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SUMMARY
This paper presents a methodology to obtain the wrench capabilities of a kinematically redundant
planar parallel manipulator using a wrench polytope approach. A methodology proposed by others
for non-redundant and actuation-redundant manipulators is adapted to a kinematically redundant
manipulator. Four wrench capabilities are examined: a pure force analysis, the maximum force for
a prescribed moment, the maximum reachable force, and the maximum moment with a prescribed
force. The proposed methodology, which finds the exact explicit solution for three of the four wrench
capabilities, does not use optimization and is very efficient.

KEYWORDS: Parallel manipulators; Redundant manipulators; Polytopes; Force/moment capabili-
ties; Wrench performance indices.

1. Introduction
This paper proposes a methodology to obtain the wrench capabilities of a kinematically redundant
planar parallel manipulator. The wrench capability of a manipulator is defined as the maximum
wrench that can be applied (or sustained) by a manipulator for a given pose based on the limits of the
actuators.1 A wrench capability plot for a given pose represents the applied wrench in all directions.

It is well known that parallel manipulators contain direct kinematic singularities inside its
workspace.2 Both kinematic redundancy and actuation redundancy have been proposed and shown
to eliminate singularities within the workspace.

Kinematic redundancy (e.g., see refs. [3–9]) occurs when extra links and actuators are added
to the manipulator. Until recently, the addition of actuators to achieve kinematic redundancy led
to some actuators mounted in series. A new approach for kinematic redundancy was recently pro-
posed in which a purely parallel kinematic leg is added, thus maintaining the parallelism of the
structure.10, 11 The mobility of kinematically redundant manipulators is greater than the number of
degrees of freedom and an infinite number of possible solutions to the inverse kinematics problem
exists. The wrench capabilities depend on the chosen configuration.

The other main type of redundancy is actuation redundancy (e.g., see refs. [1, 12–14]) and it is
achieved either when a normally passive joint in a leg is actuated or when an extra actuated leg
is added to the manipulator. An infinite number of possible solutions for the actuator torques is
possible to produce a specified output wrench. Figure 1 shows examples of manipulators that are
non-redundant, have in-branch actuation redundancy, have additional branch actuation redundancy,
and have kinematic redundancy (note in this figure R and P denote revolute joints and prismatic joints,
respectively, an underline indicates an actuated joint, and solid circles and empty circles designate
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1602 Wrench capabilities of a kinematically redundant PPM

Fig. 1. Manipulator configurations: (a) non-redundant 3-RRR, (b) in-branch actuation redundant 1-RRR–2-
RRR, (c) additional-branch actuation redundant 4-RRR, and (d) kinematically redundant 3-RPRR.

actuated and passive joints, respectively). Gosselin and Schreiber15 present a thorough review of the
research pertaining to the different types of redundancy in parallel mechanisms.

The wrench capabilities of a manipulator depend on its design layout, the pose, and the actu-
ator torque capabilities. Three different approaches have been proposed to determine the wrench
capabilities: constrained optimization, wrench ellipsoids,16 and wrench polytopes.17, 18 A thorough
presentation of the three approaches is presented by Firmani et al.18 and is summarized here.

When using a constrained optimization method, an objective function that maximizes the output
wrench is optimized such that the static force relation is satisfied subject to the actuator torques
remaining within their limits. These methods are normally computationally expensive and may not
find the global minimum. It should be noted that the force capability of a non-redundant 3-RRR
manipulator (where R denotes a revolute joint) was recently obtained as a closed-form solution using
an optimization approach.19 A Lagrangian function was written that included equality and inequal-
ity constraints. The Karush–Kuhn–Tucker conditions were then solved in closed-form to produce
the force polytope. When using wrench ellipsoids, the actuator torque vector is bounded by a unit
hypersphere in the joint force space. The hypersphere is then linearly mapped into the task wrench
space using the static force equation to produce an ellipsoid. As an example, consider a manipulator
with two actuators with the same torque capacity, τimax = ±1 Nm . The allowable torques in joint
space are represented by a circle and the wrench space is represented by an ellipsoid as shown in
Fig. 2(a). However, this circle does not provide the true representation of the torque capacities for the
preceding manipulator since the capacities are in reality a square when plotted in joint space, where
the corners of the square represent two actuators being at their maximum capacities (either + or – for
all combinations) as shown in Fig. 2(b).

Polytopes are generated by mapping a hypercube in joint space (a square for the two-actuator
manipulator) into the wrench space using the static force equation, producing a polytope. One can
observe that the wrench polytope in the example can be obtained by mapping only the vertices of the
torques in joint space into the wrench space. The polytope approach represents the exact mapping
of the joint capabilities in the wrench space, while the ellipsoid provides an approximation of the
mapping as shown in Fig. 2(c). For a 3-DOF planar manipulator, the torque space is represented as a
cube (see Fig. 3). The force polygon for a given pose of the manipulator is simply the intersection of
the fx − fy plane at Mz with the wrench space as see in Fig. 3.

The force capabilities of redundantly actuated manipulators have been studied by many
researchers (e.g., see refs. [1, 20–22]). The force capabilities of kinematically redundant planar par-
allel manipulators have not received as much attention. The only work found that addressed this
problem was that of Weihmann et al..23 They found the force capability of a 3-RPRR manipulator for
a pure force analysis using an optimization approach. They used a Differential Evolution algorithm
to obtain the angles of the base revolute joints that maximized the output force applied by the end-
effector in a specified direction. The objective function consisted of the satisfaction of the static force
relation, the closure of the kinematic chains, and the limits on the actuator torques.The direction of
the forces in the force polygon was discretized from 0 to 2π and the objective function had to be
optimized for each angle. This method is therefore computationally expensive.

The polytope approach18 is used in this work to find several wrench capabilities of a kinematically
redundant planar parallel manipulator. As stated previously, for a kinematically redundant planar
parallel manipulator, the only wrench capability that has been previously published is a pure force
analysis (no moment applied). This case is therefore first examined in order to validate and compare
with the results of Weihmann et al.23 and to demonstrate the effectiveness of the proposed method.
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Wrench capabilities of a kinematically redundant PPM 1603

Fig. 2. Mapping of ellipsoids and polytopes from the joint space to the task space.18

Fig. 3. Mapping of the torque space to the wrench space where the polygon in red is the force polygon for a
specified position and moment.

The latter results in an explicit solution to the problem of generating the force polygon and it is there-
fore computationally efficient. Preliminary results using this method were presented in Boudreau et
al..24 In this work, the method is refined and applied to obtain several other wrench performances for
a kinematically redundant planar parallel manipulator.

The outline of the remainder of the paper is as follows: Section 2 discusses force polygons,
Section 3 discusses the kinematics of the example manipulator, Section 4 presents the methodology to
obtain the wrench performance for kinematically redundant parallel manipulators, Section 5 presents
different wrench capabilities for the example manipulator, and Section 6 concludes the paper.

2. Force Polygons

2.1. Force polygon for the 3-RRR manipulator
Figure 4 shows the force polygon of a 3-RRR manipulator when the end-effector is located at the
origin of the fixed axes with an orientation of 0◦. Many studies can be found in the literature for
this manipulator. For example, researchers have optimized its kinematic characteristics,25 analyzed
its singularities,26 presented a method for its synthesis to obtain a singularity free workspace,27 and
developed simulation tools.28 A sketch of the manipulator is superimposed on the force polygon for
a clearer understanding of what the force polygon represents. For this manipulator, the base edge
length is 0.5 m, the moving platform edge length is 0.2 m, the lengths of the first and second links
of each leg are 0.2 m, and the actuator torque limits are ±4.2 Nm.23, 29 At the position shown in the
figure, the force polygon indicates the maximum force the end-effector can apply (or sustain) in a
direction α. The lines in Fig. 4(b) indicate that the actuators are at their maximum torque values. In
a given direction (e.g., the dashed line), the force is limited by the actuator torque capabilities. The
force in the direction indicated is attained when actuator 3 attains its maximum capacity. The other
points on this line (marked with a +) are unattainable since one or more actuators would have to
surpass its maximum capacity. The sets of parallel lines correspond to positive and negative torques
of the actuators (±τimax ). It should be noted that there are 12 intersection points of the lines that
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Fig. 4. Force polygon.29

Fig. 5. 3-RPRR manipulator.

correspond to the maximum torques which are the 12 possible combinations of (±τimax , ±τ jmax),
i �= j . Six of the combinations are dismissed since some of the actuators cannot apply the required
torque corresponding to these points. At a vertex, two actuators are at their maximum capacities.

The minimum distance between the origin and the lines of the force polygon, represented as
Fmin in Fig. 4(b), represents the force that can be applied in any direction. Some authors call this
the isotropic force. The maximum distance between the origin and the lines of the force polygon,
represented as Fmax in Fig. 4(b), represents the largest force that can be applied by the manipulator.
The procedure to obtain the force polygon is explained later.

2.2. Effect of kinematic redundancy on the force polygon
The kinematically redundant manipulator under study is the 3-RPRR manipulator (see Fig. 5). When
the prismatic joints are fixed, it becomes the well-known 3-RRR manipulator. The origin of the fixed
frame of reference is located at the geometric center of the triangle formed by the fixed base revolute
joints and is denoted by O (not shown). The moving frame is attached to the end-effector at its
geometric center, and its origin is denoted by P . In the figure, P and O are coincident in the position
shown. The dimensions of the 3-RPRR manipulator are the same as those of the 3-RRR manipulator
used by Firmani et al.29 with the prismatic joints having a nominal length of 0.2 m and are able to
adjust ±0.05 m as per.23 It is assumed that the prismatic joint force limits are large enough to sustain
the force produced in the proximal links when the base revolute actuators are at their maximum
values.
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Fig. 6. Effect of kinematic redundancy on the first leg.

Figure 6 shows the effect of kinematic redundancy using the first leg as an example. The figure
shows the leg when the prismatic joint is at its maximum and minimum lengths. As can be seen in
the figure, when kinematic redundancy is added to one of the legs, any prismatic length between
Lmin and Lmax can be used for a specified pose of the end-effector, providing an infinite number of
possible solutions to the inverse kinematics problem. This allows the orientation of the distal link
A1 B1 to be changed. Link A1 B1 can thus have any orientation between the extreme positions shown.
The orientation of A1 B1 affects the orientation and the magnitude of the force applied at B1 and
therefore changes the force polygon. For a specified length O1 A1, the vertices of the new polygon
are still obtained when two actuator torques are at their maximum values.

3. Manipulator Kinematics

3.1. Inverse displacement solution
From Fig. 5, the vector loop produces

p = OOi + Oi Ai + Ai Bi − PBi (1)

where p is the vector expressing point P , the other vectors are from the point indicated by the first
letter to the point indicated by the second letter and i = 1, 2, 3. It should be noted that PBi = RPB′

i

and R is the rotation matrix

[
cos φ − sin φ

sin φ cos φ

]
, specifying the orientation of the moving frame and PB′

i

is the vector from P to Bi expressed in the moving frame xy. The vector Oi Ai can be expressed as:

Oi Ai =
[

Li cos θi

Li sin θi

]
(2)

To eliminate Ai Bi , Eq. (1) can be rearranged as:

Ai Bi = p − OOi − Oi Ai + PBi (3)

Squaring both sides yields

Ai BT
i Ai Bi = l2 = (p − OOi − Oi Ai + PBi )

T (p − OOi − Oi Ai + PBi ) (4)

Eq. (4) can be written as:

l2 = (wi − Oi Ai )
T (wi − Oi Ai ) (5)

where:

wi = p − OOi + PBi (6)
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Setting Oi AT
i Oi Ai = L2

i and rearranging Eq. (5) yields

2wT
i Oi Ai = wT

i wi + L2
i − l2 (7)

Note that the right-hand side of Eq. (7) is completely known. Eq. (7) can be rewritten as:

A cos θi + B sin θi + C = 0 (8)

where

A = 2wT
i e1Li

B = 2wT
i e2Li

C = l2 − L2
i − wT

i wi

(9)

and

e1 =
[

1
0

]

e2 =
[

0
1

] (10)

Using the tangent half-angle substitution Ti = tan θi
2 allows Eq. (8) to be rewritten as:

(C − A)T 2
i + 2BTi + (C + A) = 0 (11)

which has two roots for each θi .
With the angles θi determined, the unit vector ni1 along the proximal link Oi Ai is obtained as:

ni1 =
[

cos θi

sin θi

]
(12)

The unit vector ni2 along link Ai Bi can also be determined as:

ni2 = OBi − OAi

l
= (p + PBi ) − OAi

l
(13)

3.2. Force analysis
The required forces can be determined from the equilibrium equations. Let fi designate the force
directed along the distal link of leg i on the end-effector, that is, the force along link Ai Bi of magni-
tude fi . The forces acting on the end-effector are shown in Fig. 7. The equilibrium equations on the
end-effector lead to:⎡

⎣ n12 n22 n32

zT (PB1 × n12) zT (PB2 × n22) zT (PB3 × n32)

⎤
⎦

⎡
⎣ f1

f2

f3

⎤
⎦ =

[
fe

mez

]
(14)

where fe represents the force applied by the end-effector and mez represents the moment about point
P applied by the end-effector.

Eq. (14) can be rewritten as:

JT
2 τ2 = F (15)

where τ2 is the vector of forces in the distal links, F represents the end-effector output force and
moment, or wrench, and JT

2 is the transpose of the manipulator Jacobian matrix that relates these
two quantities. If the output wrench is specified, the axial forces in the distal links can be determined
with:

τ2 = J−T
2 F (16)
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Fig. 7. Forces acting on the end-effector

Fig. 8. Forces acting on proximal link Oi Ai .

The actuator torques required at the base can be obtained using the equilibrium conditions of the base
proximal links Oi Ai . Figure 8 shows the forces acting on link Oi Ai where fi is the reaction force at
Ai on link Oi Ai .

If ni1 designates a unit vector from Oi to Ai , the torque required can be found from the magnitude
of the moment τi , that is, τi , computed by summing the moments about Oi :

τi = −Li zT (ni1 × fi ) = −Li zT (ni1 × fi (−ni2)) = Li fi zT (ni1 × ni2) (17)

where Li is the distance between Oi and Ai , and fi is in the opposite direction of ni2.
Since both vectors in Eq. (17) are about the z-axis, the force fi in the distal link corresponding to

a specified torque can be obtained with:

fi = τi

Li zT (ni1 × ni2)
(18)

The magnitude of the force in the proximal link, designated as fact i , can be obtained by the
projection of fi in the direction of Oi Ai :

facti = fi
T ni1 (19)

4. Procedure to Determine Wrench Performance

4.1. Methodology
The wrench capabilities of a non-redundant planar parallel manipulator depend on the different com-
binations of actuators at their maximum capacities.18, 20 Eq. (14) is in the form Ax = b. This equation
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can be solved when there are no more than three unknowns. Depending on the combination of actu-
ators at their maximum capabilities, Eq. (14) can be rearranged such that matrix A and vector b
contain only known quantities and x can be solved for. To illustrate this, let us consider the case to
determine the force polygon when a prescribed moment is applied to the end-effector.

It was shown in Firmani et al.18 that the coordinates of the points of the force polytope could be
obtained without computing them at discretized angles that varied from 0 to 2π . As stated previously,
for a given combination of lengths, the vertices of the force polygon occur when two actuator torques
are at their maximum values. The polytope can be obtained by checking the 12 possible combinations
of maximum torques. There are three combinations of torques at their maximum values (two out of
three branches are at their maximum torques) and for each of those combinations, there are four
cases of torques at their positive and negative maximum values (±τimax , ±τ jmax ). For a specified
applied moment mez at a given pose, and the case where two actuators are at their maximum values,
there are three unknowns in Eq. (14): the values of the components fx and fy of the force applied at
the end-effector and the force in the leg in which the actuator is not maximized, denoted as fk . The
latter will be henceforth designated as the force in transition.

Let i , j , and k denote the three legs of the manipulator and consider the case where the torques
are maximum in legs i and j . Eq. (14) can be rewritten in the following form:

[
ni2 n j2 nk2

zT (PBi × ni2) zT (PB j × n j2) zT (PBk × nk2)

] ⎡
⎣ fimax

f jmax

fk

⎤
⎦ =

[
fe

mez

]
(20)

where fimax and f jmax correspond to the forces in the distal links produced by the maximum torques
in legs i and j , respectively. This equation can be rearranged as:⎡

⎣−1 0 nk2x

0 −1 nk2y

0 0 zT (PBk × nk2)

⎤
⎦

⎡
⎣ fx

fy

fk

⎤
⎦

=
[ −ni2 fimax − n j2 f jmax

−zT (PBi × ni2) fimax − zT (PB j × n j2) f jmax + mez

] (21)

Eq. (21) is of the form Ax = b where A and b are known and x can be solved for. The values of
fx and fy are the coordinates of a point of the polygon. Any combination of maximum torques that
produces a force in leg k that exceeds the maximum force that can be exerted by the actuator of leg k,
fkmax , is not possible and is removed from the list of potential vertex points. It should be noted that
the computation of a possible vertex point involves only the resolution of three equations, each with
one unknown. The last row of Eq. (21) has only one unknown, fk , and can be solved first, leaving
only one unknown for each of the equations in the first two rows.

Other force capabilities analyses can be performed using a similar methodology.

4.2. Effect of redundancy in one of the branches on the vertex points
Prior to explaining the procedure to obtain the force polygon when all the proximal link lengths
vary, let us examine what happens to the polygon when two lengths are kept fixed and the other is
varied from its minimum to its maximum length. Figure 9 shows the case where four polygons are
generated for the four combinations of proximal link lengths indicated. The case presented is for an
applied moment mez = 0 and is therefore a pure force analysis. In all cases, the length of the proximal
link in the first and third legs is kept constant at 0.15 m. The length of the proximal link of the second
leg is varied using four lengths that are between 0.15 and 0.25 m. When all the lengths are equal,
one can note that the polygon (in blue) shows elements of symmetry since the force applied by links
Ai Bi , i = 1,2,3 are equal when the extreme values of the torques are equal. When the length of link 2
changes, the force applied on the end-effector by link A2 B2 changes and the polygons are no longer
symmetric.

In the upper right (and lower left) of the figure, there are four points that were obtained for each
polygon generated. A dotted line was added between the points obtained at the extreme positions of
leg 2 (0.15 and 0.25 m). This line passes through all points generated for polygons with proximal link
lengths for the second leg between 0.15 and 0.25 m. This important result allows one to conclude that
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Fig. 9. Effect of redundancy on the force polygon.

a straight line can be drawn between the points obtained at the extreme positions and that that line will
contain any points for an intermediate length. The force polygon is thus composed of the outermost
lines in the figure and the dotted lines, since there is an intermediate length that corresponds to
a point on the dotted line. It should be noted from Fig. 4 that each vertex corresponds to a case
where two actuators are at their maximum capacity, and that the straight lines drawn between the
points obtained at the extreme positions in Fig. 9 connect two points with the same actuators at their
maximum capacity.

When redundancy is included in all legs, the force polygon can be obtained by computing the
forces for all combinations that include only the extreme positions of the proximal link lengths. For
three legs, there are, therefore, only eight possible combinations of proximal link lengths to verify.
Once the forces for all combinations are computed, the force polygon can be produced. In the results
that follow, the end-effector pose is x = 0, y = 0, and φ = 0. Four different wrench capabilities are
examined.

5. Wrench Capabilities of the 3-RPRR Manipulator

5.1. Pure force analysis
The first case studied is a pure force analysis (mez = 0). This is the case studied in Weihmann
et al.23 and allows a comparison with the only known published results to obtain the force poly-
gon of a kinematically redundant parallel manipulator. As stated in the previous section, the force
polygon corresponding to each of the eight combinations that correspond to the extreme positions
can be found. The outermost points are joined by straight lines to produce the force polygon for the
redundant manipulator. This can be done with a convex hull operation for a pure force analysis.

The procedure to obtain the force polygon is

1. Specify the pose p and compute the coordinates of point B using p + RPB′
i .

2. Compute vectors OOi .
3. Compute wi using Eq. (6) (note that p + RPBi has been computed in Step 1).
4. Compute A, B, and C using Eq. (9) and solve Eq. (11) to determine the two solutions for θi .

Choose the solution that corresponds to the selected leg layouts.
5. Compute unit vectors ni1 and ni2 using Eqs. (12) and (13). Oi Ai is obtained from Eq. (2).
6. Compute the coordinates of the vertices of the polygon using the 12 possible combinations of 2

actuator torques that are maximized ±τimax , ±τ jmax using Eq. (21). Note that fimax and f jmax are
obtained from Eq. (18) using the maximum torque value.

7. Remove any combination that produces a force in transition larger than the maximum possible
force produced by its actuator.

8. Perform a convex hull operation to obtain the points of the force polygon. The function
convhull in MATLAB can be used to generate the convex hull of the points.
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Fig. 10. Force polygons for eight possible proximal link length combinations.

Fig. 11. Force polygon for the 3-RPRR.

Using this procedure, the complete force polygon for the 3-RPRR kinematically redundant planar
parallel manipulator can be generated. Figure 10 shows the force polygons for the eight possible
cases of extreme proximal link lengths and Fig. 11 shows the complete force polygon for the 3-
RPRR. Comparing Fig. 11 to the results from Weihmann et al.23 shows that the generated force
polygon is the same. However, unlike the results from Weihmann et al.,23 that are an approximation
of the force polygon due to the use of optimization, the results shown in Fig. 11 are an exact solution.
The solution presented here is very efficient compared to the method used by Weihmann et al..23 In
the latter, a polar discretization from 0◦ to 360◦ was used to produce the polygon. For each discretized
direction, a coordinate for the force polygon is obtained using a Differential Evolution optimization,
a procedure computationally expensive. Also, the resulting polygon does not consist of nice straight
lines, since each point computed is an approximate solution. The procedure presented here requires
only to solve Eq. (21) for the eight proximal link length combinations that correspond to the links’
extreme positions while excluding any torque combinations that produce transition forces that exceed
the maximum torque capacity of the torque in transition. The plot of the torques required to produce
the force polygon is presented in Fig. 12 where angle α is the angle shown in Fig. 4. The plot is the
same as that obtained by Weihmann et al..23
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Fig. 12. Joint torques versus α for the 3-RPRR.

Fig. 13. Force polygons for eight possible proximal link length combinations with an applied moment of 2 Nm.

An important observation can be deduced about the force polygons for kinematically redundant
planar parallel manipulators. For a non-redundant manipulator, a line on the force polygon indicates
that one actuator is at its maximum capacity while two are at their maximum capacity at a vertex
of the polygon.29 For a kinematically redundant manipulator, this is not necessarily the case. Two
actuators are at their maximum capacity on the lines that are generated when one of the proximal link
lengths is transitioning between its two extreme positions and the other two proximal link lengths are
at one of their extreme positions, as illustrated in Fig. 9. This is also illustrated in Fig. 12, where, for
example, two torques are at their maximum values when α is between approximately 50◦ and 75◦.

If one considers the area within the force polygon as an indicator of the performance of a manipu-
lator, the area in the polygon shown in Fig. 11 has an area 11.6% larger than that of the polygon that
corresponds to a non-redundant manipulator with all proximal legs equal to 0.15 m (one of the eight
polygons shown in Fig. 10).

5.2. Maximum force with a prescribed moment
The second wrench performance studied allows the determination of the force polygon for a pre-
scribed (specified) moment that is not null. In this case, the force polygon is no longer convex as was
the case for a pure force analysis. Figure 13 shows the force polygons for the eight possible cases of
extreme proximal link lengths when a moment of 2 Nm is prescribed. The polygon with the dashed
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Fig. 14. Force polygons for applied moments of 2 and −4 Nm.

line represents the force polygon for an intermediate length. The outermost vertices that determine
the convex shape of the eight polygons are numbered. Recall from the previous section that two actu-
ators are at their maximum values at a vertex. At vertices 1 and 2, the same two actuators are at their
maximum values. As was explained in the previous section, a straight line can be drawn between
these points and a point on this line will correspond to an intermediate length of one of the proximal
links. A straight line is added between points 1 and 2 and it is seen to pass through one of the vertex
points of the polygon for an intermediate length. In the figure, the following group of vertices have
the same actuators at their maximum capacity: (1, 2, 3, and 4), (5, 6, 7, and 8), and (9, 10, 11, and
12). It should be noted that these 12 vertices are found using the same method as when no moment is
applied. However, a straight line cannot be drawn between vertices 4 and 5, for example, to produce
the correct force polygon.

The procedure to obtain the force polygon when a moment is prescribed is:

1. Repeat steps 1–7 in subsection 5.1.
2. Determine the vertices that compose the convex shape of the combination of the eight force

polygons.
3. For i = 1 to n, where n corresponds to the last vertex, identify the two torques that are at their

maximum values for each vertex i , that is, (τimax1 ,τimax2 ).
4. For i = 1 to n and for vertex n and vertex 1, if (τimax1 ,τimax2 ) = (τi+1max1 ,τi+1max2 ).

a. join them by a straight line;
b. else determine the intersection points of the outermost lines and keep the portions of these lines

between the vertex points i and i + 1.
5. Join all lines to obtain the force polygon.

When the above procedure is applied to Fig. 13, consecutively numbered vertices from 1–4 are
joined by straight lines since they have the same combination of actuator torques at their maximum
capacity. The latter is not the case between vertices 4 and 5, so the intersections of the outermost
lines are determined and the outermost portions of the lines between vertices 4 and 5 constitute the
boundary of the force polygon between these two vertices. Consecutively numbered vertices from 5
to 8 are then also joined by straight lines since they have the same combination of actuator torques
at their maximum capacity. The procedure is repeated until vertex 1 is reached. Figure 14 shows
the resulting force polygons when this procedure is applied with moments of 2 and −4 Nm. The
thick outer lines represent the maximum force corresponding to the applied moment. The legend is
not shown due to space limitations, but it is the same as in the previous figures. The areas enclosed
within the outside polygons in Fig. 14 are 29.3% (m = 2 Nm) and 57.3% (m = −4 Nm) larger than that
of the polygons obtained with a non-redundant manipulator with all proximal legs equal to 0.15 m.
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Fig. 15. Force polygons maximum reachable force.

5.3. Maximum reachable force
This case provides information on the maximum forces that the manipulator can apply or sustain.
There is a moment associated with the maximum reachable force. As shown by Firmani et al.,18 for
a non-redundant manipulator, the maximum reachable force occurs when all three actuators are at
their maximum values. There are eight combinations of maximum torques (±) for a given set of
extreme lengths. When three actuators are at their maximum capacity, the force fk becomes fkmax

in Eq. (20). The maximum force and associated moment are therefore obtained directly. Of the eight
combinations, six will provide the vertices of the polygon providing the maximum reachable force.
The other two combinations produce a point that is inside the polygon.

Figure 15 shows the eight polygons produced by the extreme length combinations. Also shown is
a polygon corresponding to an intermediate length. In this figure, the vertices 1 and 2 do not have the
same actuators at their maximum capacity, but vertices 2 and 3 do. When two consecutive vertices
correspond to the same combination of torques being at their maximum capacities, a line can be
drawn between them. There exists an intermediate length that corresponds to a point along this line.
The figure shows a line drawn between vertices 2 and 3 and one of the vertices of the intermediate
length for the second leg is on this line. The second leg is transitioning from a length of 0.15 to 0.25
m along this line. The procedure to obtain the complete maximum reachable force polygon is very
similar to the procedure to obtain the polygon for a prescribed moment shown in Subsection 5.2. The
only difference is in steps 4 and 5, where each vertex corresponds to a combination of three torques
at their maximum capabilities instead of two. When this procedure is applied and lines are added
when two vertices correspond to the same combination of actuators at their maximum capacity, the
maximum reachable force polygon can be found as shown in Fig. 16. The distance between the center
of the polygon ( fx = 0 and fy = 0) and any point on the boundary of the polygon represents the largest
force that can be applied in the direction of that point. A moment needed to satisfy equilibrium will
be associated with this force. The increase in area of this polygon compared to the area of the polygon
obtained for a non-redundant manipulator with proximal legs of 0.15 m is 21.4%.

5.4. Maximum moment with a prescribed force
For a prescribed force, there exists a range of moments that can be applied. It was shown by Firmani
et al.18 that for a non-redundant manipulator, this condition corresponds to one actuator being at its
maximum capacity. When fx and fy are specified, and knowing that one actuator is at its maximum
capacity, Eq. (14) can be rearranged in the form Ax = b. The unknown vector is x = [mez f j fk]T

where mez is the unknown moment and f j and fk are the forces in the legs that do not have an
actuator at its maximum capacity, that is, forces in transition. There are six conditions of maximum
torques to be verified when only one actuator is at its maximum capacity, each actuator evaluated
at positive and negative values. Only two torques will keep the other forces in transition within the
maximum allowable actuator forces. Therefore, for a specified value of fx and fy , there will be a
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Fig. 16. Maximum reachable force polygon.

Fig. 17. Effect of intermediate lengths on maximum moment for a prescribed force.

minimum and a maximum value of the moment that can be applied, and the manipulator can apply
(or sustain) any moment within this range. It should be noted that for any value of ( fx , fy) located
on the polygon indicated in Fig. 16, there is only one value for the moment.

This problem is more difficult to apply to the kinematically redundant manipulator. For a specified
force, there is an intermediate length that may provide a range of moments that is larger than that
obtained with the extreme lengths. This can be observed in Fig. 15. On the line between vertices 2
and 3, no moment is found to be possible when only the extreme lengths are used, but there is an
intermediate length that produces this moment.The same situation occurs when we consider the entire
region in which a specified force has an associated range of moments. It is therefore not possible to
obtain the exact solution based only on the extreme length combinations. This can be seen in Fig. 17.
The prescribed force was discretized from −20 to 20 N for both fx and fy in increments of 1 N and
the maximum value of the moment was computed at each point. For clarity, the minimum value of
the moment is not shown. The figure on the left used only the eight extreme lengths, while the one
on the right used the 216 combinations in which the lengths range from 0.15 to 0.25 m in increments
of 0.2 m. One can clearly see that some intermediate lengths produce moments that are larger than
those found using only the extreme lengths.

The plane of fx and fy was discretized between −75 and +75 N in both directions in increments
of 1 N. At each location, the minimum and maximum moments were computed. Figure 18 shows a

https://doi.org/10.1017/S0263574720001381 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001381


Wrench capabilities of a kinematically redundant PPM 1615

Fig. 18. Maximum moment for a prescribed force throughout the workspace.

surface of the maximum values when the intermediate lengths designated in the previous paragraph
are used. This provides an approximate solution of the maximum moment throughout the workspace.

6. Conclusions
This paper presented a methodology to obtain several wrench performances of a kinematically redun-
dant planar parallel manipulator using a wrench polytope approach. The latter had been previously
used to determine the explicit solution of the force capabilities for non-redundant planar parallel
manipulators18 and for planar parallel manipulators with actuation redundancy.22

As mentioned previously, only one other work found in the literature23 had proposed a solution
for a pure force analysis of a kinematically redundant planar parallel manipulator, but that work
used optimization. This paper presented a methodology that produces an explicit solution for the
same pure force analysis. The methodology was tested on the same problem to verify that the results
matched those of Weihmann et al..23 The procedure presented here is exact and, being explicit, very
efficient.

Contrary to the force polygons of non-redundant manipulators in which a line on the polygon
corresponds to one actuator being at its maximum capacity, some lines on the force polygon of kine-
matically redundant manipulators correspond to the case where two actuators are at their maximum
capacity.

Three other cases of wrench performance for a kinematically redundant manipulator were studied.
The proposed methodology also produces the exact solution for the maximum force with a prescribed
moment, and for the maximum reachable force. The solution for the maximum moment for a pre-
scribed force is approximate. The precision of this solution can be increased by including more
intermediate lengths. The method presented is very efficient compared to an optimization approach.
The latter three cases were analysed for the first time for a manipulator with kinematic redundancy.

An efficient method to obtain the force capabilities is very useful in a design context. The effect
of modifying design parameters such as the proximal link lengths, the range of the prismatic joints,
or the maximum torque capacities can be rapidly observed and the performance of the manipulator
can be improved to obtain desired results.
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