to

go beyond this and find for any Borel set A ⊆ Ω some sort of canonical presentation in

terms of clopen events, but in this section we will not venture outside of R
∨

S, the finite

Boolean combinations of opens. Since R
∨

S ⊆ LimS, all such events can be expressed

as S(α) for some subset α ⊆ T.

What we are asking for is a sort of ‘normal form’ for events E in R
∨

S. As a first step

in that direction, we will prove that every such event can be expressed as a disjoint union

of events, each of which has the form open\open, or, equivalently, open ∩ closed.

Lemma 6.1. Let E ∈ R
∨

S be a finite logical combination of open events. Then there

exists a decreasing sequence of open events E1 ⊇ E2 ⊇ E3 · · · ⊇ EK such that

E = E1 + E2 + E3 · · · + EK = E1\E2 � E3\E4 � · · · ,

where ‘�’ denotes disjoint union. Moreover, the Ej are formed from the original events

using only the operations of union and intersection.

Proof. In the proof, as in the statement of the lemma, we use the operation of Boolean

addition,

A+ B = (A ∪ B)\(A ∩ B), (9)

and write the intersection of two sets as their product. Any Boolean combination of sets

is then a polynomial in these sets, and since products of open sets are open, any Boolean

combination of open events can be expressed simply as a Boolean sum of open events.

Given these facts, it is not hard to devise a proof by induction, but we will just illustrate

the pattern involved using the cases K = 2, 3. For two events, we have

A+ B = (A+ B + AB) + AB

= A ∪ B + AB,
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and for three, we have

A+ B + C = A+ (B + C)

= A+ (B ∪ C + BC)

= (A+ B ∪ C) + BC

= (A ∪ B ∪ C + A(B ∪ C)) + BC

= A ∪ B ∪ C + (A(B ∪ C) + BC)

= A ∪ B ∪ C + A(B ∪ C) ∪ BC + A(B ∪ C)BC

= A ∪ B ∪ C + (AB ∪ AC ∪ BC) + ABC.

The ‘inclusion–exclusion’ pattern evident here emerges with particular clarity when we

interpret Boolean addition as the addition of characteristic functions modulo 2. The final

equation in the statement of the lemma then follows directly from the fact that the Ej are

decreasing. We can also restate the essence of the proof in a simple formula:

K∑
j=1

Aj =

K∑
j=1

Bj,

where

Bj = {x | x belongs to at least j of the Ak} ,
which is clearly a union of intersections of the Ak .

Given any set E expressed as in the lemma, we immediately get the approximations

En = E1
n + E2

n + · · · + EKn ,

where Ejn is our canonical nth approximation to the open set Ej , and thence the

corresponding sets of nodes

αn = α1
n + α2

n + · · · + αKn ,

together with their union α = ∪nαn. However, this construction is only a first step toward

uniqueness because the resulting α still depends on the original choice of the Ej , which

are not given to us uniquely by the lemma.

In working toward a unique approximating sequence, we will concentrate on the

simplest case of an event E = A\B, which is the difference of only two open sets B ⊆ A

(corresponding to K = 2 in the lemma). We are then led to ask if we can render A and

B unique in this case. It is not difficult to demonstrate that if we gather together all pairs

A ⊇ B such that E = A\B, then the union of all the sets A and the union of all the sets B

yields another such pair. Evidently this ‘biggest pair’ is unique and uniquely determined

by the original event E. This in turn yields, by (6), a canonical sequence of approximations

En to E of the form, En = An\Bn, where An ∈ Sn and Bn ∈ Sn are the canonical nth

approximations to A and B. In terms of the equivalent node-sets αn, these approximations

are given by αn\βn, whose union over n we will simply denote by α, following our earlier

notation.

Although the node-set α we have found is canonical and concisely defined, we might

hope to find a more constructive route to it, or at least a characterisation of it in terms
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of more easily verifiable necessary and sufficient conditions. The rest of this section will

develop a prescription of this sort. In fact, I am not certain that the second prescription

will be strictly equivalent to the first. If it is, that is all to the good since we will then not

be forced to choose between the two. Otherwise, it does not really matter since the second

prescription stands on its own and, being more concrete, is likely to be more useful in

practice.

Lemma 6.2. If α and β are upward-closed subsets of T with α ⊇ β, then α\β is convex.

Proof. We need to show that no path between two nodes x and y in α\β can contain

nodes outside of α\β. Equivalently, no path that has left α\β can ever re-enter it. But

since α is upward-closed no path from x ∈ α can leave α, therefore it can leave α\β only

by entering β, and it then must remain in β (which is also upward-closed) forever, and,

consequently, can never re-enter α\β.

Now let E = A\B be as above, with A and B open, and let α and β be the corresponding

node-sets. Since A and B are open, both α and β are upward-closed subsets of T. We

also know that A = S(α), B = S(β) and A\B = S(α\β). The lemma then tells us that

A\B = S(α̂), with α̂ a convex subset of T. The converse is also true, as shown by the

following lemma.

Lemma 6.3. If α̂ ⊆ T is convex, then S(α̂) = A\B for some open sets A and B.

Proof. Recall that we have identified points of Ω with infinite paths γ through T, and

let A be the set of all paths that enter α̂, and let B be the subset of these that subsequently

leave α̂. By definition, S(α̂) = A\B, but both A and B are open because the property of

‘having entered α̂’ and the property of ‘having left α̂’ are both hereditary.

From now on, we will just deal with the convex subset α̂, and rename it to plain α for

simplicity. That is, we will be concerned with a fixed event E of the form (open\open)

and with a convex set of nodes α ⊆ T such that† E = S(α).

We will say that α ⊆ T is prolific if it lacks maximal elements. A second very natural

requirement in addition to convexity is the condition that α be prolific in this sense. Given

convexity, this is equivalent to saying that every node x ∈ α originates a path that remains

forever within α. In the opposite case, α will contain ‘sterile’ nodes from which all paths

eventually leave α for good. It is clear that removing these sterile nodes will not alter

E, nor will it spoil the convexity of α. We can therefore always arrange that α be both

convex and prolific. The ‘pruning’ of the ‘sterile’ nodes to render α prolific also appears

as a very natural operation when it is expressed in terms of cylinder sets Z . It simply

removes from α those Z that are disjoint from E.

We have now arranged for α to be convex and prolific, but this does not yet make

it unique, since, for example, we could remove all the nodes up to any fixed finite level

n without altering S(α). If we did so, however, we might create a situation where, for

† In view of (8), we would, in general, also want to require that S(α) = S̃(α), but this holds automatically when

α is convex.
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example, some cylinder set Z was wholly included in E without Z itself (regarded as a

node in T) belonging to α. To remedy this sort of lacuna, we can adjoin to α every node

Z such that every path originating at Z eventually enters α. It is again easy to see that

adjoining these nodes will not interfere with α being convex and prolific.

In this last step we have, in a manner of speaking, completed α toward the past, but,

in fact, there is cause to carry this process of ‘past-completion’ farther by adjoining yet

more nodes to α. These additional nodes are perhaps not such obvious candidates as the

previous ones, but throwing them in as well (which I think corresponds to enlarging the

open set A) will provide us with the uniqueness we are seeking.

Definition 6.4. Let x ∈ T and α ⊆ T. Then x ≺ α means that x precedes some node in α:

(∃y ∈ α)(x ≺ y).

Remark 6.5. In terms of cylinder sets, Z1 ≺ Z2 ⇐⇒ Z2 ⊇ Z1 .

Definition 6.6. The exclusive past of α is the set of nodes strictly below α: {x /∈ α | x ≺ α} .

Using this definition, we will say that α is past-complete if its exclusive past P is prolific,

which in turn says that any node in P originates a path that repeatedly visits P . I claim

we can render α past-complete be adjoining to it all nodes below α that fail to satisfy

this last condition, and, furthermore, that the resulting set of nodes α′ will yield the same

event E as α and will be convex and prolific if α itself was.

Lemma 6.7. Let α ⊆ T be any set of nodes and α′ be its ‘past-completion’ as just described.

Then α′ is past-complete. Moreover, S(α′) = S(α) and S̃(α′) = S̃(α).

Proof. The fact that S(α′) ⊇ S(α) is obvious. To prove that they are equal, it suffices

to show that no path can eventually remain within α′ without also remaining eventually

within α. To show a contradiction, we suppose the contrary to be true, and let γ ∈ S(α′)

be a path that is repeatedly outside α. By passing to a tail of γ, we can suppose that it is

always within α′. Let x ∈ γ be a node that is not in α and let y ∈ γ be a later node of

the same type. Since y ∈ α′\α, it is by definition in P , the exclusive past of α. Hence, x

originates a path (namely γ) that visits P at y; and since there are an infinite number of

nodes like y, γ visits P repeatedly. But this contradicts the criterion for having included

x in α′ in the first place.

The proof that S̃(α′) = S̃(α) is similar. It suffices to show that every path in S̃(α′) visits α

repeatedly. To show a contradiction, we suppose the contrary to be true, and let γ ∈ S̃(α′)

be a path that is eventually outside α. By passing to a tail, we can suppose that γ is

always outside of α. Let x ∈ γ be a node that is in α′ and let y1, y2, · · · be a sequence of

later nodes of γ that are also in α′. Since the yj belong to α′\α they are by definition in

P , the exclusive past of α. Hence x originates a path that returns repeatedly to P , which

contradicts the criterion for having included x in α′ in the first place.

To complete the proof, we need to show that α′ is past-complete. To that end, let x be

in the exclusive past of α′. Since any y in α′ is either in α or in its exclusive past, and

since α′ ⊇ α, we have x is also in the exclusive past of α. Consequently, since x was not

put into α′, it originates a path γ that repeatedly visits the exclusive past of α. But by
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definition, no node in such a path would have been put into α′ either, so γ repeatedly

visits the exclusive past of α′, as we wished to show.

We also wish to prove that past-completion preserves the attributes of being prolific

and convex. The first part is easy because past-completion only adds nodes that are below

some element of α, and this can introduce no new maximal element.

For the second part, we need to demonstrate† that if α is convex, and if x ≺ y are

nodes in α′ then the order-interval I delimited by x and y is also within α′. When x ∈ α

the proof is simple, since y is either within α itself or precedes some element z that is.

In either case, the interval I is included in some second interval I ′ (which is possibly the

same as I) with endpoints in α. Then I ′ ⊆ α because α is convex, and thus

I ⊆ I ′ ⊆ α ⊆ α′

also, as desired. The remaining possibility is that x ∈ α′\α, in which case it seems more

convenient to deal with paths rather than intervals. From the definition of convexity,

proving that α′ is convex amounts to showing that no path originating from x can leave

α′ and then re-enter it. First, observe that since every node of α′ precedes some node of α,

no node of α′\α can follow a node of α, since if it did, it would also lie within the convex

set α. In consequence, any path that exits α permanently, also exits α′. Now let γ be any

path originating from x ∈ α′\α, and, as before, write P for the exclusive past of α. By the

definition of α′, every path from x must eventually leave P . If it does so by leaving the

past of α, {x ∈ T | x ≺ α}, then it certainly can never re-enter α′. If it does so by entering

α, then it can exit α′ only by exiting α, in which case it can never re-enter α or (as we have

just observed) α′.

So far, we have established the existence, for our event E, of a node-set α that is convex,

prolific and past-complete. We will now complete the story by proving that α is also

unique. To that end, let α and β be two prolific, convex and past-complete node-sets such

that S(α) = S(β). Does it follow that α = β? In demonstrating that the answer is ‘yes’, we

will use the ad hoc notation P(α) for the exclusive past of α as defined earlier, with

P(α) = α ∪ P(α) = {x ∈ T | (∃y ∈ α)(x � y)}

being the inclusive past.

We will first establish that α and β have equal inclusive pasts: P α = P β. In fact, if

x ∈ P α, then x originates a path γ that visits α. Since α is prolific, this path can be

arranged to visit α repeatedly, and since α is convex, such a path can never leave α.

Hence, γ ∈ S(α), implying, in particular, that γ visits β, so x ∈ P β. The converse follows

symmetrically.

We now suppose, in order to show a contradiction, that there exists x ∈ α\β . Such an x

belongs by definition to P α, and hence to P β, and thus to P β, which in turn is prolific by

the definition of past-completeness. Thus x originates a path γ that repeatedly visits P β.

† The demonstration that follows seems rather longer than it ought to be. Intuitively, it suffices to observe first

that α′ is built up from α by successive adjunction of maximal elements of its exclusive past, and then that

adjoining such an element cannot spoil convexity.
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We now claim that γ must leave α at some stage (since otherwise γ ∈ S(α) ⇒ γ ∈ S(β) ⇒
γ eventually in β, so γ could never again visit P β). And since α is convex, γ must remain

outside α once it has left. On the other hand, γ must continue to visit P β, which in turn

is a subset of P β = P α. But if γ really visited some y ∈ P α, then, by definition, we could

divert it at y to some other γ′ that would re-enter α, something that we have just proved

to be impossible. This completes the proof of the following theorem.

Theorem 6.8. Every event E of the form E = A\B with A and B open can be expressed

as E = S(α) = S̃(α) for a unique set of nodes α that is convex, prolific and past-complete.

The theorem furnishes a canonical set α of nodes corresponding to E, and as explained

earlier, we immediately get from such an α a canonical sequence of approximants En to

E such that E = limn En. We have thus reached our immediate goal.

The canonical approximating sequences of the theorem provide a good reference point

for further developments, and we have learned how to arrive at them step-by-step, starting

from the open sets A and B. Nevertheless, it seems unlikely that we can limit ourselves to

these particular approximants in general. Rather, as remarked already at the beginning

of this section, we will, in general, have to deal with many different sequences converging

to the same event, unless we can devise canonical sequences that are closed under the

Boolean operations.

We have already encountered an ambiguity of this nature when we noticed that our

original, increasing canonical approximants (7) for open events (we will call them ‘C1’) are

not fully compatible with the Boolean operation of complementation. Specifically, for a

clopen event E, these C1 approximants depend on whether we derive them directly from E

or by complementing the corresponding approximants for the open event Ω\E. However,

we run into a further, but related, conflict if we now compare the C1 approximants

with those of the above theorem (we will call them ‘C2’). For an open event E, the C1

approximant En is just the biggest member of Sn included within E. But if we view E

as the difference E = A\B, with A being E itself and B = 0 being the empty event, the

theorem provides a different set of approximants En. In general, the two disagree, as can

be seen from the observation that the pair (E 0) is not the ‘biggest one’ yielding E.

Consider, for example, the 2-site hopper event such that the particle does not remain

forever at its starting site 0, but such that the first time it hops to site 1 it immediately

returns to 0. This event is a union of cylinder sets corresponding to truncated trajectories

of the shape (0, 0, 0, · · · 0, 1, 0, ∗) where the star ‘∗’ represents any finite sequence of zeros

and ones. For this event, the node-set α1 of type C1 consists of precisely the truncated

trajectories just indicated. But that set of nodes is not past-complete. Its completion, the

type C2 node-set α2, also contains the truncated trajectories (0, 0, 0, · · · 0, 1). Notice that

α2 differs from α1 at an infinite number of nodes in this case (Figure 4 illustrates this

phenomenon).

We thus have to reckon with overlapping but, in general, incompatible prescriptions

for different types of events. If one prescription were to be adopted exclusively, it should

probably be C2, which covers more events than C1 does. (Incidentally, C2 resolves the

aforementioned ambiguity in the C1 prescription in favour of treating clopen events as

closed, not open.) We might make the counter-argument on behalf of C1 that monotonic
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Fig. 4. Illustrating past-completion in the tree shown. The circled nodes ‘complete’ those above

them shown as heavy dots. Let the node-set be α1 before completion and α2 after completion. It is

clear that S (α1) = S (α2) but only α1 is upward-closed.

convergence of the approximants is to be preferred, but this does not seem so compelling

in the context of a quantal measure, which itself is not a monotonic set-function. Better

than either choice, however, would be not having to choose at all because the alternative

approximating sequences would all lead to the same extension of our initial quantal

measure. The main thing for now is that we have discovered at least one canonical choice

of clopen events En converging to any event of the form E = A\B with A and B open.

In the face of these various ambiguities, we should emphasise that none of them affect,

in the causet case, the stem events themselves, essentially because the latter are not only

open but dense in Ω, or, more physically, because any growing causet that has not yet

produced a given stem always retains a choice of whether or not to do so. It follows that

not only does the C1 prescription coincide with the C2 prescription for stem events (its

exclusive pasts being already prolific), but also the ‘biggest pair’ prescription with which

we began provably agrees with the C1 prescription. The same ought to apply to finite

unions and intersections of stem events, and similar comments could be made about the

‘return’ event in the hopper case.

We conclude this section by sketching very briefly how we might try to carry

our successful ‘canonisation’ of E = open\open over to the general case where
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E = E1 + E2 · · · + EK , the Ej being open and nested. Just as earlier we found a ‘biggest

pair’, A ⊇ B, by forming unions of the individual events A and B, we can do the same

thing here with the Ej to obtain (at least in principle) a canonical set of ‘biggest’ open and

nested events Ej such that E = E1 +E2 · · · + EK . Associating its canonical approximants

Ejn (in the C1 sense, say) with each such Ej then yields for E itself the approximants

En = E1
n + E2

n · · · + EKn such that limEn = E . In principle, this achieves our goal, but it

remains once again at a rather abstract level.

As before, we can attempt a more constructive development by working with the node-

set α ⊆ T corresponding to our approximating sequence En, or perhaps with some similar

node-set whose uniqueness can be established directly, and for which we can prove that

E = S(α) = S̃(α) . But how would our construction of α go in this more general case,

and what would generalise the conditions that α be convex, prolific and past-complete?

It is clear from Lemmas 6.2 and 6.3 that convexity is now too restrictive. In its place, we

would probably try the more general requirement that no path γ could enter and leave

α more than K times. Correspondingly, we might then expect that α would decompose

into subsets αj that were convex in the strict sense. We might also try to arrange for

each αj to be prolific and past-complete, hoping that this would again confer uniqueness

on the whole collection. If all this worked out, we would have constructed a canonical

approximating sequence for any Boolean combination of open events, and, in particular,

for any Boolean combination of stem events.

A next step beyond R
∨

S, if we could take it, would be to devise canonical

approximations for larger families of events, starting with the collections
∨ ∧

S and∧ ∨
S in which the post event and its complement are to be found. An event A in either

of these collections is accessible from S as a limit of limits, but such a double limiting

process can only make the potential ambiguities worse. For example, the event R∞ of

repeated return is in
∧ ∨

S. It could be expressed as limAn , where An = ‘returns at

least n times’, or it could be expressed instead as limBn, where Bn = ‘returns at least once

after t = n’. Both An and Bn give decreasing sequences of open events and both converge

to R∞, but which sequence, if either, should be favoured as canonical? Perhaps, in certain

cases, we could arrive at a canonical presentation by further generalising our treatment

above in terms of sets of nodes α ⊆ T, but beyond this, it is not easy to guess how we

might proceed. To devise canonical approximations for events of still greater complexity

would seem to demand a fresh approach.

Finally, it is worth repeating here that uniqueness in and of itself does not guarantee

compatibility with the Boolean operations. And I believe, in fact, that none of the

prescriptions that this section has considered are compatible with the full set of such

connectives, though some are compatible, for example, with complement or disjoint union

– cf. figure 5. If there did exist a compatible prescription, or even a prescription compatible

‘modulo initial transients’, which is just as good, it would weigh very heavily in its favour.

7. Evenly convergent sequences of events

We are given a vector-valued measure µ : S → H defined initially on the finite unions of

cylinder events, and we wish to enlarge this initial domain S so that it can embrace events
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Fig. 5. Two sets of nodes α and β. Both sets are convex, prolific and past-complete, but their union

is not convex.

like the stem events and some of the other events we have been using as illustrations.

In attempting such an extension or ‘prolongation’ of µ, it is natural to think in terms

of approximations, or more formally of limits. Let A ⊆ Ω be some event A outside the

initial domain. In order to define |A〉 ≡ µ(A) as a limit, we aim to identify a sequence

An ∈ Sn of ‘best approximations to A’ and hope that the corresponding measures

|An〉 ∈ H also converge. If they do, we would then take their limit in H to be the measure

of A:

|A〉 = lim
n→ ∞

|An〉 .

Notice here that in attempting to define |A〉 = µ(A) in this way, we have relied on two

independent notions of convergence:

(i) the purely set-theoretic convergence of An to A in the sense of Section 5; and

(ii) the topological convergence of the measures |An〉 to |A〉 in Hilbert space (say in the

norm topology or perhaps the weak topology).

We might ask whether the first notion is really needed, given that the extension theorems

of ordinary measure theory do without it and just rely on the measure µ itself. Would

it be possible to proceed similarly here? Unfortunately, this looks doubtful, even though

the vector |An〉 carries a certain amount of information about the event An (but a very

limited amount since, owing to quantal interference, very different events can share the

same vector measure).

In the ordinary setting, where µ is real and positive, it defines a distance on the space of

initially measurable sets modulo sets of measure zero such that two events A,B ∈ S are
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close when µ(A + B) is small. Extension of the measure then corresponds to completion

of the metric space thereby defined (Kolmogorov and Fomin 1961). Quantally, however,

an event of small or zero measure is not negligible in the same way as it is classically,

because of interference. Thus, if we tried to use the norm of |A + B〉 as a distance, it

would not even obey the triangle inequality. For example, for three disjoint events A, B

and C , as in the 3-slit experiment of Sorkin (1997; 2007), we have |A+B〉 = |B +C〉 = 0

but |A+ C〉 �= 0. Similarly, trying to quotient the event algebra by the events of measure

zero would yield nonsense; it can even happen that all of Ω is covered by events of

measure zero (Sorkin 2012). To establish an association between a vector v = lim |An〉 and

a definite event A in Ω, it appears that we need an independent notion of convergence

like the one introduced in Section 5 and developed in Section 6.

Accepting this apparent necessity, let us investigate how a limiting procedure might

go in the important case of an open event E ∈
∨

S. In doing this, we will employ the

canonical approximants En ∈ Sn ‘of type C1’ for E, these being the simplest to work with

and probably the first to suggest themselves for most people:

En =
⋃

{Z ∈ Zn |Z ⊆ E} . (10)

(this is just (7) with E in place of A). As we know, there is no guarantee in general that

the corresponding vectors |En〉 will converge, but when they do, we would like to regard

E as ‘measurable’ and to associate with it the measure |E〉 = limn |En〉. We will illustrate

this procedure using the two-site and three-site hoppers, but we first consider whether

or not our criterion of convergence is adequate as it stands, or whether it needs to be

strengthened.

Recall in this connection that we have already defined a second sequence of approx-

imants for E ‘of type C2’, which are related to the first ones by past-completion of

the corresponding node-sets α. Would these approximants have led to the same set of

measurable open events and to the same measures for them? A second question concerns

compatibility with the Boolean operations, some form of which is needed if the extended

measure is to be additive on disjoint events. Consider, for example, the disjoint union

G = A + B of two open events A and B, and let Gn, An and Bn be the corresponding

C1 approximants. If |An〉 + |Bn〉 = |Gn〉 held automatically, it would follow immediately

that |A〉 + |B〉 = |G〉, as desired. But plainly this is not automatic because G = A ∪ B can

include cylinder sets Z that are not included separately in either A or B (see figure 6). We

would like the contribution from such Z to go away in the limit n→ ∞, and we would

also like any mismatch between our C1 and C2 sequences to go away as well. These two

requirements turn out to be closely related.

Let us examine the difference

|Gn〉 − |An + Bn〉 = |Gn〉 − |An〉 − |Bn〉 (11)

more closely. In light of equation (10), this difference is just∑
{|Z〉 | (Z ⊆ A+ B)(Z �⊆ A)(Z �⊆ B)} ,

but the Z here are not arbitrary cylinder sets. Rather, we claim that any Z that contributes

to the above sum is special in that its overlaps with A and B are clopen (which implies
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Fig. 6. A cylinder set Z contributing to the difference (11).

that, within Z , the discrepancy disappears entirely in a later approximation). By the next

lemma, something similar holds for the difference between the C1 and C2 approximants

to any individual open set A.

Definition 7.1. The cylinder set Z straddles the event A if it meets both A and its

complement and if Z∩A is clopen. In symbols, 0 �= ZA �= Z and ZA ∈ S.

Remark 7.2. Z straddles A if and only if it straddles the complement Ω\A.

To see why the Z contributing to equation (11) are ‘straddlers’ in this sense, it suffices

to observe first that ZA ≡ Z ∩ A is open because both A and Z are open, and second

that ZB is therefore closed, having the form closed\open: ZB = Z\ZA . By symmetry,

both ZA and ZB are consequently both open and both closed.

Lemma 7.3. Let A be an open event and α be the corresponding node-set of type C1. If

past-completion adds Z ∈ Z to α, then Z straddles A, and conversely.

Proof. Since A is open, α is upward-closed, while for any α at all, it is true that

β = {x ∈ T | x ≺ α} is downward closed. Hence, the difference β\α, the exclusive past of

α, is also downward closed; that is, it is a subtree of T. We now suppose, without loss of

generality, that Z ∈ β\α. By definition, past-completion will adjoin Z to α if and only if

no path originating at Z can remain within the subtree β\α. (In this case, it cannot leave

β\α and return to it later because subtrees are convex.) But this means that the portion of

β\α above Z is actually finite (by the infinity lemma). Consequently, for n sufficiently big,

every descendant of Z is either in α or below no node of α. Translated into the language

of subsets of Ω, this says that at a sufficient degree of refinement n, every cylinder set

Z ′ ∈ Zn and within Z is either fully included within A (the former alternative) or disjoint

from A (the latter alternative). Now suppose that past-completing α does adjoin Z to it.

Then ZA is the union of the Z ′ belonging to the first family and is therefore clopen,

straddling A. Conversely, if ZA is clopen, then it is a union of cylinder sets Z ′ ∈ Zn for

some n.
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In view of these results, we can to some extent deal with the issues raised above by

provisionally adding to our criterion of convergence the requirement that any ‘straddling’

cylinder sets contribute negligibly in measure as n→ ∞.

Definition 7.4. Let An ∈ Sn be a sequence of clopen events. We then say that this sequence

is evenly convergent with respect to µ if the following conditions hold:

(i) A = limAn for some A ⊆ Ω.

(ii) |A〉 = lim |An〉 for some |A〉 ∈ H.

(iii) (∀ε > 0)(∃N)(∀n > N)
∑

|| |Z〉 || < ε, where the sum ranges over all Z ∈ Zn that

straddle A.

In view of the previous lemma, condition (iii) implies immediately that the C1 and C2

approximants for any open event E yield equivalent results. As desired, it also gives rise

to additivity on disjoint open events, as we will see in the next theorem. In the statement

of the theorem, the canonical approximants may for definiteness be taken to be those ‘of

type C1’. As we have just seen, exchanging any of them for type C2 would have no effect.

(Notice also in the statement of the theorem that the Boolean sum A+ B coincides with

the union A ∪ B when A and B are disjoint, that is, AB = 0.)

Theorem 7.5. Let A and B be disjoint open events and let An and Bn be their canonical

approximating sequences, with Gn being the canonical approximating sequence for G =

A + B. If the first two sequences are evenly convergent then the third is also, and the

measures add, that is,

|A〉 + |B〉 = |G〉.

Proof. It will be convenient to work with the canonical sequences given by (10) since

for them the approximants to A and B will be disjoint. In the above definition of an evenly

convergent sequence, we need to establish conditions (i)–(iii) with A replaced by G:

(i) G = limGn, is true by construction.

(ii) We must verify that |G〉 = lim |Gn〉 with |G〉 = |A〉 + |B〉. We have already learned in

connection with equation (11) that |Gn〉 − |An〉 − |Bn〉 is the sum of the measures |Z〉
of all those cylinder sets Z ∈ Zn that straddle both A and B. But this sum can be

made arbitrarily small by choosing n big enough since, by hypothesis, the sequence

An is itself evenly convergent. In more detail:

|| |Gn〉 − |An〉 − |Bn〉 || = ||
∑

{|Z〉 |Z straddles both A and B} ||

�
∑

{|| |Z〉 || |Z straddles both A and B}

�
∑

{|| |Z〉 || |Z straddles A}

and this → 0 as n→ ∞.

Therefore

lim |Gn〉 = lim(|An〉 + |Bn〉)
= lim |An〉 + lim |Bn〉
= |A〉 + |B〉,

as required.
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(iii) We need to verify that the Gn themselves fulfill the third condition for being evenly

convergent. To that end, we will demonstrate that any cylinder event Z ∈ Zn that

straddles G also straddles either A or B. The total norm of the straddlers of G will

thus be bounded by the sum of the bounds for A and B, both of which go to zero as

n goes to ∞, which will complete the proof.

Suppose, then, that Z straddles

G = A+ B = A � B,

where the symbol ‘�’ denotes the union of disjoint sets. We then have that

ZG = Z(A � B) = ZA � ZB.

By definition, Z meets A + B, so suppose it meets A, that is, ZA �= 0. Now ZA is

obviously open since both Z and A are open. It is also closed, being the difference of

the clopen set ZG = ZA �ZB and the open set ZB. Hence Z straddles A if it meets

A at all, and in general it will straddle either A or B, as we set out to prove.

This theorem takes a first step toward arranging additivity of the extended measure,

but disjoint open events are, of course, a special case. More generally, we would like to

have similar theorems covering, say, arbitrary events in R
∨

S (not just open events) and

arbitrary Boolean operations (not just disjoint union). For example, it is easy to establish

for any open event E that |E〉 is defined if and only if |Ω\E〉 is defined, and that then

|Ω\E〉 + |E〉 = |Ω〉. To what extent such results can be obtained in general remains to be

investigated.

7.1. Examples

Our old friend the return event R can serve to illustrate some of the definitions we

have made. Let us start with the 2-site hopper, in which case R′ = Ω\R, the event of

‘non-return’, consists of the single history, (0, 0, 0, · · · ). As we know, R itself is topologically

open, and, correspondingly, Ω\R is closed, as can be seen directly from the fact that it

is the limit of a decreasing sequence of clopen events of the form R′
n = cyl(0, 0, 0, · · · , 0),

these being our canonical approximants for R′. In this case, no cylinder event in Zn

straddles R′
n since it is itself a cylinder event. So, to check that |R′〉 is well defined, we just

have to check that the sequence |R′
n〉 converges. In fact, it converges trivially to 0, since

|| |R′
n〉 || = (1/2)n/2. Thus, |Ω\R〉 = 0 and non-return is precluded for the two-site hopper

(Gudder and Sorkin 2012). Taking complements then shows that |R〉 is defined and has

the value |R〉 = |Ω〉.
In the context of the three-site hopper, the events of return and non-return become

much more interesting. Classically, non-return ‘almost surely’ does not occur in a finite

lattice, that is, its measure vanishes. Moreover, this conclusion follows independently of

whatever initial conditions we care to assume. But what will we find quantally? More

generally, what will we find if, instead of asking whether the particle visits site 0, we

ask whether it visits site 1 or 2? By symmetry, these questions become equivalent if we

generalise our initial condition to admit different starting sites. Let us therefore consider
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(still more generally) an initial condition in which each possible initial location contributes

its own complex amplitude ψ0(j) , j = 0, 1, 2 ∈ Z3 . The measure of a cylinder set of

trajectories can then be derived from the 3-site analogue of equation (2), generalised to

allow for an arbitrary initial position x0 , and with an additional factor of the initial

amplitude ψ0(x0) thrown in:

vy = (U−n)yxnUxnxn−1
· · ·Ux2x1

Ux1x0
ψ0(x0).

For the event of non-return, we must sum this expression over all trajectories xj such

that xj �= 0 for all j > 0. The resulting vector of components vy is then evidently given by

a matrix product of the form (U−n)Vnψ0, where the matrix V is just the matrix U with

its first row set to zero. We can also set the first column of V to zero if we re-express

v as (U−n)Vn−1ψ1 , where ψ1 is just Uψ0 with its first entry set to zero. In this way, V

becomes effectively a 2 × 2 matrix.

Recall now that for three sites, we have (with ω = 11/3)

U =
1√
3

⎛
⎝1 ω ω

ω 1 ω

ω ω 1

⎞
⎠

and thus also

V =
1√
3

⎛
⎝0 0 0

0 1 ω

0 ω 1

⎞
⎠ .

For these matrices, the powers of U and V can be evaluated in essentially the same

way by writing U or V as a linear combination of orthogonal projectors. Taking U as an

example, we obtain, by adding and subtracting a multiple of the identity matrix to U,

U = λ(1 − P ) + σP ,

where

P =
1

3

⎛
⎝1 1 1

1 1 1

1 1 1

⎞
⎠

and

1 − P =
1

3

⎛
⎝ 2 −1 −1

−1 2 −1

−1 −1 2

⎞
⎠

with λ = (1 − ω)/
√

3 and σ = (1 + 2ω)/
√

3.

In the same way, defining

Q = 1/2

(
1 1

1 1

)
(or more correctly as the 3 × 3 matrix with this as its lower right-hand corner), we can

obtain V in the form,

V = λ(1 − Q) + ρQ,
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where

Q =
1

2

⎛
⎝0 0 0

0 1 1

0 1 1

⎞
⎠

and

1 − Q =
1

2

⎛
⎝0 0 0

0 1 −1

0 −1 1

⎞
⎠ ,

with ρ = −ω2/
√

3. It follows immediately that

Un = λn(1 − P ) + σnP

Vn−1 = λn−1(1 − Q) + ρn−1Q.

Noting that |ρ| = 1/
√

3 < 1, while |λ| = |σ| = 1, we can see that in the limit n→ ∞, we can

drop the second term in V without affecting |R′〉, that is, without affecting whether the

sequence of approximations |R′
n〉 converges, or what it converges to. And noting further

that P (1−Q) = 0, we see that we can also drop that term in the product U−nV n−1, leaving

the simple asymptotic form,

U−nV n−1 ∼ λ−n(1 − P )λn−1(1 − Q)

= (1/λ)(1 − P )(1 − Q).

We thus obtain, modulo an exponentially small correction,

|R′
n〉 =

1

λ
(1 − P )(1 − Q)ψ1 .

This formula leads to a somewhat odd conclusion. With our original initial condition

that the particle begins at 0, the components of ψ1 are just the last two entries of the first

column of U, namely (ω/
√

3)(0, 1, 1), which evidently belongs to the kernel of 1−Q. Hence

the event of non-return is again precluded: |R′〉 = 0; and once again |R〉 = |Ω〉 = (1, 0, 0).

At first sight this result might appear to confirm our classical intuition, but, in fact, it

appears to be a coincidence, at least if we take the 3-site hopper as typical, since |R′〉 does

not vanish for almost any choice of initial amplitudes other than (1, 0, 0)! In particular,

if the particle starts at site 2 instead of site 0, the event that it fails to visit site 0 has the

non-zero vector measure

|R′〉 = (1/3,−1/6,−1/6).

(The quantal measure of this same event in the sense of Sorkin (1994) is then 〈R′|R′〉, or

1/6.) The vector measure of the complementary event that the particle does visit 0 is then

|R〉 = |Ω〉 − |R′〉 = (−1/3, 1/6, 7/6).

Our analysis of the 3-site case tacitly used the fact that the events R and R′ are free

of straddling cylinder sets, for the same reason that stem events are. Convenient though

this is, it means that our example fails to illustrate condition (iii) in our definition of an

evenly convergent sequence. It would be good to work out an example where (iii) does

come into play, since doing so could indicate whether that condition is a reasonable one
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to have added, or whether, on the contrary, it tends to rule out events that we would want

to include.

It would also be good to work out some physically interesting instances of our

approximation procedure in the causal set case. We might begin, for example, with

the event ‘originary’ for the relatively simple dynamics of complex percolation.

8. Epilogue: does physics need an actual infinity?

Does the description of nature require actual infinities? Or is a truly finitary physics

possible, in which infinite sets would figure only as potentialities?

Inasmuch as the theories to which we have grown accustomed make heavy use of real

numbers, they thereby presuppose an actual infinity of cardinality ℵ1, as emphasised in

Isham (2002). In itself, however, this seems more a matter of convenience than of principle,

since we could imagine making do with rational numbers of a very fine but finite precision

that could be made still finer as the need arose – in other words a potential infinity.†

The other prominent continuum in current physics is, of course, space–time. Non-

relativistically, we could again imagine circumventing the actual infinities that continuous

space and time seem to imply, but when it comes to relativistic field theories, the new

requirement of locality appears to force strict continuity on us. Perhaps we could get by

with only ℵ0 points, say points with rational coordinates, but even that would still be an

actual infinity.

Quantum gravity raises all these questions anew, of course. String theory and loop

quantum gravity both presuppose background continua, at least in their current formula-

tions. Causal dynamical triangulations and the ‘asymptotic safety’ approach retain locality

and presuppose the same type of continuum as classical gravity, albeit not as background.

With causal sets, the situation seems more fluid. On the one hand, they transcend

locality, but on the other hand they still maintain covariance in the sense of label-

invariance, and that brings with it an ‘infrared’ infinity, as discussed earlier. An important

new feature, however, is that now the infinity is in some sense pure gauge: we need it only

because we have introduced both an auxiliary time parameter and a space of ‘completed

causets’ in order to give a precise meaning to the concept of sequential growth. Could it

be that a manifestly covariant formulation of growth dynamics could dispense with this

‘last remaining infinity’? As we are limited to measure theoretic tools inherited from the

classical theory of stochastic processes, we seem to lack the technical means to ask the

question properly. As things stand, we can acknowledge at a minimum that being able

to refer to completed causets is very convenient, even if it ultimately turns out not to

be physically necessary. Note also that the cardinality of a completed causet, though not

finite, is reduced to that of the integers. On the other hand, the associated sample-space

Ω still has the cardinality of the continuum.

Based on this evidence, we could perhaps agree that physics is tending toward more

finitary concepts, even if it has not genuinely reached them yet. In particular, even if

† In writing ‘ℵ1’, I have adopted the continuum hypothesis, ℵ1 = 2ℵ0 , for . . . notational reasons.
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causal sets are implicitly free of actual infinities, the available mathematical tools do not

let us express this fact clearly. It may be that some of the tools we seem to lack will arise

naturally in the course of attempts, like those above, to extract well-defined generalised

measures from quantal path-integrals and path-sums.

Appendix A. Some symbols used in the paper (in approximate order of their appearance)

Ω (the sample-space or space of histories), Ωphysical , Ωgauge, Ω(n)

0 ⊆ Ω (the empty subset)

cyl(c) (the cylinder event corresponding to the truncated history c)

Z (the semiring of cylinder events), Zn

S = RZ (the Boolean algebra generated by Z = the finite unions of cylinder sets)

Sn

T (the tree of truncated histories), Tn

1z ≡ exp 2πiz∨
S,

∧
S,

∨ ∧
S

S(α), S̃(α)

lim, Lim, lim inf, lim sup

≺
P, P

A � B
|Z〉 = µ(Z)
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