
Robotica (2013) volume 31, pp. 1073–1084. © Cambridge University Press 2013
doi:10.1017/S0263574713000337

Discrete kinematic synthesis of discretely actuated
hyper-redundant manipulators
Alireza Motahari†∗, Hassan Zohoor‡ and M. Habibnejad Korayem§
†Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University,
Tehran, Iran
‡Center of Excellence in Design, Robotics and Automation, Sharif University of Technology, and The Academy of Sciences,
Tehran, Iran
§Center of Excellence in Experimental Solid Mechanics and Dynamics, Iran University of Science and Technology,
Tehran, Iran

(Accepted April 10, 2013. First published online: May 14, 2013)

SUMMARY
Discrete kinematic synthesis of discretely actuated hyper-
redundant manipulators is a new practical problem in
robotics. The problem concerns with determining the type of
each manipulator module from among several specific types,
so that the manipulator could reach several specified target
frames with the lowest error. This paper suggests using a
breadth-first search method and a workspace mean frame to
solve this problem. To reduce errors, two heuristic ideas are
proposed: two-by-two searching method and iteration. The
effectiveness of the proposed method is verified through
several numerical problems.

KEYWORDS: Breadth-first search; Discrete actuation;
Discrete kinematic synthesis; Hyper-redundant manipulator;
Workspace mean frame.

1. Introduction
A robot manipulator is said to be redundant in a general sense
when it possesses more degrees of freedom than required for
the task. The term hyper-redundant manipulator is usually
applied to a highly dexterous robotic device composed of
serially connected modules. The large number of degrees of
freedom allows these manipulators to avoid obstacles and to
have high dexterity, concurrently. However, the kinematics
and motion control of these manipulators are complex
because of their large degree of freedom. Using discrete
actuators instead of continuous actuators can alleviate this
problem. These actuators have only a few stable states. On
the other hand, their actuation is limited to some discrete
amounts. For example, a binary prismatic actuator has only
two states: completely extended and completely contracted.

The concept of manipulators consisting of discretely
actuating joints can be found in early investigations of
Pieper’s planar serial digital manipulator.1 Simple joint level
control makes discrete actuators generally able to dispense
with any feedback sensors. So they are often cheaper and
lighter than continuous actuators. A discretely actuated
hyper-redundant manipulator (DAHM) is a hyper-redundant
manipulator whose all actuators are discrete. High task

* Corresponding author. E-mail: a.motahari@srbiau.ac.ir

repeatability and high reliability are the other advantages
of a DAHM. When all actuators in a DAHM are binary,
the manipulator is called a binary manipulator (BM). The
concrete concept of a BM – a DAHM with binary actuators –
as a new paradigm in robotics was presented by Chirikjian.2

In another development, Ebert-Uphoff made a BM with six
Stewart–Gough modules.3 Then, Suthakorn and Chirikjian
designed and implemented a new spatial DAHM with three
modules.4 Sujan et al. further designed a lightweight BM for
space exploration applications.5

The problem of kinematic synthesis of DAHMs is
discussed in several papers. Chirikjian solved the positional
kinematic synthesis problem for a BM in the two-
dimensional (2D) case.6 Here, a BM as base-line design and
finite-desired positions of the BM end-effector were given to
determine some kinematic parameters (design parameters).
Miyahara and Chirikjian solved a similar problem for
DAHMs considering both position and orientation, in 2D and
3D cases.7 Kyatkin and Chirikjian proposed an approximate
numerical synthesis method for 2D BMs to achieve a desired
workspace density.8 Kim et al. solved the same problem
using a different method.9 Hang et al. worked on the sub-
workspace design of BMs, which means determining passive
and active joints of a specified BM and selecting proper state
for passive joints to reach a desired sub-workspace.10

The continuous kinematic synthesis problem is dealt
with in all of these studies6–9 but Hang et al.10 Here,
design parameters are selected from a continuous interval of
numbers. The problem presented in this paper is a new one,
dealing with discrete kinematic synthesis and its application
will be discussed later in this section. The discrete kinematic
synthesis problem of a DAHM can be expressed as follows:

Selecting a proper type for each module of manipulator
from among several specific types is desired, so that the
manipulator could reach several specified target frames called
“targets” with the lowest error. Each module type is a
module with a specific structure (mechanism), dimensions,
and discrete amounts of actuation. Unlike most synthesis
problems where design parameters can be selected from
a certain interval, here designing is limited to only a few
discrete options. This is why it is called discrete synthesis.

This is a practical problem because most designers are
forced to choose from available options in the market. It can

https://doi.org/10.1017/S0263574713000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000337


1074 Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators

also find applications when storing several module types in a
warehouse so that, with change in the set of targets, errors in
reaching these targets can be reduced by selecting the proper
module types and connecting them serially to make a new
DAHM.

In order to solve the discrete kinematic synthesis problem
for a DAHM, it is necessary to find an effective method
for solving the inverse kinematic problem. The reason for
this will be discussed in Section 2.2. Several methods have
been proposed by various researchers to solve this problem.
Chirikjian and Ebert-Uphoff11,12 estimate workspace density
for 2D DAHMs. They used it for solving DAHMs inverse
kinematic problem. In this method, it is necessary to perform
an offline evaluation of large amounts of data and storing
them. This is especially problematic in 3D cases.

Suthakorn and Chirikjian13 proposed an effective method
for evaluating the mean frame of the DAHMs workspace, and
used it to solve the inverse kinematic problem. Their method
was fast and the amounts of offline calculations and stored
data were not huge. But it had the disadvantage of having
large errors.

In this paper, a method is proposed for solving discrete
kinematic synthesis of DAHMs using Suthakorn’s method.13

Although this method is fast, its errors are high. Here, error
means the average distance of the end frame of manipulator
in solution configurations from corresponding target frames.
Two ideas are presented to reduce the errors. First, the type
of two nonadjacent modules is determined instead of one
module in each step of solution, which is called “two-by-
two searching method.” Second, the process is repeated to
improve the results.

The paper is organized as follows. Section 2 describes the
problem completely. Then, Suthakorn’s method and the two
ideas of solving the problem are explained. In Section 3,
two algorithms are presented. The first one is based on
Suthakorn’s method and the second one is based on the two
ideas presented in Section 2. Finally, the numerical results
for a 2D and a 3D manipulator are presented as case studies.

2. Fundamentals

2.1. Discrete kinematic synthesis problem of DAHMs
The purpose of design is a DAHM that can reach several
specified target frames in space (or plane) with the lowest
error. These frames, which are called “target frames” or in
short “targets,” are the same as precision points. Designing
is limited to several specified options in a manner that each
module of manipulator can be selected from a list of module
types. Each module type on this list is a module with a defined
structure, dimensions, and discrete amounts of actuation.
There is no limitation in the number of module types and
the number of targets. The number of manipulator modules
is an input data and all module-type actuators are discrete
actuators.

To reach each target, the manipulator is actuated in a
configuration. On this basis, each module of the manipulator
has a different configuration for each target. Thus, solution
algorithm outputs are the proper type for each module of
manipulator and its proper configuration for each target. If

Fig. 1. Schematic illustration of a discrete kinematic synthesis
problem for a manipulator.

the targets are obtained from forward kinematic solution of
a manipulator with specified module types in some specified
configurations, then the existence of an exact solution for
the corresponding discrete kinematic synthesis problem will
be certain. In this case, the distance between the end frame
and the corresponding target frame can be considered as an
error. Of course, if there is more than one target, the solution
error will be the average of all these distances. The distance
between two frames includes both location and orientation
differences. The corresponding formulas are presented in
Appendix A.

Figure 1 illustrates a discrete kinematic synthesis problem
for a two-module manipulator with two targets and two
module types. Each module type has two configurations.
Figure 1(a) illustrates the manipulator, its end frame
and the targets. The target frames are shown by dashed
lines. Figure 1(b) illustrates the module types and their
configurations. Figure 1(c) shows all possible choices of

https://doi.org/10.1017/S0263574713000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000337


Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators 1075

manipulator type. The ith digit of the manipulator-type code
defines the type of the ith module. Figure 1(d) shows all
possible configurations for a manipulator of type 12. The
numbers within parenthesis of the presented codes represent
the manipulator configuration where ith digit defines the
configuration of the ith module. The numbers outside the
parenthesis show the manipulator type, which are the same
as the codes in Fig. 1(c). Figure 1(e) illustrates the exact
solution of the problem. The code defines the manipulator
type and configurations corresponding to each target.

In the following, the discrete kinematic synthesis problem
of DAHMs is stated formally.

Minimize:

Error (type, conf) = 1

Ntar

Ntar∑
tar=1

Distance

× (
EndFrametar , TargetFrametar

)
Subject to:

type = (
type1, type2, . . . , typeNmod

)
,

where

typemod ∈ {
CandidateTypei : i = 1, 2, . . . , Ntyp

}
and

conf = (
confmod,tar : mod = 1, 2, . . . , Nmod,

tar = 1, 2, . . . , Ntar ) ,

where

confmod,tar ∈ {
CandidateConfj,typemod

:

j = 1, 2, . . . , Ncon

(
typemod

)}
.

where EndFrametar is the end frame of the manipulator
related to tarth target, also typei and confi,j are the type
of the ith module and configuration of ith module related
to jth target, respectively. Furthermore, Nmod , Ntar , Ntyp,
and Ncon (k) are the number of modules of the manipulator,
number of targets, number of candidate types, number of
candidate configurations of kth candidate type, respectively.
Distance (A, B) is the distance between frames A and B.
The method for calculating this distance has been given in
Appendix A.

2.2. Solution method using workspace mean frame
Our problem is somewhat similar to the inverse kinematic
problem of DAHMs. Once the number of targets and the
module types equal 1, the problem turns into an inverse
kinematic problem. Accordingly, the inverse kinematic
solution method can be generalized to a solution method for
the synthesis problem. The proposed method in this paper is
a generalization of Suthakorn’s method13 for solving inverse
kinematic problems. Before describing this method, it is
necessary to introduce “workspace density.” Due to discrete
actuation, the workspace of DAHMs is formed as a cloud
of discrete points. The number of workspace points, which

are placed into a unit value (or area) around a position,
is called workspace density of that position. Therefore, if
a position is denser, the probable error of reaching that
position is less. Several papers have dealt with calculation
of workspace density or workspace generation.11,14 In
Suthakorn’s method, it is assumed that the mean position
of the workspace is the densest. It is also assumed that the
greater the distance from the mean position, the lower the
density. A breadth-first search is used in Suthakorn’s method.
Here, the manipulator configuration is determined module
by module, starting from the base module and continuing
to the end module. Accordingly, there are three kinds of
modules in the manipulator at each step, namely, a module
whose appropriate configuration has been selected previously
(decided module), a module whose appropriate configuration
is being selected (pending module) and a module whose
configuration is unknown (undecided module).

If the pending module is considered in a particular
configuration, by changing configuration of undecided
modules in all possible states, the end frame makes a discrete
space that is a subset of the manipulator workspace, called
“sub-workspace.” The target frame has a density in this sub-
workspace. The denser the target frame in a sub-workspace,
the less probable the error. Therefore, among all possible
configurations for a pending module, a configuration whose
sub-workspace is denser in the target frame is selected.

In Suthakorn’s method, instead of determining the density,
another criterion is used to compare densities. This criterion
is the distance between the target frame and mean frame of the
sub-workspace. As mentioned earlier, if this distance is less,
then the sub-workspace at target frame will be denser. Thus,
it is only necessary to calculate the mean frame of the sub-
workspace. This can be done easily by a method proposed
by Suthakorn and Chirikjian.13 This method is described in
Appendix B.

Similar to inverse kinematic, the solution of discrete
synthesis can be done by breadth-first search. At each
step of solution, the proper type and configurations (one
configuration for each target) are selected for one module
(pending module). This process starts from the base module
and continues to the end module of the manipulator. Just like
inverse kinematic, there are three kinds of modules at each
step:

1. Decided module: A module whose appropriate type and
configurations have been selected in previous steps.

2. Pending module: A module whose appropriate type and
configurations are being selected.

3. Undecided module: A module whose appropriate type and
configurations are unknown.

Union of workspaces of all possible manipulator types
forms a discrete space that we call “generalized workspace.”
The number of frames included in generalized workspace
(NGW ) can be calculated by the following equation:

NGW =
⎛
⎝Ntyp∑

i=1

Ncon(i)

⎞
⎠

Nmod

(1)

https://doi.org/10.1017/S0263574713000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000337


1076 Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators

Fig. 2. Schematic illustration of the solution methods of discrete kinematic synthesis for a four-module manipulator: (a) exact solution,
(b) first step of the one-by-one method, (c) first step of the two-by-two method, in which pending pair modules are the first and the third
modules.

where Ntyp is the number of module types, Ncon(i) is the
number of possible configurations of module type i, and Nmod

is the number of modules of the manipulator. The terms in
the parenthesis define all possible choices for a module of
the manipulator that contains all possible configurations of
all module types. If the pending module is considered in a
specified configuration of a specified type, by changing the
type and configuration of unknown modules in all possible
states, the end frame makes a discrete space that is a subset of
generalized workspace, called “generalized sub-workspace.”
If generalized sub-workspace in target position is denser, the
probable error of reaching the target will be less.

Like inverse kinematic, we assume that the densest
position of a generalized sub-workspace is their mean frame.
So, if the distance between the mean frame of generalized
sub-workspace and the target frame is less, then the probable
error will also be less. Assuming that the pending module
type is specified, the best configuration of pending module
for each target among all possible configurations is one,
which results in less distance between the mean frame of
the corresponding generalized sub-workspace and the target

frame. Sum of these minimal distances on all targets is called
“sum of errors.” This value is calculated for all module types,
one by one.

The proper type for pending module among all module
types is the one whose sum of errors is less. The proper
configurations have already been selected. In this manner,
the proper type and configurations can be selected for
the pending module. By repeating this process module by
module, which starts from the base module and continues to
the end module, the problem can be solved.

Figure 2 shows a discrete kinematic synthesis problem
for a four-module manipulator. As with Fig. 1(b), there are
two module types to choose from, each with two different
configurations. Modules marked with gray hatches are mean-
modules. A mean-module is a virtual module with end frame
located in the mean position of generalized workspace. In
other words, this frame is the average of all possible end
frames for a module.

Figure 2(a) illustrates two configurations of the same
manipulator type and their end frames are considered as
target frames. In other words, these two configurations are

https://doi.org/10.1017/S0263574713000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000337


Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators 1077

the exact solution of the problem. Figure 2(b) shows the first
step of solving the problem using Suthakorn’s method (the
one-by-one searching method). Therefore, the first module
is considered as pending module and the other modules are
considered as undecided modules. Undecided modules are
replaced with mean module. Each row in Fig. 2(b) belongs
to one module type with two different configurations. Target
frames are shown with dashed lines. Not only is it necessary
to select two configurations each for one target but it is also
necessary to select these configurations from one row (i.e.,
one module type). The rectangles in bold lines show the
solution for the first step.

2.3. Two-by-two searching method
Numerical results show large errors in Suthakorn’s method of
solving the discrete synthesis problem. In order to reduce the
errors, the two-by-two searching method is proposed. This
method is based on Suthakorn’s method, but there are two
pending modules at each step of solution. Numerical results
show that the errors would be reduced if these two modules
are nonadjacent. If the number of modules is odd, the last
step of solution is done with one module using Suthakorn’s
method. The order for choosing modules as pending pair
modules is defined in a list that is named “order list.” As an
example, the order list for a four-module manipulator can be
one of the following sets:

L(1) = {(1, 2), (3, 4)}, L(2) = {(1, 3), (2, 4)},
L(3) = {(1, 4), (2, 3)}, L(4) = {(2, 3), (1, 4)},
L(5) = {(2, 4), (1, 3)}, L(6) = {(3, 4), (1, 2)}.

The numbers in the curly brackets define module orders in
the manipulator, for example, 1 denotes the base module and
4 denotes the end module. Each parenthesis contains two
numbers that define pending pair modules at each step of
solution. So, the first parenthesis defines the pending modules
of step 1 and so on.

Numerical results show that the selection of order list
affects errors. It is better to choose nonadjacent modules
as pending pair modules at each step of solution. We
cannot obtain a clearer criterion for selecting the order list.
We choose pending pair modules randomly from among
undecided modules of two halves of the manipulator at
each step of solution. The end frame of each undecided
module at each step of solution is assumed to be in the
mean of its workspace. So for reaching a target, assuming
that the type of the pending modules is specified, the
proper configuration of pending modules among all possible
configuration combinations is the one, which results in a
shorter distance between the end frame and the target frame.
If this process is done for all targets, a proper configuration
is defined for pending modules for each target. Sum of
distances between the related end frame and the target frame
is called “sum of errors.” Each time a type combination is
considered for pending modules, it results in a sum of errors.
So for all possible-type combinations of pending modules,
the procedure above is done and the type, which results in
less sum of errors is chosen as proper type for the pending
modules. The proper configurations for that type related to

each target have already been selected. In this manner, the
type and configurations of pending modules are selected.
The type and configurations of the whole manipulator will
be finally defined by repeating this process for each pair of
the order list one by one.

Figure 2(c) shows the first step in the solution of the
synthesis problem described in Fig. 2(a) using the two-by-
two searching method; the pending modules are the first
and third modules of the manipulator. The other modules
(second and fourth) are undecided modules whose places are
filled with a mean module (gray). Two pending modules,
each with two types and each type with two configurations
present (22)2 = 16 candidates for selection, which are shown
in 16 rectangles in Fig. 2(c). Each row in Fig. 2(c) belongs
to one-type combination of modules. Therefore, the solution
configurations are the two configurations that each of which
is close to one of the two targets. In addition, they are in
one row in Fig. 2(c), that is, the configurations have the same
module type. The solution configurations are marked by bold
rectangles.

2.4. Iteration method
Numerical results show that the iteration of two-by-two
searching process reduces errors. The iteration process is
done after the implementation of the two-by-two searching
method. So, there is no undecided module in the iteration
process. In each iteration, two modules are selected
randomly from among all modules of manipulator, which
are considered as pending pair modules. Then, their proper
type and configurations are selected again using the two-by-
two searching method.

3. Solution Algorithms
Based on what was discussed in Section 2, two individual
algorithms are presented to solve discrete synthesis of
DAHMs problems: the one-by-one searching algorithm and
two-by-two searching with the iteration algorithm (which are
called “one-by-one algorithm” and “two-by-two algorithm”).
The one-by-one algorithm is based on Suthakorn’s method,
which was explained in Section 2.2. The term “one-by-one”
is referred to one pending module at each step of solution. In
the two-by-two algorithm, at first, the two-by-two searching
algorithm, which is based on Section 2.3, is run. Afterward,
the iteration algorithm, which is based on Section 2.4, is run
for prescribed times called “number of iterations.”

3.1. One-by-one algorithm
1. Find gtyp,con for typ = 1, 2, . . . , Ntyp and con =
1, 2, . . . , Ncon(typ) where typ defines the module type,
Ntyp is the number of module types, con defines the
configuration, and Ncon(typ) is the number of possible
configurations of module-type typ. At this step, the
homogeneous transformation matrix (g) is calculated for all
possible configurations of all module types.

2. Find gmid , which is named “mean transformation
matrix.” It is related to the mean frame of one module-
generalized workspace. The method of calculating the mean
frame is presented in Appendix B. Readers are referred to
Suthakorn and Chirikjian13 for more details.

https://doi.org/10.1017/S0263574713000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000337


1078 Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators

3. Assume g(mod,tar) = gmid for mod = 1, 2, . . . , Nmod

and tar = 1, 2, . . . , Ntar where g(mod,tar) is the transform-
ation matrix for modth module of manipulator and for tarth
target. Nmod is the number of manipulator modules, and Ntar

is the number of targets.
At this step, the transformation matrix of all modules

(which are yet undecided) for all targets is assumed equal
to mean transformation matrix.

4. Input g∗
tar for tar = 1,2,. . .,Ntar , where g∗

tar is the
transformation matrix of tarth target. At this step, the target
frames are defined as inputs.

5. mod = 1 (mod defines the pending module).
6. tar = 1 (tar defines the considered target).
7. typ = 1 (typ defines the module type).
8. Do the following sub-steps for all possible

configurations of pending module, which means all the
following options: con = 1, 2, . . . , Ncon(typ)
where con defines a configuration for pending module.

8.1. g(mod,tar) = gtyp,con.

8.2. Calculate: G = g(1,tar) ◦ g(2,tar) ◦ · · · ◦ g(Nmod,tar ),
where G is the transformation matrix of manipulator.

8.3. Calculate: Dtar
typ(con) = distance(G, g∗

tar ),
where Da

b(c)relates to the distance between the end frame of
manipulator and ath target frame where the pending module
is of bth type and in cth configuration. The distance(A, B)
denotes the distance between the frames A and B. The method
of calculating the distance between two frames is described
in Appendix A.

9. Find the minimum value of Dtar
typ(con) from among all

values calculated in the previous step. This value is indicated
by dtar

typ and the related configuration is indicated by ctar
typ.

10. If typ < Ntyp, then typ = typ + 1 and go to step 8.
11. If tar < Ntar , then tar = tar + 1 and go to step 7.
12. Calculate the following quantity for typ =

1, 2, . . . , Ntyp, sum − dtyp =
Ntar∑

tar=1
dtar

typ ,

where sum – dtyp is the sum of errors for typth type as a
pending module.

13. Find the minimum value of sum – dtyp from among all
values calculated at step 12.

The corresponding typ is considered as proper type for
pending module and is illustrated by TYP(mod). Furthermore,
CON(mod, tar) = ctar

T YP (mod) for tar = 1,2,. . .,Ntar ,
where CON(a,b) illustrates the proper configuration of ath
module to reach bth target. So,

g(mod,tar) = gT YP (mod),CON(mod,tar) for tar = 1, 2, . . . ,

Ntar .
14. If mod < Nmod , then mod = mod + 1 and go to step 6.
15. End.

3.2. Two-by-two algorithm
1–4. Follow the same steps in the one-by-one algorithm
described above.

5. Make the order list (L) randomly with the following
conditions:

L = {L1, L2, . . . , LNmod/2},

where Li = (Li1,Li2),

Conditions =

⎧⎪⎨
⎪⎩

Li1 < Li2

Lij ∈ N

1 ≤ Lij ≤ Nmod

Lij �= Lrsif i �= rorj �= s

.

6. i = 1, it relates to Li that defines the ith pending pair
modules.

7. tar = 1.
8. typ-A = 1, it defines the type of the first pending module.
9. typ-B = 1, it defines the type of the second pending

module.
10. Do the sub-steps for all possible configuration

combinations of pending pair modules, which means all the
following options:

con − A = 1, 2, . . . , Ncon(typ − A)

con − B = 1, 2, . . . , Ncon(typ − B)

where con-A is related to the configuration of the first pending
module and con-B defines the configuration of the second
pending module.
10.1. g(Li1,tar) = gtyp−A,con−A

10.2. g(Li2,tar) = gtyp−B,con−B

10.3. Calculate:

G = g(1,tar) ◦ g(2,tar) ◦ · · · ◦ g(Nmod,tar ),

where G is the transformation matrix of manipulator.
10.4. Calculate:

Dtar
typ−A(con−A),typ−B(con−B) = distance(G, g∗

tar ),

where Da
b(c),d(e) illustrates the distance between the end frame

and ath target frame, where the type and the configuration
of the first pending module are b and c, respectively,
furthermore, the type and the configuration of the second
pending module are d and e, respectively.

11. Find the minimum value of D among all values,
which were calculated in the previous step. This value is
indicated by dtar

typ−A,typ−B and the related two configurations
are indicated by con − atar

typ−A and con − btar
typ−B .

12. If typ-B < Ntyp, then typ-B = typ-B + 1 and go to step
10.

13. If typ − A < Ntyp, then typ-A = typ-A + 1 and go to
step 9.

14. If tar < Ntar , then tar = tar + 1 and go to step 8.
15. Evaluate the following quantity for all combinations

of type-A = 1, 2, . . . , Ntyp and typ-B = 1, 2, . . . , Ntyp.

sum − dtyp−A,typ−B =
Ntar∑

tar=1

dtar
typ−A,typ−B,

where sum – da,b is sum of errors related to the pending pair
modules of types a and b.

16. Find the minimum value of sum −dtyp−A,typ−B among
all values, which were calculated in the previous step (step

https://doi.org/10.1017/S0263574713000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000337


Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators 1079

Table I. Time complexity of the proposed algorithms considering
various parameters.

N: number M: number R: number of S: number of
of modules of targets module types iteration

One-by-one O
(
N2

)
O (M) O (R) –

algorithm
Two-by-two O

(
N2

)
O (M) O

(
R2

)
O (S)

algorithm

15). The corresponding typ-A and typ-B are considered
as the proper types for the first and the second pending
module, respectively, and they are illustrated by TYP(Li1)
and TYP(Li2), respectively. Furthermore,
CON (Li1, tar) = con − atar

T YP (Li1) for tar = 1, 2, . . . , Ntar ,
CON (Li2, tar) = con − btar

T YP (Li2) for tar = 1, 2, . . . , Ntar ,
where CON(a,b) illustrates the proper configuration of ath
module to reach bth target. So,

g(Li1,tar) = gT YP (Li1),CON(Li1,tar) for tar = 1, 2, . . . , Ntar ,
g(Li2,tar) = gT YP (Li2),CON(Li2,tar) for tar = 1, 2, . . . , Ntar .
17. If i < Nmod/2, then i = i + 1 and go to step 7.
18. The iteration algorithm:
18.1. itr = 1, which means first iteration.
18.2. Select two modules (A, B) randomly among all

manipulator modules, which are considered as pending
modules. Their conditions are as follows: A, B ∈ N1 ≤
A, B ≤ NmodA < B

18.3. Do steps 7 to 16 by replacing A and B instead of Li1

and Li2, respectively.
18.4. Error = 1

Ntar
min(sum d)

185. If itr < Nitr , then itr = itr + 1 and go to sub-step
18.2. Nitr is the whole number of iterations.

19. End.
Table I shows the time complexity of the two presented

algorithms based on the number of modules, number of
targets, number of module types, and the number of iteration.
This last item, that is, the number of iteration is only used for
the two-by-two algorithm. It should be mentioned that in all
cases time complexity is the same for 2D and 3D states. As
can be seen in the table, time complexities are polynomial
and not exponential. Therefore, the problem is not NP-hard.

With some modifications in the presented algorithm, it is
possible to solve the following new problems:

− The inverse kinematic problem can be solved using
Suthakorn’s method; to do this, in the one-by-one
algorithm (Section 3.1), we should just consider Ntyp = 1,
Ntar = 1.

− The inverse kinematic problem can be solved using
the two-by-two method; to do this, in the two-by-two
algorithm (Section 3.2), Ntyp, Ntar values are considered
as 1.

− Problem P2 can be defined with inclusion of Error ≤ ε as
a constraint in the discretely synthesis problem (problem
P1), where ε is a prescribed small tolerance. This problem
can be solved using the two-by-two algorithm; it suffices
to replace sub-step 18.5 with the following command:

“If Error > ε, then itr = itr + 1 and go to sub-step 18.2.
Nitr is the whole number of iterations.”

Fig. 3. An R-link module.

Problem P3 is the general version of P2 that is defined
considering weight factor for each module type, that is,
cost. To include weights in the two-by-two algorithm, the
following command is added to step 4:

“Input Wtyp for typ = 1, 2, . . . , Ntyp, where Wi is the weight
of ith module type.”

The following command should also replace step 15:

“sum − dtyp−A,typ−B

=
Ntar∑

tar=1

(
Wtyp−A + Wtyp−B

)
dtar

typ−A,typ−B.,,

Problem P4 is defined considering the number of manipulator
modules as a designed parameter. For solving this problem,
it is only needed to run the presented algorithms for various
numbers of modules. The final answer among all answers is
the one whose sum of errors is the least. Choosing proper
actuator from a few types is another case that can be solved
using each of these two algorithms. In this case, the module
types can be defined by changing the type of its actuators.

4. Numerical Results
In this section, discrete synthesis problems of a 2D and a 3D
DAHM are solved numerically. Two module types for the 2D
case and two module types for the 3D case are introduced
in the following subsection. Method of evaluating errors is
described in the next subsection. After that, numerical results
for these two cases are presented. All calculations are done
by MATLAB software with an Intel 1.66 GHz processor.

4.1. Introducing module types
4.1.1. R-link: A module type for the 2D case. An R-link
module is shown in Fig. 3. It contains a link with constant
length of L and a revolute joint in the beginning of the
link, which joints the module to the previous module of
manipulator. This joint can be discretely actuated only in
four angles of θ (Fig. 3). So, this module type has four
configurations. The value of L is 1/Nmod and the discrete
values of θ are {−π/9, −π/18, π/18, π/9}.
4.1.2. VGT: A module type for the 2D case. A VGT module
is shown in Fig. 4. It contains three binary prismatic actuators
in AD, AC, and BC links. The two other links (AB, CD) have
constant lengths. A, B, C, and D are passive revolute joints.
This module type has 23 = 8 configurations. The length
of constant links is 1/Nmod . Discrete actuation amounts of
binary actuators (which are the length of links AD, AC, and

https://doi.org/10.1017/S0263574713000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000337


1080 Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators

Fig. 4. A VGT module.

Fig. 5. A P-link module.

Fig. 6. A 3-RPS module.

BC) are {1/Nmod, 1.5/Nmod}. Readers are referred to Kim
et al. paper15 for forward kinematics of this module type.

4.1.3. P-link: A module type for the 3D case. A p-link module
is shown in Fig. 5. It contains a link with a discrete prismatic
actuator that has four stable states. So, this module type has
four configurations. The link can be connected vertically
to the previous and next module. The discrete amounts of
actuation, which are the length of the link (L in Fig. 5), are
{0.75/Nmod , 1/Nmod , 1.25/Nmod , 1.5/Nmod}.

4.1.4. 3-RPS: A module type for the 3D case. A 3-RPS
module is shown in Fig. 6. It is a parallel robot with three
binary prismatic actuators in its three legs A1B1, A2B2,
and A3B3. So, it has 23 = 8 configurations. The base plate
(A1A2A3) and the moving plate (B1B2B3) are the same
equilateral triangles. A1, A2, and A3 are passive revolute
joints. B1, B2, and B3 are passive spherical joints. The
rotation axes of the A1, A2, and A3 joints are parallel to
their opposite sides in triangle A1A2A3.

The distance between center and corners of these two
triangles are equal to 1/Nmod . The discrete amounts
of actuation, which are the length of the legs, are
{1/Nmod, 1.5/Nmod}. Readers are referred to refs. [15, 16]
for the forward kinematic solving of this module type.

Fig. 7. (a) Error and CPU time of the inverse kinematic solution of
the 2D case study (a manipulator that contains 20 VGT modules)
using two methods: the one-by-one method (One-M) and the two-
by-two method (Two-M), (b) same results for the 3D case study (a
manipulator that contains 20 modules of type 3-RPS).

4.2. Defining errors
As mentioned before, the target frames are calculated by
solving forward kinematic of a specified manipulator type
in some specified configurations. Thus, the problem has
an exact solution and the average of the distances between
targets and corresponding end frames is considered as error.

Furthermore, for analysis convenience, it is necessary
to use dimensionless quantities. Therefore, all lengths are
divided by the minimum length of the manipulator whose
value is considered equal to the number of modules (Nmod )
in all cases.

4.3. Numerical results
As mentioned earlier, two case studies are considered to
examine the performance of the two proposed algorithms.
The first case study is a 2D manipulator with two module
types: R-link and VGT. The second case study is a 3D
manipulator with two module types: P-link and 3-RPS. The
results are described in the following.

Figure 7 makes a comparison between the performance of
the one-by-one algorithm (Suthakorn’s method) and the two-
by-two algorithm in solving the inverse kinematic problem.
For the 2D case study, a 20-module manipulator whose
all modules are of VGT type was considered. Similarly,
for the 3D case study, a 20-module manipulator whose
all modules are of 3-RPS type was considered. The target
frames are obtained by solving forward kinematic for some
random configurations of the manipulator. It guaranties the
existence of an exact solution for all sampled problems.
Every value presented in this figure is an average of 100
values over 100 random sample problems. A set of real
targets are used commonly for both algorithms. The number
of iterations in the two-by-two algorithm is 10. According
to the presented results in this figure, although the solution
time of Suthakorn’s method is less than the other method; its
errors are high.

Figures 8 and 9 are presented to compare the performance
of the one-by-one algorithm and the two-by-two algorithm
in solving the discrete synthesis problem (P1) in the 2D and
3D case studies, respectively. Error and CPU time for 4-,
10-, 20-, and 40-module manipulators are presented. There
are five random targets in all cases. The number of iterations
in the two-by-two algorithm is 50, for both figures. Every

https://doi.org/10.1017/S0263574713000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000337


Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators 1081

Fig. 8. Comparing (a) error and (b) CPU time of the two presented
algorithms results in the 2D case study.

value in these two figures is an average of 100 values over
100 random samples.

As it can be seen, the errors of the two-by-two algorithm
are definitely less than the one-by-one algorithm, especially
for manipulators with more modules. CPU time of the two-
by-two algorithm is longer than the one-by-one algorithm;
however, it is not more than a few seconds. Errors in the two-
by-two algorithm decrease when the number of modules is
increased, but they increase in the one-by-one algorithm.
According to the above-mentioned results, the two-by-two
algorithm is more appropriate than the one-by-one algorithm.

Figures 10 and 11 illustrate the effect of iterations on error
and CPU time of the two-by-two algorithm in the 2D and 3D
case studies, respectively. The number of modules is 20 and
the number of targets is 5, for both figures. Every value in
these two figures is an average of 20 values over 20 random
samples. CPU time grows almost linearly with the number
of iterations as shown in Figs. 10 and 11. Errors decrease
when the number of iterations is increased, but the rate of
descending decreases, so the error curve becomes almost
horizontal after some iteration. It means that some errors
usually remain present; no matter the how many times the
iteration algorithm is repeated.

Figures 12 and 13 illustrate the effect of the number of
targets on error and CPU time of the two-by-two algorithm
in the 2D and 3D case studies, respectively. The number of
modules of manipulator is 20 and the number of iterations
is 50, for both figures. Every value in these two figures is
an average of 20 values over 20 random samples. As it can
be seen, both error and CPU time increase by increasing the
number of targets. The growth of CPU time is approximately
linear.

Fig. 9. Comparing (a) error and (b) CPU time of the two presented
algorithms results in the 3D case study.

Fig. 10. The effect of iterations on error and CPU time of the
two-by-two algorithm in the 2D case study.

Fig. 11. The effect of iterations on error and CPU time of the
two-by-two algorithm in the 3D case study.

https://doi.org/10.1017/S0263574713000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000337


1082 Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators

Fig. 12. The effect of the number of targets on error and CPU time
of the two-by-two algorithm in the 2D case study.

Fig. 13. The effect of the number of targets on error and CPU time
of the two-by-two algorithm in the 3D case study.

Figure 14 illustrates the effect of allowable error (ε)
on CPU time of the two-by-two algorithm (problem P2).
Figures 14(a) and 14(b) for the 2D and 3D case studies
are presented, respectively. In both cases, the number of
manipulator modules is 20, and the number of targets is
5. Each value in the figure is an average of 20 values over
20 random samples. In both 2D and 3D cases, the graph
gradually becomes horizontal by a reduction of ε. Because,
after a number of iterations, the manipulator configuration
remains stationary.

Fig. 15. Solution of a random synthesis problem that has five targets
for a 2D 20-module manipulator using the two-by-two algorithm:
(a) without considering weights and (b) considering weights.

Figures 15 and 16 show the solution of a random synthesis
problem using the two-by-two algorithm in the 2D and 3D
case studies, respectively. Figures 15(a) and 16(a) correlated
with problem P1 (i.e., weights are not considered). Figures
15(b) and 16(b) are related to problem P3 (i.e., weights are
considered). The weights of the modules VGT, R-link, 3-
RPS, and P-link are 1, 0.6, 1, and 0.8, respectively. The
increase in weight factors brings about an increase in errors.
Hence, the algorithm tends to select those module types with
less weight. Accordingly, the number of R-link modules in
Fig. 15(b) is larger, compared to Fig 15(a). Similarly, the
number of P-link modules in Fig. 16(b) is larger, compared
to Fig. 16(a). The number of iterations is 50 in both 2D and

Fig. 14. The effect of allowable error on CPU time of the two-by-two algorithm (problem P2) for: (a) the 2D case study and (b) the 3D
case study.

https://doi.org/10.1017/S0263574713000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000337


Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators 1083

Fig. 16. Solution of a random synthesis problem that has five targets
for a 3D 20-module manipulator using the two-by-two algorithm:
(a) without considering weights and (b) considering weights.

3D cases. The errors without applying the weights (i.e., the
average of distances between end frames and target frames)
for Figs. 15(a), 15(b), 16(a), and 16(b) are 0.0057, 0.0092,
0.0500, and 0.0963, respectively. As expected, the average of
distances, considering the weights, increases. The CPU time
of Figs. 15(a), 15(b), 16(a), and 16(b), respectively, is equal
to 2.1406, 2.1406, 4.2656, and 4.8906 s. The CPU time does
not have a significant difference in the comparison between
weighted and weightless states. The end frames and the target
frames in Figs. 15 and 16 are shown by solid lines and dashed
lines, respectively.

5. Conclusion
Two algorithms have been proposed to solve the discrete
kinematic synthesis problem for DAHMs: the one-by-one
algorithm and the two-by-two algorithm. A breadth-first
search method, which uses single module searching in each
step and the workspace mean frame are used in the one-by-
one algorithm. The two-by-two algorithm reduces the errors
using two heuristic ideas: two-by-two searching method and
iteration. In the two-by-two searching method, a breadth-
first search method with two nonadjacent modules in each
step is used. Numerical results show that the iteration of
this method reduces the errors. The proposed method is an
approximation method and the errors will not necessarily
go to zero. The authors did not manage to mathematically

prove the effectiveness of their two ideas; and this can be
considered as an open problem by researchers.

References
1. D. L. Pieper, The Kinematics of Manipulators Under Computer

Control Ph.D. Dissertation (Stanford, CA: Stanford University,
Oct. 1968).

2. G. S. Chirikjian, “A Binary Paradigm for Robotic
Manipulators,” Proceedings of the IEEE International
Conference on Robotics and Automation, San Diego,
California (May 8–13, 1994) pp. 3063–3070.

3. I. Ebert-Uphoff, On the Development of Discretely-Actuated
Hybrid-Serial-Parallel Manipulators Ph.D. Dissertation (Johns
Hopkins University, 1997).

4. J. Suthakorn and G. S. Chirikjian, “Design and implementation
of a new discretely-actuated manipulator,” Exp. Robot. VII,
Springer Series: Lecture Notes in Control and Information
Sciences 271, 151–158 (2001).

5. V. A. Sujan, M. D. Lichter and S. Dubowsky, “Lightweight
Hyper-Redundant Binary Elements for Planetary Exploration
Robots,” Proceedings of the IEEE/ASME International
Conferences Advanced Intelligent Mechatronics, Como, Italy
(2001) pp. 1273–1278.

6. G. S. Chirikjian, “Kinematic synthesis of mechanisms and
robotic manipulators with binary actuators,” ASME J. Mech.
Des. 117, 573–580 (1995).

7. K. Miyahara and G. S. Chirikjian, “General Kinematic
Synthesis Method for a Discretely Actuated Robotic
Manipulator (D-Arm),” Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), Beijing, China, (2006) pp. 5889–5894.

8. A. B. Kyatkin and G. S. Chirikjian, “Synthesis of binary
manipulators using the Fourier transform on the Euclidean
group,” ASME J. Mech. Des. 121, 9–14 (1999).

9. P. T. Kim, Y. Liu, Z. Luo and Y. Wang, “Deconvolution on
the Euclidean motion group and planar robotic manipulator
design,” Robotica 27, 861–872 (2009).

10. G.-W. Hang, D. J. Nam and Y. Y. Kim, “Sub-workspace design
of binary manipulators using active and passive joints,” J.
Mech. Sci. Technol. 22, 1707–1715 (2008).

11. I. Ebert-Uphoff and G. S. Chirikjian, “Efficient workspace
generation for binary manipulators with many actuators,” J.
Robot. Syst. 12(6), 383–400 (1995).

12. I. Ebert-Uphoff and G. S. Chirikjian, “Inverse Kinematics
of Discretely Actuated Hyper Redundant Manipulators Using
Workspace Densities,” Proceedings of the IEEE International
Conference on Robotics and Automation, Minneapolis (1996)
pp. 139–145.

13. J. Suthakorn and G. S. Chirikjian, “A new inverse kinematics
algorithm for binary manipulators with many actuators,” Adv.
Robotics 15(2), 225–244 (2001).

14. Y. F. Wang and G. S. Chirikjian, “Workspace generation
of hyper-redundant manipulators as a diffusion process
on SE(N),” IEEE Trans. Robot. Autom. 20(3), 399–408
(2004).

15. Y. Y. Kim, G. W. Jang and S. J. Nam, “Inverse kinematics
of binary manipulators by using the continuous-variable-
base optimization method,” IEEE Trans. Robot. 22(1), 33–42
(2006).

16. N. Mohan Rao and K. Mallikarjuna Rao, “Dimensional
synthesis of a spatial 3-RPS parallel manipulator for a
prescribed range of motion of spherical joints,” J. Mech. Mach.
Theory 44, 477–486 (2009).

17. F. C. Park, “Distance metrics on the rigid-body motions with
applications to mechanism design,” Trans. ASME 117, 48–54
(1995).

18. A. B. Kyatkin and G. S. Chirikjian, Engineering Applications of
Noncommutative Harmonic Analysis, Chapter 6. (CRC Press,
2000).

https://doi.org/10.1017/S0263574713000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000337


1084 Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators

Appendix A
Each frame can be defined by a homogeneous transformation
matrix (g) that can be expressed as follows:

g =
[

R b

0T 1

]
∈ SE(N), (A1)

where R ∈ SO(N) is the rotation matrix and b ∈ RN is the
position vector. N for 2D cases is 2 and for 3D cases is 3. The
distance between two frames, which are illustrated by g1 and
g2 can be expressed as follows:

D(g1, g2) =
√

b1 − b2
2 + L2logRT

1 R2
2, (A2)

where ‖ · ‖ is the Euclidean norm. L is a parameter mainly
introduced to match units of the squared terms. In this paper,
the value of L = 0.1 was used. Readers are referred to refs.
[17, 18] for more information.

Appendix B
Consider a set of N homogeneous transformation matrixes.
It is illustrated by {gi = g(bi, Ri) : i = 1, 2, ...N}, where g,
R, and b are described in Appendix A. The mean of this set,
which is illustrated by gm = g(bm, Rm) can be calculated as
follows:

bm = 1

N

N∑
n=1

bn, (B1)

M = 1

N

N∑
n=1

Rn, (B2)

Rm = M(MTM)−1/2. (B3)

Because M in Eq. (B2) is not included in SO(N), Rm is taken
to be the closest rotation matrix to M in Eq. (B3). If gm =
g(bm, Rm) is the homogeneous transformation matrix related
to the generalized workspace mean frame of a module, the
mean frame of a generalized workspace of P similar modules,
which is illustrated by g∗

m = g(b∗
m, R∗

m), can be calculated as
follows:

b∗
m =

(
I +

P−1∑
k=1

mk

)
bm, (B4)

where I is the unit matrix.

M∗ = MP, (B5)

R∗
m = M∗

(
M∗T

M∗
)−1/2

. (B6)

For the 2D case, R∗
m = (Rm)P, but it is not true for the 3D

case and Eqs. (B5) and (B6) should be used. Readers are
referred to ref. [13] for more information.

https://doi.org/10.1017/S0263574713000337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000337

