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We report on the influence of rotation about a vertical axis on the large-scale
circulation (LSC) of turbulent Rayleigh–Bénard convection in a cylindrical vessel
with aspect ratio Γ ≡ D/L = 0.50 (where D is the diameter and L the height of the
sample). The working fluid is water at an average temperature Tav = 40 ◦C with a
Prandtl number Pr = 4.38. For rotation rates Ω . 1 rad s−1, corresponding to inverse
Rossby numbers 1/Ro between 0 and 20, we investigated the temperature distribution
at the sidewall and from it deduced properties of the LSC. The work covered
the Rayleigh-number range 2.3 × 109 . Ra . 7.2 × 1010. We measured the vertical
sidewall temperature gradient, the dynamics of the LSC and flow-mode transitions
from single-roll states (SRSs) to double-roll states (DRSs). We found that modest
rotation stabilizes the SRSs. For modest 1/Ro . 1 we found the unexpected result that
the vertical LSC plane rotated in the prograde direction (i.e. faster than the sample
chamber), with the rotation at the horizontal midplane faster than near the top and
bottom. This differential rotation led to disruptive events called half-turns, where the
plane of the top or bottom section of the LSC underwent a rotation through an angle
of 2π relative to the main portion of the LSC. The signature of the LSC persisted
even for large 1/Ro where Ekman vortices are expected. We consider the possibility
that this signature actually is generated by a two-vortex state rather than by a LSC.
Whenever possible, we compare our results with those for a Γ = 1 sample by Zhong
& Ahlers (J. Fluid Mech., vol. 665, 2010, pp. 300–333).
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1. Introduction
Thermal convection occurs in a fluid heated from below (Rayleigh–Bénard

convection, RBC) whenever it is exposed to a sufficiently large temperature gradient.
The relevance of this phenomenon to natural and industrial processes was discussed
in a previous publication (Weiss & Ahlers 2011a). In this paper we focus on
convection in a simple geometry, namely a right-circular cylinder of height L and
diameter D with aspect ratio Γ ≡ D/L = 0.50. For a sufficiently large temperature
difference 1T ≡ Tb − Tt (Tb and Tt are the temperatures at the sample bottom and
top, respectively) the heat is transported by turbulent fluid motion from the bottom to
the top plate (for a review, see e.g. Ahlers, Grossmann & Lohse 2009; Ahlers 2009;
Lohse & Xia 2010). Thermal boundary layers (BLs) exist close to the top and bottom
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plates; they are characterized by very large vertical temperature gradients, whereas the
average temperature gradient in the bulk is an order of magnitude or more smaller.
Warm (cold) fluid volumes, so called ‘plumes’, originate from the bottom (top) BL,
rise (sink) due to their lower (higher) density to the top (bottom) plate and in this way
contribute to the driving of the fluid motion. Temperature and velocity measurements
have shown that the plume motion and the associated overall fluid flow often organize
themselves into a large-scale circulation (LSC), similar to a single (albeit vigorously
fluctuating) convection roll.

The LSC shows a variety of different dynamics, such as cessations and fast rotations
(Brown, Nikolaenko & Ahlers 2005; Brown & Ahlers 2006b; Xi & Xia 2007) or
torsional and sloshing oscillations (Funfschilling & Ahlers 2004; Funfschilling, Brown
& Ahlers 2008; Xi et al. 2009; Brown & Ahlers 2009). Recently we completed a
detailed study of the heat transport and the LSC in a cylindrical sample with Γ = 0.50
(Weiss & Ahlers 2011b). For that case the LSC shows interesting transitions between a
state where a single convection roll is replaced for a short time by two counter-rotating
rolls, one on top of the other (Xi & Xia 2008b). Here we investigate the effect of
rotating such a sample about a vertical axis. We already presented results and their
interpretation for the heat transport in the presence of rotation (Weiss & Ahlers 2011a).
Here we focus on the properties of the LSC and its dynamics.

Based on the Navier–Stokes and the heat equation one can identify two-
dimensionless parameters that contribute to the definition of the state of the system.
These are the Rayleigh number

Ra= gα1TL3

νκ
(1.1)

and the Prandtl number

Pr = ν
κ
. (1.2)

Here α is the isobaric thermal expansion coefficient, ν the kinematic viscosity, κ the
thermal diffusivity and g the gravitational acceleration. In addition, the geometry is
characterized by the aspect ratio Γ . The rotation rate Ω (in rad s−1) is expressed in
terms of the dimensionless inverse Rossby number

1/Ro= 2Ω√
gα1T/L

(1.3)

which represents the ratio between the Coriolis and the buoyancy forces. Owing to
its proportionality to Ω it is a convenient parameter describing the strength of the
rotation. Also frequently encountered is the Ekman number Ek = ν/(L2Ω) which is an
estimate of the ratio between the viscous and the Coriolis forces. The Taylor number
Ta= (2/Ek)2 has also been used.

For non-rotating RBC it is believed that the heat transport is limited by the thickness
and the stability of the thermal BLs close to the plates (Malkus 1954), and that, at
least for modest to large Pr, the actual flow field in the bulk and the aspect ratio have
only a minor influence (Ciliberto, Cioni & Laroche 1996; Xia & Lui 1997; Xu, Bajaj
& Ahlers 2000; Funfschilling et al. 2005; Nikolaenko et al. 2005; Sun et al. 2005a)
(see, however, Bailon-Cuba, Emran & Schumacher 2010 for Pr = 0.7 and van der
Poel, Stevens & Lohse 2011 for the two-dimensional case). However, it was shown,
for instance by Xi & Xia (2008b) and Weiss & Ahlers (2011b), that the flow field
inside the bulk is influenced very much by a change of Γ . For example, while for
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Γ = 1 the LSC has a relatively constant amplitude, shows slow azimuthal diffusion,
periodic oscillations and loses its coherent structure only once in a while (cessation),
for Γ = 0.50 and smaller, fluctuations of the strength and the orientation of the LSC
become much larger and flow-mode transitions to a double-roll state (DRS) occur.

For small and moderate rotation rates (small 1/Ro), the formation of vortices leads
to Ekman pumping, an effect which extracts hot (cold) fluid from the bottom (top)
thermal BL and transports it deep into the bulk region, increasing in this way the
heat transport (Rossby 1969; Kunnen 2008; Liu & Ecke 2009; Zhong et al. 2009;
Stevens et al. 2009; Weiss et al. 2010; Weiss & Ahlers 2011a). However, this effect
occurs only above a threshold 1/Roc (Stevens et al. 2009; Weiss & Ahlers 2011a),
which depends on the aspect ratio Γ (Weiss et al. 2010). As reported by Weiss
et al. (2010) and Weiss & Ahlers (2011a), a two-dimensional Ginzburg–Landau-like
model that describes the relation between the local vortex density A and 1/Ro can be
used to explain why in finite-sized containers a minimum 1/Roc ∝ 1/Γ > 0 has to be
exceeded before vortices, and thus heat-transport enhancement, occur.

A detailed investigation of rotating turbulent convection for Γ = 1 was presented
by Zhong & Ahlers (2010). Among other phenomena, they found (in qualitative
agreement with earlier work by Hart, Kittelman & Ohlsen (2002) and Kunnen, Clercx
& Geurts (2008)) a retrograde rotation of the LSC and an increase of the frequency of
cessations with increasing rotation rates.

In this paper we present a detailed investigation of the effect of rotation on turbulent
RBC in a cylindrical container of aspect ratio Γ = 0.50. Our previous work (Weiss &
Ahlers 2011a) about the influence of rotation on the heat transport in this system
revealed two different phase transitions that were visible in the Nusselt number
measurements. In the present paper we focus on the LSC. We explored properties
of the flow field by measuring the temperature at 24 points along the sidewall. Major
and surprising results include prograde rotation of the LSC plane at modest 1/Ro, a
differential flow at the sidewall that leads to partial ruptures of the LSC (so-called
half-turns) and a stabilization of the LSC associated with a reduction of flow-mode
transitions from a single-roll state (SRS) to a DRS and back again. We found that
the periodic azimuthal temperature variation characteristic of the LSC persists up to
unexpectedly large rotation rates corresponding to 1/Ro ' 20. However, it was shown
by Stevens et al. (2011b) that, at least for Ra = 2.9 × 108 and 1/Ro = 3.33, there
are only two vortices in a Γ = 0.50 sample, one coming from the cold top and the
other from the warm bottom BL. Such a structure presumably would also lead to a
sinusoidal azimuthal temperature variation, similar to that characteristic of the LSC.
We were unable to distinguish experimentally between these two phenomena.

The next section describes very briefly the experimental set-up and explains the
sidewall temperature measurements and their analysis. Section 4 shows measurements
of the temperature gradient at the side but far away from top and bottom BLs.
The influence of rotation on the LSC is discussed in § 5. This includes a short
discussion of the existence of the LSC and of the influence of rotation on the flow-
mode transitions from a SRS to a DRS. Next the dynamics of the LSC, such as its
diffusive random motion, the number of flow-transition events, the rotation rate of the
LSC plane and its bent shape are examined. The article ends with a short summary.
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Run 1T (K) 10−9Ra Ro Ω (rad s−1) Run 1T (K) 10−9Ra Ro Ω (rad s−1)

E12 0.50 2.28 0.0311 E15 3.98 17.98 0.0874
E13 1.00 4.51 0.0437 E16 7.95 35.9 0.124
E14 1.99 9.00 0.0618 E17 15.88 71.7 0.175

TABLE 1. Parameters for the experimental runs. For all cases, Pr = 4.38, Tav ≡
(Tb + Tt)/2 = 40 ◦C, Ek × Ω = 2.73 × 10−6 rad s−1 and Ta/Ω2 = 1.46 × 1011 s2 rad−2.
The last column gives the product (RoΩ), which is a constant material parameter for a
given experimental run.

2. Experimental set-up and data analysis
2.1. Convection apparatus

The experimental set-up was the same as that already described as the ‘Medium
Convection Apparatus’ (MCA) by Weiss & Ahlers (2011b) and was mounted on a
rotating table as described by Zhong & Ahlers (2010). The present experiment was
conducted with a sample of aspect ratio Γ = 0.50 as described by Weiss & Ahlers
(2011a). Thus, we give only a few brief details.

The fluid for all experiments was water at an average temperature Tav ≡
(Tb + Tt)/2 = 40 ◦C resulting in Pr = 4.38. The fluid was confined at the top and
bottom by copper plates. Five thermistors were incorporated in each plate. In the
lateral direction the fluid was confined by a Plexiglas tube of inner diameter
D = 24.77 cm and appropriate height so that the top and bottom plate were separated
by L = D/Γ = 49.5 cm. The vertical viscous diffusion time τκ ≡ L2/ν of the sample
was 7.0× 105 s. Various thermal shields prevented parasitic heat losses.

For measurements of the sidewall temperature distribution, 24 thermistors were
place from the outside into blind holes in the sidewall as first described by Brown
et al. (2005). At each of three horizontal circles at heights z = −L/4, 0 and L/4
away from the midplane of the cell, NT = 8 thermistors were equally distributed
azimuthally. Each thermistor was embedded in thermal paste inside the sidewall so
that the distance between the thermistor and the fluid was not more than 1 or 2
mm. The five thermistors in the top and bottom plate were calibrated outside the
apparatus with a precision of 1 mK against a Hart Scientific Model 5626 platinum
resistance thermometer, as described by Zhong & Ahlers (2010). The sidewall
thermistors were calibrated inside the apparatus against the top and bottom plate
thermistors. During the experiment, the temperatures at the top and bottom plate
were held constant. Experiments were performed for six different Ra in the range of
2.3 × 109 < Ra < 7.2 × 1010 and for up to 35 different rotation rates at a given Ra.
Table 1 lists the runs discussed in this paper.

During a typical experimental run, at constant 1T and Ω all thermistors were read
every 3.2 s or so for at least half a day. For data evaluation the first readings were
discarded to avoid transients. Since only the rotation rate Ω was changed slightly
between two successive experiments, most of the time it was sufficient to discard only
the first hour.

2.2. Measurement of LSC properties
The 24 thermistors embedded in the sidewall allow the investigation of certain
characteristics of the turbulent flow close to that wall at three different heights. This
includes especially some aspects of the structure and the dynamics of the LSC. As
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shown previously (Brown et al. 2005; Brown & Ahlers 2006b), the orientation and
strength of the LSC can be determined by fitting the function

Tf ,k = Tw,k + δk cos
(

2iπ
NT
− θk

)
(2.1)

to each set of the NT temperatures Ti,k at heights −L/4, 0 and L/4. Here the subscript
‘i’ denotes the azimuthal location of the thermistors and ‘k’ denotes the vertical
location and can take values ‘b’ (bottom, z = −L/4), ‘m’ (middle, z = 0) and ‘t’ (top,
z = L/4). The amplitude δk and the phase θk are measures for the strength and the
orientation of the LSC. The constant Tw,k is the mean temperature at the sidewall and
at the vertical position k.

By following the time evolution of the strength δk and orientation θk of a convection
roll at a single vertical level, one can determine aspects of its dynamics including
azimuthal diffusion, rapid rotation events and cessations (Brown et al. 2005; Brown &
Ahlers 2006b). With thermistor rows at three vertical positions it is possible to observe
additional features. These include the torsional oscillations (Funfschilling & Ahlers
2004; Funfschilling et al. 2008; Zhou et al. 2009; Brown & Ahlers 2009) of the SRS
where one roll extends from the top to the bottom of the cell, as well as transitions
from a SRS to a DRS where two counter-rotating rolls are one on top of the other (Xi
& Xia 2008b; Weiss & Ahlers 2011b). In the latter example the top and the bottom
thermistors can detect both rolls, characterized by δb ≈ δt and θb − θt ≈ π. In this case
the amplitude of the middle thermistor row δm would be small.

Although (2.1) under many situations provides a good fit to the eight temperatures
measured by the thermometers at a given height k, these measurements contain more
information than the three parameters determined from this fit. Thus, in a previous
publication (Brown & Ahlers 2007) the time-averaged deviations of the Ti,k from
the fitted function Tf ,k were reported as a function of the azimuthal orientation
of each thermometer relative to θk and analysed for their higher-harmonic contents.
Similarly, root-mean-square (r.m.s.) fluctuations about the mean temperature profile
were examined. In other publications (Stevens et al. 2009; Zhong & Ahlers 2010) the
time-averaged r.m.s. fluctuations

〈σf ,k〉 =
〈(

1
NT

NT∑
i=1

(Ti,k − Tf ,k)
2

)1/2〉
t

(2.2)

about the fit of (2.1) were compared with the time-averaged amplitude 〈δk〉 in order to
assess the prominence of the LSC. For 〈δk〉 well above 〈σf ,k〉 the LSC was expected
to be well established; but when 〈δk〉 approached 〈σf ,k〉 as a parameter was varied, the
existence of the LSC could no longer be assured.

An important property of the LSC missed by (2.1) is a periodic displacement of
the LSC circulation plane away from the vertical centreline of a sample with Γ = 1
which was discovered by Xi et al. (2009) (see also Zhou et al. 2009) and named the
‘sloshing mode’. By virtue of its symmetry this mode is missed completely by a fit
of (2.1) to the eight Ti,k. In order to detect it, Brown & Ahlers (2009) computed the
three non-vanishing sinusoidal Fourier amplitudes Bk,j, j = 2, 3, 4 of the deviations of
the sidewall temperatures from the fit of (2.1). The coefficients of the fundamental
mode Ak,1 (the lowest cosine coefficient) and Bk,1 are of course contained already in
the fit parameters of (2.1).

Recently it was advocated by Stevens, Clercx & Lohse (2011a) that a complete
Fourier analysis of the data should be carried out in order to extract the maximum
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information. Such an analysis had been carried out before using data from direct
numerical simulation (DNS) by Kunnen et al. (2008). Thus, for our case of eight
thermometers, we computed the coefficients of the lowest four Fourier modes from
the NT = 8 temperatures Tk,i at a given k (after having subtracted their mean Tw,k).
This yielded all eight Fourier coefficients Ak,j (the cosine coefficients) and Bk,j (the
sine coefficients), j = 1, . . . , 4 for the case where there are eight temperatures. From
these coefficients we determined the ‘energy’ Ek,j(t) = A2

k,j + B2
k,j for each mode

j = 1, . . . ,NT/2. The total Fourier energy is then Ek,tot(t) =
∑NT /2

j=1 Ek,j(t). We note
that Ek,1(t) = δ2

k (t), and that (by Parseval’s theorem or Rayleigh’s identity) Ek,tot(t) is
equal to the variance σ 2

k = (1/NT)
∑NT

i=1 (Ti,k − Tw,k)
2 of the data. The LSC orientation

is given by θk = arctan(Bk,1/Ak,1).
Stevens et al. (2011a) suggested further that the parameter

Sk(t)=MAX

[(
Ek,1/Etot − 1/(NT/2)

1− 1/(NT/2)

)
, 0
]

(2.3)

can be used to assess whether the LSC dominates over fluctuations, or whether its
very existence is in question. They note that Sk = 1 when all of the Fourier energy is
contained in the fundamental mode associated with the LSC, and that Sk = 0 when the
energy is evenly distributed over all modes as it would be if the Ti,k are due to random
fluctuations. In the analysis of the present data we use either (2.1) or the Fourier
analysis, depending on the purpose at hand.

In addition to the time-dependent (and fluctuating) quantities Ek,j(t) and Sk(t), time-
averaged quantities are also useful for characterizing a particular convecting state.
Thus, when appropriate we also compute the time averages 〈Ek,j〉, 〈Ek,tot〉, and

S̄k =MAX

[( 〈Ek,1〉/〈Ek,tot〉 − 1/(NT/2)
1− 1/(NT/2)

)
, 0
]
. (2.4)

3. Nusselt-number measurements
Measurements of the heat transport, in the form of the dimensionless Nusselt

number, for the experiments described in this paper were reported in detail by Weiss &
Ahlers (2011a). Here we want to give a short summary of those data to better link the
flow structures presented in the present paper with the Nu results.

Figure 1 shows the reduced Nusselt number Nu/Nu(0) as a function of 1/Ro for
different Ra. For the case here, with aspect ratio Γ = 0.50, one can distinguish four
different ranges of 1/Ro that differ from each other by different slopes ∂Nu/∂(1/Ro).
While in range I Nu increases monotonically with 1/Ro, in range II Nu increases much
less (for small Ra) or decreases monotonically (for larger Ra) with increasing 1/Ro.
A similar behaviour, but with a somewhat smaller Nu increase in range I, was also
observed for Γ = 1 and relatively large Ra (Zhong & Ahlers 2010). The transition
point between ranges I and II is identified as 1/Ro0. In range III enhancements
of Nu are observed, with Nu reaching its maximum values near 1/Ro ≈ 3–5 and
decreasing from there on (range IV). The sharp transition between ranges II and III
at 1/Roc = 0.85 can be explained by the formation of vortices close to the thermal
BLs that, owing to the finite lateral size of the container, cannot form at smaller
1/Ro (Weiss & Ahlers 2011a). Within these vortices, Ekman suction takes place and
transports fluid out of the hot (cold) thermal BL at the bottom (top) plate and thus
enhances the heat transport.
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Reduced Nusselt number
Nured = Nu(1/Ro)/Nu(0) as a function of 1/Ro for Ra = 2.3 × 109 (run E12, stars, black
online), Ra = 4.5 × 109 (run E13, down-pointing triangles, yellow online), Ra = 9.0 × 109

(run E14, squares, green online), Ra = 1.80 × 1010 (run E15, diamonds, red online),
Ra = 3.59 × 1010 (run E16, bullets, blue online) and Ra = 7.2 × 1010 (run E17, up-pointing
triangles, purple online). In (a) data are shown over a large 1/Ro range with a logarithmic
horizontal scale. In (b) data are shown for 1/Ro < 2.0 on a linear scale. The vertical solid
lines indicate the bifurcations at 1/Ro0 and 1/Roc. The roman numbers in the figures
correspond to the regions discussed in the text. Figure adapted from figure 2 of Weiss &
Ahlers (2011a).

The existence of a maximum of Nu, and the negative slope of Nu(1/Ro) in range
IV beyond it, can be attributed to two phenomena. On the one hand, it is known that
for large 1/Ro vertical fluid motion (and, thus, heat transport) is suppressed due to
the Taylor–Proudman effect (see, for instance, Tritton 1988). On the other hand, it is
expected that the heat-transport enhancement is maximal when the Ekman BL δE has
a thickness that is similar to that of the thermal BL δθ . Since the Ekman layer shrinks
with increasing rotation rate (δE ∝ Ek1/2) its thickness becomes smaller than δθ at a
certain 1/Ro and then the Ekman vortices no longer are able to effectively pump fluid
out of the thermal BL into the bulk region (Julien et al. 1996; King et al. 2009; Liu &
Ecke 2009; Stevens, Clercx & Lohse 2010).

It is so far unknown to us why Nu increases slightly in range I and which
mechanism can explain the slow decrease in range II. To compare the behaviour
of Nu(1/Ro) with the measurements of the temperature at the sidewall, we mark in the
following figures, whenever useful, the critical inverse Rossby numbers 1/Ro0 = 0.5
(transition between ranges I and II) and 1/Roc = 0.85 (transition between ranges II and
III).

4. The temperature gradient at the sidewall
In turbulent thermal convection the vertical temperature gradient in the thermal BLs

at the top and bottom plates is very large, while in the bulk region the gradient is
relatively small (see, e.g., Tilgner, Belmonte & Libchaber 1993; Du & Tong 2000;
Brown & Ahlers 2007). The local vertical temperature gradient in the bulk is not
constant over the entire horizontal cross section. It is relatively larger at the sidewall
where the plumes travel primarily, and smaller in the centre (close to the axis of
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FIGURE 2. (Colour online) Reduced temperature gradient along the sidewall 1Tw/1T for
Ra = 2.3 × 109 (run E12, stars, black online), Ra = 4.5 × 109 (run E13, triangles, yellow
online), Ra= 9.0×109 (run E14, squares, green online), Ra= 1.80×1010 (run E15, diamonds,
red online) and Ra = 3.59 × 1010 (run E16, bullets, blue online). (a) Large range. (b) Only
1/Ro < 2. The up-pointing triangles show data for Ra = 7.17 × 1010 (run E17). The vertical
solid lines indicate the bifurcations at 1/Ro0 and 1/Roc.

the cylindrical convection vessel) where there are very few plumes. For sufficiently
small Ra, and Pr near five, a small negative (stabilizing) gradient was measured at the
cylinder axis (Tilgner et al. 1993; Brown & Ahlers 2007).

We define the relative gradient along the wall as

1Tw/1T = [2 · (〈Ti,b〉 − 〈Ti,t〉)]/1T, (4.1)

where the average is taken over all eight thermistors and all times (after transients
have decayed) during a single experimental run. For a cylindrical sample with Γ = 1 it
was shown by Brown & Ahlers (2007) that an increase of Ra leads to smaller relative
gradients at the sidewall but also to smaller negative relative gradients at the cylinder
axis. For Γ = 0.50, measurements of the sidewall temperature gradient as a function
of the Rayleigh number were obtained recently by Weiss & Ahlers (2011b) using the
present apparatus without rotation. The results, as a function of Ra, overlap somewhat
with and follow nearly the same power law as the data for Γ = 1 (Brown & Ahlers
2007), suggesting that the aspect ratio has only a minor effect in the non-rotating case.

Figure 2 shows new data for the relative temperature gradient along the sidewall in
the presence of rotation for Γ = 0.50, Pr = 4.38 and several Ra as a function of 1/Ro.
As can be seen in figure 2(a), 1Tw/1T decreases with increasing 1/Ro for small
rotation rates (1/Ro . 1/Roc) and increases for larger rotation rates (1/Ro & 1/Roc).
The increase can be attributed to an enhanced lateral mixing in the presence of rotation
as explained by Julien et al. (1996). This lateral mixing reduces the temperature
contrast and thus the buoyancy, resulting in a reduced vertical fluid motion and
reduced vertical heat transport. At very fast rotation rates Stewartson layers form
at the sidewalls (Kunnen et al. 2011) in which additional warm (cold) fluid is pumped
from the bottom (top) plate in the vertical direction. Therefore our top and bottom
sets of probes are not in direct contact with the bulk flow, but are influenced by these
BLs. As a result the temperature gradient at the sidewall is expected to be slightly
larger than in the bulk. The flow velocity in the Stewartson layers is in general small
and influences mainly the sidewall regions close to the top and bottom boundaries
(as shown for example in figure 6 of Kunnen et al. 2011). Therefore we believe that,
especially in the Γ = 0.50 case, these layers have only a minor influence on our
sidewall temperature measurements.
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FIGURE 3. (Colour online) (a) The time-averaged LSC amplitudes δk for all three levels
k = b (squares, red online), m (diamonds, green online) and t (triangles, blue online) as a
function of 1/Ro for Γ = 0.50 and Ra = 1.80 × 1010 (run E15). (b) The same quantity as
in (a) but for Γ = 1.00 and Ra = 2.25 × 109 (run E6 of Zhong & Ahlers 2010). Here data
were only available for k = b and m. The black vertical lines mark 1/Ro0 and 1/Roc. For both
(a) and (b) the applied temperature difference was 1T = 3.98 K.
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FIGURE 4. (Colour online) (a) The time-averaged energies 〈Em,j〉/〈Etot〉 of the Fourier modes
j = 1, . . . , 4 for data from the middle thermistor row of the present sample with Γ = 0.50
for Ra = 1.80 × 1010 (run E15). Triangles (yellow online): j = 1. Squares (green online):
j = 2. Diamonds (blue online): j = 3. Circles (red online): j = 4. (b) The same as (a), but for
Γ = 1.0 and Ra= 2.25 × 109 (run E6 of Zhong & Ahlers 2010). (c) The LSC strength S̄k for
all three levels k = b (squares, red online), m (diamonds, green online) and t (triangles, blue
online) of the same run as in (a). (d) Same as (c), but for the data used to generate (b) (in this
case data were available only for k = b and m).

The origin of the decrease of 1Tw for small 1/Ro is not known to us. It was
observed as well for Γ = 1 (Zhong & Ahlers 2010). However, we note that for both
Γ the thermal amplitude δm (figure 3), and thus the energy of the lowest Fourier mode
Em,1, of the LSC increases in the same range of 1/Ro, see figure 4 below and figure 21
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of Zhong & Ahlers (2010). Thus, it appears that a more vigorous LSC reduced the
sidewall thermal gradient. It will be interesting to extend the model of Brown &
Ahlers (2008b) by including the Coriolis force in order to see whether this leads to
an increase of δm and Em,1. Such an extension should be possible at least for Γ = 1
over the 1/Ro range below 1/Roc where Ekman vortices are not yet adding further
complications.

For Ra = 109 and Pr = 6.4 the gradient in the sample interior along the vertical
centre line of a Γ = 1 sample was studied using DNS by Zhong et al. (2009) and
Kunnen, Geurts & Clercx (2010). For small rotation rates a significant stabilizing
gradient was found to develop; but for 1/Ro & 0.3 a strong destabilizing gradient
evolved with increasing 1/Ro. Thus, it seems safe to conclude that, at large 1/Ro, the
destabilizing gradient observed by us along the sidewall is a bulk effect and not just
confined to the vicinity of the walls.

5. The LSC under the influence of rotation
5.1. The strength of the LSC

Figure 3(a) shows 〈δk〉, i.e. the time-averaged amplitude of the sinusoidal temperature
modulation, as defined by (2.1), for the top, middle and bottom thermistor row. At
very low rotation rates, 〈δm〉 is smaller than 〈δt〉 and 〈δb〉. This is in agreement with
previous measurements for the non-rotating case (Weiss & Ahlers 2011b). Part of the
reason for the lower 〈δm〉 is the existence of the DRS. During the time when the
system is in the DRS, δm is very small. This leads to a smaller 〈δm〉. We show in
§ 5.3 that for small 1/Ro the fraction of time w(DRS) that the system spends in the
DRS becomes smaller as 1/Ro increases and essentially vanishes near 1/Ro0. However,
even at the smallest 1/Ro, where w(DRS) is largest, it is only about 0.08; and from
figure 3(a) we see that 〈δm〉 is smaller than 〈δb〉 or 〈δt〉 by two or three times that
fraction. Thus, the presence of the DRS cannot be the entire reason for the relatively
small 〈δm〉.

For very small 1/Ro one sees that 〈δt〉 < 〈δb〉. This is not expected, since there is
no mechanism (known to us) that can break the up–down symmetry. Furthermore, a
systematic measurement error can be excluded as well, since both for 1/Ro = 0 and
1/Ro > 0.5 all three 〈δk〉 coincide with each other. One can speculate that slightly
more half-turns (see § 5.7) occur in the bottom part of the cell than in the top part,
which is not obvious from figure 19. Note, however, that similar asymmetries between
the top and bottom part of the cell are also observed in other quantities of the LSC
(see, for instance, figure 4).

For 1/Ro > 1/Ro0 all 〈δk〉 are of equal size and increase with increasing 1/Ro until
they reach a maximum near 1/Ro ≈ 1.5. From there on 〈δk〉 decreases slightly and
then, for 1/Ro > 3, increases again very slightly. In general, the amplitudes stay at a
level that is significantly higher than it is without rotation.

To compare with similar experiments in cylinders with aspect ratio Γ = 1.00, we
plot 〈δb〉 and 〈δm〉 of dataset E6 from Zhong & Ahlers (2010) in figure 3(b). In
contrast to the Γ = 0.50 measurements, one sees that for Γ = 1.00 and very small
rotation rates the amplitude at the middle thermistor row is significantly larger than
that at the bottom thermistor row. One can argue that this is due to the shape of
the LSC, which for Γ = 1.00 is roughly circular (Xi & Xia 2008b) and thus more
effective in cooling or heating the sidewall at the midplane; but it is difficult to
quantify this idea. One sees that 〈δk〉 increases with increasing 1/Ro also for Γ = 1.00.
It reaches a maximum at 1/Ro≈ 0.3. In contrast to the Γ = 0.50 case, the location of
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this maximum is well below 1/Roc. For larger 1/Ro〈δk〉 decreases and finally stays at
a rather low constant level significantly smaller than without rotation.

For large 1/Ro it is important to note that the temperature amplitudes 〈δk〉 most
likely do not represent the strength of the LSC. For 1/Ro > 1/Roc vortices occur first
close to the top and bottom boundaries, but increase in length so that they reach
also into the bulk region as 1/Ro increases. As a result the flow structure, and the
azimuthal temperature variation at the sidewall, is expected to become more and more
dominated by vertical vortices that destroy the LSC signature of the flow (Stevens
et al. 2011a).

5.2. The existence range of the LSC
From the fit of (2.1) to the eight Ti,k, and the resulting 〈δk〉 shown above in § 5.1,
it is difficult to determine whether only the strength of the LSC changes or whether
the LSC structure changes or disappears. In an attempt to illuminate this problem,
we carried out the complete Fourier analysis suggested by Stevens et al. (2011a) and
outlined in § 2.2. Figure 4(a) shows the time-averaged energies of the four accessible
Fourier modes as a function of 1/Ro for our Γ = 0.50 and Ra = 1.8 × 1010. Keeping
in mind that Ek,1 = δ2

k , we do not expect new insight from the results for the energy
〈Ek,1〉/〈Etot〉 of the first Fourier mode. The new information is that, over the whole
range 0 6 1/Ro 6 12, 〈Ek,1〉 was significantly larger than the energies of all of the
higher modes. This could be interpreted to imply that a well-defined LSC existed at
least up to 1/Ro = 12. However, as discussed later in this section, this evidence may
be illusory.

As was seen for 〈δk〉, 〈Ek,1〉/〈Etot〉 increased and reached a maximum quite close to
1/Roc. This maximum was located just above (below) 1/Roc for Γ = 0.5 (Γ = 1.00).
This result stands in contrast to the DNS results of Kunnen et al. (2011) for Γ = 1
which showed a monotonically decreasing 〈Em,1〉/〈Etot〉. However, Kunnen et al. (2011)
used numerical probes that were located inside the sample at a distance of 0.05D
away from the sidewall. We do not know whether this difference in probe location is
responsible for the different results, but it seems unlikely to us. The increase of 〈Ek,1〉
observed in the experiments corresponds to a stabilization of the SRS of the LSC by
the rotation, as we discuss further in § 5.3.

The LSC strengths S̄k for the top (S̄t), middle (S̄m) and bottom (S̄b) thermistor rows
are shown in figure 4(c). Of course the S̄k curves look very similar to those for
〈Ek,1〉/〈Etot〉. As expected, all three S̄k show qualitatively the same behaviour. At a
quantitative level S̄m is larger than the other two. This behaviour can be explained by
the larger number of events at the bottom or top (see § 5.5) that are in part due to
half-turns, where a section of the single LSC roll becomes decoupled from the rest
(see § 5.7). Therefore, one often still has an LSC temperature signature in the middle,
while it is already destroyed at the top or bottom. More surprisingly, S̄b < S̄t for small
1/Ro, showing that there is an asymmetry between top and bottom. We do not have
an explanation for this result. An inaccurate temperature measurement can be excluded
since all S̄k become very close for larger 1/Ro and also for 1/Ro = 0 (not shown in
figure 5, but see figure 19 of Weiss & Ahlers 2011b). For very large rotation rates,
the symmetry is expected to be broken, since warm fluid is pushed inwards due to
centrifugal forces while cold fluid is pushed outward. However, even for the largest
rotation rates in our experiments, the Froude number that measures the ratio between
centrifugal forces and buoyancy is Fr = ΩD2/4g ≈ 0.01, suggesting that centrifugal
forces do not play a significant role. Similar asymmetries between the top and bottom
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FIGURE 5. (Colour online) The time-averaged energies 〈Em,1〉/〈Etot〉 of the fundamental
Fourier mode for data from the middle thermistor row of the present sample with Γ = 0.50
for Ra = 4.51 × 109 (solid circles, red online, run 13), 9.0 × 109 (open circles, blue online,
run E14), 1.80×1010 (solid squares, green online, run E15), 3.59×1010 (open squares, purple
online, run E16) and 7.17× 1010 (solid diamonds, orange online, run E17). The dashed (solid)
line has a slope of −0.124 (−0.015).

thermistor rows were observed also in other quantities, such as the event rate (§ 5.5) or
the instantaneous rotation rates 1θ/1t (figure 9).

The differences between the S̄k become smaller with increasing 1/Ro. This is similar
to the differences between the rates of events (see figure 12 below).

For comparison, the right-hand side of figure 4 (4b and 4d) shows similar results
for Γ = 1. In this case, after the initial increase 〈Em,1〉 decreased rapidly beyond
its maximum while the other modes, especially j = 2, had increasing energies. At
1/Ro ≈ 0.8, j = 1 was no longer the dominant mode since its energy 〈Em,1〉 fell below
〈Em,2〉, and thus we assume that the LSC had ceased to exist. Correspondingly, also
S̄m and S̄b in figure 4(d) showed a slight increase for small 1/Ro, and then a steep
decrease after their maxima at 1/Roc. The conclusions drawn here regarding the
survival of the LSC for Γ = 1 are consistent with those based on comparing 〈δk〉 with
〈σf ,k〉 (see (2.2)) as was done by Zhong & Ahlers (2010).

It is surprising and unexpected that, for Γ = 0.50, the LSC appears to exist even
for 1/Ro = O(10) (see figure 4a). In this range, the formation of vortices that extend
through the whole cell is expected to take place (Kunnen 2008; Stevens et al. 2011b).
A deeper insight into the real flow structure is experimentally not accessible to us.
However, DNS of the Boussinesq equations have revealed that, also for Γ = 0.50,
vortex columns extend over almost the whole cell height for 1/Ro & 3. As shown in
figure 5 of Stevens et al. (2011b), for 1/Ro = 3.33 and Ra = 2.91 × 108, only two
vortices exist for this small aspect ratio. One of them originates at the bottom and
extracts warm fluid out of the bottom BL, while a similar one originates at the top
and extracts cold fluid out of the top BL. Both are located next to each other roughly
on a sample diameter, and one can expect that this flow configuration would show a
sinusoidal azimuthal temperature signature at the sidewall, similar to that we find when
an LSC is present. Thus, this two-vortex structure could not be distinguished from
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an LSC by the methods used in our experiment. However, figure 5 of Stevens et al.
(2011b) shows only one snapshot and it is not known whether this flow configuration
with only two counter-rotating vortices will persist in time and as a function of Ra and
1/Ro. In further discussions we shall refer to this state as the two-vortex state (TVS).
If indeed it exists over a wide Ra and 1/Ro range, then our sidewall measurements,
intended to shed light on the LSC dynamics, actually yield information about the TVS
dynamics.

Searching for more evidence for the existence of the TVS, we examined in figure 5
the dependence of 〈Em,1〉 on 1/Ro over a wide range and for all of the Ra values for
which we had precise data. No significant dependence on Ra was revealed. One sees
that immediately following the maximum there was a steep drop of 〈Em,1〉 which we
assume was associated with a diminishing strength of the LSC due to the interactions
with Ekman vortices. Beyond 1/Ro ' 3 the rate of decrease of 〈Em,1〉 with 1/Ro
was smaller by an order of magnitude, as indicated by a comparison of the slopes
of the dashed and the solid line in the figure. It is not unreasonable to conjecture
that the slower decrease of 〈Em,1〉 is a characteristic of the TVS. We return to other
characteristics possibly associated with the TVS in the next section.

5.3. Flow-mode transitions
Flow-mode transitions from a SRS to a DRS where two counter-rotating rolls are
placed on top of each other were first found in experiments by Xi & Xia (2008b).
Recently Weiss & Ahlers (2011b) reported in detail on the mechanism and statistics
of flow-mode transitions of this kind for containers with aspect ratio Γ = 0.50. They
showed that the fraction of time that the system spent in the DRS decreased with
increasing Ra. Here we report on the influence of slow rotation on the lifetime and
prevalence of the SRS and the DRS.

To identify these states, we used the same algorithm that was used by Weiss &
Ahlers (2011b). We assumed that the system was in the DRS when |θt − θb| > 120◦

and that the system was in the SRS when none of |θk1 − θk2| exceeded 60◦ for k1 6= k2.
In order to omit states where θk was poorly defined, we introduced an additional
condition that took the δk into consideration. For a DRS δt and δb both had to be larger
than 15 % of their average values, whereas to consider a state as a SRS all δk had to
be larger than 15 % of their average values.

The fraction of time that the system spent in the SRS (w(SRS)) or the DRS
(w(DRS)) is plotted in figure 6(a). The data show that w(SRS) increased from 0.67 for
the non-rotating case up to 0.98 for 1/Ro≈ 1.2. On the other hand, w(DRS) decreased
from about 0.07 for the non-rotating case to zero for 1/Ro≈ 1.2. The fraction of time
wother = 1 − w(SRS) − w(DRS) that the system spent in other states not meeting our
SRS or DRS criteria, for instance in transients between states, is shown as black stars
in the figure. It decreased from 0.26 to near zero over this 1/Ro range. Note, that the
absence of any DRS means that no such flow mode was observed during a run of 24 h
duration. For larger 1/Ro the SRS became less stable, as indicated by the decrease of
w(SRS) and the increase of w(DRS).

A similar behaviour could be found by looking at the average time that the system
spent either in the SRS or in the DRS. This is shown in figure 6(b). While the SRS
was destroyed regularly in the non-rotating case (the average life time was about
7 × 10−4τκ) this state became more and more stable as the rotation rate increased. At
1/Ro = 1.4, the average life time τSRS = 8 × 10−3, a factor of 10 larger than in the
non-rotating case. The DRS on the other hand became increasingly unstable and its
lifetime was strongly reduced as 1/Ro got closer to one.
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FIGURE 6. (Colour online) (a) The fractions of time w when the SRS, the DRS or some
other state existed and (b) the lifetimes (in units of the vertical thermal diffusion time τκ )
of the SRS and the DRS, both as a function of 1/Ro on a semilogarithmic scale. w(SRS):
bullets, blue online, left ordinate. w(DRS): open circles, red online, right ordinate. wother :
black stars, left ordinate. The solid vertical lines mark 1/Ro0 and 1/Roc. The data were taken
at Ra= 1.80× 1010 (run E15).

If the LSC actually does not exist for, say, 1/Ro & 2 or so, then, as discussed above,
our measurements of w really pertain to the TVS. The probability w(SRS) is then
a measure of the fraction of time during which both vortices extend sufficiently far
through the cell to produce a sinusoidal azimuthal profile at all three measurement
levels.

We conclude that slow and moderate rotation stabilizes the SRS significantly. We
can only speculate about the reason for this stabilization. If one assumes that many
SRS–DRS transitions are induced by small rolls at the corner of the cell that grow in
size and finally replace the original roll, one can think that this process is hindered by
the half-turns (see § 5.7) that occur regularly and that do not allow small corner rolls
to grow to a significant size. However, these are only speculations and not backed up
by measurements so far.

5.4. The dynamics of the LSC
The fit parameters δk(t) and θk(t) (see (2.1)), as well as their various correlations, yield
information about the time evolution of the strength, orientation and shape of the LSC.
Similarly, the Fourier analysis discussed in § 2.2 yields in part equivalent and in part
complementary information.

Figure 7 shows δt(t), δm(t) and δb(t) for 1/Ro = 0 and for the moderately rotating
case 1/Ro = 0.79. As noted before (Xi & Xia 2008a; Weiss & Ahlers 2011b), for
1/Ro = 0 all δk are very erratic and fluctuate much more than they do in the Γ = 1
case (see, e.g., Brown & Ahlers 2006b; Xi & Xia 2008a,b; Weiss & Ahlers 2011b).
While for Γ = 1 rare very small values of δk are mostly due to cessations where
all three δk come close to zero simultaneously, for Γ = 0.50 these events are due
to a variety of processes including flow-mode transitions, half-turns (see below), etc.
where perhaps only a single δk becomes small. The dashed horizontal lines in figure 7
mark 0.15〈δk〉: the threshold we used to determine flow-mode transitions, half-turns
and other events. As can be seen in figure 7(b), in the presence of modest rotation the
fluctuations become less vigorous and the events, where δk drops below the threshold,
become less frequent for all three thermistor heights.
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FIGURE 7. (Colour online) Examples of δt (top, blue online), δm (middle, green online) and
δb (bottom, red online) as a function of time for 1/Ro = 0 (left) and 1/Ro = 0.79 (right) for
Ra= 1.8 × 1010 (run E15). The dotted horizontal line in each graph gives the event threshold
0.15〈δk〉.

Similar behaviour is observed also for the phases θk. However, for 1/Ro > 0 the
LSC rotates relative to the cylindrical container as was shown for Γ = 1 before by
others (Hart et al. 2002; Kunnen et al. 2008; Zhong & Ahlers 2010) and is discussed
in § 5.6 for Γ = 0.50. Therefore, we examine instead the phase differences between
different thermistor rows θk1 − θk2 , which are not influenced by any net rotation, as
a function of time. The results, given in figure 8, also show a stabilizing influence
of slow rotation. For the non-rotating case (figure 8a), all curves most of the time
have values close to multiples of 2π but fluctuate significantly around these values.
These fluctuations are mostly random and are caused by the turbulent fluid flow,
but also include contributions from the torsional mode (Funfschilling & Ahlers 2004;
Funfschilling et al. 2008) of the LSC. In addition to these fluctuations, multiple 2π
jumps occur that are mostly associated with SRS–DRS–SRS flow-mode transitions
(see § 5.3) or other less well-defined events. Cessations are very rare for Γ = 0.50
(Weiss & Ahlers 2011b) and therefore make no significant contributions to these
jumps. The 2π jumps occur when δk is small and consequently the uncertainty of θk

is large. Thus, they may actually not have any real physical significance and instead
may be due to the least-squares procedure used to fit the data as discussed in detail by
Weiss & Ahlers (2011b, § 2.4).

When modest rotation is applied (figure 8b), the fluctuations around multiples of
2π are reduced, and there are not as many 2π jumps. The slow rotation apparently
stabilizes the LSC, as noted already in § 5.2 where we examined the energy Ek,1 of the
fundamental mode of the azimuthal temperature variation. We note that figures 7 and 8
are only examples for a specific 1/Ro. As we show in § 5.5, close to 1/Ro = 1 the
event rate is minimal and therefore a single-roll LSC is most stable. This stability is
reduced again for larger 1/Ro.

A better picture of the effect of rotation on the dynamics and stability of the LSC
is obtained from the corresponding probability distributions of δk and θk1 − θk2 . In both
cases, we consider in detail three different rotation rates. These are the non-rotating
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FIGURE 8. (Colour online) Example for θm − θt (top panels, blue online), θb − θt (middle
panels, green online) and θm − θb (bottom panels, red online) as a function of time for
(a) 1/Ro= 0 and (b) 1/Ro= 0.79 and for Ra= 1.8× 1010 (run E15).
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FIGURE 9. (Colour online) Comparison of the probability distributions of the normalized
amplitude δm/〈δm〉 for two values of 1/Ro> 0 with the distribution for 1/Ro= 0: (a) 1/Ro=
0.8 (squares, blue online) and 1/Ro= 0 (circles, red online); and (b) 1/Ro= 8.6 (open circles,
black) and 1/Ro = 0 (solid circles, red online). The solid and dashed lines are Gaussian fits
near the peaks. The Rayleigh number was Ra= 1.8× 1010 (run E15).

case (1/Ro = 0), the case 1/Ro = 0.8 which is just below the transition at 1/Roc, and
a very large rotation rate 1/Ro = 8.6. Figure 9 shows p(δm/〈δm〉); but we noted that δt

and δb behave similarly. Near their maxima the probability densities can be described
quite well by a Gaussian function. For the non-rotating case (1/Ro = 0, solid circles,
red online) the left tail is wider, while the right tail is slightly more narrow than a
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FIGURE 10. (Colour online) Comparison of the probability distributions of the phase
difference between the top and the bottom θt − θb for two values of 1/Ro > 0 with the
distribution for 1/Ro = 0: (a) 1/Ro = 0.8 (squares, blue online) and 1/Ro = 0 (circles, red
online); and (b) 1/Ro = 8.6 (open circles, black) and 1/Ro = 0 (solid circles, red online).
The solid and dashed lines are Gaussian fits near the peaks. The Rayleigh number was
Ra= 1.8× 1010 (run E15).
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FIGURE 11. (Colour online) The width (square root of the variance) of the Gaussian fit to
the probability density function of δm/〈δm〉 as a function of 1/Ro (squares, red online, left
ordinate) and the same quantity for the probability density function of θb − θt (bullets, blue
online, right ordinate). Data are from experiments with Ra= 1.8× 1010 (run E15).

perfect Gaussian. From the data for 1/Ro = 0.8 (figure 9a, solid squares, blue online)
one sees that moderate rotation narrows the distribution significantly and brings the
tails closer together. For the large rotation rate of 1/Ro = 8.6 (figure 9b, open circles,
black) the distribution becomes wider.

Figure 11 shows the widths of the Gaussian fits for different 1/Ro (squares, red
online). Here, it becomes even more clear that the small rotation rates stabilize δ and
narrow its probability density to a third of its width without rotation. A minimal width
is reached at around 1/Ro = 1, and for larger rotation rates the probability density
becomes wider again.
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FIGURE 12. (Colour online) Frequency of events ωe as a function of 1/Ro for the top
(squares, blue online), middle (bullets, green online) and bottom (diamonds, red online)
thermistor row for Ra = 1.8 × 1010 (run E15). The total measurement time for each data
point was ≈4 to 5 × 104 s. Thus, the actual number of events was small and the uncertainty
was large.

Very similar behaviour can also be seen in the probability distribution of θt − θb as
shown in figure 10. For the non-rotating case, a Gaussian function provides a good fit
only near the maximum and the distribution has wide tails. These non-Gaussian tails
likely are caused by the torsional oscillation which occurs when the system is in the
SRS, as well as by regularly occurring flow-mode transitions to a DRS and back as
described by Weiss & Ahlers (2011b). Small and moderate rotation (up to 1/Ro ' 1)
narrows not only the Gaussian part, but also brings the tails closer to the Gaussian
distribution as seen in figure 10(a). This narrowing reflects the stabilization of the LSC
and the suppression of flow-mode transitions by the rotation (see § 5.3). However, if
one increases 1/Ro above 1/Ro ' 2, the probability distribution becomes wider again
but, in contrast to p(δm/〈δm〉), does not become as wide as it was for the non-rotating
case. This is shown explicitly in figure 11 (bullets, blue online). The greater width for
the larger 1/Ro must be regarded as a characteristic of the TVS if that state indeed
prevails at these larger rotation rates.

In an effort to determine why the LSC is stabilized by modest rotation, we consider
next the amplitudes δk as a function of time and determine how the number of events
changes with 1/Ro.

5.5. Events
A quick change of the orientation of the LSC is sometimes achieved by a cessation, a
nearly complete breakdown of the LSC and its re-emergence after a short time period
(Brown & Ahlers 2006b; Xi & Xia 2008a). In the past, to recognize cessations the
amplitude of the LSC at the middle thermistor row δm was measured as a function of
time. Usually an (arbitrary) threshold value δth = 0.15 · 〈δk〉 (Brown & Ahlers 2006b;
Xi & Xia 2008a; Weiss & Ahlers 2011b) was set and it was assumed that a cessation
had occurred whenever δm had dropped below δth. This procedure was reliable for
Γ = 1.00. However, for Γ = 0.50 it was found that flow-mode transitions to a DRS
can also occur, with an associated drop of δm below δth while δb and/or δt remained
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above the threshold (Xi & Xia 2008b; Weiss & Ahlers 2011b). In fact, it was found
that, for Γ = 0.50 as well as Γ = 1.00, real cessations where all three amplitudes
become small simultaneously are very rare and that, for Γ = 0.50, the much more
frequent events, where only one or two amplitudes drop below the threshold, are
associated with flow-mode transitions to a DRS or half-turns that will be introduced
in § 5.7.

In the presence of rotation, Zhong & Ahlers (2010) showed for Γ = 1.00 that
a moderate rotation rate increased the average number of events at midheight per
unit time (ωe) dramatically. The first strong increase by a whole order of magnitude
occurred up to 1/Ro≈ 0.2, which corresponds to 1/Ro0 for that Γ . A second increase
appeared near their 1/Roc ≈ 0.4, where the event rate ωe increased by another factor of
three or so. A further increase of the rotation rate led to a further continuous increase
of ωe.

In the present case, for Γ = 0.50, the situation is different as can be seen in
figure 12. Slow rotation decreased ωe by nearly two orders of magnitude. A minimum
rate was found near 1/Ro ≈ 1, and for larger rotation rates ωe increased again. The
statistical errors are fairly large and the exact location of the minimum is hard to
determine. Thus, we are not able to establish any clear relationship between the
location of the minimum and 1/Ro0 or 1/Roc. We note that the rather large ωe of
about 5 × 10−4 s−1 (nearly two per hour) observed for 1/Ro & 2 would be a property
of the TVS if that state indeed exists for our Ra.

We know of two (1/Ro)-dependent processes that influence ωe for Γ = 0.50.
Without rotation events are mainly due to flow-mode transitions. As was shown in
§ 5.3, slow rotation increases the stability of the LSC with respect to flow-mode
transitions (see figure 6) and thus reduces ωe. For 1/Ro > 1 the SRS becomes less
stable again and more flow-mode transitions to the DRS occur. The second process is
discussed in § 5.7. There we show that, for slow rotation, the LSC rotates faster in the
middle than it does near the top and bottom. This leads to partial destruction of the
LSC (half-turns), resulting in an event rate that is larger than it is without rotation. The
competition between these two phenomena will largely determine ωe. The decrease
of flow mode transitions with increasing 1/Ro initially has a larger effect than the
increase of the frequency of half-turns, and thus the overall number of events has a
minimum. This also explains, while for small 1/Ro ωe for the middle thermistor row is
significantly smaller than for the top and bottom.

5.6. Rotation of the LSC

In convection experiments with a slowly rotating container of aspect ratio Γ = 1
(Zhong & Ahlers 2010), the LSC was observed, in the frame of the rotating sample,
to rotate with angular velocity ω < 0, i.e. in the retrograde direction relative to the
container rotation Ω . One can understand this observation qualitatively by considering
the angular momentum of the LSC that tends to keep the orientation of the LSC plane
constant in the inertial frame. Thus, if the LSC can be treated as a simple flywheel,
then in the absence of dissipation its plane should rotate with ω = −Ω in the rotating
frame (Hart et al. 2002; Brown & Ahlers 2006a, 2008a). It was assumed that only the
viscous friction at the sidewall ‘pushes’ the LSC to follow the container rotation and
thus results in a smaller retrograde rotation (0> ω >−Ω).

Initially we used the same analysis as that used by Zhong & Ahlers (2010) for
Γ = 1 to calculate the rotation rate of the LSC for Γ = 0.50. That included first a fit
of (2.1) to the thermistors in each row for each time step. A straight-line fit was then
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FIGURE 13. (Colour online) The average rotation rate ωk = 〈dθk/dt〉 of the LSC. (a) Rotation
rates for Ra = 3.59 × 1010 (run E16) for the three thermistor rows at the top (bullets, blue
online), the middle (diamonds, green online) and the bottom (squares, red online). (b) The
rotation rate ωm = 〈dθm/dt〉 for the middle thermistor row for Ra = 4.5 × 109 (triangles,
purple online, run E13), Ra = 9.0 × 109 (squares, green online, run E14), Ra = 1.80 × 1010

(diamonds, red online, run E15) and Ra= 3.59 × 1010 (circles, blue online, run E16). (c) and
(d) show the same data as (a) and (b) but normalized by the rotation rate Ω of the cylinder.
The vertical lines show 1/Ro0 and 1/Roc. The dashed horizontal lines mark ωk = 0.

done to all θk(t) in order to determine

ωk =
〈

dθk

dt

〉
t

(5.1)

for each k. The results, shown in figure 13, are surprisingly different from the results
for Γ = 1. For small 1/Ro, prograde rotation (i.e. ωk > 0) was observed, i.e. the
LSC rotated in the same direction as and faster than the container. The rotation rate
reached a maximum close to 1/Ro0 and decreased for larger 1/Ro. For 1/Ro ≈ 1
(the exact value depends on Ra), all three ωk reached zero and became negative for
larger rotation rates. Thus, for these large Ω a retrograde rotation existed, albeit with
−ω/Ω � 1.

By comparing ωm for different Ra (figure 13b), one observes in the region of
prograde rotation that ωm is larger for the larger Ra. Near 1/Ro0, where ωm has a
maximum, the Ra dependence is strongest, while close to the second transition at
1/Roc ωm is nearly independent of Ra. The dependence on Ra disappears when one
normalizes ωk by the container rotation rate Ω . As shown in figure 13(d), all curves
ωk/Ω behave very similarly. There is a slight decrease as Ra is increased which is
more or less independent of 1/Ro.

Another interesting phenomenon can be seen in figure 13(a), where ωm is plotted for
the top (circles, blue online), the middle (diamonds, green online) and the bottom
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FIGURE 14. (Colour online) (a) Plots of θb (dashed, red online), θm (solid, green online)
and θt (dotted, blue online) as a function of time for Ra = 1.80 × 1010 (run E15) and
1/Ro = 0.4. (b) A short section of (a) with all points shifted vertically by multiples of 2π
to make them collapse at 1.9 × 104 s. (c) The instantaneous rotation rate 1θb/1t derived
from the data for θb in (b). (d) An enlarged view of 1θb/1t near the 2π jump of θb close to
t = 20 140 s. Plots of θk for larger 1/Ro are shown in the supplementary material (available at
journals.cambridge.org/flm).

(squares, red online) thermistor row. While the top and bottom show nearly the
same rotation rate, the middle one shows a significantly higher rotation rate for
1/Ro< 1/Ro0. This difference between ωm on the one hand and ωb,t on the other hand
is even more pronounced for the normalized rotation frequency ωk/Ω (figure 13c). For
1/Ro> 1/Ro0 the discrepancy between the ωk at different heights disappears.

In order to find a possible reason for the difference between the rotation rates at the
middle on the one hand and the top or bottom on the other hand we examined the
time evolution of θk more closely in figure 14. The slopes of θk(t) are indeed different,
but a closer look (figure 14b) shows that the difference seems to be caused at least in
part by jumps of integer multiples of 2π that occur in θb and θt but not in θm.

We cannot tell whether the jumps are genuine rotations of the circulation plane
because, when they occur, the corresponding amplitudes δk become small, the
statistical errors of θk thus become large, and the jumps by 2π could be just a result
of the least-squares fitting procedure (see Weiss & Ahlers 2011b, § 2.4). However, we
do believe that at least in many cases the jumps are genuine and associated with a
phenomenon to which we refer as half-turns and which is discussed in § 5.7. In any
case, θm does not show many jumps and thus the prograde rotation seen there certainly
is a genuine effect.

In order to avoid the influence of the jumps, particularly on ωb and ωt, we chose
an alternative method of analysis. We used the phase difference 1θk between two
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FIGURE 15. (Colour online) Probability distribution of 1θk/1t for the top (bullets, blue
online), the middle (diamonds, green online) and the bottom (squares, red online) thermistor
row and for various 1/Ro (see legend). The Rayleigh number was Ra= 3.6× 1010 (run E16).

successive time steps, separated typically by only a time increment of 1t ' 3 s, to
calculate the near-instantaneous rotation rates θ̇k ≡ 1θk/1t and then determined the
probability distribution p(θ̇k). An example of θ̇b is shown in figure 14(c), and with
greater resolution in figure 14(d). There the 2π jumps appear as spikes along the time
axis. During the jumps |θ̇k| is much larger than at other times; thus points during
the jumps would fall onto the tails of the distribution and would not influence the
locations of the maxima of p(θ̇k). Some results for p(θ̇k) are shown in figure 15.

Since the p(θ̇k) are nearly symmetric about their maxima, we can assume that the
locations of the maxima give information about the average momentary rotation rate
θ̇k of the LSC, excluding the jumps. One can see from figure 15 that the location
of the maximum increases to positive values of θ̇k as 1/Ro increases from zero and
remains positive up to 1/Ro ' 0.8 ' 1/Roc, showing that prograde rotation prevails
even when the jumps are excluded. For larger 1/Ro the maximum passes through zero
near 1/Ro = 1.0 and becomes negative, indicating retrograde rotation. This complex
behaviour is shown more quantitatively in figure 16(a). There one can also see more
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FIGURE 16. (Colour online) (a) The locations of the maxima of p(1θk/1t) as a function
of 1/Ro for the bottom (open squares, red online), the middle (open diamonds, green online)
and the top (open circles, blue online) thermistor rows. (b–d) Comparison of 1θk/1tmax with
the averaged rotation rate ωk as shown in figure 13 for the top (b), the middle (c) and the
bottom (d) thermistor row. Solid symbols, ωk; and open symbols, 1θk/1tmax. All data are for
Ra= 3.59× 1010 (run E16).
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FIGURE 17. (Colour online) Rotation of the LSC for Γ = 1 and Ra = 1.8 × 1010 (run E8 of
Zhong & Ahlers 2010). (a) LSC rotation rate as a function 1/Ro for top (bullets, blue online),
the middle (diamonds, green online) and the bottom (squares, red online) thermistor row. The
solid vertical lines mark the transition points at 1/Ro0 = 0.18 and 1/Roc = 0.4. (b) θb (solid
line, red online), θm (dashed line, green online) and θt (dotted line, blue online) as a function
of time for 1/Ro= 0.47.

clearly that θ̇m is larger than θ̇b,t when 1/Ro < 1/Ro0, as was seen before for ωk. The
faster rotation in the middle of the LSC is therefore not only due to the fact that
〈θ̇b〉 and 〈θ̇t〉 are reduced by 2π jumps while 〈θ̇m〉 is not. Instead we believe that the
jumps exist because the LSC is ripped apart once in a while due to a larger prograde
rotation rate at the middle than at the top and bottom. This phenomenon is discussed
in more detail in § 5.7. In general, the location of the maximum of p(θ̇k) as a function
1/Ro follows very closely the points of ωk(1/Ro) from figure 13, as can be seen in
figures 16(b)–(d). There one sees that ωk and θ̇k differ very little from each other, with
|θ̇k| slightly smaller that |ωk|.

For comparison, we re-analysed data for Γ = 1 that were previously published by
Zhong & Ahlers (2010), using the straight-line fit to θk(t). Figure 17(a) shows a plot
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FIGURE 18. (Colour online) A short section of figure 14 that shows a half-turn. (a) Plots of
θb (dashed, red online), θm (solid, green online) and θt (dotted, blue online) as a function of
time. The data points are arbitrarily shifted by multiples of 2π. (b) Plots of δt (dotted, blue
online), δb (dashed, red online) and δm (solid, green online) as a function of time. The vertical
lines indicate the approximate times of the start and the finish of the half-turn.

similar to figure 13(a). It is consistent with figure 19(a) of Zhong & Ahlers (2010),
but shows all three ωk whereas the original work showed only ωm. The direction of
rotation and the monotonic behaviour as a function of 1/Ro is different from our
finding for Γ = 0.50. The LSC rotates in the retrograde direction for all 1/Ro at a
rate that monotonically becomes more negative as 1/Ro increases. Also, in contrast to
figure 13(a), there is no difference between the rotation rates at the middle thermistor
row and the top or bottom row as long as 1/Ro is smaller than 0.4. For 1/Ro > 0.4
(i.e. beyond the second transition at 1/Roc), the phase at the middle thermistor row
starts to rotate faster than the top and bottom phases. This is also demonstrated in
figure 17(b) which shows an example of the time evolution of θk. Also in this case a
careful look revealed the existence of various 2π jumps for θt and θb that lead to a
reduced ωt and ωb in comparison with ωm.

5.7. Half-turns and differential rotation
To determine the reason for the jumps in θk(t) seen in figure 14, as well as earlier
in figure 8, we plot θk and δk as a function of time for a single jump in figure 18.
Note that the θk were shifted arbitrarily by multiples of 2π so that at the beginning
of the plot all θk were close to zero. The LSC consisted of a SRS that had, however,
a larger amplitude at the top than in the middle and at the bottom (figure 18b). An
event started with a slight increase, followed by a decrease of δt. When δt reached the
level of δm and δb, its decrease stopped while δb started to decrease. At the same time,
θb decreased as well, while θm and θt continued to increase only very slightly. Here θb

decreased until the difference between θb and the other θk reached 2π. In that time δb

had reached a minimum, increased again above its value before the event started, and
finally reached a value similar to the one that δt had before the event started.
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FIGURE 19. (Colour online) The frequency of half-turns (ω1/2) as a function of 1/Ro. Open
symbols mark half-turns that occur at the bottom part of the cell, solid symbols mark half-
turns at the upper part of the cell. (a) ω1/2 on a vertical logarithmic scale and a narrow range
of 1/Ro for Ra= 1.8× 1010 (E15, diamonds, blue online), Ra= 3.6× 1010 (E16, circles, red
online) and Ra= 7.2×1010 (E17, triangles, green online). The solid line marks an exponential
function with slope m= 6.67. (b) Only the data for Ra= 1.8× 1010 (E15) on a vertical linear
scale and a wide range of 1/Ro.

Our interpretation of the above sequence of events is that the bottom part (less than
a third or so) of the LSC became disconnected from the top part and quickly rotated
in the retrograde direction for almost a full revolution until it became connected again
with the top part to re-create a new SRS. We refer to such an event as a half-turn
because half or less of the LSC underwent a rotation through 2π while the remainder
more or less retained its original orientation. An alternative explanation could be
given by considering small counter-rotating rolls that originate from corner flows and
increase in size, similar to a flow-mode transition. However, as shown in figure 18,
θb starts to deviate from θt and θm already before the corresponding amplitude δb

decreases. This behaviour was also observed for other half-turns and is not in accord
with a small counter-rotating roll emerging from the bottom. Half-turns can occur
either in the top or in the bottom part of a SRS.

After a careful examination of the Γ = 1 data (Zhong & Ahlers 2010), we noted
that similar half-turns also occurred for that case, albeit only for 1/Ro & 1/Roc ' 0.4
where θm rotated more rapidly in the retrograde direction than did the other two θk

(see figure 17). We believe that these half-turns are one reason why the apparent
cessation rate reported by Zhong & Ahlers (2010) increased with increasing 1/Ro
when 1/Ro exceeded 1/Roc.

In order to assess the importance of half-turns for Γ = 0.50 in various 1/Ro
ranges, we defined an algorithm for their identification. A half-turn in the top part
of the sample was assumed to have occurred when simultaneously |θt − θm| > 2π/3,
|θb − θm| < π/3, δm > 0.15〈δm〉 and δb > 0.15〈δb〉. With a corresponding condition
half-turns at the bottom part of the cell were identified. The results for the frequency
of occurrence ω1/2 obtained with this algorithm are shown in figure 19. The left
part shows ω1/2 on a logarithmic scale. It shows that half-turns occurred even for
1/Ro = 0. Their frequency of occurrence increased slightly as 1/Ro grew, and after a
maximum near 1/Ro = 0.2 their frequency of occurrence became exponentially small
near 1/Ro' 1/Roc ' 0.8. The right part of the figure gives ω1/2 on linear scales over a
wider range of 1/Ro and shows that ω1/2, as defined by our algorithm, increased again
near 1/Ro' 2 and reached a more or less constant value of about ω1/2 ≈ 4× 10−4 s−1

at large 1/Ro. If for 1/Ro & 2 the flow state is not actually a SRS of the LSC but
rather a TVS, then we are measuring some dynamic property of this latter state which
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also conforms to our algorithm. Elucidation of this issue by DNS would of course be
most welcome. One might speculate that the apparent half-turns actually corresponded
to vortex-length fluctuations of the TVS which occasionally exposed one or the other
of k = b or k = t to only a single vortex; such a fluctuation would cause either δb or δt

to become small while the other two amplitudes remained large.
We note that a possible partial explanation for the differential rotation was given by

Kunnen (2008) and Kunnen et al. (2011). These authors observed, in DNSs for Γ = 1,
Ra= 1.0× 109 and Pr = 6.4, an averaged azimuthal velocity for 1/Ro= 0.35 near the
horizontal midplane in the prograde direction while the averaged azimuthal velocity
in the top and bottom portion of the sample rotated in the retrograde direction. As
discussed above, the experiment yields only retrograde rotation and no differential
rotation in this 1/Ro range for Γ = 1, but yields the unexpected prograde and
differential rotation for Γ = 0.50. Kunnen et al. (2011) attributed the differential
rotation, with ωm > ωb and ωm > ωt, to the fact that the major axis of the LSC is
tilted (Sun, Xi & Xia 2005b) with its long axis approximately along a diagonal in the
near-vertical circulation plane. Near the horizontal midplane (where we measure θm)
this tilt leads to a small velocity component in the radially inward direction. Since the
angular momentum of this inward-moving fluid has to be conserved, they argue that
the rotation rate has to increase while a fluid element is moving towards the centre.
One should note, however, that the differential rotation observed by Kunnen et al.
(2011) was observed in the averaged azimuthal velocity. Even though this quantity and
the LSC are coupled, they are different properties of the system.

5.8. The bend of the LSC for small 1/Ro
In figure 10 we already examined the probability distributions of 1θb,t ≡ θb − θt at
two values of 1/Ro. In order to understand the influence of the differential rotation
discussed in § 5.7 on the structure and the dynamics of the LSC, we now consider in
figure 20 the mean values 〈1θk1,k2〉 = 〈θk1 − θk2〉 of the differences between the three
phases at the three different heights, and the corresponding r.m.s. deviations σ(1θk1,k2)

from the mean values, as a function of 1/Ro.
We consider first the left column of figure 20 which shows data for Γ = 0.50. The

top row shows σ(1θk1,k2). It is not surprising that σ(1θt,b) (diamonds, green online) is
larger than σ(1θt,m) or σ(1θb,m) because the vertical distance between the thermistor
locations is twice as large, allowing for a weaker phase correlation. It is noteworthy
that for all three 1θk1,k2 , the r.m.s. deviations σ(1θk1,k2) decrease continuously (after
perhaps a small peak near 1/Ro ' 0.2) with increasing 1/Ro. This is consistent with
the results shown above in figure 10.

There are three mechanisms that contribute to σ . These are first random fluctuations
due to the stochastic nature of the turbulent flow, second the torsional motion of the
LSC and third the flow-state transitions including the SRS–DRS–SRS transitions, half-
turns, etc. A decrease of σ(1θk1k2) indicates in general a stabilization of the single-roll
LSC and a decrease of the intensity of its dynamics. The more detailed analysis of
SRS–DRS–SRS transitions in § 5.3 already showed that the SRS was indeed stabilized
by moderate rotation with respect to flow-state transitions, but moderate rotation also
reduced the effect of random fluctuations as already shown in § 5.4.

The Γ = 1 case (right column of figure 20) looks different. Here all three σ

values are closer together and have smaller values for 1/Ro = 0. As for Γ = 0.50,
they first decrease with increasing 1/Ro, but then they reach a minimum near
1/Ro = 0.4 ' 1/Roc and increase again. In this case the decrease cannot be explained
by a reduction of flow-mode transitions, since these transitions are very rare for Γ = 1.
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FIGURE 20. (Colour online) Statistics of the difference 1θk1,k2 . Top: standard deviation from
its mean of 1θmt (bullets, blue online), 1θb,t (diamonds, green online) and 1θm,b (squares, red
online). Bottom: average phase difference 〈1θm,t〉 (bullets, blue online), 〈1θb,t〉 (diamonds,
green online) and 〈1θm,b〉 (squares, red online). Left: data for Γ = 0.50 and Ra= 1.80× 1010

(run E15). Right: data for Γ = 1.0 and Ra = 2.25 × 109 (run E6). The thin vertical lines
indicate the location of 1/Ro0 (left) and 1/Roc (right). The horizontal dotted lines are drawn
at 〈1θk1,k2〉 = 0.

Therefore, either the amplitude of the torsional mode is damped by the rotation, or
the random fluctuations are suppressed. However, the increases of σ for 1/Ro> 1/Roc

may be explained by the strong increase of cessations or half-turns with increasing
rotation rate as shown by Zhong & Ahlers (2010).

The lower two panels of figure 20 show the average 〈1θk1,k2〉 as a function of
1/Ro for Γ = 0.50 (a) and Γ = 1.0 (b). Let us focus first on the Γ = 0.50 case.
Without rotation (1/Ro = 0), the average of all differences is close to zero. While
〈θt − θb〉 stays close to zero with increasing rotation, the phase differences between the
top and the middle and between the bottom and the middle 〈θm − θt,b〉 increase with
increasing rotation rate. The green curve (〈θt − θb〉) does not give much information,
since positive and negative values tend to average out and thus also a strong torsional
mode would give a zero value. However, the blue and the red curves for 〈θm − θt,b〉
have surprisingly large values of the same sign that increase with increasing rotation
rate. This fact cannot be explained by a torsional mode, since the periodic variation
of 1θm,t and 1θm,b would also average to zero in the long run. Therefore, we have to
assume that the LSC is bent, as shown in figure 21. The phase in the middle θm is on
average larger than at the top and bottom. We believe that the reason for the bend is
the same as that for the half-turns, i.e. a differential rotation that was observed already
in simulations by Kunnen et al. (2011) for Γ = 1 but is found in experiment only for
Γ = 0.50.

For Γ = 1 the situation is different. Also in that case there is a bend for small
rotation rates 1/Ro . 1/Roc ' 0.4, but this bend is in the opposite direction to what
was seen for Γ = 0.50 as evidenced by the negative 1θm,t and 1θm,b. At first sight this
seems surprising because we saw in figure 17 that the rate of rotation was the same
at all three levels, i.e. there is no evidence of any half-turns. A possible explanation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.392


488 S. Weiss and G. Ahlers

FIGURE 21. (Colour online) Sketch of the bent LSC due to rotation.

may be found in a difference of the frictional drag experienced by the LSC at different
vertical positions. Near the top and bottom the rotation of the LSC in the inertial
frame is caused by viscous drag along the sidewall as well as along the top or bottom
plate, whereas the influence of the top/bottom plate is smaller or absent near the
horizontal midplane of the sample. However, it is not obvious why this difference
should vanish as 1/Ro approaches 1/Roc. It is interesting to note that in the Γ = 1
case the bend apparently is not large enough to cause half-turns, and thus the local
azimuthal velocities are the same everywhere.

As an alternative method for the study of the phase difference and the prograde
rotation we computed cross-correlation functions of vertically adjacent sidewall
temperature measurements for our Γ = 0.50 results. This approach avoided any fit
of harmonic functions to, or Fourier analyses of, the sidewall temperatures. With
this approach we could confirm not only the bend of the LSC, but we could also
determine the rotation of the LSC relative to the container. We present this latter
method of analysis and its results in the supplementary material associated with this
paper (available at journals.cambridge.org/flm).

6. Summary
We presented a detailed investigation of the influence of rotation on turbulent

thermal convection in a cylinder with aspect ratio Γ = 0.50 and with a fluid
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of Pr = 4.38. For six different Rayleigh numbers in the range of 2.3 × 109 6 Ra 6
7.2 × 1010 we applied rotations with velocities up to Ω = 1 rad s−1, corresponding to
inverse Rossby numbers 1/Ro up to ∼20.

Without rotation the LSC can consist of either a SRS or of a DRS where two
rolls are positioned roughly one above the other. We found that modest rotation,
corresponding to 1/Ro . 2, stabilized the SRS and suppressed the DRS. We also
investigated the average time that the system spent in the DRS and SRS and found
that rotation increased the lifetime of the SRS and decreases that of the DRS. For
larger 1/Ro a DRS-like signature re-appeared, but as discussed below, it probably was
due to a vortex-flow structure rather than to a DRS.

The temperature gradient 1Tw along the sidewall was measured as a function of
1/Ro and showed a behaviour similar to that observed for Γ = 1. At small 1/Ro it
first decreased, but for 1/Ro & 1/Roc ' 0.8 it showed a strong increase. While the
increase may have been due to an increasing suppression of vertical fluid transport due
to rotation (i.e. due to the Taylor–Proudman effect), the origin of the original decrease
of 1Tw is less clear.

Criteria based on a Fourier analysis suggested by Stevens et al. (2011a) were used
to attempt to establish the 1/Ro range of the existence of the LSC. This analysis
suggested that the LSC existed up to our largest 1/Ro. However, the criteria available
to us cannot distinguish between a LSC consisting of a convection roll on the one
hand and a TVS on the other. In the TVS one vortex extends vertically from the top
into the sample interior and brings down cold fluid, while another emanates from the
bottom and introduces warm fluid. The net result is a periodic azimuthal temperature
variation which cannot be distinguished from the temperature signature of a convection
roll with upflow and downflow near the sidewall but separated azimuthally by π.
A TVS was found before from DNS by Stevens et al. (2011b) for Γ = 1/2,
1/Ro = 3.33, Pr = 4.38 and Ra = 2.91 × 108, but its prevalence over wide ranges
of Pr , 1/Ro and Ra was unknown. It seems likely that our measurements of the
dynamical properties of the system for 1/Ro & 2 really pertain to the TVS, and that
for those inverse Rossby numbers the TVS existed over our parameter ranges.

For comparison we re-analysed data for Γ = 1 of Zhong & Ahlers (2010). Although
moderate rotation stabilized the LSC also in this case, we found that the LSC
signature disappeared soon after 1/Ro exceeded 1/Roc ' 0.4. This is consistent
with the fact that the larger cross-section of the sample would contain more than
two Ekman vortices which would lead to a more complicated azimuthal temperature
signature.

Without rotation it had been noted for Γ = 0.50 that the amplitude of the LSC
measured at one of the three vertical positions frequently vanished (Xi & Xia
2008b; Weiss & Ahlers 2011b). We called these dips events. At moderate rotation
the frequency of the events decreased with increasing 1/Ro, reached a minimum
at around 1/Ro ≈ 1, and increases again for larger rotation rates where the TVS
may have existed. In the LSC parameter range events are caused by SRS–DRS–SRS
transitions as well as by so-called half-turns. During a half-turn, a part of the SRS
of the LSC at the bottom or the top decouples from the rest and rotates around the
cylinder axis in opposite direction to the rest. The rotation ends when both parts are in
phase again and the original single roll is reinstated.

For Γ = 0.50 half-turns were caused by a differential rotation of the LSC that was
observed for small rotation rates (1/Ro < 1/Ro0). For Γ = 1 the LSC plane rotated
in the retrograde direction in the frame of the sample; in contrast to that the LSC
plane rotated in the prograde direction for Γ = 0.50 and 1/Ro . 1, i.e. in the same
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rotation direction as and faster than the container. The origin of this phenomenon is
unclear. An additional interesting phenomenon is that the fluid rotated faster in the
horizontal midplane of the cylinder than it did closer to the top and bottom plates.
This differential rotation could be seen by looking at the probability distributions of
the instantaneous rotation rates dθ/dt of the LSC at the three different heights. In
addition to causing half-turns, the differential rotation also had the effect of bending
the LSC so that a positive phase difference existed between θm on the one hand and
θb and θt on the other. The phase difference and the prograde rotation could also be
observed in the cross-correlation functions of vertically adjacent thermistors. With this
approach we could confirm not only the bend of the LSC, but we could also determine
the rotation of the LSC relative to the container. We present this latter method of
analysis in a document submitted as supplementary material.

We benefitted form numerous stimulating discussions with Hermann Clercx, Detlef
Lohse and Richard Stevens. We are especially grateful to Richard Stevens for calling
our attention to the two-vortex state and its possible relevance to our flow-structure
determinations. This work was supported by NSF grant DMR07-02111.

Supplementary material is available at journals.cambridge.org/flm
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