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SUMMARY
Design of balancing control and the stability analysis of
a biped during disturbed standing are investigated. A PD-
based switching state feedback control is used to stabilize
the biped at the upright position while satisfying the
constraints between the feet and the ground. The concept
of Lyapunov exponents is used for the stability analysis, and
a stability region is determined. Furthermore, the stability
region is compared and agrees well with the one from the
previous work that predicts the feasible movement during
which balance of human standing can be maintained. This
agreement shows the potential of the concept of Lyapunov
exponents to be used as a measure of balancing of human
standing. The work contributes to bipedal balancing control,
which is important in the development of bipedal robots.
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I. INTRODUCTION
The balancing control of disturbed bipedal standing is
important for preventing falls of humans and bipedal robots.
The controller should be designed for motion regulation
while satisfying the constraints between the feet and the
ground.1,2 Such a design task is extremely challenging.

Another challenge for balancing bipedal standing is the
lack of a single quantitative criterion and an effective tool for
stability analysis. Pai and Patton3 investigated the balancing
of human standing with the consideration of the constraints
between the feet and the ground. They determined the
feasible stability boundaries using the computer simulations
of movement termination with the aid of an optimization
routine. The limitation, from a viewpoint of stability, comes
from their definition of the stability, i.e. the center of mass of
the biped can be moved into a region between the heel and
the toe within a short time period and with a zero angular
velocity. However, the biped satisfying their stability criteria
may still fall from the upright position. Thus, the long-term
behavior of dynamical systems should be considered.

Lyapunov’s second method is a powerful method for
stability analysis (Wu et al.4), but due to the lack of a
constructive method, it is difficult to derive a Lyapunov
function for highly nonlinear bipedal systems. Sekhavat
et al.5 employed the concept of Lyapunov exponents to
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analyze the stability of nonlinear dynamical systems and
showed that the method is constructive and powerful.

The balancing control and stability analysis of a biped
during disturbed standing are studied here. The biped is sim-
plified as a two-dimensional inverted pendulum with one link
for both feet. The foot-link is in contact with the ground, but
is not fixed. A PD-based state switching feedback controller
is used to stabilize the biped to the upright position while
satisfying three constraints between the foot-link and the
ground, i.e. no lifting, no slippage, and the center of pressure
(COP) remaining within the contact region between the feet
and the ground. The stability of the control system is analyzed
using the concept of Lyapunov exponents and a stability
region is determined and compared with the previous work.3

II. METHOD
The simplified bipedal model is shown in Fig. 1. The
dynamic equations are developed using the Euler-Lagrangian
Equation and are shown below:

τ = mgr sin θ − (I + mr2)θ̈ (1a)

Fgx = mrθ̈ cos θ − mrθ̇2 sin θ (1b)

Fgy = (mf + m)g − mrθ̈ sin θ − mrθ̇2 cos θ (1c)

xcop = Lf − a − bFgx − τ + cmf g

Fgy

(1d)

Three constraints can be written as:

Fgy ≥ 0 (2a)

|Fgx | ≤ µFgy (2b)

0 ≤ xcop ≤ Lf (2c)

A PD-based switching state feedback control law is designed
to stabilize the biped at the upright position while keeping the
foot-link stationary. The controller considers each constraint,
shown in (2), and determines the control torque bounds. The
controller is shown as:

τ =

⎧⎪⎨
⎪⎩

τPD if τlower ≤ τPD ≤ τupper

τupper if τPD ≥ τupper

τlower if τPD ≤ τlower

(3)

where τPD = kpθ + kd θ̇ , τ upper and τ lower depend on the
state space, i.e. θ and θ̇ , which have been determined
from our previous work.1,2 The state space model of the

https://doi.org/10.1017/S0263574706002700 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002700


622 Bipedal robots

Fig. 1. Simplified bipedal model.

system is shown as:

ẋ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
x2

mgr sin x1 − τPD

I + mr2

if τlower ≤ τPD ≤ τupper

{
x2

mgr sin x1 − τupper

I + mr2

if τPD ≥ τupper

{
x2

mgr sin x1 − τlower

I + mr2

if τPD ≤ τlower

(4)

Lyapunov’s stability analysis investigates the long-term
behavior of motion under the influence of disturbance
in the initial states. Lyapunov exponents are the average
exponential rates of divergence or convergence of nearby
orbits in the state space, and can infer the system stability
(see Sekhavat et al.5 for detailed discussions). If the largest
Lyapunov exponent is convergent and negative, the dynamic
system is asymptotically stable about the equilibrium point,
which is the upright position. Note that the controller is
overall continuous, but the non-differentiable points occur
at the instants of switching, where the derivative of the
right-hand side of the state space model (4) does not exist.
Thus, linearization of the nonlinear equations at these points,
required by the calculation of Lyapunov exponents for
stability analysis, is addressed by resorting to the work of
Muller6 in which the conventional calculation procedure has
been extended to systems with non-differential points. The
non-standard finite difference scheme proposed by Mikens5

is used to suppress the numerical instabilities and to improve
calculation efficiency.

III. SIMULATION RESULTS
To demonstrate the importance of considering the constraints
between the feet and the ground for the control design, a
conventional PD control, designed without the consideration
of the constraints, is compared with our state-switching
controller. Figure 2a shows the angular displacements using
a conventional PD feedback controller and our PD-based
switching state feedback controller to stabilize the biped
from the initial states θ0 = 0 rad and θ̇0 = −0.6 rad/sec
to the upright position. Same control gains were used for
both controllers. From Fig. 2a, we can see that using the
conventional PD controller, the biped is stabilized to the
upright position within 0.5 second, while using our PD-based
switching state controller, the biped oscillates approximately
3 seconds, and then settles down at the upright position. It
is expected that the transient period from the switching state
control system is longer due to the control bounds determined
by the constraints. Figure 2b shows the control torques from
our PD-based switching state controller (the solid line), the
conventional PD controller (the dash line) and the control
bounds (dotted lines) satisfying the constraints. Figure 2b
shows that the control torque, determined from our switching
state feedback controller, is always within the control bounds,
indicating that the constraints between the foot-link and the
ground are satisfied. Together with the angular displacement
shown by the solid line in Fig. 2a, it can be concluded that our
PD-based switching state feedback controller can stabilize
the biped at the upright position meanwhile satisfying the
constraints shown in (2). Figure 2b also shows that the
control torque from the conventional PD controller is below
the lower bound of the control torque. This indicates that
if the foot-link is not fixed on the ground, the constraints,
shown in (2), will be violated, and stabilization of the biped
is out of the question. The numerical results, shown in Fig. 2,
indicate the importance to consider the constraints between
the foot-link and the ground when the balancing control law is
designed.

Two Lyapunov exponents for the control system, shown
in (4), were calculated. After 100 seconds, the largest
Lyapunov exponent converges to −9.47 and the second
Lyapunov exponent converges to −22.11. Thus, the control
system shown in (4) is exponentially stable about the
upright position. The stability region was determined based
on the largest Lyapunov exponent. We only considered
the biped leaning posteriorly, i.e. the angular displacement
ranged from 0

◦
to positive 63

◦
since leaning posteriorly

is considered more dangerous.3 The determined stability
region was compared with the previous work3 based on a
different stability definition. Both results are shown in Fig. 3.
The region surrounded by the solid curve represents the
stability region obtained in the previous work3 where neither
forward falls nor backward falls of a human subject would
be initiated. Dots are the initial states that convergent and
negative Lyapunov exponents were obtained. The region
surrounded by the dots is a stability region, i.e. the bipedal
model can be stabilized at the upright position with the
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Fig. 2. Simulation results using a conventional PD controller and the PD-based switching state feedback control (a) simulated angular
displacements (b) control torques.

foot-link remaining stationary. Stars are initial states such that
convergent Lyapunov exponents can not be obtained. In the
region outside the stars, convergent Lyapunov exponents can
not be obtained due to the violation of the constraints between
the foot-link and the ground. With the constraints violated,
the biped collapses, which terminates the calculation.

Although the stability criteria are significantly different,
Fig. 3 shows that both stability regions agree overall
reasonably well. Especially as the angular displacement
below 30

◦
and the angular velocity lower than 1 rad/s, the

stability region from our work is almost identical to the one

from the previous work.3 The definition of the stability used
in the previous work was based on the clinical observations on
balancing of human subjects and was intended to developing
a clinical tool to assess a person’s ability to maintain
standing posture. Such a definition only concerns the system
performance within a short time period, while Lyapunov
stability deals with long term dynamic behaviour. The
agreement between the stability regions suggests that the
two stability concepts are related and, to certain extent,
are equivalent. This indicates that the concept of Lyapunov
exponents has great potential to be used as a measure for
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Fig. 3. Stability regions determined based on two different stability
criteria.

assessing a person’s ability to maintain the upright posture
during standing.

IV. CONCLUSIONS
A PD-based switching state feedback controller was used to
stabilize the biped at the upright position, while satisfying
three constraints between the foot-link and the ground. It
shows that the consideration of constraints is imperative and
has significant impact on the control design. The stability
of the constrained control system was analyzed using the
concept of Lyapunov exponents and the stability region was

determined. It demonstrated that the concept of Lyapunov
exponents is a constructive and powerful tool for stability
of highly nonlinear systems. It is especially powerful in
determining stability regions, which is crucial information
for balancing control of bipedal movement. The stability
region, determined in this work, agrees well with the one
from previous work,3 which predicts the feasible movement
for balancing human standing. This agreement indicates that
the concept of Lyapunov exponents has great potential to
be used as a measure of balancing of human locomotion.
Although the bipedal model and proposed PD switching
state controller are simple, this work set up a framework for
developing more advanced balancing controllers for bipedal
standing using more realistic models.
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