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Abstract. The coupled drift-ion acoustic (DIA) waves in an inhomogeneous mag-
netoplasma having negative and positive ions can be driven by the parallel sheared
flows in the presence of Cairns distributed non-thermal electrons. The coupled DIA
waves can become unstable due to shear flows. The conditions of modes instability
are discussed with effects of non-thermal electrons. These are the excited modes and
start interactions among themselves. The interaction is governed by the Hasegawa–
Mima equations with analytical solutions in the form of a vortex chain and dipolar
vortex. On the other hand, for scalar nonlinearity the Kortweg deVries-type equation
is obtained with solitary wave solution. Possible application of the work to the space
and laboratory plasmas are highlighted.

1. Introduction

Both theoretically and experimentally, the low-frequency
waves in plasmas with negative ions have been studied
for many years. Ion-acoustic waves in plasmas with
negative ions have been investigated by D’Angelo et al.
(1966), Wong et al. (1975), and Song et al. (1991a, 1991b).
Electrostatic ion–cyclotron waves have been examined
by D’Angelo and Merlino (1986) and experimentally
investigated by Song et al. (1989). Similarly, the Kelvin–
Helmholtz (K-H) instability and the lower hybrid waves
in plasmas with negative ions were respectively investig-
ated by D’Angelo and Song (1991) and D’Angelo (1992).
The electron–ion plasmas with negative ions (sometime
called bi-ion–electron plasmas) are found enriched in
space plasmas. Such a plasma with different composition
systems, such as Ar+plasma with F− ions, H+ plasma
with O−

2 ions, H+ plasma with H− ions, etc., occurs in the
D-region of the Ionosphere (Mishra and Chhabra 1996)
and also in the Martian magnetosphere (Sauer et al.
1998). The existence of a second ion population leads
to an additional coupling between ions and electrons
through the Lorentz force (in magnetized plasmas) and
charge neutrality. Even a small component of heavy
ions in a proton–electron plasma may substantially alter
the plasma wave and flow properties. The multi-ion
nature of space plasmas gives rise to interesting effects
and supports strong low-frequency (and hence typic-
ally long wavelength) electrostatic perturbations. Re-
cently, Kim and Merlino (2007) studied experimentally
the formation of negative ions in a thermally ionized

potassium plasma and observed the electrostatic ion–
cyclotron wave spectrum in a plasma containing K+ pos-
itive ions (39 amu), electrons, and C7F

−
14 (350 amu) neg-

ative ions. The electron–proton plasmas with negative
ions have applications in the earth’s ionosphere, meso-
sphere, solar atmosphere, and micro-electronic plasma-
processing reactors (Peterson et al. 1993; Elifomov et al.
1997; Maslennikov et al. 1997). Cometary tails and
magnetospheres of unmagnetized planets, such as Venus
and Mars, comprise multi-ion plasmas, which are the
result of the interaction of solar wind with extended
sources of heavy ions. The (Ar+, F−) plasma was used
to study the ion-acoustic wave propagation (Nakamura
and Tsukabayashi 1984) in laboratory experiment. At a
critical concentration of negative ions, both compressive
and rarefactive solitons are observed. Large-amplitude
solitary waves in a multi-component plasma with negat-
ive ions by using the experimental results of Nakamura
and Tsukabayashi (1984) are studied by Nakamura et.
al. (1985). Besides the plasmas with negative ions at
laboratory level, a pair plasma has been successfully
created with sufficiently dense pair-ion (PI) plasma con-
sisting of equal mass, positive, and negative fullerene
(C+

60 and C−
60) ions (Oohara and Hatakeyama 2003, 2007;

Oohara et al. 2005).
The sheared flow has significant effect on both linear

and nonlinear electrostatic oscillations in non-uniform
multi-species magnetoplasmas and have been discussed
by several authors (Shukla et al. 2000; Mirza et al. 2001;
Haque et al. 2005; Vranjes and Poedts 2005). Shukla
et al. (2000) investigated the nonlinear propagation of
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low-frequency electrostatic waves in a strongly
magnetized electron–positron plasma in the presence of
parallel and perpendicular (Mirza et al. 2001) sheared
plasma flows with massive charged dust grains. De-
tailed studies of electrostatic wave instabilities in a
current-carrying magnetoplasma with equilibrium dens-
ity and ion velocity gradients are studied by Shukla
et al. (2002) by using a non-Boltzmann electron response
and ion density perturbation, which includes the ion-
neutral drag. The nonlinear theory of large-amplitude
magnetosonic waves in high-β space plasmas has been
studied by Pokhotelov et al. (2007). Also, Pokhotelov
et al. (1996) studied the nonlinear structures in the
Earth’s magnetosphere and atmosphere.

Sheared flow-driven drift waves and the counter-
rotating vortices in electron–positron–ion plasmas have
also been studied (Haque et al. 2005). Vranjes et al.
(2005) studied the analysis of waves and instabilities
in pair-ions fullerene (C±

60) plasmas. They have studied
parallel shear flow instability for obliquely propagating
perturbations in cold pair-ion plasmas. In view of some
experiments either performed (Oohara and Hatakeyama
2003, 2007; Oohara et al. 2005) or to be performed in
future, in either a Q-machine negative ion plasma (e.g.,
Song et al. 1989) or in a discharge plasma with SF+

6 and
SF−

6 ions (D’Angelo 1992), the mode is briefly reanalyzed
here in inhomogeneous magnetoplasmas with some frac-
tion of electrons.

The objective of this study is to investigate the be-
havior of the drift wave (K-H) instability arising from
shear in the flow parallel to the magnetic field in
electron–ion plasmas containing an appreciable fraction
of negative ions. In the presence of sheared flow, the
electrostatic modes interact nonlinearly among them-
selves. The corresponding mode coupling equations are
governed by a set of nonlinear equations in which
we incorporate the transverse two-dimensional vector
nonlinearity (because of polarization drift) and non-
linearity because of the coupling between the E × B
and parallel pair ion flows. It is shown that stationary
solutions of the nonlinear mode coupling equations can
be represented in the form of a vortex street and a
dipolar vortex. Moreover, in the case of weak disper-
sion (long wavelength) and scalar nonlinearity, a low-
frequency drift wave interacting with a shear flow and a
Kortweg deVries (KdV) type of equation is obtained. The
coherent solution of the nonlinear equation is presented
in the form of solitary structure.

2. Formulation of the problem
Consider an inhomogeneous plasma that has positive
and negative ions (either SF+

6 and SF−
6 proposed by

D”Angelo (1992) or C+
60 and C−

60 or H+and H−of Oo-
hara and Hatakeyama (2003, 2007) and Oohara et al.
(2005)) with electrons embedded in an external mag-
netic field B = B0 ẑ, where B0 is the strength of the
magnetic field and ẑ is a unit vector along the z-

axis. At equilibrium we have n+0(x) = n−0(x) + ne0(x),
where nj0(x) is the unperturbed non-uniform number
density of jth species (j = + for positive ions, − for
negative ions, and e for electron). The density of plasma
components is assumed to vary in the x-direction. In the
presence of an inhomogeneous flow of species j along
the magnetic field lines ẑVj0(x) having gradients along
the x-axis for obliquely propagating perturbation, the
plasma may become unstable due to parallel shear flow
instability. This instability may arise because of the fact
that adjacent layers of the streaming fluid have different
velocities, and it develops provided that the change in
perpendicular velocity exceeds some critical value. In
case of low-frequency perturbations (in comparison with
ion gyrofrequency Ωc = eBo/mic) the parallel compon-
ents of positive and negative ions fluid velocities are
described by

Dtvjz − cV́j0

B0
∂yφ =

qe

mi

∂zφ, (1)

where q = −1 for positive ion and +1 for negative
ion, also V́j0 = ∂xVj0. The perpendicular component of
positive and negative ion fluid velocities can be written
as

vj⊥ ≈ c

B0
ẑ × ∇φ +

qc

B0Ωj

[
∂t +

c

B0
ẑ × ∇φ · ∇

+
(
Vj0 + vjz

)
∂z

]
∇⊥φ ≈ vE + vpj , (2)

where vE and vpj are the electric and polarization drifts
of positive and negative ions, respectively, φ is the

electrostatic potential, and |Dt| =
∣∣∣∂t + c

B0
(ẑ × ∇φ) · ∇

∣∣∣
with assumption that |Dt| �

(
Vj0 + vjz

)
∂z . For simpli-

city, both positive and negative ions temperatures are
taken to be zero. On the other hand, the non-thermal
distribution function for electrons is (Cairns et al. 1995)

fe (v) = neo

(3α+1)
√

2πv2
th

(1 + μv4

v4
th

) exp(− v2

v2
th

), where neo is the

electron density, vth is the thermal speed of electrons, and
μ is a parameter which determines the percentage of fast
non-thermal electrons. We ignore the effect of streaming
velocity on electrons. Replacing v2

v2
th

with ( v2

v2
th

− 2φ) in the

presence of non-zero potential and after integration of
the resulting distribution function over all microscopic
velocities, gives the following expression for electron
density (Cairns et al. 1995):

ne = neo

[
1 − β

eφ

Te

+ β

(
eφ

Te

)2
]

exp

(
eφ

Te

)
, (3)

where β = 4μ
1+3μ

with μ � 0. It can be easily checked

that 0 � β > 4/3. The continuity equations for negative
and positive ions are given by

Dtnj + vE · ∇⊥njo + njo
(
∇⊥ · vj⊥

)
+ njo∂zvjz = 0. (4)
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Using (2) and (4) we get the following outcome:

Dt (n− − n+)+
c (n+o + n−o) κn

Bo

∂yφ +
c (n+o + n−o)

BoΩc

Dt∇2
⊥φ+(n+o∂zv+z − n−o∂zv−z) = 0, (5)

where κn = ( 1
n+o+n−o

) ∂neo
∂x

is the inverse density inhomo-
geneity scale length. Using the Poisson’s equation,

∇2φ = 4π
∑
j

qjnj (6)

with (5) and linearized form of (3), we get

Dt

(
∇2 +

ω2
p±
Ω2

c

∇2
⊥

)
φ − 1 − β

λ2
De

∂tφ +
ω2

p±
Ωc

κn∂yφ

+ 4πe[n−o∂zv z − n+o∂zv+z] = 0. (7)

Here ωp± =
√

4πe2

mi
(n+o + n−o) is the effective ion

plasma frequency and λDe =
√

Te

4πe2neo
is the electron

Debye Length. Equations (1) and (7) are the governing
equations for nonlinearly coupled electrostatic waves
in a non-uniform bi-ion magnetoplasmas with parallel
shear flows. In the linear limit, the local dispersion
relations can be derived from (1) and (7) by assuming
that perturbation is proportional to exp[i(kyy + kzz −
ωt)], and by using the long wavelength approximation
(k2λ2

De � 1), we get the following dispersion relation:

ω2
[
1 + ηpρ

2
snk

2
y

]
− ηpωω∗n − ηpc

2
snk

2
z + c2

snp
−1A±kykz = 0,

(8)
where ρsn = csn

Ωc
is the modified ion Larmor radius and

csn = cs√
1−β

is the modified ion acoustic speed due to the

non-thermal Cairns distributed electrons whereas cs =√
Te

mi
. Similarly, ω∗n = ω∗

1−β
is the modified drift frequency

with ω∗ = −v∗ky (where v∗ = cTe

eB0
κn is the drift velocity),

A± =
(V́+o−δV́−o)

Ωc
, ηp = 2−p

p
, δ = (1 − p), and p = neo

n+o
. In

the absence of negative ions, non-thermal electrons and
sheared flows (8) will then give the dispersion relation of
Mikhailovskii (1974) and Mushtaq (2008) for coupled
drift-ion-acoustic (DIA) waves in a two-component e-i
plasma as ω2[1 + ρ2

s k
2
y] − ωω∗ − c2

s k
2
z = 0; for pure drift

waves we have ω[1 + ρ2
s k

2
y] + v∗ky = 0, and similarly

for pure ion-acoustic waves in magnetized plasma, ω =

cskz/
√

1 + ρ2
s k

2
y . Equation (8) can be simplified to give

ω2 − ωώ∗ − a
(
1 − bA±

)
= 0, (9)

where ώ∗ =
ηpω∗n

1+ηpρ2
snk

2
y

is the effective/modified drift fre-

quency k2 = k2
y + k2

z , a =
ηpc

2
snk

2
z

1+ηpρ2
snk

2
y
, and b = 1

pηp

ky
kz

. The

roots of (9) are

ω =
ώ∗
2

± 1

2

[
ώ2

∗ + 4a
(
1 − bA±

)]1/2
, (10)

which is the dispersion relation for coupled DIA waves
with effects of non-thermal electrons and parallel shear
flows of negative and positive ions. Equation (10) yields
the shear flow instability of coupled DIA wave if the
argument in the square root is negative, i.e.

V́+o

Ωc

>

(
ώ2

∗
4ab

+
1

b
+

δV́−o

Ωc

)
. (11)

For homogeneous plasma relation (10) will be ω =

csnkz
√

ηp
1+ηpρ2

snk
2
y
(1− 1

ηpp

ky
kz
A±)1/2, and the instability of ion-

acoustic waves will occur if

A± > (2 − p)

(
kz

ky

)
. (12)

Again, it is obvious that increasing concentration of
negative ions decreases p and hence increases (2 − p),
which decreases instability and this is exactly the same
result as observed in Ichiki et al. (2009). The graphical
analysis of the two modes of relation (10) are further
discussed in Sec. 5.

3. Sheared flow-driven drift vortices
We now discuss the quasi-stationary nonlinear solutions
of (1) and (2) as well as (7). In the quasi-stationary frame,
we let ξ = y+γz−ut, where γ and u are constants giving
the angle and speed of nonlinear structure. Thus, in the
stationary frame, (1) for positive and negative ions can
be written as

Dξφvjz = − e

mu

(
V́jo

Ωc

∓ γ

)
∂ξφ, (13)

where Dξφ = {∂ξ − c
B0u

(
∂xφ∂ξ − ∂ξφ∂x

)
}. It can be

shown that (13) is exactly satisfied by vjz = − e
mu

(
V́jo

Ωc
∓

γ)φ. Transforming (7) into the stationary frame and
eliminating vjz , we obtain

Dξφ

(
∇2

⊥φ − Γφ
)

= 0. (14)

Equation (14) is a modified Hasegawa–Mima (HM)
equation affected by the Cairns distributed energetic
electrons and ions parallel sheared flows. Here

Γ = 1

ηpρ2
sn(1+

Ω2
c

ω2
p±

)
[1 − v∗n

u
− γc2

sn

pu2 (γ + δγ − A±)], with

v∗n = − ηpv∗
1−β

is a modified drift speed. For the deriv-

ation of (14) it is assumed that ∇2
⊥ = ∂2

x + ∂2
ξ � γ2∂2

ξ .
Equation (14) admits both vortex street and dipolar
vortex solution, i.e. for Γ = 0 and Γ 	= 0 respectively;
we will discuss these one by one.

3.1. Vortex street solution

To find the analytical vortex street solution of (14) we
put Γ = 0, then (14) is satisfied by the ansatz

∇2
⊥φ =

L1L2

L3
exp

[
− 2

L1

(
φ − uBo

c
x

)]
, (15)

https://doi.org/10.1017/S0022377812001122 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377812001122


482 A. Mushtaq and A. Shah

where L1 and L2 are arbitrary constants and L3 measures
the size of the vortex street. The analytical solution of
(15) is given by Mikhailovskii (1974) and Petviashvili
and Pokhotelov (1992),

φ =
uBo

c
x+L1 ln

[
2 cosh (L2x) + 2

(
1 − L−2

3

)
cos(L2ξ)

]
.

(16)
For L3 > 0, the vortex profile given by (16) resembles
the Kelvin–Stuart ‘cat’s eye’, which represents
a row of identical travelling vortices for L2

3 > 1.
Parameter L1 characterizes the amplitude of
vortex street. The vortex chain speed in this case is

u = v∗n
2

[1 ±
√

1 + 4γc2
sn

pv2
∗n

(γ + δγ − A±)]. For L3 = 1, (16)

becomes a solution in the form of a zonal flow (Shukla
et al. 2000),

φ =
uBox

c
+ L1 ln [2 cosh (L2x)] . (17)

3.2. Double vortex solution

When Γ 	= 0 we get a double vortex solution, then (14)
is satisfied by the ansatz

∇2
⊥φ = C1φ + C2x, (18)

where C1(= Γ − c
uBo

C2) and C2 are constants. To get the
double vortex solution of (18) we transformed it into
polar coordinates (r, θ) such that x = r cos θ, ξ = r sin θ,
where r =

√
x2 + ξ2 and θ = tan−1(ξ/x). We divide the

(r, θ) plane into an outer region (r > R) and an inner
region (r < R) of an arbitrary circle of radius R, also
called the vortex radius. In the outer region, to maintain
boundedness of the solution, we must have C2 = 0 to
avoid the direct dependence of the space variable x.
Thus, the solution of (18) for r > R becomes (Liu and
Horton 1986)

φout(r, θ) = Q1K1 (λ1r) cos θ, (19)

where Q1 is a constant, K1 is the first-order MacDonald
function, and λ1 =

√
Γ . Since λ1 ought to be positive,

thus for well-behaved outer solution it is necessary that
Γ should be positive. Now for the inner region solution
(r < R) we have C2 	= 0 and assuming that (Γ− c

uBo
C2) =

−λ2
2, (18) has both homogeneous and non-homogeneous

parts. The homogeneous part is of ordinary Bessel type
and is treated as for the outer region. Thus, the total
solution for inner region turns out to be

φin(r, θ) =

(
Q2J1 (λ2r) +

Q3

λ2
2

r

)
cos θ,

where Q3 =
uBo(λ2

1+λ2
2)

c
, Q2 and λ2 are constants, and

J1 is the Bessel function of order one. The constants
of integration Q1, Q2, and λ2 can be found from the
physically justified continuity conditions of φ, ∂rφ, and
∇2φ at the boundary of the circle, i.e. at r = R. For a
given λ1, the constant λ2 can be determined by using
the transcendental equation K2(λ1R)

λ1K1(λ1R)
= − J2(λ2R)

λ2J1(λ2R)
, which

may be obtained from the continuation of ∇2
⊥φ at vortex

interface; here J2 and K2 are the Bessel and modified
Bessel functions of the second order. The constants Q1

and Q2 are determined from the matching of electrostatic
potential and electric field at the vortex interface and
their respective values are

Q1 =
uBo

c

R

K1 (λ1R)
,

Q2 = −uBo

c

λ2
1

λ2
2

R

J1 (λ2R)
.

4. Drift soliton in the presence of sheared
flows

We now present the possibility of formation of drift
solitary structure in the presence of sheared flows. For
low-frequency perturbations (with weak dispersion) and
scalar nonlinearity we suppose that

(
vE · ∇+Vj0∂z

)
� vjz∂z , which makes parallel components with sheared
flow as

∂tvjz + vjz∂zvjz − cV́j0

B0
∂yφ =

qe

mi

∂zφ. (20)

Equation (20) after transformation into quasi-stationary
frame, ξ = y + γz − ut, yields

v±z = ± γ

u

(
cΩc

Bo

σ±

)
φ +

1

2

( γ

u

)3
(
cΩc

Bo

σ±

)2

φ2, (21)

with σ± = (1 ∓ V́±0

γΩc
). Also, (3) under the assumption

eφ
Te

� 1 can be expanded as

ne = neo

[
1 + (1 − β)

eφ

Te

+

(
eφ

Te

)2

+ . . .

]
. (22)

After transformation into ξ by using (5) and (6) along
with (21) and (22), and by employing the assumptions
of weak dispersion and scalar nonlinearity we get the
following nonlinear equation:

d2φ

dξ2
− Aφ + Bφ2 = 0. (23)

This is a normalized transformed modified KdV equa-
tion for drift wave coupled with ion-acoustic wave
in inhomogeneous pair-ion plasma with sheared flow
and in the presence of non-thermal Cairns distributed
electrons. The coefficients A and B are given as

A =
1 − ηpF + 2H2Ψ±

ηp

[
1 +

(
1 + γ2

)
G2

ηp

] , (24)

B =
2H4 (1 − β)2 ε± − 1

2 (1 − β) ηp

[
1 +

(
1 + γ2

)
G2

ηp

] ,
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Ω

Figure 1. (Colour online) The frequency of the drift-ion-acoustic wave ω against kz with effect of non-thermal Cairns distributed
electrons (β) such that β = 0 (dashed line) 0.4 (solid line), and 0.8 (dotted line). The wave number kz is scaled to kz/10−7 and
frequency ω is ω/1013. All other parameters are the same as mentioned in Sec. 5.

0.00 0.05 0.10 0.15 0.20

−4

−2

0

2

4

A�

Ω

Figure 2. (Colour online) The effect of sheared flow A± on the frequency of the drift-ion-acoustic wave ω by varying the values
of non-thermal electrons (β) such that β = 0 (dashed line), 0.4 (solid line), and 0.8 (dotted line). The frequency ω is scaled to
ω/1013. The wave numbers in this case are taken as ky = 50 and kz = 10. All other parameters are the same as men tioned in
Sec. 5.

where H = γcsn√
2u

, F = − v∗n
u

(with v∗n = v∗
1−β

), G = λDe
ρs

,

Ψ± = ( σ−n−o+σ+n+o

neo
), and ε± = (

σ2
+n+o−σ2

−n−o

neo
). It should

be noted that parameters are normalized in (23) in
the following way: ξ = ξ/ρsn and φ = eφ/Te. By
multiplying (23) by dφ

dξ
and integrating with respect to ξ

by employing the boundary conditions (BCs), the energy
integral equation is obtained as

1

2

(
dφ

dξ

)2

+ S (φ) = 0, (25)
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Figure 3. (Colour online) Bird’s eye view of negative (upper panel) and positive (lower panel) electrostatic potential φ as a

function of ξ and non-thermal Cairns distributed electrons β for fixed value of | V́±0

Ωc
| ∼ 0.4. Other parameters are γ = 15◦,

G = 0.005, v∗n = −0.008, u � (106 − 107), neo = 0.8n+o, and the remaining parameters are taken according to the numerics shown
in Sec. 5.

which suggests that the evolution of solitary excitation
is analogous to the problem of motion of a unit mass in
a pseudopotential given by

S (φ) = −Aφ2

2
+

Bφ3

3
. (26)

The condition for the existence of solitary wave is that
d2S
dφ2 < 0 at φ = 0, which suggests that the formation of
solitary structure in PI electron plasma in the presence
of sheared flow is possible only if d2S

dφ2 = −A < 0. It
means that A should always be positive for the existence
of solitary wave pulse; otherwise it will give collapse
solution or shock-like solution. Hence, the necessary
condition for the existence of solitary wave depends on
β, v∗, Ωc, σ±, and ηp. Again, using appropriate BCs we
obtain a solitary wave solution of (23) as

φ =

(
3A

2B

)
sec h2

(
y + γz − ut√

4/A

)
, (27)

where ( 3A
2B

) represents the maximum amplitude and√
4/A shows the width of drift solitary waves in a

plasma with negative ions and in the presence of sheared
flows and non-thermal effects. Similar type of result was
derived in Pokhotelov et al. (2007) for magnetosonic
solitons in a high-β space plasma, taking into account
both non-Maxwellian distributions and finite amplitude
effects.

5. Results and discussion
We have plotted the dispersion relations and the solitary
wave dynamics by using some typical parameters of
e-i plasma with negative ions, as used in Q-machine
(Ichiki et al. 2009), as Te = 0.2 eV, Bo = 0.3 T, n+o =
109/cm3, ky ∼ few centimeters, let it be �10 cm, β ∼ 0.7

(optimized value), (m+/m−)∼ 1, and | V́±0

Ωc
| ∼ 0.4. The

graphical analysis of the two modes of relation (10)
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Figure 4. (Colour online) Bird’s eye view of negative (upper panel) and positive (lower panel) electrostatic potential φ as a function

of ξ and sheared flow
V́±0

Ωc
for fixed value of β ∼ 0.7. Other parameters are γ = 15◦, G = 0.005, v∗n = −0.008, u �(106 − 107),

neo = 0.8n+o, and the remaining parameters are taken according to the numerics shown in Sec. 5.

are displayed in Figs. 1 and 2 ( by using the above-
mentioned numerics) for coupled DIA waves with effects
of non-thermal electrons and parallel shear flows of
negative and positive ions. Figure 1 shows the effect
of non-thermal electrons (β) on the wave frequency

against the parallel wave number kz for fixed perpen-

dicular wave number ky . The condition kz < ky is used
while calculating the quantities to plot the dispersion
relations. The plots of the two modes in Fig. 1 are

almost straight lines and show that the frequencies of

the forward and backward propagating DIA waves are
enhancing with the increasing values of β. Similarly,

the plots of the frequency as a function of A± for
both forward and backward propagating modes are
plotted in Fig. 2. The plots show a decreasing trend

with respect to A±. However, it is observed that for
increased values of β the frequencies of the modes are
increasing.

We now parametrically investigate the effects of
sheared flows and non-thermal electrons on the behavior
of drift solitary waves by using the above-mentioned
parameters. It is clear from (27) that the solitary po-
tential profile is positive (negative) if B > 0 (B < 0)
for the given positive values of A. Therefore, B (H =
Hc) = 0, where Hc = ( 1

2(1−β)2ε±
)1/4 is the critical value

of H such that Hc � 1
(2(1−β)2ε±)1/4

gives the solitary

waves with a positive and negative potential respectively.
Consequently H depends on the ratio of ∼ csn

u
, and

it is found numerically that at fixed csn the critical
value of H occurs at uc � 5.4 × 106, below which,
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i.e. (u � uc), gives positive (hump) solitary waves and
from u > uc we get negative (dip) solitary waves. Using
the parametric values we have numerically analyzed
the solitary wave structure with effect of non-thermal
electrons and sheared flows as shown in Figs. 3 and 4.
The effect of Cairns distributed non-thermal electrons
on the drift solitary waves is shown in Fig. 3. The
corresponding negative and positive solitary waves are
shown in the upper and lower panels of Fig. 3. It is
found that the amplitude of both types of solitary waves
increases with increased values of β. Similarly, the effect

of sheared flow
V́±0

Ωc
on the dynamics of drift solitary

waves is shown in Fig. 4. It is observed that amplitude of
the corresponding negative and positive solitary waves
increases with sheared flow. Thus, the effect of sheared
flow is such that it affects both amplitude and width
of the solitary structure under the assumption of weak
dispersion and large-scale (scalar) nonlinearity. Sheared
flow can distort the solitary structure and at large
values there is possibility that it will lead to collapse
of these coherent structures. Thus, the present studies
of solitary waves in the presence of sheared flow are
possible under certain prevailing assumptions and bey-
ond those there is possibility that we will not get such
solutions.

Summing up, we have studied both linear and non-
linear propagation of low-frequency electrostatic waves
in a non-uniform electron–ion magneto plasma with
negative ions with effect of non-thermal electrons and
background velocity gradients. It is shown that sheared
plasma flow can generate instability in such plasma
system even when both positive and negative ions ve-
locity gradients are equal and in the same direction.
The differential flow gradient, however, can be produced
because of non-uniformity of density gradient. The in-
stability mechanism is similar to the K-H instability,
where the slippage has been invoked by non-uniform
flows among adjacent layers. Because of sheared flow
and density inhomogeneity, the electrostatic perturba-
tions interact nonlinearly and transfer energy within the
wave spectra. These fluctuations are self-organized in
the form of either a vortex street or a double vortex.
The nonlinear vortical structures have been presented
by mode coupling equations that contain vector as
well as scalar nonlinearity. The solutions were obtained
in the form of vortex street and double vortices. On
the other hand, by incorporating scalar nonlinearity
at larger scale length by employing weak dispersion
assumption a KdV-type nonlinear equation was derived,
which admits a solitary wave solution for DIA waves.
The effects of non-thermal electrons and sheared flow
on the dynamics of DIA solitary waves were high-
lighted. The present results can help to understand
the origin of non-thermal electrostatic waves in labor-
atory and space plasmas (like Earth’s magnetosphere
and atmosphere (Pokhotelov et al. 1996)) where there
are free energy sources due to ion velocity gradients
and streaming particle motions. Our results may also

be useful (specially the votex structures) in the high-
latitude ionospheric region, by comparing these with
observations made by Satellite (IC-B-130) in Chmyrev
(1988), where plasma density gradient and sheared flows
are the key factors to drive the vertical and solitary
structures.
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