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Abstract

A programming tactic involving polyhedra is reported that has been widely applied in the

polyhedral analysis of (constraint) logic programs. The method enables the computations

of convex hulls that are required for polyhedral analysis to be coded with linear constraint

solving machinery that is available in many Prolog systems.
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1 Introduction

Polyhedra have been widely applied in program analysis (Cousot and Halbwachs

1978) particularly for reasoning about logic and constraint logic programs. In

this context, polyhedra have been used in binding-time analysis (Vanhoof and

Bruynooghe 2001), cdr-coded list analysis (Horspool 1990), argument-size analysis

(Benoy and King 1996), time-complexity analysis (King et al. 1997), high-precision

groundness analysis (Codish et al. 2001), type analysis (Sağlam and Gallagher 1997),

termination checking (Codish and Taboch 1999) and termination inference (Mesnard

and Neumerkel 2001; Genaim and Codish 2001).

All these techniques use polyhedra to describe relevant properties of the program

and manipulate polyhedra using operations that include projection, emptiness

checking, inclusion testing for polyhedra, intersection of polyhedra (meet) and

the convex hull (join). The classic approach to polyhedral analysis (Cousot and

Halbwachs 1978) uses two representations: (i) frames and rays and (ii) systems of

(non-strict) linear inequalities and employs the Chernikova algorithm to convert

between them (Le Verge 1992). The rationale for this dual representation is that

the convex hull can be computed straightforwardly with frames and rays whereas

intersection is more simply computed over systems of linear inequalities. A simpler
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tactic that has been widely adopted in the analysis of logic programs is to use

only the linear inequality representation and compute the convex hull by adapting

(Benoy and King 1996) a relaxation technique proposed in De Backer and Beringer

(1993). The elegance of this approach is that it enables the convex hull to be

computed without recourse to a dual representation: the problem is recast as a

projection problem that can be subcontracted to standard linear constraint solving

machinery with minimal coding effort. Moreover, the performance is acceptable for

many applications. In fact this technique has been widely applied in the analysis of

logic programs (Codish and Taboch 1999; Genaim and Codish 2001; King et al.

1997; Mesnard and Neumerkel 2001; Sağlam and Gallagher 1997). The next section

outlines the method and the following section, an example implementation. The final

section presents the concluding discussion.

2 Method

Consider two arbitrary polyhedra, P1 and P2, represented in standard form:

P1 = {�x ∈ �n |A1�x � �B1} P2 = {�x ∈ �n |A2�x � �B2}

such that P1 �= ∅ and P2 �= ∅ so that the problem is non-trivial. Note that Ai�x � �Bi

are non-strict and therefore P1 and P2 are both closed. The problem in essence is to

compute the smallest polyhedron that includes P1 and P2. Interestingly, the convex

hull of P1 ∪ P2 is not necessarily closed as is illustrated in the following example.

Example 2.1

Consider the 2-dimensional polyhedra P1 and P2 defined by:

P1 =


�x ∈ �2
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Observe that P1 = {〈0, 1〉} is a point whereas P2 = {〈x, y〉 ∈ �2| x = y ∧ 0 � x} is

a half-line. Note too that P1 and P2 are closed whereas the convex hull of P1 ∪ P2

excludes the points {〈x, y〉 ∈ �2| x > 0 ∧ y = x+ 1} and hence is not closed (see the

diagram below).
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Since the convex hull of P1 ∪ P2 is not necessarily closed, the convex hull cannot

always be represented by a system of non-strict linear inequalities; to overcome this

problem, the closure of the convex hull of P1 ∪ P2 is computed. The starting point
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for our construction is the convex hull of P1 ∪ P2 that is given by:

PH =

{
�x ∈ �n

∣∣∣∣∣�x = σ1�x1 + σ2�x2 ∧ σ1 + σ2 = 1 ∧ 0 � σ1 ∧
A1�x1 � �B1 ∧ A2�x2 � �B2 ∧ 0 � σ2

}

To avoid the non-linearity �x = σ1�x1 +σ2�x2 the system can be reformulated (relaxed)

by putting �y1 = σ1�x1 and �y2 = σ2�x2 so that �x = �y1 + �y2 and Ai�yi � σi�Bi to

define:

PCH =

{
�x ∈ �n

∣∣∣∣∣�x = �y1 +�y2 ∧ σ1 + σ2 = 1 ∧ 0 � σ1 ∧
A1�y1 � σ1

�B1 ∧ A2�y2 � σ2
�B2 ∧ 0 � σ2

}

Observe that PH ⊆ PCH . Moreover, unlike PH , PCH is expressed in terms of a system

of linear inequalities. Note too that PCH is closed since the projection of a system of

non-strict linear inequalities is closed. In fact the following proposition asserts that

PCH coincides with the closure of the convex hull of P1 ∪ P2.

Proposition 2.1

PCH is the closure of the convex hull of P1 and P2.

The proof uses the concept of a recession cone. The recession cone of a polyhedron

P , denoted 0+P , is defined by: 0+P = {�y ∈ �n | ∀λ � 0 . ∀�x ∈ P . �x + λ�y ∈ P }. The

intuition is that 0+P includes a vector �y whenever P includes all the half-lines in

the direction of �y that start in P .

Proof

Suppose Pi = {�x ∈ �n |Ai�x � �Bi}. Theorem 19.6 of Rockafellar (1970) states that

the closure of the convex hull of P1 ∪ P2 is the set (0+P1 + P2) ∪ (P1 + 0+P2) ∪
(∪{σ1P1 + σ2P2 | σ1 + σ2 = 1 ∧ 0< σ1, σ2}). Intuitively, 0+P1 + P2 is P2 extended in

the directions of half-lines contained within P1. Let �x ∈ Pi, then �y ∈ 0+Pi if and

only if Ai(�x+ λ�y) � �Bi for all λ � 0 which holds if and only if Ai�y ��0 (Rockafellar

1970)[pp 62]. Therefore 0+P1 +P2 = {�x ∈ �n |�x = �y1 +�y2 ∧ A1�y1 ��0 ∧ A2�y2 � �B2}
and similarly P1 + 0+P2 = {�x ∈ �n |�x = �y1 + �y2 ∧ A1�y1 � �B1 ∧ A2�y2 � �0}.
Furthermore, ∪{σ1P1 + σ2P2 | σ1 +σ2 = 1 ∧ 0 < σ1, σ2} = {�x ∈ �n | σ1 +σ2 =

1 ∧ 0 < σ1, σ2 ∧ �x = �y1 + �y2 ∧ A1�y1 � σ1
�B1 ∧ A2�y2 � σ2

�B2}. Observe that

{�x ∈ �n | �x = �y1 + �y2 ∧ A1�y1 � σ1
�B1 ∧ A2�y2 � σ2

�B2} coincides with the sets (i)

0+P1 + P2, (ii) P1 +0+P2 and (iii) ∪{σ1P1 + σ2P2 | σ1 +σ2 = 1 ∧ 0 < σ1, σ2} when

(i) σ1 = 0 and σ2 = 1, (ii) σ1 = 1 and σ2 = 0 and (iii) σ1+σ2 = 1 and 0 < σ1, σ2

respectively. Therefore PCH is the closure of the convex hull. �

This result leads to an algorithm for computing the closure of the convex hull:

construct the systems Ai�yi � σi�Bi by scaling the constant vectors �Bi by σi, add the

constraints �x = �y1 +�y2, σ1 + σ2 = 1 and 0 � σi, then eliminate variables other than

�x using projection to obtain PCH in terms of �x. Hence the closure of the convex

hull can be computed without recourse to another representation. This is illustrated

below.
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Example 2.2

Returning to example 2.1, consider the systems Ai�x � �Bi:

P1 =

{
〈x, y〉 ∈ �2

∣∣∣∣ x � 0 ∧ −x � 0 ∧
y � 1 ∧ −y � −1

}
P2 =


〈x, y〉 ∈ �2

∣∣∣∣∣∣
x − y � 0 ∧

−x + y � 0 ∧
−x � 0




Adding �x = �y1 +�y2, σ1 + σ2 = 1 and 0 � σi leads to the following system:

PCH =




〈x, y〉 ∈ �2

∣∣∣∣∣∣∣∣∣∣

x = x1 + x2 ∧ y = y1 + y2 ∧ σ1 + σ2 = 1 ∧
0 � σ1 ∧ 0 � σ2 ∧
x1 � 0 ∧ −x1 � 0 ∧
y1 � σ1 ∧ −y1 � −σ1 ∧
x2 − y2 � 0 ∧ −x2 + y2 � 0 ∧ −x2 � 0




Eliminating the variables xi, yi and σi leads to the solution:

PCH = {〈x, y〉 ∈ �2 | 0 � x ∧ x � y ∧ y � x + 1}

Theorem 19.6 of (Rockafellar 1970), which is used in the proof, asserts that PCH

includes P1 + 0+P2 = P1 + P2 = {〈x, y〉 ∈ �2 | x � 0 ∧ y = x + 1} and therefore

includes the points {〈x, y〉 ∈ �2 | x > 0∧y = x+1}, and hence ensures closure. Note

that calculating PCH without the inequalities 0 � σ1 and 0 � σ2 – the relaxation

advocated in (De Backer and Beringer 1993) for computing convex hull – gives

{〈x, y〉 ∈ �2 | 0 � x} which is incorrect.

3 Implementation

This section shows how closure of the convex hull can be implemented elegantly

using a linear solver in particular the CLP(�) library (Holzbaur 1995). The behaviour

of a predicate is described with the aid of modes, that is, + indicates an argument

that should be instantiated to a non-variable term when the predicate is called; “-”

indicates an argument that should be uninstantiated; and “?” indicates an argument

that may or may not be instantiated (Deransart et al. 1996).

3.1 Closed polyhedra

Closed polyhedra will be represented by lists (conjunctions) of linear constraints of

the form c ::= e � e | e = e | e � e where expressions take the form e ::= x | n |
n ∗ x | −e | e + e | e − e and n is a rational number and x is a variable. A con-

venient representation for a closed polyhedron is a (non-ground) list of constraints.

This representation is interpreted with respect to a totally ordered (finite) set

of variables. The ordering governs the mapping of each variable to its specific

dimension. In practise, the ordering on variables is itself represented by the position

of each variable within a list. Specifically, if C is a list of linear constraints

[c1, . . . , cm] and X is a list of variables [x1, . . . , xn], then the represented polyhedron is

PC,X = {〈y1, . . . , yn〉 ∈ �n | (∧n
i=1xi = yi) |=� (∧m

j=1cj)}. Note that although the order

of variables in X is significant, the order of the constraints in C is not. Finally, let

vars(o) denote the set of variables occurring in the syntactic object o.
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Example 3.1

The polyhedron P1 from example 2.2 can be represented by the lists C1 = [x = 0,

y = 1] and X = [x, y], that is, P1 = PC1 ,X . Moreover, P2 = PC2 ,X where C2 = [x = y,

x � 0] or alternatively C2 = [y + z � x, x � y + 2 ∗ z, y � 0, z � 0]. Hence the

dimension of PC,X is defined by the length of the list X rather than the number of

variables in C .

3.2 Projection

Projection is central to computing the convex hull. The desire, therefore, is to

construct a predicate project(+Xs,+Cxs,-ProjectCxs) that is true when for a

given list of dimensions Xs and a given list of constraints Cxs, ProjectCxs is the

projection of Cxs onto Xs. The specification of such a predicate is given below.

preconditions:

• Xs is a closed list with distinct variables as elements,

• Cxs is a closed list of linear constraints,

• Cxs is satisfiable.

postconditions:

• Xs is a closed list with distinct variables as elements,

• ProjectCxs is a closed list of linear constraints,

• vars(ProjectCxs) ⊆ vars(Xs),

• PCxs,Xs = PProjectCxs,Xs.

Such a predicate can be constructed by adding the given constraints to the store

and then invoking the projection facility provided in the CLP(�) library, that is, the

predicate dump(+Target, -NewVars, -CodedAnswer) (Holzbaur 1995). Quoting

from the manual: “[dump] reflects the constraints on the target variables into a term,

where Target and NewVars are lists of variables of equal length and CodedAnswer

is the term representation of the projection of constraints onto the target vari-

ables where the target variables are replaced by the corresponding variables from

NewVars”. This leads to the following implementation of project:

:- use_module(library(clpq)).

project(Xs, Cxs, ProjectCxs) :-

tell_cs(Cxs),

dump(Xs, Vs, ProjectCxs), Xs = Vs.

tell_cs([]).

tell_cs([C|Cs]) :- {C}, tell_cs(Cs).

Example 3.2

For example, the query project([X, Z], [X < Y, Y < Z], ProjectCs) will cor-

rectly bind Cs to [X-Z<0]. However, correctness of this predicate is compromised

by existing constraints in the store. For instance, the compound query {X = Z + 1},
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project([X, Z], [X < Y, Y < Z], ProjectCs) will fail because constraints

posted within tell cs interact with those already in the store.

To insulate the constraints posted in tell cs, both the variables Xs and the con-

straints Cxs need to be renamed. Renaming is trivial with the builtin copy term but

care must be taken to ensure that Xs and Cxs are renamed consistently, that is that

variable sharing in Xs and Cxs is preserved in the copies. However, in SICStus Prolog

copy term(Term, Cpy) copies any constraints in the store that involve variables

in Term. For example, the query {X=Y}, copy term(X=Y+1, Cpy) will bind Cpy to

A= B+1 where A and B are fresh variables. It will also copy the constraint X = Y by

posting the new constraint A = B to the store. To nullify this effect, copy term is

called within the scope of call residue. The call call residue(copy term(X=Y+1,

Cpy), Residue) residuates any new constraint into Residue instead of posting it

to the store, thereby copying the term without copying any constraint. Whether

residuation is required depends on the particular Prolog system. This leads to the

following (SICStus Prolog specific) revision:

project(Xs, Cxs, ProjectCxs) :-

call_residue(copy_term(Xs-Cxs, CpyXs-CpyCxs), _),

tell_cs(CpyCxs),

dump(CpyXs, Vs, ProjectCxs), Xs = Vs.

Example 3.3

Using this revision, the query {X = Z + 1}, project([X, Z], [X < Y, Y < Z],

ProjectCs) will succeed binding ProjectCs to [X-Z<0]. However, adding Z = 5 to

the list of constraints induces an error. The problem is that posting the constraints

binds Z to 5 so that dump is called with its first argument instantiated to a list that

contains a non-variable term.

A pre-processing predicate prepare dump is therefore introduced to ensure that

dump is called correctly. The following revision to project, in effect, extends the

facility provided by dump to capture constraints over both uninstantiated and

instantiated variables:

project(Xs, Cxs, ProjectCxs) :-

call_residue(copy_term(Xs-Cxs, CpyXs-CpyCxs), _),

tell_cs(CpyCxs),

prepare_dump(CpyXs, Xs, Zs, DumpCxs, ProjectCxs),

dump(Zs, Vs, DumpCxs), Xs = Vs.

prepare_dump([], [], [], Cs, Cs).

prepare_dump([X|Xs], YsIn, ZsOut, CsIn, CsOut) :-

(ground(X) ->

YsIn = [Y|Ys],

ZsOut = [_|Zs],

CsOut = [Y=X|Cs]

;
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YsIn = [_|Ys],

ZsOut = [X|Zs],

CsOut = Cs

),

prepare_dump(Xs, Ys, Zs, CsIn, Cs).

The literal prepare dump(+Xs, +Ys, -Zs, ?CsIn, -CsOut) is true for a given list

Xs which contains either variables or numbers (or a mixture of the two) and a given

list Ys which contains only variables, if

• Zs is the list obtained by substituting the non-variable terms of Xs with fresh

variables and

• CsOut is an open ended list of equality constraints with CsIn at its end

that contains one equality constraint for each number in Xs. Each constraint

equates a numeric element of Xs with the element of Ys that is in the same

list position.

The call prepare dump([X1, 1, X3, 2], [A, B, C, D], Zs, CsIn, CsOut), for

instance, will bind Zs to [X1, A,X3, B] and CsOut to [B=1,D=2|CsIn]. The pred-

icate ensures that dump is called with its first argument bound to a list of free

variables even when the list Xs includes numbers. In the CLP(�) library, numbers

coincide with rationals which are represented as compound (ground) terms of the

form rat(n, d) where n and d are integers. The ground(X) test effectively checks

whether X is instantiated to a number; the test number(X) is inappropriate since it

would always fail.

Example 3.4

Consider again Example 3.1. The second representation of P2 can be simplified by

using projection as follows:

| ?- Cs = [Y+Z>=X,X>=Y+2*Z,Y>=0,Z>=0], project([X,Y], Cs, ProjectCs).

ProjectCs = [Y>=0,X=Y] ? ;

no

The system Cs is expressed over three variables and therefore defines a three-

dimensional space. Intuitively, the projection onto [X, Y] is the shadow cast by

PCs,[X,Y,Z] onto the 2 dimensional space over X and Y. The projection ProjectCs in

fact defines a half-line confined to the first quadrant since, by rearranging Cs, it

follows that PCs,[X,Y,Z] = {〈x, y, z〉 ∈ �3 | x = y ∧ 0 � y ∧ z = 0}.

3.3 Convex hull

The specification for the main predicate convex hull(+Xs, +Cxs, +Ys, +Cys,

-Zs, -Czs), and then its code, is given below.

preconditions:

• Xs is a closed list with distinct variables as elements and likewise for Ys,

• Xs and Ys have the same length,
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• vars(Xs) ∩ vars(Ys) = ∅,

• Cxs and Cys are closed lists of linear constraints,

• Cxs and Cys are both satisfiable,

• vars(Cxs) ⊆ vars(Xs) and vars(Cys) ⊆ vars(Ys).

postconditions:

• Xs, Ys and Zs are closed lists with distinct variables as elements,

• Zs is the same length as both Xs and Ys,

• Czs is a closed list of linear constraints,

• vars(Czs) ⊆ vars(Zs) and (vars(Xs) ∪ vars(Ys)) ∩ vars(Zs) = ∅,

• PCzs,Zs is the closure of the convex hull of PCxs,Xs ∪PCys,Ys.

convex_hull(Xs, Cxs, Ys, Cys, Zs, Czs) :-

scale(Cxs, Sig1, [], C1s),

scale(Cys, Sig2, C1s, C2s),

add_vect(Xs, Ys, Zs, C2s, C3s),

project(Zs, [Sig1 >= 0, Sig2 >= 0, Sig1+Sig2 = 1|C3s], Czs).

scale([], _, Cs, Cs).

scale([C1|C1s], Sig, C2s, C3s) :-

C1 =.. [RelOp, A1, B1],

C2 =.. [RelOp, A2, B2],

mul_exp(A1, Sig, A2),

mul_exp(B1, Sig, B2),

scale(C1s, Sig, [C2|C2s], C3s).

mul_exp(E1, Sigma, E2) :- once(mulexp(E1, Sigma, E2)).

mulexp( X, _, X) :- var(X).

mulexp(N*X, _, N*X) :- ground(N), var(X).

mulexp( -X, Sig, -Y) :- mulexp(X, Sig, Y).

mulexp(A+B, Sig, C+D) :- mulexp(A, Sig, C), mulexp(B, Sig, D).

mulexp(A-B, Sig, C-D) :- mulexp(A, Sig, C), mulexp(B, Sig, D).

mulexp( N, Sig, N*Sig) :- ground(N).

add_vect([], [], [], Cs, Cs).

add_vect([U|Us], [V|Vs], [W|Ws], C1s, C2s) :-

add_vect(Us, Vs, Ws, [W = U+V|C1s], C2s).

The predicate mulexp(?E1, ?Sigma, -E2) scales the numeric constants that

occur within E1 by the variable Sigma, providing they are not coefficients of variables,

to obtain the expression E2. Note that Sigma is a variable and the expression E1 may

be a variable, hence both E1 and Sigma have mode ? rather than +. Since a non-

ground representation is employed for expressions, the test var(X) is used to

determine whether the expression is a variable. As before, the test ground(N) detects
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numeric constants – rational numbers – which are the only type of subexpressions

that are ground. Observe that mulexp can return more than one solution, for example,

mulexp(X, Sig, E2) generates E2 = X; X = -( A), E2 = -( A); X = -(-( A)),

E2 = -(-( A)) etc as solutions. Thus the pruning operator once is applied within

mul exp(?E1, ?Sigma, -E2) to prevent erroneous solutions.

The predicate scale(+ C1s, ?Sigma, ?C2s, -C3s) scales each constraint within

the list C1s by the variable Sigma. Each constraint consists of a binary operator and

two expressions, and scaling is applied to the numeric constants in each expression as

specified by mul exp. For example, scale([X+2 >= 1+Y, Y = Z], Sigma, Tail,

ScaledCs) binds ScaledCs to [Y = Z, X+2*Sigma >= 1*Sigma+Y | Tail]. Note

that scale finesses the problem of putting Cxs and Cys into the standard form

Ai�yi � �Bi before applying scaling. In standard form, X+2 >= 1+Y is Y-X =< 1 but

scaling constants on both sides of the relational operator preserves equivalence in

that X+2*Sig >= 1*Sig+Y is equivalent to Y-X =< 1*Sig. The use of a difference

list avoids an unnecessary call to append in the body of convex hull.

The predicate add vect(+Us, +Vs, -Ws, ?C1s, -C2s) operates on the lists Us

= [U1, . . ., Un] and Vs = [V1, . . ., Vn] which correspond to the vectors �y1 and

�y2 (as introduced in section 2). The argument Ws is instantiated to another list

of variables [W1, . . ., Wn], which corresponds with �x. The predicate creates the

system of equalities [W1 = U1+V1, . . ., Wn = Un+Vn] corresponding to the system

�x = �y1 +�y2. The scaled constraints output by the two calls to scale are passed to

add vect via its accumulator and thereby combined with the system of equalities.

For example, the call add vect([X1,Y1], [X2, Y2], Ws, Tail, Cs) returns the

bindings Cs = [ A=Y1+Y2, B=X1+X2|Tail] and Ws = [ B, A].

The predicate convex hull(Xs, Cxs, Ys, Cys, Zs, Czs) takes, as input, two

lists of constraints (Cxs and Cys) and their corresponding lists of variables (Xs and

Ys) and produces as output a single list of constraints Czs over the variables Zs that

represents the closure of the convex hull of the two input polyhedra. If Xs and Ys

are not variable disjoint, then the pre-requisite can be satisfied by appropriately

renaming variables. Specifically, the variables Xs and constraints Cxs can be

renamed with copy term(Xs-Cxs, CpyXs-CpyCxs) and the call convex hull(Xs,

Cxs, Ys, Cys, Zs, Czs) replaced with convex hull(CpyXs, CpyCxs, Ys, Cys,

Zs, Czs). Since the integrity of the constraint store is preserved by project and

since project is the only source of interaction with the store, then it follows that

convex hull also does not side-effect any existing constraints. The following is an

illustrative example.

Example 3.5

Running this code on the data of Example 2.2 gives:

| ?- convex_hull([X1,Y1],[X1=0,Y1=1],[X2,Y2],[X2>=0,Y2=X2],V,S).

S = [_A>=0,_A-_B>=-1,_A-_B=<0],

V = [_A,_B] ? ;

no
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Fig. 1. (i) P1 and P2, (ii) Q1 and Q2, (iii) conv(P1 ∪ P2), (iv) conv(Q1 ∪ Q2).

4 Discussion

This section discusses the method proposed in the paper, comparing it with related

techniques. The Chernikova method is exponential in the worst-case (Le Verge

1992) and the Fourier–Motzkin method, like all projection techniques over linear

inequalities (Chandru et al. 2000), is also exponential. The exponential behaviour

of both methods stems from the same source: the possibly exponential relationship

between the number of vertices and the number of half-spaces that define a poly-

hedron. In fact the problem of calculating the closure of the convex hull of two

polyhedra is also exponential even for bounded polyhedra (polytopes). This can

be demonstrated by considering the so-called cross polytope in n-dimensions which

is the polyhedron with the vertex set {〈±1, 0, . . . , 0〉, 〈0,±1, . . . , 0〉, . . . , 〈0, 0, . . . ,±1〉}.
The cross polytope can be defined by no less than 2n inequalities yet can arise as the

convex hull of two polyhedra both of which can be defined with O(n) inequalities.

Specifically consider the n-dimensional polyhedra

P1 = {〈x1, . . . , xn〉 ∈ �n | (
∑n

i=1 −xi � 1) ∧ (∧n
j=1xj � 0)}

P2 = {〈x1, . . . , xn〉 ∈ �n | (
∑n

i=1 xi � 1) ∧ (∧n
j=1 − xj � 0)}

Because P1 and P2 are polytopes, they can be expressed in terms of their vertices:

P1 = conv({〈0, 0, . . . , 0〉, 〈−1, 0, . . . , 0〉, 〈0,−1, . . . , 0〉, . . . , 〈0, 0, . . . ,−1〉})
P2 = conv({〈0, 0, . . . , 0〉, 〈1, 0, . . . , 0〉, 〈0, 1, . . . , 0〉, . . . , 〈0, 0, . . . , 1〉})

Since 〈0, 0, . . . , 0〉 is convexly spanned by 〈1, 0, . . . , 0〉 and 〈−1, 0, . . . , 0〉, it fol-

lows that cl(conv(P1 ∪ P2)) = conv(P1 ∪ P2) = conv({〈±1, 0, . . . , 0〉, 〈0,±1, . . . , 0〉, . . . ,
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〈0, 0, . . . ,±1〉}) which is the n-dimensional cross polytope. The two- and three-

dimensional cases are denoted in Figure 1 by (i) P1 and P2 and (ii) Q1 and Q2

respectively for which the cross polytopes are a solid square and an octahedron.

Hence the problem of calculating the closure of the convex hull is intrinsically

exponential irrespective of the algorithm employed.

Example 4.1

The following query illustrates how the hull algorithm yields an exponential number

of inequalities for the four dimensional case.

| ?- Xs = [X1, X2, X3, X4], Ys = [Y1, Y2, Y3, Y4],

Cxs = [-1 =< X1+X2+X3+X4, X1 =< 0, X2 =< 0, X3 =< 0, X4 =< 0],

Cys = [ Y1+Y2+Y3+Y4 =< 1, 0 =< Y1, 0 =< Y2, 0 =< Y3, 0 =< Y4],

convex_hull(Xs, Cxs, Ys, Cys, Zs, Czs),

Zs = [A, B, C, D].

Czs = [A-B+C+D>=-1, A+B-C-D=<1, A+B+C+D>=-1, A-B-C-D=<1,

A-B-C+D>=-1, A+B+C-D=<1, A+B-C+D>=-1, A-B+C-D=<1,

A-B+C-D>=-1, A+B-C+D=<1, A+B+C-D>=-1, A-B-C+D=<1,

A-B-C-D>=-1, A+B+C+D=<1, A+B-C-D>=-1, A-B+C+D=<1] ? ;

no

However, it would be wrong to conclude from these examples that the frame and ray

representation is preferable – inequalities are unavoidable since they are required

for other polyhedral operations.

Despite the scaling problems that are inherent to any convex hull algorithm, in

practise the technique proposed in this paper has been widely applied in logic pro-

gramming (Codish and Taboch 1999; Genaim and Codish 2001; King et al. 1997;

Mesnard and Neumerkel 2001; Sağlam and Gallagher 1997), mostly to satisfaction.

For example, in the context of inferring termination conditions for logic programs

this method is feasible since it accounts for 42% of this first pass of the analysis

and the first pass itself constitutes only 23% of the total analysis time (Mesnard

and Neumerkel 2001). Whether the approach presented in this paper is applica-

ble depends on the application context. When only standard domain operations are

required and performance is not an issue, this method has much to commend it. How-

ever, when the application has to additionally reason, say, about integral points

(Ancourt 1991; Quinton et al. 1997) or parameterised polyhedra (Loechner and

Wilde 1997) then specialised polyhedral libraries are required. Further, if perform-

ance is important, then recourse should be made to a polyhedral library, since a

state-of-the-art implementation employing the Chernikova algorithm (Bagnara et al.

2002), will outperform the approach presented here.

We have presented a Prolog program for computing convex hulls using linear

solver machinery. As Holzbaur’s library is also available for CIAO Prolog, ECLiPSe,

XSB and Yap Prolog, the technique can be easily adapted to these systems. The

method is a reasonable compromise between conciseness, clarity and efficiency and

variants of this program have now been widely deployed.
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