
J. Fluid Mech. (2012), vol. 691, pp. 123–145. c© Cambridge University Press 2011 123
doi:10.1017/jfm.2011.461

A contact model for normal immersed collisions
between a particle and a wall
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The incompressible Navier–Stokes equations are solved numerically to predict the
coupled motion of a falling particle and the surrounding fluid as the particle impacts
and rebounds from a planar wall. The method is validated by comparing the numerical
simulations of a settling sphere with experimental measurements of the sphere
trajectory and the accompanying flow field. The normal collision process is then
studied for a range of impact Stokes numbers. A contact model of the liquid–solid
interaction and elastic effect is developed that incorporates the elasticity of the solids
to permit the rebound trajectory to be simulated accurately. The contact model is
applied when the particle is sufficiently close to the wall that it becomes difficult to
resolve the thin lubrication layer. The model is calibrated with new measurements of
the particle trajectories and reproduces the observed coefficient of restitution over a
range of impact Stokes numbers from 1 to 1000.
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1. Introduction
Liquid–solid flows are involved in a wide variety of geophysical and industrial

processes, including nearshore sediment transport, debris surges and landslides,
the handling of dredging slurries and hydraulic fracture technologies (see Crowe,
Sommerfeld & Tsuji 1998; Lorenzini & Mazza 2004). These flows are heterogeneous
and the macroscopic behaviour of the mixture may not be described adequately
by mixture theories that average over the fluid and solid phases. The rheology of
liquid–solid mixtures depends on many factors, including the hydrodynamic forces,
inter-particle interactions, the volume fraction, gravity, and the size and shape of
particles. As an example, the erosion of bedrock results from impacts and abrasion
by suspended sentiments; hence, a model of the process should include details at the
particle level such as the kinetic energy of the impacting particles, the impact rates and
angles, the material properties of the bedrock surface, as well as the properties of the
suspending flow (see Lamb, Dietrich & Sklar 2008).

Particle–particle and particle–wall collisions play an important role in a liquid–solid
flow because they affect particle accumulation and dispersion, and inter-phase transport
and mixing. Compared to a dry collision in which the fluid resistance is negligible and
the particle inertia is dominant, the kinetic energy of a particle in a liquid environment
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is dissipated by viscous stresses in the liquid and by inelasticity during collision.
The ratio of particle inertia to viscous forces is quantified through the Stokes number,
St = (1/9)(ρp/ρl)Re, where Re = ρlDV/µ is the particle Reynolds number based on
impact velocity V , the particle diameter D, the liquid viscosity µ, and the density of
the particle and liquid ρp and ρl respectively.

By simultaneously accounting for elastic deformation and viscous forces, Davis,
Serayssol & Hinch (1986) established the range of conditions for deformation and
rebound of colliding spheres. In their analysis, they demonstrated that the fluid
pressure increases significantly as the particles approach, which results in a flattening
of the particles and a decrease in particle velocity to zero. As the particles deform,
some of kinetic energy of the incoming particle is converted into the elastic strain
energy allowing the particles to rebound. As the particles move apart, fluid is drawn
into the gap and the pressure drops, which hinders the motion of the rebounding
spheres. Because the particles are perfectly smooth, they never contact each other
during the collision process; the particles, however, reach a minimum distance of
approach when they are separated by a thin lubrication layer. This minimum distance
depends on the Stokes number and an elasticity parameter that quantifies the elastic
properties of the colliding particles. The coefficient of restitution, e, defined as the
ratio of the rebound to impact velocity, is strongly influenced by the Stokes number.
For Stokes numbers less than a critical value, the particle does not rebound (e = 0)
because of viscous dissipation of the initial kinetic energy. The critical Stokes number
depends on the elasticity of the particles. For Stokes numbers greater than the critical
value, e is non-zero and increases to a value that also depends on the elasticity
parameter. This work was extended by Barnocky & Davis (1989) to include the
effect of a fluid with pressure-dependent viscosity and density. They found that under
extreme pressure building up in the thin fluid layer, the fluid may compress resulting
in viscosity increasing by several orders of magnitude. These pressure-dependent
effects may alter the minimum separation reached during approach of the spheres.

Barnocky & Davis (1988) experimentally examined the impact of a sphere on a
surface covered by a thin layer of liquid in order to investigate the critical Stokes
number. The later work by Davis, Rager & Good (2002) also used a thin layer of
fluid but the investigators measured the impact and rebound velocity to determine
the effective coefficient of restitution. In contrast, Joseph et al. (2001) measured the
approach and rebound of a fully immersed collision between a particle suspended as a
pendulum and a wall to determine the coefficient of restitution as a function of Stokes
number. From their experimental measurements they showed that below a Stokes
number of approximately 10, no rebound of the particle occurs. At a Stokes number
greater than 1000, the particle rebound speed is not affected by the surrounding fluid.
Hence, the coefficient of restitution, e, increases from 0 at St ≈ 10 to a dry value,
ed, which occurs for a collision with negligible fluid resistance. The dry coefficient of
restitution depends on the properties of the solid phases and impact speed. The study
by Joseph et al. (2001) measured ed of around 0.90 for glass, steel and Nylon particles
colliding against a Lucite wall with impact speeds from 40 to 360 mm s−1; ed was
higher (approximately 0.97) when these particles impacted a harder glass or Zerodur
surface. The dependence of the coefficient of restitution on the Stokes number was
also presented in the work by Gondret, Lance & Petit (2002); in this study, the authors
measured the normal trajectory of the particle over multiple bounces. Joseph & Hunt
(2004) examined oblique collisions between a particle and a wall. Later work by Yang
& Hunt (2006) measured the coefficient of restitution for particle–particle collisions
in a liquid and found a similar dependence on particle Stokes number. However, for
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Modelling of normal immersed collisions 125

Stokes numbers less than approximately 20 the authors observed that the target particle
moved prior to impact due to the increase in hydrodynamic pressure as the impacting
particle approached within a half a particle diameter.

Computational studies have also considered the problem of particle collisions in
a liquid. By fixing the particle velocity at a constant value as it approaches a
wall, Leweke, Thompson & Hourigan (2004) computed the flow generated by a
particle colliding normal to a surface without rebound; these simulations showed the
development of vortex rings around the particle over a range of Reynolds numbers. In
this simulation, a dynamic mesh moved with the sphere; as the sphere approached the
wall, the mesh was refined. The sphere was stopped at a distance of 0.005 times the
particle diameter from the wall to avoid the development of a mesh singularity as the
particle impacted the surface; the particle was not allowed to rebound. TenCate et al.
(2002) simulated a sphere settling toward a solid wall without rebound and compared
with experiment results. Both the spatial structure and the temporal behaviour of the
flow field were obtained. As the particle approached the wall, the authors included an
explicit expression for the leading-order lubrication force, as previously suggested
in the studies by Ladd (1997). Using a subgrid-scale lubrication force, Leweke
et al.indicated that the particle approaches the wall in a smoother fashion than without
the lubrication force (without the lubrication force, the particle motion is abruptly
stopped when the surfaces contact); however, the lubrication force slows the particle
so that the approach to the wall is longer than found in experiments. The authors only
considered conditions in which there was no rebound.

Ardekani & Rangel (2008) proposed a collision strategy that assumed no liquid
is present between the two solid surfaces at collision and used the dry coefficient
of restitution ed to calculate the instant rebound velocity directly when the distance
between the surfaces becomes equal to the particle surface roughness height, hmin, of
order 1 µm. To resolve the flow at the length scale of hmin, a finer mesh is used near
the contact region; the simulation results depend on the mesh size and hmin. Their
model neglects the elastic deformation of the particles, which occurs over lengths
comparable with the roughness height according to the elastohydrodynamics analysis
in Davis et al. (1986). The authors do not compare their results with the trajectory
of a bouncing particle; however, they do compare with experimental measurements of
the speeds of the particle before and after collision through the effective coefficient
of restitution data from Gondret et al. (2002). The recent work by Feng, Michaelides
& Mao (2010) presents a collision model using a spring and dashpot, similar to soft-
sphere collision models for dry granular flows. Their analysis shows that the choice of
the collision parameters (the constants in the spring and dashpot model) is critical to
accurately predict experimental data.

The numerical studies by Al-Samieh & Rahnejat (2002) calculated the pressure
increase and surface deformation for a particle impacting a surface coated with a
thin liquid layer. By coupling the equation for the motion of the liquid layer with
the motion of the particle and the elasticity of the solid surfaces, the authors were
able to calculate the pressure rise and compared it with the experiments by Safa &
Gohar (1986). For an impact at Stokes number of 15 (a 2.54 mm diameter steel sphere
impacting a glass surface coated with a 30 µm layer of oil with kinematic viscosity
0.43 Pa s at approximately 0.3 m s−1), the authors calculated pressure increases higher
than found in the experiments (which was attributed to resolution issues in the
experiments); the minimum film thickness was calculated as 2 µm and a collision
time of approximately 100 µs.
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This paper examines an individual particle collision in a viscous liquid and develops
a computational collision model to enable advancements in numerical simulations of
liquid–solid flows. To calculate the flow field an immersed boundary (IB) method
is used to simulate the process of a rigid sphere settling and colliding with a non-
deforming solid wall. By including a contact model, the numerical method captures
the elasticity of the solid boundaries and mitigates the resolution problem when the
particle is close to the wall. To validate the numerical method and calibrate the
collision model, experiments on a steel sphere falling and colliding with a horizontal
wall are performed and the trajectories of the sphere for multiple bounces are recorded.
The numerical method and experiments are described in §§ 2 and 3, respectively.
Unlike earlier studies, the current work introduces a physically-based model that
resolves the resolution issue when the particle approaches the wall and reproduces
experimental measurements of a bouncing spheres over a wide range of Stokes
numbers. A contact model accounting for the effects of the thin lubrication layer
and solid elasticity is presented in § 4. The simulation results are discussed in § 5 and
conclusions are drawn in § 6.

2. Numerical method
2.1. Fast immersed boundary projection method for the axisymmetric system

This work obtains a solution for the incompressible constant-density flow field
surrounding a moving immersed rigid sphere and a rigid stationary plane wall. The
numerical method is of the finite-volume IB type and solves for the fluid vorticity and
streamfunction on a regular Cartesian grid (with equally spaced cells of width and
height, dx), and utilizes a system of regularized forces defined at a set of Lagrangian
points on the solid surfaces. The method is first-order accurate in space and second-
order accurate in time. The divergence-free constraint is automatically satisfied by
the discretized streamfunction. The forces at the Lagrangian points distributed on
the surface are found implicitly by requiring the no-slip boundary condition (as
interpolated from the grid to the surface) to be satisfied. The resulting system of
equations is solved using a projection method. Aside from no-slip conditions at the
solid surfaces, the method implements an approximate treatment of the free-space
boundary conditions at a finite distance from the sphere and plate. The computational
cells are progressively coarsened away from the sphere and wall prior to closure with
the approximate free-space boundary conditions. Except for modifications to handle
the axisymmetric geometry, which are discussed below, full details and validation of
the (planar flow) algorithm are presented in Taira & Colonius (2007) and Colonius &
Taira (2008).

For the present study, the method is extended to axisymmetric geometries
by reformulating the discrete finite-volume equations with the appropriate radial
weighting terms in the definitions of gradient, curl, divergence, Laplacian, and
the IB operators. With this modification, the cylindrical-coordinate version becomes
algorithmically identical to the planar case, and the same fast algorithm may be
employed. The detailed modifications to the spatial discretzation to account for the
non-constant coordinate system matrices are described in Li (2010) and, for brevity,
are not repeated here.

The assumption of an axisymmetric flow field is computationally convenient,
but limits the maximum Reynolds number, as symmetry-breaking disturbances are
expected to occur at some critical Reynolds number. This value is not precisely
known for the impacting sphere, but for steady flow over a sphere, numerical and
experimental measurements by Johnson & Patel (1999) give a critical Reynolds
number of 210. For a sphere colliding with a wall, Thompson, Leweke & Hourigan
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(2007) showed that when the running distance is short (L/D 6 7.5, where L is
the initial distance between the sphere and the wall), the sphere wake is not fully
developed; hence, the flow is in a transient axisymmetric state and does not exhibit
asymmetry in the form of vortex-loop shedding, which occurs (asymptotically) at
Reynolds number above 210. In the current work, the running distance is less than
7 and the particle Reynolds number is less than 250 so that the assumption of an
axisymmetric flow field appears to be justified.

A three-level computational domain is used in the current simulation with uniform
grid size dz = dr = 2i−10.01D for the ith-level domain (for detailed information
about the multi-domain technique, see Colonius & Taira 2008). A far-field boundary
condition (slip but non-penetrating) is applied at the boundary of the third-level
domain as required by the numerical method. For the symmetric axis r = 0, the
boundary condition is strictly satisfied. For the other three boundaries, the slip-non-
penetrating boundary condition for the large domain with coarser mesh is appropriate
since the real container boundary is far away and in accordance with the third domain.

To validate the cylindrical-coordinate modifications, the simulation results for the
flow over a stationary sphere were found on a series of grids with increasing resolution
until convergence occurred and then were compared with previously published results
(Taira & Colonius 2007; Johnson & Patel 1999). The drag coefficient for a flow with
Reynolds number 100 is 1.10, and the reported values are 1.14 and 1.10. For a flow
with Reynolds number 200, the drag coefficient is 0.78 and the two earlier studies
report a value of 0.80.

For the case of a moving sphere, the time-marching scheme of the original IB
projection method was also modified to treat the two-way coupled system where the
motion of the Lagrangian points on the surface are found by integrating an equation
of motion for the sphere; the details are discussed in § 2.2, and validations for the
two-way coupled system are presented in § 2.3, where we compare with corresponding
experiments and simulations of TenCate et al. (2002).

2.2. The evolution of the flow coupled to the motion of the particle
The flow field evolution and the motion of the sphere are coupled by writing Newton’s
law in the vertical direction for the sphere:

mp
dV

dt
= fsim + mpg+ fb, (2.1)

where V is the velocity of the sphere which is considered to be a uniform value over
the whole sphere surface; mp is the mass of the particle and g is the gravitational
acceleration; fb is the vertical buoyancy force and fsim is the liquid–solid interaction
force in the vertical direction calculated from the solution of the Navier–Stokes
equations. The position and the velocity of the sphere are the boundary conditions
for the Navier–Stokes equations. The coupled evolution of the flow field and the
motion of the sphere are integrated in time using a second-order Runge–Kutta method.

2.3. Validation of the numerical method
To validate the coupled algorithm, the simulation results are compared with the
experimental results by TenCate et al. (2002). In the experiment, the trajectory and
associated flow field of a settling sphere are measured from the moment of release
until rest at the bottom of a vessel. The Reynolds number based on the terminal
velocity is 31.9. The density of the sphere is 1.12 × 103 kg m−3 and the density of
the liquid is 0.96 × 103 kg m−3. Simulations with the above input parameters were
performed.
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FIGURE 1. Comparison of (a) trajectory and (b) velocity profiles for the experiments of
TenCate et al. (2002), and the current simulations for a sphere falling on to a surface; the
Stokes number based on the settling velocity is 4.1. a is the radius of the sphere.

The trajectory and the velocity profiles are compared in figure 1. The circles in the
figure are digitized from figure 8 in TenCate et al. (2002). The comparison shows that
the simulation coupling the evolution of the flow field and the motion of the sphere
predicts the same motion of the sphere as found in the experiment. Note that the
Stokes number at impact (St = 4.1) is small and the particle does not rebound from
the wall. In the current simulations, similar results were computed with two different
grid sizes in order to establish convergence.

Figure 2 compares the flow field at the moment when the sphere is a half-
diameter from the wall with the particle image velocimetry (PIV) measurement of
TenCate et al. (2002). The velocity contours above the sphere are not included in the
experimental result. The velocity magnitude contours show a good agreement between
the experimental and the simulated flow field.

Time series of the fluid velocity at a particular point in the flow domain are
compared in figure 3. The point is one diameter from the wall and one diameter from
the centre of the sphere. The radial and axial velocity components are given on the
upper and lower plots, respectively. The evolution of the velocity components shows
that a vortex passes the point and the wake of the sphere follows after the sphere
comes to rest. The good agreement indicates that the numerical method accurately
simulates not only the dynamic behaviour of the sphere but also the evolution of the
flow field.

3. Experiments

The experiments by TenCate et al. (2002) did not include results for higher Stokes
numbers. When the particle Stokes number increases, the particle rebounds after
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FIGURE 2. Comparison of (a) the PIV experiment data from TenCate et al. (2002) and
(b) the simulated result of flow field when the sphere is half a sphere diameter from the wall.
Contours indicate the normalized velocity magnitude. The blank space above the sphere in
(a) results from the limitations of the experimental method.

collision. The experiments by Gondret et al. (2002) include particle rebound but
do not include the initial trajectory of the particle after it is released. To provide data
with which to compare the simulations, new experiments are conducted where the
particle is released from rest in a quiescent tank; the particle collides with the lower
wall and rebounds several times. As a result, the experimental data set includes the
interaction of the particle and liquid as the particle accelerates and the particle–wall
collision process.

3.1. Experiment apparatus
The experiment setup is shown schematically in figure 4. The experiments
were performed in a glass rectangular tank with length × width × height of
600 mm × 350 mm × 450 mm that contains a mixture of glycerol and water. A steel
sphere with diameter 9.5 mm and surface roughness of 0.02 µm is dropped from an
electromagnetic release mechanism that is fixed on the top of the tank. A trigger pad is
used to cut off the current in the electromagnetic mechanism, releasing the steel sphere
from zero velocity under quiescent ambient fluid conditions. The circular release
surface with diameter 52 mm is immersed to a certain depth (>50 mm) under the free
surface of the liquid, and the effect of the liquid free surface on the experiment is
ignored. A cylinder-shaped Zerodur block with diameter 150 mm and height 100 mm
is placed coaxially a certain distance below the release mechanism as a target wall.
Zerodur is a hard glass-like material and the block is polished to minimize the effect
of wall roughness (roughness height of 0.02 µm). The sphere is dropped from the
centre of the release surface and falls along the axis of the Zerodur block. The
dimension of the glass tank is large compared with the sphere diameter so that the
flow field around the moving sphere can be considered as axisymmetric as long as the
particle Reynolds number is less than 250.

A high-speed videography system (a high-speed camera, a control/display monitor
and a record trigger) captures the particle dynamic behaviour. Figure 5 shows an
example image with h as the gap between the sphere and the wall. The camera frame
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FIGURE 3. Comparison of time series of the radial and axial fluid velocity at a point
located one diameter from the wall and one diameter from the centre of the sphere. (a)
The experimental result and the lattice Boltzmann simulation from TenCate et al. (2002) and
(b) the results from the current simulation.

rate is 4000 frames per second so that the time interval between two successive frames
is 0.25 ms. Under this frame rate, the resolution is 160 pixels wide by 140 pixels high.
More details of the motion of a particle, especially when it is about to collide with the
wall, can be obtained by using this high frame rate.

3.2. Material properties
The properties of the solid material are listed in table 1, including solid density,
ρp, Young’s modulus, E, Poisson’s ratio, ν. The experiments used aqueous glycerol
solutions, which allows a large range of viscosities by changing the mixture
proportions. Because the viscosity of the mixture varies with temperature, the
liquid temperature is measured before each collision by a digital thermocouple
thermometer. The apparent specific gravity of the liquid is measured by a hydrometer.
Based on the measured temperature and apparent specific gravity, the concentration,
density and viscosity of the mixture can be found from Dow Chemical Synthetic
Glycerin Products. A typical value of the apparent specific gravity is 1.205 at 20 ◦C
corresponding to a density of 1203 kg m−3 and a viscosity of 50.2× 10−3 Pa s.
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Computer

High speed videography

Monitor

Camera

Record trigger 

Release
mechanism

Release trigger

Liquid
surface 

Sphere

Wall

FIGURE 4. Schematic of the experiment setup.

Release
mechanism

Solid wall

h

FIGURE 5. The image shown on the control/display monitor. h is the gap between the sphere
and the wall.

Material ρp (kg m−3) E (GPa) ν

Steel 7780 200 0.33
Zerodur 2530 91 0.24

TABLE 1. Properties of the sphere and the wall used in the collision experiments.

3.3. Experimental results
Collisions with different impact Stokes numbers were obtained by placing the wall
at different distances from the release surface. After applying a template matching
method, the trajectory and velocity of a sphere are obtained for each collision from
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Case h(t = 0) (mm) h(t = 0)/d Vi (m s−1) ReI ReII

1 5.5 0.58 0.231 53 29
2 10.5 1.10 0.327 75 41
3 15.2 1.60 0.393 90 55
4 19.6 2.06 0.449 104 60
5 25.3 2.66 0.484 113 67
6 28.4 2.98 0.506 123 68
7 35.7 3.75 0.554 127 69

TABLE 2. Experiments with particle Reynolds numbers at first impact (ReI) and second
impact (ReII ). Every Reynolds number is an average value from the results of three
experiments repeated at the same initial distance.

the recorded videos. The impact Reynolds number is calculated based on the impact
velocity of the sphere, Vi, by averaging the measured speed over the 0.002 s before
collision since Joseph et al. (2001) and Gondret et al. (2002) showed that the impact
speed was not changing within this time interval in their experiments. Because of the
small values of h(t = 0)/D, the particle does not achieve its terminal velocity before it
contacts the wall. Thus, the particle Reynolds number is related to the fall distance.

A list of the experimental cases and associated parameters is given in table 2. The
trajectories for different drop heights are compared in figure 6. Ideally, the initial
trajectories for each case should coincide. The deviation provides a measure of the
uncertainty of the experiments; the maximum error is less than 3 %. In all the cases,
the particle bounced at least twice. The maximum height achieved in the rebound
motion is lower than the initial height, which is the result of viscous losses and
inelasticity. For the conditions of the current experiments, the impact velocities are all
lower than the speed at which yield occurs in stainless steel (approximately 4.6 m s−1

based on work by Ruiz-Angulo & Hunt 2010).

4. Contact model

4.1. Physics of a lubricated impact of a sphere on a wall

As noted in the introduction, several numerical studies have introduced methods to
capture the physics of a particle–particle or particle–wall collision. In a collision, the
lubrication layer between the colliding surface can be thin (less than a micron) and the
collision time can be on the order of tens of microseconds; surface deformation and
particle roughness further complicate the collision process. Hence, this gap region is
difficult to resolve in a numerical simulation and a finer grid can delay but not prevent
the problem. In the current simulations, the bodies are rigid; hence, the elasticity of
the material is not included. As a result, the simulations do not include the energy
stored in the elastic deformation of the sphere and the wall, which is critical to
the rebounding of an impacting sphere. Instead of solving the thin lubrication layer
and the deformation of the solid parts, a contact model is developed to capture the
collision process: the effect of the liquid layer is incorporated by using a liquid–solid
interaction force term; the kinetic energy stored in the deformation of the solid bodies
is included in an elastic force that acts on the falling sphere.
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FIGURE 6. Particle trajectories for the cases described in table 2.

4.2. Liquid–solid interaction force with wall effect
The interaction between a moving solid particle and the surrounding fluid has been
studied by different researchers. A thorough review can be found in Michaelide (1997).
Three types of hydrodynamic forces, namely the Stokes drag force, the added mass
force and the history force, are most widely discussed and established. When there is
an additional solid boundary, the hydrodynamic forces are modified because the fluid
is restricted by the second solid boundary. Prior studies have developed correction
terms for the gap between the two solid boundaries for the three forces. Yang (2006)
simplified the analytic formulae for the hydrodynamic forces to include the wall
and higher Reynolds number effects. The formulae that were validated with their
experimental results are represented below for fD, Stokes drag force; fH , the history
force; and fAM , the added mass force:

fD =−6πµaVλ(δ,Re), (4.1)

fH =−6πµaKH (δ)
3/2

∫ t

0

dV

dτ
K(t − τ) dτ, (4.2)

fAM =−1
2

ml[1+ 3W(δ)]dV

dt
− 3

4
mlV

dW

dt
(4.3)

where δ = h/D is the non-dimensional gap between the particle and the wall, a is the
radius of the particle and ml is the liquid mass. KH(δ) and W(δ) are coefficients that
depend on the gap between the particle and the wall λ(δ,Re) is a near-wall correction
term based on both the gap width and the particle Reynolds number; K(t − τ) is a
time kernel that describes the local dissipation mechanism and diminishes the effect
of the history force due to the earlier sphere acceleration (see Kim, Elghobashi &
Sirignano 1998). The added mass force accounts for the dynamic pressure distribution
around the particle; the history force results from the temporal delay in the boundary
layer development over the unsteady sphere surface and is an accumulated effect of the
acceleration history of the particle. These formulae are valid only in the region near
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FIGURE 7. The liquid–solid interaction force for an impact process. The theoretical force,
fthr , is calculated from Yang (2006)’s formulae with the measured sphere kinetic data from
case 3. Force fsim is the simulated result when prescribing the motion of the sphere with the
trajectory measured in case 3. The force is non-dimensionalized by (4/3)πa3ρlg.

the wall. The sum of these three forces is defined as the total hydrodynamic effect on
the solid sphere, fthr

fthr = fD + fH + fAM . (4.4)

When the gap decreases to zero, the formulae converge to the classical lubrication
theory results.

Using the falling trajectory measured from the current experiments, the
hydrodynamic force calculated from (4.4), fthr , is found to overlap with fsim, the
simulated result when applying the numerical method described in § 2. Figure 7 is a
typical plot from a single run, which shows the hydrodynamic force as a function of
the gap between the sphere and the wall in experimental case 3. The good agreement
for the gap ranging from 0.1 to 0.35 shows that Yang’s (2006) formulae could be used
to compute the force as the sphere approaches the wall, especially when the simulation
becomes unreliable at very small gaps (<0.05) because of the resolution problem.

To resolve the flow when the gap is small, a liquid–solid interaction model is
proposed that blends the simulated and the theoretical forces when the gap decreases
below a threshold value, δsl . The liquid–solid force, fsl , is computed as

fsl = H

(
δ

δsl

)
fthr +

[
1− H

(
δ

δsl

)]
fsim, (4.5)

where

H

(
δ

δsl

)
= 1

1+ e10((δ/δsl )−1)
(4.6)

is a smoothed Heaviside function, as shown in figure 8(a). The function was chosen to
smoothly transfer the hydrodynamic force from the simulated value to the theoretical
value as the gap diminishes. Based on figure 7, δsl is conservatively taken as 0.2.
Clearly, the necessary value of δsl depends on the grid resolution of the fluid
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FIGURE 8. (a) Function H for δsl = 0.2. (b) Function F.

simulation. The finer the grid, the smaller the value of δsl that could be used. On
the other hand, it seems reasonable to fix it at a conservative value independent of the
grid resolution.

4.3. Elastic force

Based on Ruiz-Angulo & Hunt (2010), when a particle impacts with a velocity lower
than the yield velocity, the collision is within the elastic or nearly elastic regime.
According to the Hertz elastic theory (see Timoshenko & Goodier 1970) for a collision
without interstitial fluid effects, the elastic force, Wo, is calculated as

Wo = 4
3

a2E∗
(

5π
4E∗

ρpV2
I

)3/5

, (4.7)

where VI is the particle impact velocity and E∗ = [(1− ν2
1)/E1 + (1− ν2

2)/E2]−1 is the
reduced modulus based on the Young’s modulus, E, and the Poisson ratio, ν, for the
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two materials. The proposed elastic force term is based on this Hertz elastic force:

fss = F

(
δ

δss

)
edWo, (4.8)

where the dry coefficient of restitution ed is included to take into account the
inelasticity of the particle. In the current experiments, inelasticity effects are not
significant and the value of ed is taken as a constant equal to 0.97. Different forms
of the tuning function F(δ/δss) had been tried to gradually introduce the elastic effect
based on the solid–solid interaction. After comparing with the experimental results, the
function F is given the following form:

F

(
δ

δss

)
=


e(−δ/δss) − e−1

1− e−1
, 0 6 δ 6 δss

0, δ > δss.

(4.9)

and is shown in figure 8(b). When the gap is large, there is no elastic force; however,
when the gap decreases and approaches zero, the function F(δ/δss) increases to a value
of unity and the elastic effect fss increases to the Hertzian force evaluated at the impact
speed.

The parameter δss fixes the distance from the wall at which the particle elasticity
becomes important; the physical meaning of δss is also explained by employing the
concept of ‘effective radius’. As a sphere approaches the wall, the hydrodynamic
pressure increases in the fluid layer between the two solid surfaces; with the increased
pressure, the surfaces deform and collision happens either through the layer of fluid
between the surfaces or between the roughness elements (see Davis et al. 1986;
Barnocky & Davis 1989; Joseph et al. 2001). In addition as the fluid is compressed,
its density and viscosity may increases, which may further limit the approach of the
surfaces. Thus, the approaching sphere can be considered to have a virtual radius
a′ = a+ δss larger than the physical value a. When the gap between the sphere and the
target wall decreases to δss, the virtual sphere with the effective radius begins to reach
the wall. A similar concept was employed by Nguyen & Ladd (2002) who proposed
a hydrodynamic radius for particles approaching a solid boundary to account for the
lubrication layer effect; in their simulations the hydrodynamics radius was ahy = a+∆
and the value of ∆ varied from 0 to 0.05a depending on the viscosity of the fluid and
the particle radius a.

4.4. Equation of motion with the contact model
Including the above forces, the final equation of motion in the vertical direction with
the contact model is

mp
dV

dt
= fsl + fss + mpg+ fb, (4.10)

By using (4.10) instead of (2.1) to couple with the flow field, the motion of the
sphere both before and after the collision process can be computed with known input
parameters based on the initial distance, the gravitational acceleration, the solid–liquid
density ratio, the diameter of the sphere, and the viscosity of the liquid. Without the
elastic force term (as given in (4.10)), the particle would not be able to rebound from
the wall.

To calibrate the value of δss, the computed particle trajectories from the simulations
of case 3 for different values of δss are compared with the averaged experimental
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FIGURE 9. Trajectory of the sphere in case 3.

trajectory, as shown in figure 9. The horizontal axis represents the dimensionless time,
t, which is the actual time divided by

√
D/g. Figure 9 shows that a greater value of

δss results in a lower maximum rebound height. The simulation using δss = 0.017 gives
the best fit for the first two rebounds. Thus this value is used for the contact model.
The results for collisions in other cases and sensitivity of the results to variations in δss
are discussed in the following section.

5. Results and discussion
5.1. Particle velocity

Figure 10 shows the particle velocity in case 3 as a function of the gap between
the particle and the wall. The velocity has been non-dimensionalized by

√
Dg. In

figure 10(a), the particle starts to fall from δ = 1.6 with zero velocity. The velocity
increases as the gap decreases. The dashed line is an analytical result obtained by
solving the equation

mp
dV

dt
= (mp − ml)g, (5.1)

when only the gravitational and buoyancy forces are considered for an isolated sphere
under the same initial conditions and a dry coefficient of restitution is applied. Thus,
the difference between the solid line and the dashed line shows the hydrodynamic
effect of the surrounding liquid on the motion of the particle. Figure 10(b) shows the
enlarged details when the particle is about to collide with the wall. The impact velocity
begins to decrease well before δ reaches δss where the elastic force starts to take effect.
This decrease in velocity results from the hydrodynamic force that increases sharply as
the gap, δ, diminishes. The particle decelerates before it rebounds. This deceleration
prior to impact was also observed in the experiments of Joseph et al. (2001) and the
simulations of Ardekani & Rangel (2008). As the gap decreases to less than δss, the
elastic force stops the approach of the particle. The rebound velocity has a sudden
decrease after δ > δss as shown in figure 10(c) because the elastic force falls to zero
and the hydrodynamic forces increase the viscous dissipation as more surrounding
liquid re-enters the growing gap between the particle and the wall.
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FIGURE 10. Velocity of the incoming and outgoing particle as a function of the gap between
the particle and the wall. The solid line is the simulated result for case 3. The dotted line is
the analytical result when considering gravity and the buoyancy force on the particle and no
hydrodynamic force. (b), (c) Enlarged details of the portions of (a) circumscribed in black
rectangular boxes.

5.2. Qualitative flow features
The numerical simulation with the contact model not only captures the dynamics
of the particles but also presents the evolution of the surrounding flow field during
the falling and rebounding process. For the experimental case 7, figure 11(b) shows
snapshots of the vorticity field of the flow around the sphere at different times
corresponding to the points on the trajectory in figure 11(a). The particle Reynolds
number of the first impact is 134. Unlike the study of vorticity dynamics in Thompson
et al. (2007) that prescribed the velocity of the sphere at a constant value and did
not include the rebound, the current simulation solves the vorticity field when the
sphere accelerates, decelerates and reverses directions. The first snapshot shows the
primary vortex ring generated from the wake vorticity and the opposite-sign vorticity
generated at the wall when the particle is just about to collide. The second snapshot
is taken during the rebound after the first collision. The vorticity of opposite sign
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FIGURE 11. Snapshots of the vorticity field around the sphere at different times. Contour
levels from −0.5 to 0.5 in increments of 0.05 are chosen for a good depiction of the
weak vorticity field structure. The black semicircular area shows the location of the sphere:
(a) particle trajectory; (b) vorticity field.

is generated at the sphere surface as the rebounding sphere moves upwards through
the primary wake ring to form a secondary vortex ring. Near the wall, the new
vorticity forms as the result of the liquid re-entering the gap. As the sphere continues
moving upwards, the primary vorticity is stretched and expanded as the sphere passes.
A vortex-ring dipole forms from the combination of the primary and the secondary
vorticity structures. The new positive vorticity attached to the bottom of the sphere
shown in the third snapshot is formed because the sphere’s velocity decreases to zero
as it approaches the maximum height of the first rebound. When the sphere starts to
fall again, the attached vorticity becomes a new stronger primary ring. The secondary
vorticity is slowly dissipated by the surrounding opposite-sign vortices and the original
primary vortex ring propagates radially before being stretched and merged with the
new primary vorticity, as shown in the fourth and the fifth snapshots. The complex
vorticity structure entangles the particle and dissipates part of its kinetic energy.

5.3. Validation of the contact model
When the proposed contact model with δss = 0.017 is applied to the collision processes
with different Stokes numbers in the experimental cases 1–7 listed in table 2, the
trajectories calculated from the simulation show good agreement with the experimental
results for most of the cases. To estimate the deviation, a relative error defined as
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FIGURE 12. Relative error η based on maximum rebound height. (a) Relative error as a
function of Stokes number. The results of the first and second impacts for the seven cases are
presented using δss = 0.017 for the simulations. (b) Relative error as a function of δss.

η = (Hs − He)/He is used where Hs and He are the maximum height that the particle
reached during rebound in the simulation and in the experiment, respectively.

Figure 12 shows the relative error for the first and second impacts for each case.
The relative error is plotted as a function of Stokes number in figure 12(a). For
the cases with Stokes numbers ranging from 30 to 100, the relative error is small
and within the uncertainty of the experiments. For smaller St , such as St = 28, the
simulation with δss = 0.017 results in a higher rebound than found in the experiment.
The inaccuracy at low St is also seen in the third rebound in figure 9. To simulate
the measured trajectory for lower Stokes number, larger values of δss were tried in
different simulations since, as discussed in the previous section, a greater δss results in
a lower maximum height achieved in a rebound. The results are shown in figure 12(b),
which confirms that the relative error decreases when a larger δss is used. With a 5 %
increase in δss, the relative error falls within the uncertainty of the experimental region.
The variation in the value of δss with Stokes number is discussed in § 5.5.

5.4. Coefficient of restitution

To examine the current contact model over a larger range of impact Stokes numbers
and to compare with more experimental results found in the literature, simulations
were run for denser particles and glycerol–water mixtures with different viscosity. The
input parameters for each of the simulations are given in table 3. For the runs with
the same material properties, the initial distance between the sphere and the wall was
varied so that the impact Reynolds number and Stokes number are different. In runs
15, 16 and 17, a sphere with an artificially large density was used to observe larger
values of Stokes number (up to ∼1000) while keeping the Reynolds number below
250 to ensure that the flow field remains axisymmetric. For runs 1 to 29, δss = 0.017
was used in the contact model. As a comparison, in runs 30 to 35 that have the same
material properties as in runs 18 to 24, δss = 0.017+ 5 % is used in the contact model,
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Run ρl (g cm−3) µ (cP) ρp (g cm−3) E (GPa) ν Comment

1–3 1.17 15.2 7.6 200 0.33 Steel sphere, 65 % glycerol
4–10 1.20 50.0 7.6 200 0.33 Steel sphere, 78 % glycerol
11–14 1.20 50.0 11.35 16 0.44 Lead sphere, 78 % glycerol
15 1.20 50.0 24.0 200 0.33 Artificial sphere, 78 %

glycerol
16 1.20 50.0 36.0 200 0.33 Artificial sphere, 78 %

glycerol
17 1.20 50.0 48.0 200 0.33 Artificial sphere, 78 %

glycerol
18–24 1.22 109 7.6 200 0.33 Steel sphere, 85 % glycerol
25–29 1.25 523 7.6 200 0.33 Steel sphere, 95 % glycerol
30–35 1.22 109 7.6 200 0.33 Steel sphere, 85 % glycerol

TABLE 3. Simulations with different input parameters and the corresponding material
description. Runs with the same material properties have different initial distance; thus, the
impact Stokes numbers are different. For the viscosity unit, 1 cP= 1× 10−3 Pa s.

which results in different coefficients of restitution for impact Stokes number ranging
from 8 to 100.

The coefficient of restitution is plotted as a function of Stokes number in figure 13.
For runs 15, 16 and 17 with large Stokes number (400–103), the coefficient of
restitution approaches the dry value indicating that the rebound is controlled by the
elastic force and not by the fluid forces. When the Stokes number is in the range
of 10–200, the hydrodynamic forces exert a greater effect on the particle and the
coefficient of restitution decreases as the Stokes number decreases. For runs 25–29, a
higher liquid viscosity was used so that the kinetic energy of the sphere is dissipated
by viscous effects from the liquid–solid interaction term. The impact velocity is small
and the corresponding impact Stokes number is smaller than 10. There is no rebound
and the coefficient of restitution is zero. Thus, the hydrodynamic force and the elastic-
like force lead to a complete contact model for impact Stokes numbers from 1 to
1000.

The relation between the coefficient of restitution calculated from the current
simulations and the particle-impact Stokes number agrees with the empirical trend,
as shown in figure 14 that compares the simulated results with the measured results
from the current experiments and Joseph et al’s’ (2001) pendulum experiments for a
steel sphere and Zerodur wall. For Stokes number ranging from 90 to 200, the values
of the coefficient of restitution calculated from the current simulations overlap with
the experimental results of Joseph et al. (2001). For Stokes number ranging from 30
to 90 where Joseph et al. (2001) has fewer experimental points, the simulated results
overlap with the measured results from the current experiments. For Stokes number
ranging from 10 to 30, the coefficient of restitution increases sharply with increasing
St and the experimental data are scattered. Within this lower range of Stokes number,
the simulation results are sensitive to the non-dimensional parameter δss. When using
δss = 0.017 + 5 % the simulations predict a coefficient of restitution that follows the
trend represented by the curve fit by Ruiz-Angulo & Hunt (2010) of the experimental
data by Joseph et al. (2001) and Gondret et al. (2002).

In summary, the different material properties, including the particle elasticity, the
liquid viscosity and the densities, are incorporated appropriately in the proposed
contact model. The current simulations represent the dependence of the coefficient
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FIGURE 13. Simulation results of coefficient of restitution as a function of Stokes number.
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FIGURE 14. (Colour online available at journals.cambridge.org/flm) Comparison of the
relations between coefficient of restitution and particle Stokes number.

of restitution on the impact particle Stokes number, demonstrating that the contact
model captures the essential physics of a particle–wall collision process in a liquid
environment.

5.5. Discussion of the parameter δss
In the current simulations, the calculated results are influenced by the value of the
non-dimensional parameter δss taken in the contact model. At the same Stokes number,
a larger δss leads to a lower coefficient of restitution. For Stokes number larger than 30,
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the simulations with δss = 0.017 produce the good agreement with experimental results
for the trajectory and the coefficient of restitution. For Stokes number less than 30 but
larger than 10, the simulation predicts a higher coefficient of restitution when using
δss = 0.017; a lower coefficient of restitution that agrees with the experimental result
is obtained when using δss = 0.017 + 5 %. The combined effect of the liquid–solid
interaction and the elastic force terms is believed to be the reason. From (4.7)
and (4.8), the elastic-like force depends on the impact velocity at δss. In simulations
with Stokes number less than 30, when δss < δ < δsl , the particle velocity decreases
markedly because of the effect of the liquid–solid interaction term, as discussed in
§ 5.1. Thus, a smaller impact velocity results in a smaller elastic force that leads to
lower dissipation and a higher rebound velocity. When using δss = 0.017 + 5 % (runs
30–35), the elastic force term is activated earlier where the particle velocity is larger
than the value at δss = 0.017. As a result, Wo is larger and the larger elastic-like term
results in large deceleration. The combined effect of the liquid–solid interaction term
and the elastic term provides more dissipation for the collision process, which also
explains the reason why run 35 using δss = 0.017+ 5 % predicts lower e at St = 100 as
shown in figure 14 . For the lower Stokes numbers, increasing δss also has the effect of
increasing the effective radius (a + δss increases from 0.5170 to 0.5178); for an actual
collision under these conditions, the particle would begin to deform farther from the
wall and the minimum distance of approach would be larger. A similar increase in
the minimum distance of approach with decreasing Stokes number was found in the
elastohydrodynamic studies of Davis et al. (1986). The results for the coefficient of
restitution for runs 30–34 fall within the experimental uncertainty.

6. Conclusions

This paper presents a contact model to simulate numerically the normal collision
between a particle and a wall in a liquid environment. The contact model computes the
liquid force on the particle using a theoretical formula when it is too close to the wall
for the simulated force to be accurate. Instead of solving the complicated coupling
between the fluid dynamics and the elastic solid deformation, the model introduces an
elastic force in the equation of motion of the sphere; this elastic force provides an
energy storage mechanism that allows the particle to rebound while remaining rigid.
By including this contact model, a particle settling and rebounding from a wall is
simulated using a fast IB method developed in cylindrical coordinates. To validate
and calibrate the contact model, experiments are performed on a steel sphere falling
from different heights and rebounding from a planar wall. The numerical simulation
captures the trajectory of the sphere with multiple bounces and facilitates the
calculation of the vorticity dynamics associated with the particle moving downwards
and upwards, which has not been investigated in prior studies. When applied to a
larger range of impact Stokes numbers, the coefficient of restitution calculated from
the simulation increases as a function of the Stokes number following the results of
earlier experiments. Thus, the contact model describes the normal immersed collision
between a particle and a wall with different particle impact Stokes number as long as
the surrounding flow field remains axisymmetric. Future work will focus on applying
the contact model to a particle–particle normal collision process in which the target
particle is not stationary and on developing a three-dimensional code to simulate
oblique collisions and impacts at higher Reynolds number.
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