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Abstract

For sexually transmitted infections like HIV to propagate through a population, there must

be a path linking susceptible cases to currently infectious cases. The existence of such paths

depends in part on the degree distribution. Here, we use simulation methods to examine how

two features of the degree distribution affect network connectivity: Mean degree captures

a volume dimension, while the skewness of the upper tail captures a shape dimension. We

find a clear interaction between shape and volume: When mean degree is low, connectivity

is greater for long-tailed distributions, but at higher mean degree, connectivity is greater in

short-tailed distributions. The phase transition to a giant component and giant bicomponent

emerges as a positive function of volume, but it rises more sharply and ultimately reaches

more people in short-tail distributions than in long-tail distributions. These findings suggest

that any interventions should be attuned to how practices affect both the volume and shape

of the degree distribution, noting potential unanticipated effects. For example, policies that

primarily affect high-volume nodes may not be effective if they simply redistribute volume

among lower degree actors, which appears to exacerbate underlying network connectivity.

Keywords: sexually transmitted infections, degree distributions, simulation, cohesion, connectiv-

ity, dynamic network diffusion

1 Introduction

For sexually transmitted infections (STIs), such as HIV, to propagate through a

population, there must be an unbroken chain of susceptible cases exposed to those

who are currently infectious. The transmission potential in any setting thus depends

on the contact timing (Moody, 2002; Morris et al., 2009) and structure (Dombrowski

et al., 2013; Ferrari et al., 2006) of the underlying sexual network. This structure

is determined in part by each person’s number of partners—the degree distribution

(Hamilton et al., 2008; Newman et al., 2001). Unfortunately, we rarely observe the
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network structure itself. Despite continued interest in the association between net-

works and STI transmission, our understanding of the links between network connec-

tivity and the degree distribution has focused mainly on the effect of average degree.

For example, prevention strategies that target infection transmission points—such as

condom use, needle cleaning, and circumcision—or individual exposure risk—such

as reducing numbers of partners—rarely ask how these changes affect the population

network that ultimately sustains the epidemic. However, since network connectivity

is an emergent feature unobservable to individuals, it is possible that changes that

lower risk for one group might increase overall population risk. Without knowing

how changes in the shape of the partnership distribution affect the resulting network

connectivity, we risk missing the structural forest by focusing on the largest trees.

Here, we use simulation methods to identify how network connectivity varies

by degree distribution shape and volume in static networks,1 using measures of

these properties that can be obtained from sample survey data. Simple network

connectivity is an imperfect indicator of epidemic potential; while it captures the

upper bound for reachability, it ignores transmission limits imposed by partnership

dynamics and likely overstates risk. As such, we also identify the extent of redundant

connectivity, those substructures of the contact network that are most likely capable

of sustaining transmission because they are more robust to transmission disruptions.

Our results show that when the average number of sexual partners (among those

who have partners) in a population is less than about 1.75, epidemic potential

is higher in long-tailed distributions, but that for populations with larger average

degree, short-tailed distributions create more robustly connected networks.2 In this

region, the networks are characterized by multiply-connected cores that could be

capable of sustaining transmission as well as very wide total connectivity covering

the vast majority of the population. As a function of volume, these large multiple

connected sets exhibit a sharp phase transition, moving from nearly disconnected to

widely connected over a narrow volume range. These findings suggest that policy

choices should focus on how induced behavior might affect both the volume and

shape of the sexual degree distribution. In particular, if policies (such as enhanced

law enforcement) remove high-degree actors but fail to lower overall volume, they

might exacerbate risk.

2 Sexual behavior and network connectivity

A striking feature of sexual networks measured over long time periods (Lauman et al.,

1994; Liljeros et al., 2001), is that a small number of people have a disproportionately

large number of partners. The visibility of these people has made them a prominent

target for both policy and theory (Barabasi & Albert, 1999; Dezso & Barabasi,

2002; Hethcote, 2000), based on the assumption that people with many partners

play a key role either in global connectivity or as transmission hubs. The argument

1 We do not specify temporal dynamics on the networks because we do not want to conflate reachability
due to timing with reachability due to structure. Unless the network is fully concurrent, timing effects
lower connectivity (Moody, 2002). Assuming concurrency is evenly distributed across the edges in our
networks, any given level of concurrency should produce patterns similar to what we observe here, but
at lower absolute levels.

2 The volume of ties we explore here are consistent with relations observed over a moderate time window,
such as within the last year (Morris et al., 2010).
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for the importance of long-tailed distributions has been made most clearly in the

“scale-free” network literature. In a scale-free degree distribution, most of a network’s

connectivity is created by a small number of high-degree nodes, which makes the

network robust to random interventions but highly sensitive to disruption if one

successfully targets the connecting hubs (Dezso & Barabasi, 2002). The implication

for STI networks is that any attempts at generalized interventions need either

extremely general adoption or carefully targeted success to be effective. This is

similar to the epidemiological focus on network “hubs” that channel the flow across

different parts of the network, so attempts at disrupting flow will be most successful

when focused on hubs (Dezso & Barabasi, 2002).

While this model provides a clear role for hubs in transmission, focusing solely

on high-degree nodes fails to address the more general question of when disease-

sustaining network structures might emerge. Empirical support for long-tail sexual

networks only emerges when behavior is viewed over long time frames, and most

studies showing scale-free distributions are based the number of partners over the

last year or lifetime (Liljeros et al., 2001). However, the infectious duration of many

STIs can be far shorter (e.g., gonorrhea and chancroid) and even lifelong infections

have infectivity that peaks in the early months (e.g., HIV and syphilis; Holmes et al.,

1999). This suggests that the disease-relevant time frame is much shorter. Over such

short temporal spans, most degree distributions are characterized by a surprisingly

short tail (Armbruster et al., 2016; Brewer et al., 2000; Helleringer & Kohler, 2007;

Todd et al., 2009; Young et al., 2014) This raises the important question of how the

underlying network structure varies jointly by the mean and the skewness of the

degree distribution.

We explore the effect of two basic features of the degree distribution on network

connectivity.3 First, the per capita volume of sexual activity, or average degree,

captures the volume of contacts and we know that network connectivity generally

increases with mean degree, though not linearly. Second, the shape of the degree

distribution ranges from homogeneous distributions (everyone having the same

number of partners) to highly unequal distributions (where a few people have many

more partners than anyone else). We are thus interested in knowing: How do mean

degree and degree skewness jointly determine network connectivity? The answer to

this question can inform policy and help policymakers understand the multiple ways

interventions that affect sexual activity distributions might affect risk. Moreover,

since these two moments can be estimated with sample data, public health officials

can monitor the potential STI risk in a setting using only local anonymous data.4

3 Network connectivity and epidemic potential

The sexual contact network forms the foundation over which a disease is transmitted;

the actual transmission network—the set of links that carry the disease through

3 Other features, particularly assortative mixing by degree or demographic and behavioral activity, also
shape the underlying networks. We ignore these features here for simplicity, but see Morris et al. (2009)
for examinations of the unique effects of behavioral mixing.

4 There are closed-form solutions for estimating the simple (single-path) connectivity of a network for
any degree distribution (Newman et al., 2001), though non for bi-connectivity. There have been no
explorations of the general association between degree skewness and volume across a range of relevant
parameter values. Thus, our work provides general insights into this association, which will help
anticipate the effects of policies that impact average degree or the skewness of the degree distribution.
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Fig. 1. Example network illustrating multiple connectivity. (Color online)

a population—is a disease-specific stochastic function over the observed contact

network. This transmission network depends jointly on the network structure, tie

duration/turnover, and the level and duration of infectivity (Hethcote, 2000). For

analytic clarity, we focus on the connectivity properties that emerge solely as a

function of degree features, ignoring temporal aspects of relational turnover, disease-

specific transmission features (such as gender differentials in transmissibility), or

other network structuring features (such as degree assortativity or clustering imposed

by other demographic characteristics). We focus on moderate degree levels—with

average degree ranging from just over 1 to just under 3—as this is the region most

reflected in empirical data, that sets the bounds for transmission over moderate

time frames, and represents the space with variability in connectivity.5 Following

standard graph theory (Harary, 1969), we say that person i can reach person j if

there is a chain of relations (a path) connecting them; a component of a network

consists of all nodes that are connected by at least one path, and the largest

component represents the maximum possible range for epidemic spread within

any observed network. A network is said to have a giant component if the largest

connected component is greater than 50% of the population. We use the maximum

component size as one summary measure of epidemic potential, recognizing that this

is generally a significant over-estimate of the actual population proportion at risk.

Since transmission is stochastic, diffusion potential is higher when there are multiple

routes around actors that might otherwise block transmission due to activity (such as

condom use) or relationship timing (Moody, 2002). This feature of network structure

is illustrated in Figure 1.

Networks characterized by long single-linked chains are less likely to carry

infection, since transmission stops if even one person along the chain fails to

pass the infection. Multiple connectivity increases robustness by providing ways

around such breaks, providing alternative routes to augment transmissibility. For

example, if an STI were to enter this network at node 1 and had a 0.25 chance of

being transferred across the edges, then the likelihood of making it to node 4 (a

three-step distance) would be approximately 0.016 (0.253); the same infectivity that

5 Our simulations show how much connectivity will be observed at each point in the degree distribution
space, ignoring temporal transmission aspects. Thus, if the data were collected for “relations in the
last 6 months,” then the results show what the cumulative contact network would look like over
that time span. If the questions were for the last week, then the resulting contact connectivity is
similarly bounded. All else equal, as time spans increase (last year, last 5 years, lifetime), the relevance
of the cumulative connectivity to disease transmission decreases, as relational timing and sequencing
reduces the number of reachable paths in long-term contact network. See Moody (2002) for examples
contrasting long-term cumulative contact networks with temporal reach or Hellerginer & Kohler’s
(2007) work finding connectivity similar to the volume discussed here.
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enters at node 7 would have about a 0.031 chance (2*0.253) of making it to node 4

(also a three-step path). The probability is doubled since there are two independent

transmission routes.

We operationalize structural transmission robustness by identifying the portions

of the network that are connected by multiple paths (Moody & White, 2003).

Two network paths are node-independent if they only have their end nodes in

common but otherwise do not overlap. Generally, a k-connected component can only

be separated by removing at least k nodes, and every pair in a k-component is

linked by at least k node-independent paths (Harary, 1969). Since no single person

can block transmission in a network with k-connectivity greater than 1, epidemic

potential becomes a collective property and we consider two-connected components

(called bicomponents) a minimum graph-theoretic operationalization of a robust

potential STD core (Rothenberg et al., 1998).6 In Figure 1 (and below), red nodes

are members of the biconnected core while blue nodes are members of the largest

connected component.

4 Methods

We define a space of possible networks by the volume of sexual activity (mean num-

ber of partners) and the length of the high-degree tail, which varies between a very

“short-tailed” network, where nobody has significantly large numbers of partners,

to the characteristically long-tailed degree defined by the scale-free distribution.7

Operationally, we approach the question in two phases, we first examine the extreme

ends of the space to identify the basic contours of the results and help build intuition.

We generate short-tailed degree distributions by assigning a minimum degree of 1

and adding two random draws from a bernulli distribution with p ranging from

0.25 to 0.75. For the boundary case of short-tailed networks, degree ranges from 1

to a maximum of 3, while the scale-free networks have the same number of edges

but no limit on highest degree. We generate low-volume scale-free networks by

manipulating the exponent (see footnote 8) to arrive at matching average degree

values, conditional on degree �1. In the second phase, we interpolate across the

range of distributions possible between these two boundary cases by examining all

possible degree distributions with a minimum of 1 and maximum of 6. Networks are

generated by looping over each degree value and assigning a proportion from 0 to

1 in 0.025 increments. We then retaine only those distributions that summed to 1.0,

generating about 98,000 valid degree distributions. We use the degree distributions

6 Higher order k-components are necessarily nested within lower order k-components, and should track
the same general pattern by volume and distribution found here. Since higher order k-components
are computationally expensive to identify (Moody & White, 2003), bicomponents allow us to identify
the connectivity profile by volume and shape of the degree distribution in a computationally efficient
manner.

7 We use the term scale-free in keeping with the literature, where the p(k) k−λ; that the probability of
having degree k is distributed as that degree to a negative exponent. Technically, the scale-free nature
of this distribution only holds in infinite graphs with higher volume than explored here, qualitatively
the issue is having a long tail to the distribution means that the hubs responsible for connectivity are
few and thus hard to identify through random intervention.
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generated above and the method in Newman et al. (2001) to simulate 10,000 node

networks for each of the degree distributions.8

We measure relational volume with mean degree. To measure the shape of the

degree distribution, we focus on the dispersion of people across the degree distribution

and the symmetry of that distribution. We combine these into a variability measure,

which we define as the standard deviation multiplied by skewness, with a constant

added to skewness to keep everything positive. Skewness captures shape but is

scale invariant, while the standard deviation gives a better sense of the amount of

variation it averages across both sides of the mean, by combining the two moments

we get a simple composite measure of the length of the high-degree tail. While

one could define the variability in other ways, particularly making use of inequality

measures such as the Gini or Theil indices, this simple metric is easy to implement

and thus we hope more useful for practitioners. High values capture wide dispersion

on a long-tailed distribution. After generating each network, we calculate the size

of the largest component and bicomponent.9 The maximum extent of an epidemic

is bounded by the largest component, and of a robust epidemic potential by the

largest bicomponent.

5 Results

Figure 2, building on prior work (Morris et al., 2007), shows an example of this

process on two short-tail degree distributions. In the top panel, average degree is

about 1.7, with 40% of the nodes having a single partner, 50% having two partners,

and 10% having three partners. This degree distribution generates a network without

a giant component; the largest connected chains are only about 1% to 1.7% of the

total population, and none of these connected sets contain a biconnected core. In

such a setting, it would be extremely difficult to sustain disease transmission. In

the bottom panel, tie volume increases to 1.9, by moving about half of those with

one partner in the top panel to two partners. This change results in a dramatic

shift in the overall network connectivity, as now more than half of the population

is connected in the giant component (57%) and about 16% are members of the

biconnected core.

Figure 3 expands this across two archetypal network shapes: one long-tailed (scale-

free) distribution (red tones) and one short-tailed (max degree = 3) distribution (blue

tones) (Morris et al., 2007). We find a sharp phase transition for the short-tailed

networks at 1.73. The largest component comprises less than 3% of the population

before the threshold, about 38% at the threshold, and over 90% of the population

when the mean degree reaches 2. The size of the largest bicomponent also increases

8 We compared our results to smaller networks and find a very similar pattern. While there is some
evidence that phase transitions to connectivity vary in small village-scale networks (Carnegie &
Morris, 2012), our results seem very robust to overall size. Thanks to a reviewer for suggesting these
comparisons; results are available from the first author on request.

9 While analytic solutions exist for the size of a component with arbitrary degree distributions (Molloy
& Reed, 1998; Newman et al., 2001), no solution exists for the size of the largest bicomponent,
requiring us to generate the network and measure it directly. Since finding components in networks
is computationally cheap, we calculate component size directly as well. We compared the analytic
solutions for component size to the simulated results finding a nearly perfect fit, which suggests our
networks are being simulated accurately.
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Fig. 2. Connectivity in two short-tailed, low-volume networks.

rapidly as a function of volume, though less steeply: From 25% of the population,

when the mean degree is 1.9, to about 56% when the mean rises to 2.0 and ultimately

reaching about 90% of the population. The amount of connectivity that emerges as

populations pass through the phase transition is striking and represents a qualitative

shift in the structure. Just below the threshold, the network is composed mainly of

small trees. As volume increases, these disconnected sets join together forming larger

components, and re-join to form the biconnected core.

Eventually, these networks take on a core-periphery structure, with a robustly

connected core and multiple chains emanating from the center. In contrast, the

scale-free distribution reaches the threshold for component size at lower average

degree (1.3) but grows more slowly as we add relational volume, and at the maximum

volume settings reaches only about 80% of the population. The disparity between

the models is most striking for the size of the robust biconnected core, which never

reaches more than 20% of the population in the scale-free networks but continues

to grow rapidly in the short-tailed networks. Qualitatively, this smoother transition
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Fig. 3. Size of Largest component and bicomponent by average number of sexual partners for

short-tailed and scale-free distributions. The curves plot the growth of the largest component

and bicomponent as a function of the average degree, based on 100 simulations of a 10,000-

node network at each degree setting. The red curve plots the analytic solution for the size of

the giant component for the simulated networks with scale-free distributions, and the orange

curve plots the largest bicomponent. The dark blue curve plots the analytic solution for the

size of the largest component for the simulated low-degree networks, and the light blue curve

plots the size of the largest bicomponent. The bicomponent curves are not continuous due to

sampling.

among the scale-free networks results from adding disconnected dyads to the star

hubs and slowly growing connectivity in the periphery of the network.

Figure 4 extends these results for the full enumeration of all possible degree distri-

butions spanning the space between these two archetypical networks distributions.

The x-axis in Figure 4 is the same as that in Figure 3 (average degree), the y-axis

is our variability measure, capturing the continuum between short-tailed networks

(low values) and long-tailed networks (high values). The z-axis (color and contour)

captures the size of the largest component (left panel) and bicomponent (right

panel). The contours for component and bicomponent size in Figure 4 help identify

equivalent epidemic risk across the space. The region characterized by “left-leaning”

contour lines (around average degree < 1.75) is where long-tailed distributions will

create larger connected components at any given volume level. Where the contours

are roughly perpendicular to the x-axis, the epidemic risk is equivalent for long- and

short-tailed distributions, whereas the portions of the space characterized by “right

leaning” contours, risk at any given volume is higher for short-tailed distributions

than for long tailed. The speed of this transition by volume is given by how quickly

component size increases for any level of variability—when variability is low, changes

in volume generate rapid changes in connectivity (contour lines close together), while
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and low-degree distributions from Figure 2 are plotted as lines across this space for reference. To avoid point stacking, a small amount of randomness has

been added to the mean degree score for each plot.
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Fig. 5. Select degree distribution and partial sociograms for simulated giant components.

Histogram bars are for degree = 1 to 6 from left to right; a bar reaching the top of a

subpanel would be 100%. The number of nodes in components of at least 1% is given in the

upper left of each subfigure. If there is more than one such component, the number is given

in parentheses following the count. The count for size of the largest bicomponent is also

given. For each network figure, blue nodes are in the largest component, red in the largest

bicomponent.

when variability is high the transition to larger components is smooth (contour lines

far apart).

Epidemic potential is highest in the reconnected core, represented in the right panel

of Figure 4. The shape of the surface defined by the z-axis rises much more sharply

in the lower right-hand portion of the space, and we only see giant bicomponents

in this low-variability region. This result means that in the rest of the space, the

large single connected components have either no bicomponent (purple and dark

blue) or comparatively small bicomponents (light-blue to cyan), suggesting a setting

with fragile epidemic potential.10 That is, networks with large components but small

bicomponents are characterized primarily by long single-connectivity paths, which

are comparatively easy to disrupt, as any point can block transmission at the nodes

(e.g., by using condoms) or across edges (e.g., via inconsistent temporal order). In

contrast, we find more robust networks, capable of carrying disease even in the face

of transmission disruption, when the degree distribution has low variably.

10 These sparsely connected areas are the sections of the distribution space where relational timing, and
concurrency in particular, will be most important (Moody & Benton, 2016).
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To gain a qualitative sense of how the shapes of these distributions relate to the

structure of the resulting networks, we plot sample degree histograms from across

the space (exact point of the sample distribution marked by the “©” within each

subpanel) along with an exemplar sociogram colored by component (blue) and

bicomponent (red) membership in Figure 5. As these are largely core-like structures

(since there is no mixing feature other than degree), we display only the “south-west”

corner of the sociogram.

The dominating robust connectivity is clear in the lower right of Figure 5, where

it is evident that nearly everyone is re-connected by multiple paths, compared to the

long “tendrils” of single connected paths in the long-tail distribution portion of the

space. In these reconnected settings, it is difficult to prevent STI flow unless blocking

activity (condom use or vaccination, for example) is extremely widespread.

6 Conclusions

In this paper, we explored network connectivity in the low-volume sexual activity

space that can be used as a qualitative model for moderate-term sexual networks

(Carnegie & Morris, 2012; Helleringer & Kohler, 2007; Young et al., 2014). We used

simulations to examine nearly 98,000 different degree distributions within this space

and then identified the size of the largest component and bicomponent as indicators

of potential epidemic extent and robust connectivity, respectively. We find that the

large components necessary for widespread diffusion can emerge at low average

degree, but that the proportion of the population reached is highly sensitive to both

the volume and the shape of the degree distribution. Long-tailed distributions can

create extensive connectivity at lower average volume, but these tend to be fragile

single-connected networks and ultimately reach fewer people than in short-tailed

distributions with similar volume. We also find that the volume transition threshold

for networks with large and robust epidemic potential is sharper for short-tailed

distributions than for long-tailed degree distributions.

The main implication of these results is to make clear the highly non-linear and

contingent nature of connectivity substrates in sexual networks. Any policy that

targets degree will likely shift both volume and shape, and we should be cognizant

of what that implies for epidemic potential. We find that epidemic potential is

contingent on both the volume and shape of the degree distribution. Degree volume

captures how much sex is happening in the population overall while the degree

variability describes the concentration of who is having sex. Substantively, one can

assume that the volume dimension in a setting is thus an imperfect indicator of

population demand; while the distribution shape, particularly the length of the

upper tail, is largely about the concentration of supply. Social interventions (either

as policy aimed at health interventions or stigma-enhancing police enforcement) that

focus disproportionately on high-degree nodes will largely have the effect of shifting

who has sex without changing volume. With respect to our results, this is equivalent

to moving the population “down” the y-axis of Figure 4 at a fixed point along the

x-axis (volume), which will lead to greater connectivity in the right-hand portion

of the space, and thus likely increase epidemic potential. In contrast, interventions

targeted to lower demand for commercial sex uniformly shifts the population to

types of networks with lower connectivity (down and to the left in Figure 4).
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Similarly, policies aimed at effectively removing transmission-relevant edges—such

as widespread condom use or lowering numbers of concurrent partnerships—will

have the substantive effect similar to lowering average degree; pushing the population

toward safer regions of the space (left on the x-axis in Figure 4). While volume-

lowering interventions seem to always help (reducing network connectivity), the

returns are highly non-linear depending on the shape of the distribution, and as

such, the realized effectiveness will vary widely across populations. Since public

policies tend to be blunt instruments, it is important to ask how different incentives

shape the structure of the degree distribution. By assessing where populations sit in

this degree space, health policy investigators might also have a better sense of what

sort of network structure is active, helping them evaluate achieved trace samples.11

These results are based on simulations and focus on a single dimension of

the underlying networks—namely the degree distribution—and as such are not

without their limitations in making inferences to epidemic potential. While our

findings are based on random networks, one can easily extend the analytic results

to more realistic networks for STIs, and we would expect qualitatively similar

outcomes (in fact our networks appear similar to those observed in real-world

settings, see Helleringer & Kohler, 2007). For example, clustering features—such

as strong assortative mixing based on sexual preference, number of partners, or

race—might prevent giant components from forming by isolating subpopulations,

but the restrictions would need to be nearly absolute. Anything less than absolute

isolation will simply increase path redundancy within the assortative groups, creating

localized disease cores rather than the simple core-periphery shape identified here.

Degree assortativity has well-known effects on the extent of reachability in networks;

future work should extend these results to assess whether such effects are contingent

jointly on volume and variability. Additionally, our approach assumes distributions

result from a single underlying behavior (sex). Future work should address how

different actors (e.g., men vs. women), or different ties (e.g., sex vs. needle-sharing)

differential and sometimes complementary contributions to those distributions (see

e.g., adams et al., 2013) alter our results.

We have enumerated degree distributions across a somewhat narrow range, and

one could extend along both dimensions, though there is no a priori reason to

expect a discontinuity in the shape of the response surface found in Figure 4. That

is, extending to higher maximum degree (beyond 6) or higher volume (beyond 2.5)

should continue with the surface shape identified here, and is well beyond most

empirical estimates over disease-relevant time frames.

Finally, more realistic transmission simulations could more precisely target policy

toward disease specific transmission times and windows, as a key limitation of this

work is that we ignore relationship temporal dynamics. Timing features have at least

two implications. First, realistic transmission dynamics would respect the infectivity

window of each disease (and the population demographics and behaviors). The effect

of this, however, is largely to shorten the relevant duration within which partners can

contribute to connectivity, effectively lowering volume, and variability. As a result, the

effective transmissibility networks will be sparser than those examined here and likely

11 We thank a reviewer for pointing this out.
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with shorter tails. Second, continued transmission depends on a temporal sequence

of relations to create a continually connected set of future susceptible cases linked

to currently infectious nodes (Moody, 2002; Morris et al., 2009). This effectively

limits exposure to the forest of paths existing after transmission, further limiting the

relevant degree distribution to the lower volume portion examined here. In general,

there are complex interactions between volume, variability, and relationship timing,

particularly in open populations, that make identifying reachability complicated.

However, analytic work on identifying expected size of the forward reachable path—

the set of people downstream in time in an open population—has begun (see Morris

et al., 2010), which holds great promise for understanding the joint interaction

of structure and timing. Our initial simulation forays into this work suggest a

general correspondence between the shape of the response surface in Figure 4 when

relational timing is built in, so we expect the results to be robust to timing in general

shape, if not level, though a full examination of this is beyond the scope of the

current paper.

Since adding such features come at considerable computational cost, and depend

crucially on setting-specific transmission details, we leave that to future work. Any

transmission effects must occur within a subset of edges and paths identified here.

We therefore anticipate that the contours of high epidemic potential in such work

would correlate highly with the z-axis of Figure 4 here, but with lower absolute levels.

The main contribution of this paper has been to highlight a qualitative tradeoff in

network connectivity between the shape and volume of sexual degree distributions.

In very low-volume settings, long-tailed degree distributions generate higher con-

nectivity, as high-degree hubs are the only way to generate any connectivity, though

much of that connectivity is fragile. As total relational volume increases, however, we

see a shift, where short-tailed degree distributions generate higher total connectivity

than long-tailed distributions. Short-tailed distributions reach more people, and do

so more robustly than long-tailed distributions, at higher volumes.

If both highly skewed and short-tailed networks can sustain high connectivity,

the public health question becomes empirical and context specific: What do sexual

networks look like in the populations and time-spans of interest? The short infectious

period of many STDs requires large components to emerge relatively quickly and

maintain in the face of rapid population churn to sustain transmission. If the volume

levels in such settings create relatively sparse contact networks, concurrency will be

crucial for maintaining the temporal connectivity needed for disease spread (Moody

& Benton, 2016, Morris et al., 2009). Armed with a better sense of how changes

in individual behavior might affect contact structure, researchers can next turn our

attention more directly to questions of how timing and population turnover affect

disease spread within these structures.
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