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Abstract We say that a group G of local (maybe formal) biholomorphisms satisfies the uniform
intersection property if the intersection multiplicity (φ(V ),W ) takes only finitely many values as a
function of G for any choice of analytic sets V and W of complementary dimension. In dimension 2
we show that G satisfies the uniform intersection property if and only if it is finitely determined – that
is, if there exists a natural number k such that different elements of G have different Taylor expansions
of degree k at the origin. We also prove that G is finitely determined if and only if the action of G on
the space of germs of analytic curves has discrete orbits.
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1. Introduction

Consider a subgroup G of the group Diff (Cn,0) of local biholomorphisms defined in a

neighbourhood of the origin of Cn . We are interested in understanding the properties of

the action of G on the local intersection multiplicities (V ,W ) (at the origin), where V
and W are germs of analytic set of complementary dimension (see [13, Chapter 8] for
the definition of intersection multiplicity and [9, Chapter 2.6] for the case of plane curves

that is the most used in this paper). Given local complex analytic sets defined in a

neighbourhood of 0 in Cn , we study the behaviour of the function φ �→ (φ(V ),W ) defined
in G . This can be considered a proxy for the study of the dynamics of the group and its

mixing properties. More precisely, we want to identify the groups such that for any choice

of fixed V and W , the function φ �→ (φ(V ),W ) of G takes only finitely many values. We
say that such groups satisfy the uniform intersection (UI) property.

A motivation to study the UI property is provided by the following result from Shub

and Sullivan:

Theorem 1.1 ([23]). Let f : U → Rm be a C 1 map, where U is an open subset of

Rm . Suppose that 0 is an isolated fixed point of f n for every n ∈ N. Then the sequence
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1678 J. Ribón

(I (f n,0))n≥1 of fixed-point indexes is bounded from above by a constant that does not
depend on n.

The fixed-point index of f at the isolated fixed point 0 is the topological intersection

multiplicity of the diagonal � = {(x,x ) : x ∈ Rm } of Rm ×Rm with the graph �f =
{(x,f (x )) : x ∈ U } at (0,0) in Rm ×Rm (see [22, section 7.8]). This definition coincides with

the usual one as the degree of the map f (x )−x
|f (x )−x | : Sm−1(r) → Sm−1 for r > 0 small enough.

Consider the map F : Rm × U → Rm ×Rm defined by the formula F (x,y) = (x,f (y)).
Since �f n = Fn(�), the fixed-point index of f n at the origin is the topological intersection

multiplicity (�,Fn(�)) at (0,0) ∈ Rm ×Rm . Hence, Shub and Sullivan’s theorem can be

interpreted as a result of uniform intersection. As an application of Theorem 1.1, they
show that a C 1 automorphism f : M → M of a compact manifold M , whose sequence of

Lefschetz numbers (L(f n))n≥1 is unbounded, has infinitely many periodic points.

Theorem 1.1 inspired Arnold [4] to study the uniform intersection property for C∞ and

holomorphic maps, especially for diffeomorphisms. Arnold’s results were generalised by
Seigal and Yakovenko [21] and Binyamini [7]. The degree of regularity is much higher

than C 1, of course, but on the other hand the results can be applied to more general

classes of maps and groups.
This paper completes in dimension 2 the program, partially carried out in [4, 7, 19, 21],

of characterising the groups that satisfy the uniform intersection property (see Main

Theorem).
The paper is inserted into a classical subject, namely the local study of asymptotics of

topological complexity of intersections. The global case has been treated extensively in

the literature [1, 2, 3, 5] and the references therein. Moreover, there are more than 15

problems Arnold’s book devoted to asymptotics of topological complexity of intersections
in both the local and global settings [3]. For instance, several problems are devoted to

estimating the topological invariants of intersections of the form (φn(V ),W ) in terms of

n when φ is not necessarily a diffeomorphism (1988-8, 1990-20, 1992-12, 1994-49,...). Also
considered is the problem of estimating the growth of �Fix(f n) for smooth and analytic

diffeomorphisms of compact manifolds (1989-2, 1994-45).

Let us recap some results from the literature. In the context of subgroups of Diff (Cn,0)

(or its formal completion D̂iff (Cn,0)), with n ≥ 2, we have the following inclusions:

cyclic ⊂ finitely generated abelian ⊂ Lie = Fdim ⊂ UI ⊂ FD. (1)

Cyclic groups satisfy UI by a theorem of Arnold [4]. The result was generalised to
finitely generated abelian groups by Seigal and Yakovenko [21]. Binyamini showed UI for

subgroups of D̂iff (Cn,0) that can be embedded in a subgroup of D̂iff (Cn,0) with a natural

structure of finitely dimensional Lie group with finitely many connected components
[7]. Moreover, he showed that every finitely generated abelian group admits such an

embedding. The term Fdim stands for the set of subgroups of D̂iff (Cn,0) whose Zariski

closure has finite dimension; they satisfy UI by a theorem of the author [19]. These groups
are exactly the groups that can be embedded in Lie groups (with finitely many connected

components), but the use of intrinsic techniques allowed us to show, for instance, that

virtually polycyclic subgroups of D̂iff (Cn,0) (and in particular finitely generated nilpotent
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subgroups) hold the property UI. Very roughly speaking, in all previous cases the problem

is transferred to a finite-dimensional space where some finiteness result (the Skolem

theorem on zeroes of quasipolynomials [24], or Noetherianity arguments) is used.
The term FD in sequence (1) stands for finite determination; we say that G is finitely

determined if there exists k ∈ N such that every element of G is determined by the k
jet of its Taylor power-series expansion at the origin. This property has been studied by
Baouendi et al. [6]; in particular, they showed that a Lie group (with finitely many

connected components) of local analytic diffeomorphisms has the property of finite

determination. Moreover, it is easy to verify that UI groups are always finitely determined
for n ≥ 2 (Lemma 3.1).

Let us focus on the subsequence of inclusions Fdim ⊂ UI ⊂ FD. There are examples of

groups that satisfy UI but are not finite-dimensional. Consider the abelian subgroup

G := {(x,y + f (x )) : f ∈ C{x }, f (0) = 0}
of Diff (C2,0). Consider a finitely determined subgroup G of G that is nonfinite-
dimensional. For instance, we can consider the group generated by the diffeomorphisms

φj (x,y) = (x,y +dj x +x j+1) for j ∈N. If the set {d1,d2, · · · } is linearly independent over Q,

then the first jet of an element φ of G determines φ. Moreover, G is infinite-dimensional,
since the polynomials of the form dj x +x j+1 for j ∈N are linearly independent over C. G
satisfies UI. A complete proof is provided in Proposition 7.1, but in order to illustrate how

finite determination implies UI in this context, let us consider the intersection multiplicity

(φ{y = g(x )},{y = g(x )}) (2)

for a smooth curve y = g(x ). Given φ(x,y) = (x,y + f (x )), we have

φ{y = g(x )} = {y = f (x )+ g(x )}.
Thus expression (2) is equal to the vanishing order of f (x ) at x = 0 and hence it is

bounded by hypothesis whenever it is different than ∞. Analogously we have Fdim � UI

(see sequence (1)) in every dimension n ≥ 2.
What happens with the inclusion UI ⊂ FD? It is not difficult to find examples of

subgroups of Diff (Cn,0) that satisfy FD but not UI in dimension n ≥ 3 (Lemma 3.2).

The main result of this paper is the following theorem:

Main Theorem. Let G be a subgroup of D̂iff (C2,0). Then G satisfies the uniform

intersection property if and only if G satisfies the finite determination property.

This theorem characterises the groups of diffeomorphisms satisfying the uniform

intersection property in the two-dimensional case. It unifies and extends the previous
results in the literature, which showed that the following types of groups hold the uniform

intersection property: cyclic groups [4], finitely generated abelian groups [21], Lie groups

(with finitely many connected components) [7] and finitely generated virtually nilpotent
groups and virtually polycyclic groups [19]. The finite determination condition is the

culmination of the journey. It is much simpler than the previous best sufficient conditions

to guarantee the uniform intersection property, namely Lie and Fdim (equation (1)).
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In order to show the UI property, finite determination is the simplest necessary condition.
Surprisingly, it is also a sufficient condition.

We can characterise finitely determined subgroups of D̂iff (C2,0) in terms of their actions

on the space of curves.

Theorem 1.2. Let G be a subgroup of D̂iff (C2,0). Then G is finitely determined if and

only if the action of G on the topological space of formal irreducible curves has discrete

orbits.

We say that a formal irreducible curve γ (see Definition 2.3) satisfies the property
(UI)γ if its orbit is discrete (see Definition 4.4 for a description of the topology on the

space of curves). We remark that the G-orbit of γ is discrete if and only if the function

φ �→ (φ(γ ),γ ) (of G) takes finitely many values (Lemma 4.1).
The Main Theorem holds true in the C∞ setting, where we consider subgroups of

the group Diff∞(R2,0) of C∞ local diffeomorphisms (defined in a neighbourhood of the

origin of R2) and germs of C∞ subvarieties in the definition of the uniform intersection

property. Indeed, given an ideal I of the ring C∞
0 (Rn) of germs of C∞ functions, the

set Î consisting of the Taylor power-series expansions of its elements at 0 is an ideal of

the ring R[[x1, . . . ,xn ]] of formal power series. Given an ideal J of C∞
0 (Rn), we define the

intersection of I and J as the intersection of Î and Ĵ (see Definition 3.2). So we fall into
the setting of the Main Theorem by considering the Taylor series expansion at the origin

of diffeomorphisms and subvarieties. For instance, the Main Theorem implies that if G is

a finitely determined subgroup of Diff∞(R2,0) and α and β are germs of smooth curves,
then there exists M ∈ N such that if the order of contact between φ(α) and β is greater

than M and φ ∈ G , then φ(α) and β are infinitely tangent at 0.
The implication FD �⇒ UI is the difficult part of the proof of the Main Theorem. As

a first reduction, we show that the group G satisfies UI if and only if (UI)γ holds for any
irreducible curve γ (Proposition 4.2).

Since Fdim implies UI [19], we just need to consider groups that are nonfinite-

dimensional. In order to understand such groups we introduce two results of independent
interest about the properties of infinite-dimensional Lie subalgebras of the Lie algebra

X̂(C2,0) of formal vector fields. First, we provide a classification of infinite-dimensional

nilpotent Lie subalgebras of X̂(C2,0).

Theorem 1.3. Let g be a nilpotent subalgebra of X̂(C2,0). Then either g is finite-

dimensional as a complex vector space or there exists X ∈ g that has a first integral

in Ô2 \C such that

g ⊂ {fX : f ∈ Ô2 and X (f ) = 0}. (3)

In particular, if g is infinite-dimensional, then g is abelian.

It is useful to study infinite-dimensional nilpotent subgroups of D̂iff (C2,0) (and thus
infinite-dimensional nilpotent Lie subalgebras of X̂(C2,0)), since, for example, finitely

determined subgroups of diffeomorphisms tangent to the identity are nilpotent (see

Lemma 7.1).
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It is possible to reduce the proof of the Main Theorem to the case of solvable groups G .
Hence it is natural to work with the derived series of G and its Lie algebra. The next

theorem implies that the property of being infinite-dimensional is preserved along the

derived series:

Theorem 1.4. Let g be a Lie subalgebra of X̂(C2,0) such that dimC g = ∞. Then either

g is abelian or dimC g
′ = ∞.

Given a pair (G,γ ) consisting of a finitely determined subgroup of D̂iff (C2,0) and a

formal irreducible curve γ , we say that (J,γ ) is a reduction pair for G if J is a subgroup

of G and G satisfies (UI)γ if and only if J does. Fix an irreducible curve γ . It is possible

to show that there exists a reduction pair (J,γ ) for G such that one of the following
situations is true:

• γ is J -invariant;
• J is finite-dimensional;
• J is abelian.

The first case is trivial, since the function of J defined by φ �→ (φ(γ ),γ ) is constant and

equal to ∞. In the second case, J satisfies UI as a consequence of the inclusion Fdim ⊂UI

and more precisely of [19]. It remains to consider the case where J is abelian and infinite-
dimensional. Then J is a subgroup of the exponential exp(g) of an infinite-dimensional

abelian complex Lie algebra g of formal vector fields. Moreover, g has the special form

determined in Theorem 1.3, since dimC g = ∞. This situation was described already for
X = ∂

∂y . The proof of property UI can be reduced to the proof of such a case.

We consider several kinds of reductions (J,γ ) of a pair (G,γ ). One reduction consists

of replacing G with a finite index or suitable normal subgroup J . We can also reduce the

pair by replacing G with the subgroup J of elements of G whose linear parts preserve the
tangent direction 
 of γ at the origin. Furthermore, this reduction can be generalised by

considering iterated tangents (or infinitely near points) of the curve γ . It is then natural

to use desingularisation techniques (of curves and foliations) in the proof of the Main
Theorem to obtain simpler expressions for the pair (G,γ ).

2. Notation

Let us introduce some notation that will be useful in the paper.

2.1. Formal power series and curves

Definition 2.1. We denote by On (resp., Ôn) the local ring C{z1, · · · ,zn} (resp.,

C[[z1, · · · ,zn ]]) of convergent (resp., formal) power series with complex coefficients in n
variables. We denote by m the maximal ideal of Ôn . We define K̂n as the field of fractions
of Ôn .

Definition 2.2. Let f ∈ Ôn . We define the k -jet j k f as the polynomial Pk (z1, · · · ,zn) of
degree less or equal than k such that f −Pk ∈ mk+1.

Let us define formal curves for an ambient space of dimension 2.
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Definition 2.3. A formal curve is an ideal (f ) of Ô2, where f �= 0 belongs to the maximal

ideal of Ô2. We say that the curve is irreducible if f is an irreducible element of Ô2.

2.2. Formal diffeomorphisms and vector fields

Definition 2.4. We define the group of formal diffeomorphisms in n variables as

D̂iff (Cn,0) = {(φ1, · · · ,φn) ∈ m×. . . ×m : (j 1φ1, · · · ,j 1φn) ∈ GL(n,C)}.
The group operation is defined in such a way that the composition

(ρ1, · · · ,ρn) = (φ1, · · · ,φn)◦ (η1, · · · ,ηn)

satisfies j kρj = j k (j kφj ◦ (j kη1, · · · ,j kηn)) for all 1 ≤ j ≤ n and k ∈ N. The subgroup

Diff (Cn,0) = D̂iff (Cn,0)∩On
n is called the group of local biholomorphisms in n variables.

Remark 2.1. The group Diff (Cn,0) consists of germs of biholomorphisms by the inverse
function theorem.

Definition 2.5. Given φ = (φ1, · · · ,φn) ∈ D̂iff (Cn,0), we denote by j 1φ the linear part
at the origin (j 1φ1, · · · ,j 1φn) of φ. Given a subgroup G of D̂iff (Cn,0), we define j 1G as

the group {j 1φ : φ ∈ G} of linear parts of elements of G .

Definition 2.6. We denote by D̂iff u(Cn,0) the set of formal diffeomorphisms consisting
of elements φ = (φ1, · · · ,φn) such that j 1φ is a unipotent linear isomorphism – that is,

1 is its unique eigenvalue. We define the group of formal diffeomorphisms tangent to the

identity as

D̂iff 1(C
n,0) = {φ = (φ1, · · · ,φn) ∈ D̂iff (Cn,0) : j 1φ = Id}.

That is, it is the subgroup of D̂iff (Cn,0) of elements with identity linear part.

Definition 2.7. We define the Lie algebra of formal vector fields in n variables as

X̂(Cn,0) =
⎧⎨⎩

n∑
j=1

fj (z1, · · · ,zn)
∂

∂zj
: f1, · · · ,fn ∈ m

⎫⎬⎭ .

It can be interpreted as a derivation of the C-algebra m. If an element of X̂(Cn,0) satisfies
f1, · · · ,fn ∈On , we say that it is a (singular) holomorphic local vector field. We denote by

X(Cn,0) the set of holomorphic singular local vector fields.

Definition 2.8. Given X = ∑n
j=1 fj (z1, · · · ,zn) ∂

∂zj
∈ X̂(Cn,0), we say that X is nilpotent

if j 1X := ∑n
j=1 j 1fj (z1, · · · ,zn) ∂

∂zj
is a linear nilpotent vector field. Denote by X̂N (Cn,0)

the set of formal nilpotent vector fields.

2.3. The central and the derived series

Definition 2.9. Let H ,L be subgroups of G . We define [H ,L] as the group generated by

the commutators [h,l ] := hlh−1l−1 for h ∈ H , l ∈ L. We define the derived series

G (0) = G, G (1) = [G (0),G (0)], · · · , G (k+1) = [G (k),G (k)], · · ·
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of the group G . The group G (k) is called the kth derived group of G . The derived group

G (1) is also denoted by G ′.
We define by 
(G) = min({k ≥ 0 : G (k) = {Id}}∪ {∞}) the derived length of G . We say

that G is solvable if 
(G) < ∞.

Definition 2.10. We define the lower central series

C0G = G, C1G = [C0G,G ], · · · , Ck+1G = [CkG,G ], · · ·
of the group G . We say that G is nilpotent if there exists k ≥ 0 such that CkG = {Id}.
Moreover, min({k ≥ 0 : CkG = {Id}}∪ {∞}) is called the nilpotency class of G .

Definition 2.11. Given Lie subalgebras h, l of a Lie algebra g, we define [h,l] as the Lie

algebra generated by the Lie brackets [X ,Y ], where X ∈ h and Y ∈ l. We can define the

derived Lie algebra g′, the derived series (g(k))k≥0, the central lower series (Ckg)k≥0 and
nilpotent and solvable Lie algebras analogously as in Definitions 2.9 and 2.10.

3. Finite determination and uniform intersection

In this section we introduce the first connections between the finite determination

property and the uniform intersection property. In particular, we show that the latter

property implies the former in dimension n ≥ 2 but the reciprocal is not true for any
n ≥ 3. In particular, the analogue of the Main Theorem for n ≥ 3 does not hold true.

Definition 3.1. Given k ∈ N, we say that a subgroup G of D̂iff (Cn,0) is k -finitely
determined if {φ ∈ G : j kφ = Id} = {Id}. We say that G has the finite determination
property (FD) if it is k -finitely determined for some k ∈ N.

Remark 3.1. The elements of a k -finitely determined subgroup of D̂iff (Cn,0) are

determined by their k -jets.

Definition 3.2. The intersection multiplicity of ideals I and J of Ôn is defined as the
dimension of the complex vector space Ôn/(I ,J ).

Remark 3.2. Formal schemes are given by ideals of the ring Ôn . Definition 3.2 provides

an upper bound for the usual definition of intersection multiplicity of formal schemes (or
ideals) with their associated cycle structure (cf. [13, Proposition 8.2]). Moreover, both

definitions coincide if one of them is equal to ∞. Thus the uniform intersection property

with respect to Definition 3.2 implies UI for the usual definition of the intersection
multiplicity.

Definition 3.3. We say that a subgroup G of D̂iff (Cn,0) has the uniform intersection

property (UI) if for any pair α, β of formal schemes, the subset {(φ(α),β) : φ ∈ G} of
N∪{∞} is finite. Equivalently, given ideals I ,J of Ôn , the set {(φ∗(I ),J ) : φ ∈ G} is finite.
In other words, the intersection multiplicities between the shifts of α by the action of the

group and β (different from infinity) are uniformly bounded.
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Lemma 3.1. Let G be a subgroup of D̂iff (Cn,0) (n ≥ 2) that satisfies UI. Then it also

satisfies FD.

Proof. Suppose that G does not satisfy the finite determination property. Then there
exists a sequence (φk )k≥1 of elements in G \{Id} such that j kφk = Id for any k ∈N. Let N
be a germ of holomorphic manifold of dimension n −1. Up to considering a holomorphic

change of coordinates, we can suppose that N is a linear subspace of Cn . Given k ∈ N,
we define

Bk = {
 ∈ P(N ) : φk (
) ⊂ N },
where P(N ) is the set of lines in N through the origin – that is, the projective space of

N . The set Bk either is equal to P(N ) (and hence φk (N ) = N ) or is a closed nowhere
dense subset of P(N ). We claim that φk (N ) = N for some k ≥ k0(N ). Otherwise there

exists a line 
 contained in N such that φk (
) �⊂ N for every element k of some infinite

subset I of N , by the Baire category theorem. In particular, we have (φk (
),N ) �= ∞ for
any k ∈ I . The construction of the sequence (φk )k≥1 implies that limk→∞(φk (
),N ) = ∞
and hence {(φk (
),N ) : k ∈ I } is an infinite set, contradicting UI.

Given c ∈C, the submanifold Nc = {x1 −cx2 = 0} of Cn is invariant by φk for k ≥ k0(c),

by the previous discussion. We define

Am = {c ∈ C : φk (Nc) = Nc ∀k ≥ m}.
Since ∪m∈NAm = C, it follows that Am0 is uncountable for some m0 ∈ N. The equality of

ideals (x1 − cx2)◦φk = (x1 − cx2) implies

(x1 ◦φk )x2 −x1(x2 ◦φk ) = (uc,kx2 −x2 ◦φk )(x1 − cx2)

for all c ∈ Am0 and k ≥ m0, where uc,k = (x1−cx2)◦φk
x1−cx2

∈ Ôn is a unit. Since (x1 ◦φk )x2 −
x1(x2 ◦φk ) vanishes in uncountable many hypersurfaces, we get (x1 ◦φk )x2 −x1(x2 ◦φk ) =
0 and then x1

x2
◦ φk ≡ x1

x2
for any k ≥ m0. By proceeding analogously with the family

{x1 − cx 2
2 = 0}c∈C, we deduce that x1

x2
2

◦φk ≡ x1
x2
2
for every k ≥ m1. This implies x1 ◦φk = x1

and x2 ◦φk = x2 for every k ≥ max(m0,m1). By considering xj /xl and xj /x 2
l for 1 ≤ j < l ≤

n, we obtain k0 ∈ N such that xj ◦φk = xj for all 1 ≤ j ≤ n and k ≥ k0. Therefore, φk = Id

for any k ≥ k0, contradicting the choice of (φk )k≥1.

Lemma 3.2. Let n ≥ 3. There exists a subgroup G of Diff (Cn,0) that satisfies FD but

does not hold UI.

Proof. We denote

φj (x1,x2,x3, · · · ,xn) = (x1,x2 +dj x 2
1 +x j+2

3 ,x3, · · · ,xn) ∈ Diff (Cn,0)

for any j ∈ N, where {d1,d2, · · · } is linearly independent over Q. We define the group
G = 〈φ1,φ2, · · · 〉. It is clearly abelian. The condition of linear independence of {d1,d2, · · · }
implies that any diffeomorphism φ ∈ G that is not equal to the identity map has a

nonvanishing second jet. Therefore G satisfies FD.
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Denote α = {x1 = x2 = 0} and β = {x2 = x4 = ·· · = xn = 0}. We have

(φ−1
j (α),β) = dimC

On

(x1,x2 +dj x 2
1 +x j+2

3 ,x2,x4, · · · ,xn)

= dimC

On

(x1,x2,x
j+2
3 ,x4, · · · ,xn)

= j +2

for any j ∈ N. Thus G does not satisfy UI.

Remark 3.3. The group G defined in Lemma 3.2 is not finitely generated. This is

fundamental in the example, since finitely generated abelian subgroups of D̂iff (Cn,0)

satisfy UI [21].

Remark 3.4. The example in Lemma 3.2 illustrates a phenomenon that prevents the

Main Theorem from being true for higher dimensions. The Zariski closure of the G-orbit

of α can have intermediate dimension (greater than dim(α) and less than n). Indeed, in
the example, α is contained in the G-invariant analytic set {x1 = 0}, but the subgroup

{φ|{x1=0} : φ ∈ G} of Diff({x1 = 0},0) is not finitely determined.

4. Intersection properties of curves

In this section we will see that the UI condition in dimension 2 is a property of orbits of

curves. We will introduce some notation and techniques, mainly related to blowups, that
allow us to reduce the proof of the Main Theorem to more manageable cases.

Let G be a subgroup of D̂iff (C2,0). Given ideals I and J , the set {(φ∗(I ),J ) : φ ∈ G} is
bounded if

√
I (or

√
J ) contains the maximal ideal (x,y), since then (x,y)k ⊂ I for some

k ≥ 1, and it is clear that

dimC

Ô2

(φ∗(I ),J )
≤ dimC

Ô2

I
≤ dimC

Ô2

(x,y)k
= k(k −1)/2 < ∞

for any φ ∈ G . The case I = 0 or J = 0 is also simple, since dimC Ô2/(φ
∗(I ),J ) is constant

as a function of φ ∈ G . Hence we can suppose
√

I = (f ),
√

J = (g), where f = f1 · · · fj , g =
g1 · · ·gl and f1, · · · ,fj (resp., g1, · · · ,gl) are pairwise relatively prime irreducible elements of

Ô2. There exists k ∈N such that (f k ) ⊂ I ⊂ (f ) and (gk ) ⊂ J ⊂ (g). Given φ ∈ D̂iff (C2,0),

we obtain

dimC

Ô2

(φ∗(I ),J )
≤ dimC

Ô2

(f k ◦φ,gk )
≤ k2 dimC

Ô2

(f ◦φ,g)
=

k2
∑

1≤a≤j, 1≤b≤l

dimC

Ô2

(fa ◦φ,gb)
= k2

∑
1≤a≤j, 1≤b≤l

(φ−1(αa),βb),

where αa (resp., βb) is the formal irreducible curve of ideal (fa) (resp., (gb)). The previous
discussion leads to the first reduction of the setting of the problem.

Remark 4.1. Let G be a subgroup of D̂iff (C2,0). Then G satisfies UI if and only if,

given any pair of formal irreducible curves α and β, the set {(φ(α),β) : φ ∈ G} is finite.
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4.1. The action of a group on the space of curves

So far we have seen that it suffices to consider curves to check the uniform intersection

property for a group G . The main result in this subsection is Proposition 4.2, which

provides a stronger property: G satisfies UI if and only if all the orbits of formal irreducible

curves are discrete. We will define the natural topology in the space of curves. The orbit
of a formal irreducible curve γ is discrete if and only if {(φ(γ ),γ ) : φ ∈ G} is finite.
Let γ be a formal irreducible curve given by an ideal (f ), where f is an irreducible

element of Ô2. Denote γ0 = γ and p0 = (0,0) ∈ C2.

Definition 4.1. Let f ∈ Ô2. We denote by m0(f ) the multiplicity of f at the origin. It is
the integer number m ≥ 0 such that f ∈ (x,y)m \(x,y)m+1. Given a formal irreducible curve

γ given by an ideal (f ), we define the multiplicity of γ at the origin by m0(γ ) = m0(f ).

We say that γ is smooth if m0(γ ) = 1.

Definition 4.2. Let f be an irreducible element of Ô2 defining a formal irreducible
curve γ . There exists (a,b) ∈ C2 \ {(0,0)} such that

f − (ax + by)m0(γ ) ∈ (x,y)m0(γ )+1

(cf. [9, Corollary 2.2.6, p. 46]. The line 
 = {ax + by = 0} is the tangent direction of γ at

the origin.

Consider the blowup π1 : C̃2 → C2 of the origin of C2. Let p1(γ ) be the first infinitely

near point of γ – that is, the point in π−1
1 (p0) corresponding to the tangent direction


 of γ at the origin. Denote by γ1 the strict transform of γ . More precisely, suppose


 = {y = 0} and consider coordinates (x,t) in the first chart of the blowup of the origin.

Then π1(x,t) = (x,xt) is the expression of π1 in local coordinates. The formal irreducible
curve γ1 is equal to the prime ideal (f (x,xt)/xm0(γ )) of C[[x,t ]]. The point p1(γ ) has

coordinates (x,t) = (0,0). We denote X0 = C2 and X1 = C̃2. By repeating this process we

obtain a sequence of blowups

. . .
πm+2−→ Xm+1

πm+1−→ Xm
πm−→ . . .

π3−→ X2
π2−→ X1

π1−→ X0, (4)

where p0 = (0,0), γ0 = γ , πk+1 is the blowup of Xk at pk (γ ) and pk+1(γ ) is the point

in π−1
k+1(pk (γ )) corresponding to the tangent direction of γk at pk (γ ) for k ≥ 0. The

strict transform γk+1 of γk by the blowup πk+1 passes through the point pk+1(γ ) for any
k ≥ 0. Then (pk (γ ))k≥0 and (γk )k≥0 are the sequences of infinitely near points and strict

transforms of γ , respectively. We denote pk = pk (γ ) if γ is implicit.

Definition 4.3. Given k ≥ 1, we say that pk (γ ) is a trace point if it belongs to

exactly one irreducible component of (π1 ◦ . . . ◦ πk )−1(0,0). This property depends just
on p1(γ ), . . . ,pk (γ ).

The previous construction can be used to provide a natural topology in the space of

curves.

Definition 4.4. Given a finite sequence s = (pk )0≤k≤n (n ≥ 0) of infinitely near points,

we define the set Us consisting of the formal irreducible curves γ such that pk (γ ) = pk for
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any 0 ≤ k ≤ n. The sets of the form Us form the base of a topology on the set of formal
irreducible curves.

Remark 4.2. The space of formal irreducible curves can be interpreted as a subset of

the valuations of C[[x,y ]] that take values in R+ ∪{∞}. This space is a tree, and we just

considered the topology induced on the space of curves by any of the natural topologies
of the valuative tree (weak, strong, thin, Hausdorff–Zariski) [12].

Remark 4.3. The space of formal irreducible curves is not second-countable with the
topology in Definition 4.4. On the other hand, every formal irreducible curve has a

countable neighbourhood base, so it is first-countable and in particular a sequential space.

Definition 4.5. Given k ≥ 1, we denote by mk (γ ) the multiplicity of γk at pk .

Lemma 4.1. Let (αn)n≥1, (βn)n≥1 be sequences of formal irreducible curves. Suppose

that αn (resp., βn) is in the D̂iff (C2,0)-orbit of α1 (resp., β1) for any n ∈ N. Let γ be a
formal irreducible curve. Then

• limn→∞ αn = γ if and only if limn→∞(αn,γ ) = ∞;
• limn→∞(αn,γ ) = limn→∞(βn,γ ) = ∞ implies limn→∞(αn,βn ) = ∞.

Proof. Given formal irreducible curves α, β, we have

(α,β) = m0(α)m0(β)+
∞∑

k=1

mk (α)mk (β)δk, (5)

where δk = 1 if the first k infinitely near points of α and β coincide and δk = 0 otherwise

(cf. [14, Corollary 8.30]). The property limn→∞ αn = γ implies limn→∞(αn,γ ) = ∞ by

equation (5).
The sequences (mk (αn))k≥0 are decreasing and do not depend on n. Hence the property

limn→∞(αn,γ ) = ∞ implies limn→∞ αn = γ .

Suppose limn→∞(αn,γ ) = limn→∞(βn,γ ) = ∞. By the first part of the proof, αn and
βn share the first an infinitely near points, where limn→∞ an = ∞. As a consequence, we

obtain limn→∞(αn,βn) = ∞ by equation (5).

Remark 4.4. A subgroup G of D̂iff (C2,0) satisfies the uniform intersection property if
and only if every G-orbit of formal irreducible curves is discrete and closed by Lemma 4.1.

We can understand the uniform intersection property as a property of orbits of curves.

Proposition 4.1. Let G be a subgroup of D̂iff (C2,0). Let O = (φ(γ ))φ∈G be a G-orbit

of formal irreducible curves. Then

• O is discrete and hence closed or
• O is a Cantor set, meaning it is a closed set with no isolated points and has the

cardinality of the continuum.

Moreover, O is a completely metrisable space.

Proof. Let Fm be the closed subset of the space of formal irreducible curves whose

elements α satisfy the condition that pk (α) is a trace point for any k ≥ m. We can define
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an ultrametric d in Fm that induces the topology of Fm , namely d(α,β) = 0 if α = β

and d(α,β) = j−1 if α �= β, where j is the first natural number such that pj (α) �= pj (β).

Consider a Cauchy sequence (αn)n≥1 in Fm . There exists a sequence (pk )k≥0 of infinitely

near points such that given any k ≥ 0, there exists rk ∈ N such that pk = pk (αn) for
any n ≥ rk . Moreover, pk is a trace point for any k ≥ m. Since there are finitely many

nontrace points in (pk )k≥0, we deduce that there exists a formal irreducible curve β such

that pk (β) = pk for any k ≥ 0. The construction of β implies limn→∞ αn = β. Since every

Cauchy sequence converges, Fm is a complete metric space. Moreover, γ is contained in
some Fm for some m ∈N, by the properties of the resolution of singularities of plane curves

(see [25, Theorem 3.4.4]). Since O is the orbit of γ by a group of formal diffeomorphisms,

we get O ⊂ Fm and hence O ⊂ Fm . Finally, O is a closed subset of a complete metric
space and hence also a complete metric space.

Suppose that O is discrete. Let α ∈ O. There exists a sequence (φj )j≥1 in G
such that limj→∞ φj (γ ) = α, by Remark 4.3. We get limj→∞(φj (γ ),α) = ∞ by the
first property in Lemma 4.1. Moreover, the second property of Lemma 4.1 implies

limj→∞(φj (γ ),φj+1(γ )) = ∞. We deduce limj→∞((φ−1
j+1 ◦ φj )(γ ),γ ) = ∞ and then

limj→∞(φ−1
j+1 ◦ φj )(γ ) = γ . Since O is discrete, we obtain φj (γ ) = φj+1(γ ) for j ∈ N

sufficiently big. In particular, α belongs to O for any α ∈ O, and hence O is closed.
Suppose that O is nondiscrete from now on. We claim that O is a perfect set. Otherwise,

there exists an isolated point α in O. It is clear that α is also an isolated point of O.

Since any φ ∈ G induces a homeomorphism of O, and the action of G on O is transitive,
we deduce that all points of O are isolated, contradicting the supposition that O is

nondiscrete.

Sequences of infinitely near points can be identified with sequences of points in the

complex projective space CP1. Thus such a set has the cardinality of the continuum, as
does the set of formal irreducible curves. Since O is a perfect complete metric space, it

has at least the cardinality of the continuum [15, Theorem VII.2.14Ac]. Therefore O has

the cardinality of the continuum.

Corollary 4.1. Let G be a countable subgroup of D̂iff (C2,0). Then a G-orbit of formal

irreducible curves is closed if and only if it is discrete.

Definition 4.6. Let G be a subgroup of D̂iff (C2,0) and γ a formal curve. We say that

G satisfies the property (UI)γ if the G-orbit of γ is discrete – that is, if {(φ(γ ),γ ) : φ ∈ G}
is finite.

The following result is a corollary of Remark 4.4 and Proposition 4.1:

Proposition 4.2. Let G be a subgroup of D̂iff (C2,0). Then G satisfies the uniform

intersection property if and only if every G-orbit of formal irreducible curves is discrete.

Equivalently, G satisfies UI if and only if it satisfies (UI)γ for any formal irreducible
curve γ .

Remark 4.5. As a consequence of Proposition 4.2, the Main Theorem and Theorem 1.2

are equivalent. In practice, we are going to focus on the proof of the latter theorem from
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now on. This is particular to dimension 2, since it is not clear that UI can be interpreted
as a property of the orbits of subvarieties in higher dimension.

Next, we see that the uniform intersection property is invariant under finite extensions.

This result has a technical interest in the sequel.

Proposition 4.3. Let G be a subgroup of D̂iff (C2,0) and γ an irreducible formal curve.

Consider a finite-index subgroup H of G. Then G satisfies (UI)γ if and only if H does.

Proof. The sufficient condition is obvious. Suppose that H satisfies (UI)γ . Then the

H -orbit of γ is discrete and closed, by Proposition 4.1. Since the G-orbit of γ is a finite
union of discrete closed sets, it is discrete and closed.

The next result is a corollary of Propositions 4.2 and 4.3:

Corollary 4.2. Let G be a subgroup of D̂iff (C2,0). Let H be a finite-index subgroup

of G. Then G satisfies UI if and only if H satisfies UI.

Remark 4.6. It is straightforward to show that G satisfies UI if and only if a finite-index
subgroup H does for any dimension.

4.2. Reduction via blowup

In this section we will obtain further reductions, since we will get simpler expressions

for the elements of a subgroup G of D̂iff (C2,0) and a formal irreducible curve γ by

considering blowups of the infinitely near points of γ (Propositions 4.4, 4.5 and 4.6).
First we consider the problem of lifting vector fields and diffeomorphisms by the blowup

maps. We will use the notation of section 4.1.

Remark 4.7. Let γ be a formal irreducible curve. Let X ∈ X̂(C2,0). We can lift this vector

field to π−1
1 (0,0) as a transversally formal vector field. Moreover, if the tangent line 
 of

γ at (0,0) is j 1X -invariant, then X can be lifted to a formal vector field X 1 ∈ X̂(X1,p1).

Analogously, if pj is a singular point of X j for 1 ≤ j < k , we can lift X to a formal vector

field X k at pk . Moreover, X k belongs to X̂(Xk,pk ) if pk is a singular point of X k . In a
similar way, if 
 is j 1φ-invariant for φ ∈ D̂iff (C2,0), we can lift φ to an element τ1(φ) of

D̂iff(X1,p1) and so on.

Definition 4.7. Let G be a subgroup of D̂iff (C2,0). We define Gγ,k as the subgroup of

G whose elements φ satisfy the condition that φ(γ ) and γ share the first k infinitely near

points. We define Gγ = {φ ∈ G : φ(γ ) = γ }.
Every element φ of G induces an action in π−1

1 (p0) by a Möbius transformation. Indeed,
φ belongs to Gγ,1 if and only if p1 is a fixed point of such an action. Thus we can lift Gγ,1
to obtain a subgroup G̃γ,1 of D̂iff(C̃2,p1). Let τ1 : Gγ,1 → G̃γ,1 be the group isomorphism

sending every element of Gγ,1 to its lift in D̂iff(C̃2,p1). All elements of τ1(Gγ,k ) fix the
first k − 1 infinitely near points of γ1. By replacing Gγ .1 and γ with τ1(Gγ,2) and γ1,

respectively, we obtain a group G̃γ,2 of formal local diffeomorphisms in a neighbourhood

of the second infinitely near point p2 of γ and a group isomorphism τ2 : Gγ,2 → G̃γ,2.
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By repeating this construction with τk (Gγ .k+1) we obtain a group G̃γ,k+1 of formal local

diffeomorphisms and a group isomorphism τk+1 : Gγ,k+1 → G̃γ,k+1 for k ≥ 1.

Remark 4.8. Since (mk (φ(γ )))k≥0 does not depend on φ ∈ D̂iff (C2,0), the set {(φ(γ ),γ ) :
φ ∈ G \Gγ,k } is bounded for any k ∈ N by equation (5).

Next let us show that the properties FD and UI for subgroups of D̂iff (C2,0) are invariant

by blowup.

Proposition 4.4. Let G be a subgroup of D̂iff (C2,0). Suppose that all elements of j 1G
fix a direction 
. Then G has the finite determination property if and only if G̃
,1 has the
finite determination property.

Proof. Suppose 
 = {y = 0} without lack of generality. Suppose that G does not satisfy

FD. Then there exists a sequence (φk )k≥1 in G \ {Id} such that j kφk = Id for any k ∈ N.
Let φ̃k (x,t) = (ãk (x,t),b̃k (x,t)) be the lift of φk (x,y) = (ak (x,y),bk (x,y)) to G̃
,1. We have

φ̃k (x,t) =
(
ãk (x,t),b̃k (x,t)

)
=

(
ak (x,xt),

bk (x,xt)
ak (x,xt)

)
for k ∈N. We obtain j k ãk (x,xt) = x , j k−1b̃k (x,t) = t and φ̃k �≡ Id for any k ∈N. Therefore,

G̃
,1 does not satisfy FD.

Suppose that G̃
,1 does not satisfy FD. There exists a sequence (φk )k≥1 in G \{Id} such
that φk �= Id and j k φ̃k ≡ Id for any k ∈ N. Since we have

φk (x,y) =
(
ãk

(
x,

y
x

)
,ãk b̃k

(
x,

y
x

))
,

we obtain j [ k+1
2 ]−1ak = x and j [ k+2

2 ]−1bk = y . Thus G does not hold FD.

Proposition 4.5. Let G be a subgroup of D̂iff (C2,0). Consider a formal irreducible curve

γ and 1 ≤ j ≤ k . Then G satisfies (UI)γ if and only if τj (Gγ,k ) satisfies (UI)γj .

Proof. Fix k ≥ 1. The group G satisfies (UI)γ if and only if Gγ,k does, by Remark 4.8.

Equation (5) implies

(φ(γ ),γ ) = m0(γ )2 + (τ1(φ)(γ1),γ1)

for any φ ∈ Gγ,1. Thus G satisfies (UI)γ if and only if τ1(Gγ,k ) satisfies (UI)γ1 . By iterating

the previous argument, we obtain that, given 1 ≤ j ≤ k , G satisfies (UI)γ if and only if

τj (Gγ,k ) satisfies (UI)γj .

Next we see that blowups can be used to reduce the proof of the property (UI)γ to

simpler settings.

Definition 4.8. Let G be a finitely determined subgroup of D̂iff (C2,0) and γ be a
formal smooth curve. We say that the pair (G,γ ) is tame if there exists a formal smooth

curve α transverse to γ that is G-invariant and the tangent direction of γ at (0,0) is

j 1G-invariant.
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Tame pairs are easier to handle. Indeed, j 1G is diagonalisable and thus G ′ is contained
in D̂iff 1(C

2,0). Since an FD subgroup of D̂iff 1(C
n,0) is nilpotent (Lemma 7.1), it follows

that G is solvable. This allows us to use the properties of solvable subgroups of D̂iff (C2,0)

and solvable Lie subalgebras of X̂(C2,0) in the next section to prove the Main Theorem.

Proposition 4.6. Suppose that for any tame pair (G,γ ), G satisfies the property (UI)γ .

Then any finitely determined subgroup of D̂iff (C2,0) satisfies UI.

Proof. Consider a finitely determined subgroup G of D̂iff (C2,0) and a formal irreducible

curve γ . It suffices to prove (UI)γ , by Proposition 4.2.
By the resolution of singularities of plane curves (see [25, Theorem 3.4.4]), we can

suppose, up to making k blowups following infinitely near points of γ for k ∈N sufficiently

big, that γk is smooth, that there exists a unique irreducible component of D := (π1 ◦. . . ◦
πk )−1(0,0) (see equation (4)) containing the point pk (γ ) and that γk and D are transverse
at pk (γ ). Moreover, the germ of D at pk (γ ) is τk (Gγ,k+1)-invariant. By replacing G
with Gγ,k+1 and applying Proposition 4.4 k times, we obtain that τk (Gγ,k+1) is finitely

determined. Moreover, (τk (Gγ,k+1),γk ) is tame by construction. By hypothesis, τk (Gγ,k+1)

satisfies (UI)γk . We deduce that G satisfies (UI)γ by Proposition 4.5.

5. Lie algebras of formal vector fields

One of the ingredients in the proof of the Main Theorem is the classification of nilpotent

and solvable Lie subalgebras of X̂(C2,0) [16]. The main idea of this section is that an
infinite-dimensional nilpotent (or solvable) Lie subalgebra of X̂(C2,0) has a high degree

of symmetry and very particular properties. Our next goal is to prove Theorem 1.3; let

us introduce the setting of the proof.

Remark 5.1. The properties of the subfields of K̂2 of first integrals of solvable Lie
subalgebras of X̂(C2,0) are fundamental to classifying them [16]. Let X ∈ X̂(C2,0) \ {0}.
We denote M = {f ∈ K̂2 : X (f ) = 0}. We have the following:

• If M∩ Ô2 �= C, then any element g of M satisfies either g ∈ Ô2 or 1/g ∈ Ô2.
Moreover, M∩ Ô2 is equal to C[[f0]] for some f0 ∈ M∩m.

• If M∩Ô2 =C but M∩K̂2 �=C, then we get M=C(f0) for some f0 ∈M∩(K̂2 \C).

The previous results were proved by Mattei and Moussu [18] and Cerveau and Mattei
[10], respectively, for the case X ∈ X(C2,0). They can be easily adapted for formal vector

fields (cf. [20, Proposition 5.1]).

The next lemma provides a hint of how the existence of first integrals has an influence

on whether or not a Lie subalgebra of X̂(C2,0) is finite-dimensional.

Lemma 5.1. Let X ∈ X̂(C2,0) \ {0} have no first integral in Ô2 \C. Then the complex

vector space

g := {fX : f ∈ K̂2, X (f ) = 0 and fX ∈ X̂(C2,0)}
is finite-dimensional.
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Proof. Denote M = {f ∈ K̂2 : X (f ) = 0}. We can suppose that X has nonconstant first

integrals, since otherwise dimC g= 1. Hence we have M=C(f0), where f0 �∈ Ô2 and 1/f0 �∈
Ô2 by Remark 5.1.
The formal vector field X is of the form gX ′, where the coefficients of X ′ do not have

a common factor in Ô2. It suffices to show dimCV < ∞, where

V =
{
f ∈ Ô2 : X

(
f
g

)
= 0

}
.

Consider the map

V �→ j k Ô2
f �→ j k f .

Let us show Ker(�) = {0} if k >> 1. In this way we obtain dimCV ≤ dimC j k Ô2 < ∞.
Since every irreducible component of f0 = c for any c ∈ C is X -invariant, there are

infinitely many X -invariant formal irreducible curves. Therefore there exists a dicritic

divisor D in the desingularisation of the dual form ω of X (ω(X ) = 0) – that is, D is not

an invariant curve for the “formal foliation” defined by the strict transform of ω. The
function g vanishes along D with order m for some m ∈ N. Consider k > m. Any element

f of Ker(�) vanishes along D with order at least m +1, and then f /g vanishes along D .

Since D is dicritic and X (f /g) = 0, it follows that f /g = 0 and then f = 0.

Proof.[Proof of Theorem 1.3] Suppose dimK̂2
(g⊗C K̂2) = 2. Consider an element X of

Ckg\ {0}, where k +1 ≥ 1 is the nilpotency class of g; it belongs to the centre of g. Let Y
be an element of g that is not of the form hX for some h ∈ K̂2. The elements of g are of

the form

gX +hY ,

where g,h ∈ K̂2. Since X is in the centre of g, we get [X ,Y ] = 0 and then [X ,gX +hY ] =
X (g)X +X (h)Y = 0. We deduce X (g) = X (h) = 0 for any gX +hY ∈ g. The property

[Y , · · · ,[Y ,gX +hY ]]︸ ︷︷ ︸
m times

= Y m(g)X +Y m(h)Y (6)

and Ck+1g= {0} imply Y k+1(g) = Y k+1(h) = 0 for any gX +hY ∈ g. Consider the complex

vector space

Vj := {g ∈ K̂2 : X (g) = 0 and Y j (g) = 0}
for j ∈ N. We have shown that an element gX + hY of g satisfies g,h ∈ Vk+1. We have

V1 = C. The linear map

Vj+1
�j→ Vj

g �→ Y (g)

is well defined, since X (Y (g)) = Y (X (g)) = Y (0) = 0 and Y j (Y (g)) = 0 for any g ∈ Vj+1.

The kernel of �j coincides with V1 and hence dimCVj+1 ≤ dimCV1 +dimCVj . We obtain
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dimCVj ≤ j for any j ∈ N by induction on j . Since dimC g ≤ 2dimVk+1 ≤ 2k +2, the Lie
algebra g is finite-dimensional.

Suppose now dimK̂2
(g⊗C K̂2) = 1 and dimC g = ∞. Let X be a nonvanishing element

of the centre of g. Every element Z of g is of the form fX , where f ∈ K̂2 and satisfies

[X ,fX ] = X (f )X = 0. We deduce

g ⊂ {fX : f ∈ K̂2 and X (f ) = 0}.
In particular, g is an abelian Lie algebra. Then X has a first integral in Ô2 \C by

Lemma 5.1. In particular, every first integral h of X in K̂2 satisfies either h ∈ Ô2 or

1/h ∈ Ô2, by Remark 5.1. Replacing X = a(x,y)∂/∂x + b(x,y)∂/∂x if necessary with an
element in g whose multiplicity min(m0(a),m0(b)) at the origin is minimal, every element

of g is of the form (g/h)X , where g,h ∈ Ô2 and m0(g) ≥ m0(h). Since g/h is a first

integral of X and either g/h or h/g belongs to Ô2, it follows that g/h ∈ Ô2. Hence we
obtain property (3).

Next we consider general Lie subalgebras of X̂(C2,0).

Proof.[Proof of Theorem 1.4] Suppose dimC g
′ < ∞. Our goal is to show that g is abelian.

Let {Y1, · · · ,Yp} be a basis of g′. Denote by h the kernel of the linear map

g → (g′)p
Z �→ ([Z,Y1], · · · ,[Z,Yp ]).

It satisfies h = {Z ∈ g : [Z,Y ] = 0 ∀Y ∈ g′}. Moreover, h is an ideal of g by Jacobi’s
formula. Since (g′)p is finite-dimensional, we obtain dimC g/h < ∞. It is clear that h is

nilpotent, and since dimC h = ∞, it follows that h is abelian by Theorem 1.3. Consider

{Z1, · · · ,Zq} ⊂ g such that {Z1 +h, · · · ,Zq +h} is a basis of g/h. Denote by j the kernel of
the linear map

h → (g′)q
Z �→ ([Z,Z1], · · · ,[Z,Zq ]).

The vector space j satisfies dimC h/j < ∞. It is clearly contained in the centre Z (g) of
g, and hence dimC g/Z (g) < ∞ and dimCZ (g) = ∞. Since Z (g) is abelian and infinite-

dimensional, Theorem 1.3 implies the existence of nontrivial elements X and fX of Z (g)

such that X (f ) = 0 and f ∈ Ô2 \C. Given Z ∈ g, we have [Z,X ] = 0 and [Z,fX ] = Z (f )X =
0. Thus f is a first integral of Z , and hence Z is of the form gX , where g ∈ K̂2. Since

0 = [X ,gX ] = X (g)X for any gX ∈ g, we deduce that g is abelian.

6. Algebraic properties of groups of local biholomorphisms

We need to relate the properties of a subgroup G of D̂iff (C2,0) with the properties of
its Lie algebra of formal vector fields. In this section we explain how to define such Lie

algebras and the properties of the Lie correspondence. The definitions and results were

introduced in [16, 20] and are included here for the sake of simplicity.
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6.1. Finite-dimensional groups of formal diffeomorphisms

Given a subgroup G of D̂iff (Cn,0), we can define its Zariski closure G (cf. Definition 6.2),

which is a subgroup of D̂iff (Cn,0) that can be interpreted as a projective limit of

linear algebraic groups. As a consequence, there is a natural definition of dim(G) (cf.

Definition 6.1), and we just define dim(G) = dim(G).
One of the major points in the proof of the Main Theorem is that the next result allows

us to reduce our study to infinite-dimensional groups:

Theorem 6.1 ([19, Theorem 1.5]). Let G be a finite-dimensional subgroup of D̂iff (Cn,0).

Then G satisfies UI.

Let us provide a rough idea of the proof of Theorem 6.1. Fix two ideals I and J of On .

The condition (φ∗I ,J ) > m is equivalent to a system of polynomial equations on the

coefficients of jmφ. A finite-dimensional subgroup G satisfies the condition that there

exists k such that G is k -finitely determined and the map j kφ �→ j lφ defined in j kG is
a regular map for every l ≥ k [19, Remark 3.4]. Thus the condition (φ∗I ,J ) > m defines

an increasing sequence (Im)m≥k of ideals in a polynomial ring C[w1, . . . ,wp ], where the

variables represent coefficients of degree less than or equal to k of elements of D̂iff (Cn,0).
Noetherianity implies that these ideals stabilise, and hence there exists m0 ∈ N such that

φ ∈ G and (φ∗I ,J ) > m0 implies (φ∗I ,J ) = ∞.

6.2. Zariski closure of a group of formal diffeomorphisms

Given φ ∈ D̂iff (Cn,0), we can interpret φ as a family (φk )k≥1 of linear maps. More

precisely, φk is the element of GL(m/mk+1) defined by

m/mk+1 φk→ m/mk+1

f +mk+1 �→ f ◦φ +m/mk+1.

We define πk : D̂iff (Cn,0) → Dk by the formula πk (φ) = φk , where

Dk := {A ∈ GL(m/mk+1) : A(fg) = A(f )A(g) ∀f ,g ∈ m/mk+1}.
Notice that Dk is the group of isomorphisms of the C-algebra m/mk+1. It is an algebraic

subgroup of GL(m/mk+1), since the equation A(fg) = A(f )A(g) is algebraic in the

coefficients of the matrix A. We have Dk = {φk : φ ∈ D̂iff (Cn,0)} [20, Lemma 2.1].
We have a natural map πk,l : Dk → Dl for k ≥ l defined by πk,l (φk ) = φl . The projective

limit lim←−k∈NDk is called a group of formal diffeomorphisms. Given f ∈ m, then (φk (f +
mk+1))k≥1 belongs to lim←−k∈Nm/mk+1. We can interpret (φk (f +mk+1))k≥1 as an element

of m, since m and lim←−k∈Nm/mk+1 are naturally identified. Moreover, the map

lim←−k∈NDk → D̂iff (Cn,0)

(φk )k≥1 �→ ((φk (z1 +mk+1))k≥1, · · · ,(φk (zn +mk+1))k≥1)

is an anti-isomorphism of groups [20, Lemma 2.2].

We define Gk as the Zariski closure of πk (G) in the linear algebraic group Dk . From

the surjective nature of πk,l : πk (G) → πl (G), it is possible to deduce that πk,l : Gk → Gl
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is a well-defined and surjective morphism of algebraic groups for all k ≥ l ≥ 1 [20, Lemma

2.5]. The sequence (dimGk )k≥1 is increasing [19, Lemma 3.1]. Thus we can establish the

following definitions:

Definition 6.1. Let G be a subgroup of D̂iff (Cn,0). We define dimG = limk→∞ dimGk ∈
Z≥0 ∪{∞}. We say that G is finite-dimensional if dimG < ∞.

Definition 6.2 ([16]). Let G be a subgroup of D̂iff (Cn,0). We define the Zariski closure

(or the pro-algebraic closure) G of G as the group lim←−k∈NGk . Indeed, we have

G = {φ ∈ D̂iff (Cn,0) : φk ∈ Gk ∀k ∈ N}.
We say that G is pro-algebraic if G = G .

Definition 6.3. Let G be a subgroup of D̂iff (Cn,0). The closure of G in the Krull

topology (m-adic topology) is the subgroup of D̂iff (Cn,0) consisting of the elements φ of
D̂iff (Cn,0) such that there exists η(k) ∈ G satisfying j kφ = j kη(k) for any k ∈ N.

Remark 6.1. G is closed in the Krull topology.

6.3. The Lie correspondence

We denote by Lk the Lie algebra of derivations of the C-algebra m/mk+1. Let X ∈ X̂(Cn,0).
The map Xk defined by

m/mk+1 Xk→ m/mk+1

f +mk+1 �→ X (f )+m/mk+1

belongs to Lk . The Lie algebra X̂(Cn,0) can be identified with lim←−k∈NLk , analogously to

how D̂iff (Cn,0) is identified with lim←−Dk . Moreover, Lk is the Lie algebra of Dk for any

k ∈ N. Given X = (Xk )k≥1 ∈ lim←−Lk , we can define exp(X ) = (exp(Xk ))k≥1 ∈ lim←−Dk . The

previous definition implies

f ◦ exp(X ) =
∞∑

k=0

X k (f )

k !
,

where X 0(f ) = f and X k+1(f ) = X (X k (f )) for k ≥ 0. In particular, we obtain

exp(X )(z1, · · · ,zn) =
( ∞∑

k=0

X k (z1)
k !

, · · · ,
∞∑

k=0

X k (zn)

k !

)
.

Given a subgroup G of D̂iff (Cn,0), we define the Lie algebra of G (or G) as the Lie

algebra lim←−k∈N gk , where gk is the Lie algebra of Gk . It is clearly closed in the Krull

topology (the definition is analogous to Definition 6.3). The Lie algebra g of G satisfies

g = {X ∈ X̂(Cn,0) : exp(tX ) ∈ G ∀t ∈ C} (7)

(cf. [16, Proposition 2]). We define the connected component of identity G0 = lim←−k∈NGk,0,

where Gk,0 is the connected component of Id of Gk .
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Proposition 6.1 ([16, Proposition 2], [20, Proposition 2.3, Remark 2.9]). Let G be a

subgroup of D̂iff (Cn,0). Then G0 is a finite-index normal pro-algebraic subgroup of G
generated by exp(g). Moreover, if G consists of unipotent formal diffeomorphisms, then
exp : g → G is a bijection and g consists of formal nilpotent vector fields.

Remark 6.2 (cf. [11, 17]). The exponential provides a bijection between X̂N (Cn,0) and
D̂iff u(Cn,0).

Remark 6.3 ([19]). A subgroup G of D̂iff (Cn,0) is finite-dimensional if and only if its

Lie algebra g is finite-dimensional.

Definition 6.4. Given φ ∈ D̂iff u(Cn,0), we denote by logφ the unique formal nilpotent

vector field such that φ = exp(logφ). It is called the infinitesimal generator of φ.

Remark 6.4. We have 〈φ〉 = {exp(t logφ) : t ∈ C} for any φ ∈ D̂iff u(C2,0) [20, Remark

2.11]. In particular, if φ is a unipotent element of a subgroup G of D̂iff (Cn,0), then the
formal vector field logφ belongs to the Lie algebra g of G as a consequence of 〈φ〉 ⊂ G .

Remark 6.5. Let φ ∈ D̂iff u(C2,0). Consider a formal irreducible curve γ . Then γ is φ-
invariant if and only if is logφ-invariant. The necessary condition is obvious. Let us show

the sufficient condition. The group Hγ = {η ∈ D̂iff (Cn,0) : η(γ ) = γ } is pro-algebraic [20,

Remark 2.8]. Thus 〈φ〉 = {exp(t logφ) : t ∈C} is contained in Hγ . Since the one parameter
flow of logφ preserves γ , it follows that γ is logφ-invariant.

Instead of the derived series of groups of formal diffeomorphisms and Lie algebras of
formal vector fields, it is more natural to consider its projective versions. More precisely,

we define

G
(k) = {φ ∈ D̂iff (Cn,0) : φj ∈ G (k)

j ∀j ∈ N},

g
(k) = {X ∈ X̂(Cn,0) : Xj ∈ g

(k)
j ∀j ∈ N}

and

Ck
G = {φ ∈ D̂iff (Cn,0) : φj ∈ CkGj ∀j ∈ N},

Ck
g = {X ∈ X̂(Cn,0) : Xj ∈ Ckgj ∀j ∈ N}

for k ≥ 0. We have G
(0) = C0

G = G and g
(0) = C0

g = g.

Remark 6.6 ([16, Lemmas 5 and 6], [20, Proposition 2.8]). The group G
(k)

is pro-
algebraic and is equal to the closure of (G)(k) in the Krull topology for any k ∈ N.

Analogously, g(k) is the closure in the Krull topology of g(k) for any k ∈ N.

The Lie correspondence is well behaved for the derivation.

Proposition 6.2 ([16, Proposition 3]). Let G be a subgroup of D̂iff (Cn,0) that is

connected – that is, G = G0. Then g
(k) is the Lie algebra of G

(k)
and Ck

g is the Lie

algebra of Ck
G for any k ≥ 0.
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Remark 6.7. Since

πk (G (j )) = (πk (G))(j ) = G (j )
k and πk (CjG) = Cjπk (G) = CjGk

for j ≥ 0 and k ≥ 1 (cf. [8, Corollary 1, p. 60]), the Zariski closure G (j ) of G (j ) is equal

to G
(j )

and CjG = Cj
G for j ≥ 0. In particular, G is abelian (resp., nilpotent, solvable)

if and only if G is abelian (resp., nilpotent, solvable). Proposition 6.2 implies that if G
is abelian (resp., nilpotent, solvable), then g is abelian (resp., nilpotent, solvable). The

reciprocal also holds if G = G0.

7. Proof of the Main Theorem

In this section we show that FD implies UI in dimension 2. We start by showing the result

for nilpotent groups (Proposition 7.1), and then we proceed with the general case.

Proposition 7.1. Let G be an FD nilpotent subgroup of D̂iff (C2,0). Then G satisfies
UI.

Proof. Consider a formal irreducible curve γ . Let us show that G satisfies (UI)γ . By

Propositions 4.4 and 4.5 we can suppose that γ is smooth up to replacing γ and G
with γj and τj (Gγ,j ), respectively, for some j ≥ 1 (see Definition 4.7 and the discussion
afterward).

We can suppose that G is infinite-dimensional by Theorem 6.1. Hence the Lie algebra

g of G is infinite-dimensional and nilpotent, by Remarks 6.3 and 6.7. We deduce that g
is abelian and such that

g ⊂ {gX : g ∈ Ô2 and X (g) = 0}
for some X ∈ g \ {0} that has a first integral in Ô2 \C by Theorem 1.3. The group G0
is generated by exp(g) (Proposition 6.1), and since g is abelian, G0 is abelian and G0 =
exp(g).
Suppose that γ is X -invariant. Then it is g-invariant and we obtain φ(γ ) = γ for any

φ ∈ G0. Since G0 is a finite-index subgroup of G by Proposition 6.1, the G-orbit of γ is

finite and both G and G satisfy (UI)γ . Thus we suppose that γ is not X -invariant from
now on.

Let (pk )k≥1 be the sequence of infinitely near points of γ (see section 4.2). Consider

the lift X k of X at pk for k ≥ 0 (see Remark 4.7). Since γ is not X -invariant, there exists
a ≥ 1 such that pa is the first infinitely near point of γ satisfying the condition that X a

is nonsingular at pa . Moreover, X a preserves the irreducible components of the divisor

(π1 ◦. . . ◦πa)−1(0,0) of the blowup process passing through pa (cf. section 4.2). Since X a

is nonsingular at pa , there is a unique such component D . Moreover, since γ is smooth,
γa is transverse to D at pa . Hence there exists a formal coordinate system (x,y) centred

at pa such that X a = ∂
∂y , D = {x = 0} and γa = {y = 0}.

We denote J = Gγ,a (see Definition 4.7) and H = J ∩J 0. Let h be the Lie algebra of

J . The inclusion J ⊂ G implies h ⊂ g, and in particular h is abelian. As a consequence

of the characterisation of h given by equation (7), pj is a singular point of (gX )j for all

gX ∈ h and 0 ≤ j ≤ a. Since pj is a singular point of X j , it is also singular for the lift of
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any element of g at pj for every 0 ≤ j < a. The lift (gX )a of gX ∈ g is singular at a if and

only if g belongs to the maximal ideal m of Ô2. The previous discussion implies

h ⊂ {gX ∈ g : g ∈ Ô2 ∩m}.
Since J 0 is a finite-index normal subgroup of J , H is a finite-index normal subgroup
of J . The Zariski closure H of H is a finite-index normal subgroup of J [19, Lemma

2.4]. A finite-index subgroup of J always contains J 0 [19, Lemma 2.1]. Since J 0 is pro-

algebraic by Proposition 6.1, we obtain J 0 ⊂ H ⊂ J 0 and then H = J 0. In particular, we

deduce H = H 0. The property H = J 0 implies that the group H is generated by exp(h)

(Proposition 6.1). Since h is abelian, the groups H and H are abelian, H = exp(h) and in

particular H ⊂ exp(h). Thus any φ ∈ τa(H ) is of the form

φ(x,y) = exp

(
f (x )

∂

∂y

)
= (x,y + f (x )), (8)

where f (x ) ∈ C[[x ]]∩ (x ), and we obtain (φ(γa),γa) = m0(f ). Since τa(H ) satisfies FD by

Proposition 4.4, we deduce that τa(H ) satisfies (UI )γa . Therefore H satisfies (UI )γ
by Proposition 4.5. Since H is a finite-index subgroup of J , the group J satisfies (UI )γ by

Proposition 4.3. Finally, G satisfies (UI )γ by Remark 4.8.

Remark 7.1. The orbit of a formal curve by a finitely determined subgroup of D̂iff (Cn,0)

is not necessarily discrete for n ≥ 3. Notice that even if we suppose that G is abelian and

the Lie algebra is of the type in Theorem 1.3, the analogue of equation (8) does not

guarantee that the orbit of a curve is discrete. A major problem is that the orbit of the
curve can be nontranscendental (see also Remark 3.4). An example is given by the group

G in Lemma 3.2 for n = 3. It is generated by elements of the form

φ(x1,x2,x3) = (x1,x2 +dj x 2
1 +x j+2

3 ,x3) = exp

(
(dj x 2

1 +x j+2
3 )

∂

∂x2

)
,

and the orbit of the x3-axis is nondiscrete and nontranscendental (it is contained in

{x1 = 0}). This makes possible the existence of first integrals dj x 2
1 +x j+2

3 of the Lie algebra

whose vanishing multiplicity is equal to 2, but the restriction to the x3-axis has vanishing
multiplicity equal to j +2.

Lemma 7.1. Let G be an FD subgroup of D̂iff 1(C
n,0). Then G is nilpotent.

Proof. Let φ,η ∈ G such that j kφ = Id. We have

j k+1(φ−1 ◦η−1) = j k+1η−1 − (j k+1φ − Id)

and hence

j k+1(η ◦φ−1 ◦η−1)− Id = −(j k+1φ − Id).

Since [φ,η] = φ ◦ (η ◦φ−1 ◦η−1), we deduce

j k+1[φ,η]− Id = (j k+1φ − Id)− (j k+1φ − Id) = 0 �⇒ j k+1[φ,η] = Id.
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As a consequence, CkG is contained in {φ ∈ G : j k+1φ = Id}. Since G is FD, the latter

group is trivial for k >> 1 and hence G is nilpotent.

The following result is an immediate corollary of Proposition 7.1 and
Lemma 7.1:

Corollary 7.1. Let G be an FD subgroup of D̂iff 1(C
2,0). Then G satisfies UI.

Proof of the Main Theorem. The property UI implies the finite determination property

by Lemma 3.1.
Let us show the necessary condition. It suffices to show the property (UI)γ for a tame

pair (G,γ ), by Proposition 4.6. Since G ∩ D̂iff 1(C
2,0) is finitely determined, it satisfies

(UI)γ by Corollary 7.1. In particular, there exists M ∈N such that (φ(γ ),γ ) < M for any
φ ∈ (G ∩ D̂iff 1(C

2,0))\Gγ . We deduce that Gγ,M ∩ D̂iff 1(C
2,0) is contained in Gγ . As a

consequence and up to replacing G with Gγ,M , we can suppose that (G,γ ) is tame and

G ∩ D̂iff 1(C
2,0) ⊂ Gγ by Remark 4.8. Moreover, up to replacing G with its finite-index

subgroup G ∩G0, we can suppose G = G0 by Proposition 4.3.

Since (G,γ ) is tame, the group j 1G is diagonalisable, and in particular the derived

group G ′ is contained in D̂iff 1(C
2,0). The group G ′ is nilpotent by Lemma 7.1. We

can suppose that G is nonabelian and infinite-dimensional by Proposition 7.1 and
Theorem 6.1, respectively. Since G = G0, Remark 6.7 implies that g is nonabelian. Such a

property, together with dimC g= ∞ (Remark 6.3), implies dimC g
(1) = ∞ by Theorem 1.4.

The Lie algebra h of G ′ is equal to g
(1) by Remark 6.7 and Proposition 6.2. The Lie

algebra h is nilpotent (Remark 6.7) and satisfies dimC h ≥ dimC g
(1) = ∞. Hence we

obtain

h ⊂ {fX : f ∈ Ô2 and X (f ) = 0}
for some X ∈ h \ {0} such that X has a first integral g in m \ {0}, by Theorem 1.3. The
vector field X is of the form hX ′, where h ∈ Ô2 and the coefficients of X ′ have no common

factors in Ô2. Given a nontrivial element fX of h, there are finitely many fX -invariant

curves. Indeed, the formal irreducible fX -invariant curves are the curves hj = 0 (1 ≤ j ≤ k)
where fgh = hn1

1 · · ·hnk
k is the irreducible decomposition of fgh in Ô2. Choose φ ∈ G ′ \ {Id}.

The set of formal irreducible φ-invariant curves coincides with the set of formal irreducible

logφ-invariant curves by Remark 6.5. Since logφ belongs to h\ {0} by Remark 6.4, there

are finitely many formal irreducible φ-invariant curves and hence finitely many formal
irreducible G ′-invariant curves.
Since G ′ ⊂ D̂iff 1(C

2,0) and γ is G ∩ D̂iff 1(C
2,0)-invariant, the curve γ is G ′-invariant.

Since G ′ is a normal subgroup of G , every curve in the G-orbit of γ is also G ′-invariant.
Therefore the G-orbit of γ is finite, and it is obvious that G satisfies (UI)γ .
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J. Math. Pures Appl. (9) 54 (1975), 183–258.
[12] C. Favre and M. Jonsson, The Valuative Tree Lecture Notes in Mathematics no. 1853

(Springer-Verlag, Berlin, 2004).
[13] W. Fulton, Intersection Theory, 2nd ed. (Springer, Berlin, 1998).
[14] Y. Ilyashenko and S. Yakovenko, Lectures on Analytic Differential Equa-

tions Graduate Studies in Mathematics no. 86 (American Mathematical Society,
Providence, RI, 2008).

[15] A. Levy, Basic Set Theory (Dover Publications, Mineola, NY, 2002). Reprint of the 1979
original.

[16] M. Martelo and J. Ribón, Derived length of solvable groups of local diffeomorphisms,
Math. Ann. 358(3) (2014), 701–728.

[17] J. Martinet and J.-P. Ramis, Classification analytique des équations differentielles non
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