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Abstract

Ti–6Al–4V alloy has superior material properties such as high strength-to-weight ratio, good
corrosion resistance, and excellent fracture toughness. Therefore, it is widely used in aero-
space, medical, and automotive industries where machining is an essential process for these
industries. However, machining of Ti–6Al–4V is a material with extremely low machinability
characteristics; thus, conventional machining methods are not appropriate to machine such
materials. Ultrasonic-assisted machining (UAM) is a novel hybrid machining method
which has numerous advantages over conventional machining processes. In addition, mini-
mum quantity lubrication (MQL) is an alternative type of metal cutting fluid application
that is being used instead of conventional lubrication in machining. One of the parameters
which could be used to measure the performance of the machining process is the amount
of cutting force. Nevertheless, there is a number of limited studies to compare the changes
in cutting forces by using UAM and MQL together which are time-consuming and not
cost-effective. Artificial neural network (ANN) is an alternative method that may eliminate
the limitations mentioned above by estimating the outputs with the limited number of
data. In this study, a model was developed and coded in Python programming environment
in order to predict cutting forces using ANN. The results showed that experimental cutting
forces were estimated with a successful prediction rate of 0.99 with mean absolute percentage
error and mean squared error of 1.85% and 13.1, respectively. Moreover, considering too lim-
ited experimental data, ANN provided acceptable results in a cost- and time-effective way.

Introduction

Titanium and its alloys have an extensive application area in the industry, particularly in aero-
space and medical sectors due to their special mechanical properties (Kahles et al., 1985). Yang
and Liu (1999) indicate that the machinability of titanium and its alloys are low caused by fast
tool wear, high thermal damage, low surface finish, or part accuracy. The authors claimed
seven problems such as high strength of the material at high temperatures, low thermal con-
ductivity, high chemical reaction desire with almost all tool materials, low modulus of elasti-
city, too long and thin chip formations during the cutting process and finally ignition risk. Due
to the mentioned problems in conventional machining of Ti–6Al–4V, different methods have
been applied in order to improve the machinability of titanium alloys.

Using metal working fluids in machining is an important factor to facilitate the cutting pro-
cess of difficult-to-cut materials. However, conventional metal working fluids applications do
not pose satisfactory results in machining of these alloys; therefore, alternative lubrication
methods are developed such as minimum quantity lubrication (MQL). MQL technique uses
minor quantity of oil or lubricant and mixes it with compressed air to generate a mist or aero-
sol. The particles in aerosol provide lubrication in contact zone besides, compressed air helps
to dissipate the generated heat during the machining (Debnath et al., 2014). In this way,
Ezugwu et al. (2003) used carbide, CBN and PCD tools to machine titanium alloys and
enhanced machinability of difficult-to-cut materials with metal working fluids. The authors
also find out that the effect of these fluids is limited due to formed film boiling. They reported
that they achieved much better results with the MQL method despite using much less fluid in
grinding, turning, and milling operations. Another advantage of MQL is its environmental
friendliness. Since MQL uses much less fluid in comparison with other lubricating methods,
it can be also considered as an environmental friendly alternative for lubrication techniques.
Debnath et al. (2014) researched various alternative lubrication methods for green manufac-
turing processes and studied the impact of these methods on human health and environment.
They studied various lubrication methods including MQL. Results showed that if the usage of
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cutting fluid is inevitable the best method to minimize impacts on
human health and environment is MQL (Debnath et al., 2014).

UAM is another recent advanced method for machining of
difficult-to-cut materials. Additionally, UAM is a hybrid machin-
ing method in which high frequency (17–40 kHz) and low ampli-
tude (5–20 μm) vibrations are applied on workpiece or cutting
tool. Brehl and Dow (2008) showed that vibration-assisted
machining (VAM) has several advantages over traditional
machining processes in machining of materials with low machin-
ability, such as reduced tool forces, increased tool life, better sur-
face roughness and accuracy, and finally, separated chip forms.
Ultrasonic vibrations, in fact, prevent the continuous contact
between workpiece and cutting tool. This intermittent contact
form results in reduced friction between contact surfaces of cut-
ting tool and workpiece and consequently decreases the tempera-
ture in cutting zone. The reduced temperature enhances tool life
due to the lower tool wear, less cutting forces, and improved sur-
face quality. Machining process of titanium alloys using these
technologies requires expensive tools and time-consuming experi-
ments; therefore, the application of artificial intelligence (AI)
methods to prognosticate the effects of various parameters on cut-
ting processes of these materials could be an alternative method.

Artificial neural networks (ANNs) are data-driven and ana-
lytical black-box models which resemble a real biological nervous
system (Turhan et al., 2014). ANNs are used to find the connec-
tion between input and output signals. The input signals are con-
tinuous variables which are modified by weights and biases. Thus,
the computation of the output is different depending on the inter-
connected processing elements. Consequently, the output layer
represents output responses to a given input layer, afterwards,
the model aims to minimize the errors during the iteration pro-
cess by adjusting the weights and biases. The importance of the
ANN is being capable of capturing nonlinear relationships
among the parameters (Turhan et al., 2017). Also, according to
Wong and Hamouda (2003), ANN models give better prediction
compared to regression methods. Moreover, ANN offers a high-
speed prediction with high accuracy. On the other hand, since
ANN tools are black-box models, the model cannot be inter-
rupted and modified during the operation processes.
Furthermore, comparing with regression methods, ANN models
require larger data sets in order to get more reliable results
(Turhan et al., 2014).

Literature review

There are numerous researches on applications of MQL, UAM,
and ANNs in machining processes, and here in this section of
the paper, a brief literature review of these studies is given.
According to Tschätsch and Reichelt (2009), oil consumption
in the MQL varies between 2 and 500 mL/h which is very small
compared to conventional metal working fluids where the typical
consumption rate is nearly 1200 L/h. Tai et al. (2014) also verify
that applying the MQL method in the automotive industry has
numerous benefits including reducing cost and energy while
enhances environmental and safety conditions. The air pressure
changes from 2 to 8 bars and the selection of the other parameters
are determined by the type of machining processes, tool, and
workpiece materials. The advantages of the MQL have been pro-
ven in many studies, for instance, Liu et al. (2011) examined the
variation of cutting forces and temperature according to the MQL
parameters in the milling of Ti–6Al–4V material and reported
that the most effective spraying pressure and spray angle are

found as 6 bars and 135°, respectively. According to Cai et al.
(2012), the cutting force and surface roughness can be reduced
if proper MQL conditions are selected in the milling process of
Ti–6Al–4V. It has been proved that the use of MQL increases
the cutting performance of Ti–6Al–4V not only in milling pro-
cesses but also in turning, drilling, and grinding processes.
Sadeghi et al. (2008) revealed that using the MQL with quantity
of 60 mL/h and pressure of 4 bars are the most suitable conditions
which improve the cutting performance of Titanium by reducing
the cutting forces. Zeilmann and Weingaertner (2006) studied the
drilling of Ti–6Al–4V with the MQL and concluded that the
application of internal MQL is reduced the tool temperature up
to 50% and the smaller feed forces are measured compared to
external MQL application. Chetan et al. (2016) investigated the
usage of the MQL in turning processes for Ti–6Al–4V.
According to their study, the MQL reduced the tool wear, built-up
edge formation, and chip thickness compared to dry cutting con-
ditions. The other important finding in this research is that the
MQL with nanofluid applications is much effective than the oil-
based MQL.

Another technique that research focused on is UAM. Nath and
Rahman (2008) claimed that frequency, amplitude, and cutting
speed affect the tool, workpiece contact ratio. These consequently
effect the cutting mechanism by decreasing cutting forces, tool
wear and enhancing the surface quality in the UAM. Zarchi
et al. (2012) investigated the effect of cutting speed and vibrations
amplitude on cutting forces in the UAM. Their research shows
that increasing the cutting speed decreases the intermittent con-
tact between tool and workpiece; therefore, the difference between
measured cutting forces in the UAM and conventional machining
processes is eliminated. However, by increasing the vibration
amplitude in the UAM cutting force decreases in comparison
with conventional machining. Tao et al. (2016) also developed a
model to study the effect of ultrasonic vibration on cutting forces.
The authors showed that the ultrasonic vibration has either less
effect on cutting forces in low feed rates or even increase the cut-
ting forces in some cases. However in high feed rates, especially
when vibrations with large amplitudes are exerted, cutting forces
remain the same and then, start to decrease in comparison with
conventional machining processes. Li and Wang (2013) studied
the effects of ultrasonic vibrations on tool life, surface roughness,
and burr formation in micro-milling operations. According to
their research results, applying ultrasonic vibrations on micro-
milling tools improves tool life by lowering tool wear and also
enhances surface quality. They also found out that using of
MQL technique improves tool life and surface quality even further
in micro-milling operations. Previous studies have shown that the
UAM method improves the cutting performance of Ti–6Al–4V
material. For instance, Ni et al. (2018) examined the UAM of
Ti–6Al–4V alloy and observed a reduction in cutting force com-
ponent Fx up to 37.24% and Fy up to 46.30% compared to the
conventional milling. Most recently, Lu et al. (2020) studied the
high-speed ultrasonic vibration cutting of Ti–6Al–4V, and they
concluded that in the case of selecting proper cutting conditions,
tool life and surface roughness values are improved and the cut-
ting temperature and forces are decreased. According to
Maurotto et al. (2013), by applying ultrasonic vibrations in turn-
ing of Ti–6Al–4V, cutting forces are reduced by an average of 70%
and surface roughness is improved compared to the conventional
turning. Pujana et al. (2009) reported that the feed forces are
reduced from 10% to 20% in the ultrasonic-assisted drilling com-
pared to the conventional drilling of Ti–6Al–4V material.
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Shabgard and Alenabi (2015) revealed that ultrasonic-assisted
electrical discharge machining (EDM) of Ti–6Al–4V material
showed an increase in material removal rate and a decrease in
the tool wear ratio compared to conventional electrical discharge
machining.

ANNs have also been successfully applied in the field of
machining applications. One of the earliest researches claims
that ANN model requires less number of interrelated parameters
in comparison with analytical methods; nevertheless, this model
predicts cutting forces better than the analytical solutions
(Szecsi, 1999). Another study in this field is predictive cutting
force modeling for flat-end milling by Tandon and El-Mounayri
(2001). According to their study, the difference between ANN
model output and real cutting forces from the experiments is
found as mean square error (MSE) of 5%. Sharma et al. (2008)
developed an ANN model for predicting surface roughness and
cutting forces in hard turning with an overall accuracy of
76.4%. Zerti et al. (2019) compared the difference between
response surface methodology (RSM) and ANN results.
According to these results, the ANN model predicted surface
roughness and cutting forces with an accuracy of 99.9%, while
an RSM model gives only 87.31% accuracy for surface roughness
and 98.03% for cutting force values. Radhakrishnan and Nandan
(2005) conducted a research on comparison of regression method
and ANN to predict cutting force in milling processes. The study
showed that the accuracy of the ANN model for cutting forces is
5% better than regression method. Kalla et al. (2010) utilized spe-
cific cutting energy for finding cutting forces of helical end
milling of carbon fiber-reinforced polymers (CFRP) with the
ANN approach. The authors indicated that the ANN model accu-
rately predicts cutting forces in this way. Ezugwu et al. (2005)
developed an ANN model by combining Levenberg–Marquardt
algorithm and Bayesian regularization methods in order to
study the machining of Inconel 718, which is a very commonly
used super-alloy. This combination is found as the best prediction
approach to prognosticate the process outputs (e.g., cutting forces,
surface roughness, etc.) with an accuracy of 99.76%. Özel and
Karpat (2005) estimated the cutting tool flank wear and surface
roughness over the machining time with a high accuracy by
using Bayesian regularization with Levenberg–Marquardt training
algorithm. Karabulut (2015) studied the optimization of cutting
forces and surface roughness of AA7039/Al2O3 metal matrix
composites in milling processes by using the ANN model.
Results show that the ANN model is very successful for surface
roughness and cutting force predictions with accuracies of
97.75% and 93.34%, respectively. Fredj and Amamou (2006)
used the ANN models in order to find the most optimized design
of experiment for an accurate prediction of the ground surface
roughness. Since the developed ANN model shows high predic-
tion capability, the number of experiments, time and cost can
be reduced. Das et al. (2016) examined the milling of different
composite materials by developing feed-forward back-
propagation type ANN to predict cutting forces, surface rough-
ness. The authors claim that the accuracy is up to 99% for both
of the output parameters. The ANN models are also used to
find tool wear predictions as well. In this case, D’Addona et al.
(2011) studied the tool wear prediction of Inconel 718 super-alloy
and the authors used the feed-forward back-propagation ANN
model for industrial applications and achieved results with a
root mean square error (RMSE) rates below 0.038. Quintana
et al. (2009) constructed an ANN-based surface roughness mon-
itoring application in ball-end milling operation and achieved

MSE of 0.00027 and 99% prediction success rate for training sam-
ples. Markopoulos et al. (2008) reported that the surface rough-
ness of various steel types after processing with the EDM
method was estimated by ANN with a coefficient correlation
(R) of 0.904 by using feed-forward back-propagation algorithm.
Another study is conducted by Rao et al. (2009) which is on
the EDM process of different materials. The authors used the
combination of the ANN model and Generic Algorithm (GA)
to predict the surface roughness values and the results give better
accuracy compared to the ANN model and GA separately. ANN
with GA can optimize the number of hidden layers, neurons, and
network weights; therefore, the MSE during training of the model
(Kramar et al., 2015). Pourmostaghimi et al. (2020) developed an
intelligent methodology for estimating the machining parameters
in the turning process of AISI D2 by using the ANN method and
their results showed that machining time can be predicted with a
higher accuracy.

As seen in the literature, UAM and MQL techniques have been
successfully applied with many advantages, but the applications in
which these two techniques are used together are insufficient. At
the same time, ANN can contribute to production efficiency by
making successful predictions during machining processes. In
order to study the effects of combined UAM and MQL methods
on hard-to-cut materials in a time and cost-efficient manner
application of ANN methods can be useful. To this aim, in this
study, the authors intend to predict the cutting forces by the
ANN and compare the results with real experimental results to
reduce the number of required experiments, thus decrease the
cost and required operation time and necessity for further expen-
sive experiments.

Materials and methods

A total number of 120 cutting force data is chosen for experi-
ments and ANN methods. The experiments are conducted in
Metal Forming Excellence Center of Atilim University,
Ankara-Turkiye.

Experiments

Ti–6Al–4V Grade 5, which is an alpha-beta titanium alloy, is used
as raw material for workpiece in these experiments. Chemical, phys-
ical, and mechanical properties of the workpiece are given in Tables
1–3, respectively. Three samples with 90 mm× 55 mm× 15 mm
dimensions are prepared for experiments with 0.3 mm depth of
cut, and one sample with 80mm× 60mm× 70mm dimensions
is prepared for 3 mm depth of cut experiments.

The experiments are conducted on a 4-axis VTEC brand CNC
milling machine. The properties of the CNC milling machine are
given in Table 4. Kistler 9265B dynamometer is used in order to
measure the cutting forces during the milling operations. It is
worth to note that the Kistler dynamometer is fixed on the
VTEC CNC milling machine table. Workpieces are located on
the dynamometer. The cutting force data are obtained from the
dynamometer during the cutting operations simultaneously.
The data are first transferred to the charge amplifier, then pro-
cessed to a Data Acquisition (DAQ) system and finally trans-
mitted to a workstation computer. DynoWare software is used
to control the data flow and allowing data to be received and
stopped at any time. Sensor placements and Fx, Fy, Fz directions
can be seen in Figure 1.
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Calculation of the three forces Fx, Fy, Fz from the
dynamometer:

Fx = Fx1+2 + Fx3+4 (1)

Fy = Fy1+4 + Fy2+3 (2)

Fz = Fz1 + Fz2 + Fz3 + Fz4 (3)

Finally, the resultant cutting forces FR are calculated in Eq. (4)
(Altintas, 2012):

FR = ��������������
Fx + Fy + Fz

√ (4)

In the study, the chosen cutting tool to machine the work-
pieces is STOCK® brand 64551 end mills, which has as a
10 mm diameter, helix angle of 35°, and four cutting edges.
This solid carbide-based cutting tool is coated with TiAlN.
Based on the design of experiment which is shown in Tables 7
and 8, the ultrasonic vibration and lubrication conditions are
changed in each nine experiment; therefore, fresh and new cutting
tools are used for each separate experiment in order to get reliable
results from each experiment and prevent the effect of any experi-
ment on the others.

For providing ultrasonic vibrations to the cutting tool, an
ultrasonic tool holder is needed to be mounted directly on the
CNC milling machine spindle. This tool holder and vibration gen-
erator are Altrasonic® brand. The frequency values are set to
19 kHz. Technical specifications of the ultrasonic tool holder
are given in Table 5 and can be seen in Figure 2.

In this study, MQL technique is also used via Bielomatik®
brand, B1-210 model MQL device. Technical details are given
in Table 6.

MQL cutting fluid is Samnos ZM-22W which consists of
hydrous polyalkylene-glycol-solution. Diameter of the nozzle is

Table 1. Chemical composition of Ti–6Al–4V (Boyer et al., 1994)

Component wt%

Al 6

Fe (Max) 0.25

O Max 0.2

Ti 90

V 4

Table 2. Physical properties of Ti–6Al–4V (Boyer et al., 1994)

Property Typical value

Density (g/cm3) 4.42

Melting range (°C) ±15°C 1649

Specific heat (J/kg °C) 560

Volume electrical resistivity (ohm cm) 170

Thermal conductivity (W/m K) 7.2

Table 3. Mechanical properties of Ti–6Al–4V (Boyer et al., 1994)

Property Minimum value Typical value

Tensile strength (MPa) 897 1000

0.2% Proof stress (MPa) 828 910

Elongation over 2 inches (%) 10 18

Reduction in area (%) 20 –

Elastic modulus (GPa) – 114

Hardness Rockwell C – 36

Table 4. Technical details of CNC machine used in experiments

Technical specifications Value

Number of axis 4

Dimensions 2400 × 1300 × 1000 mm

Power 55 kVA

Maximum speed 6000 RPM

Net weight 33,400 kg

Fig. 1. Sensor Placement of the Kistler dynamometer.

Table 5. Technical parameters of the ultrasonic tool holder

Technical parameters Values

Tool holder type BT50

Working frequency 15–21 kHz

Amplitude 10 μm or more

Matching tool 2–13 mm
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5 mm, which has an angle of 30° with the horizontal axis and is
50 mm away from the cutting zone. Samnos ZM-22W cutting
fluid is selected since ester-based oil is very useful with high lubri-
city and good hydrolytic stability (Debnath et al., 2014). In wet
conditions, 3 bars pressure is applied while Generax 327 LF is
used. This cutting fluid is a vegetable based and easily mixable
with water for general machining operations with a mixing ratio
of 5.5%. Figure 3 shows the general experimental setup used in
the study.

In all 120 experiments, selected cutting speeds and feed rates
are the recommended values given by cutting tool manufacturer
for milling the titanium alloy materials. An example of data sets
is given in Tables 7 and 8.

Model construction

Single, two, and three hidden layered ANN models of the experi-
ments are developed with five input parameters, namely feed, cut-
ting speed, depth of cut, lubrication conditions, and ultrasonic
vibrations, while the output parameter is chosen as cutting
force (Fig. 4).

The ANN model is coded from scratch using Python language.
The main reason to develop a source code in Python rather than
using commercial tool boxes is the intention of the authors to
have a full control on model parameters, algorithmic calculations
and be able to re-configure the code wherever it is required.
Figure 5 shows a part of the sample code used in the study.

The input and output data are compiled from the experiment
results with a total number of 120 data. Sigmoid transfer function
is used in hidden and output layers. A widely used learning algo-
rithm Levenberg–Marquardt (LM), a variation of feed-forward
back-propagation, is selected with different constant learning
rates. Network weights are modified with the help of LM algo-
rithm in order to minimize error between the desired and the
actual outputs of the model. It is worth to note that the construc-
tion of the ANN model includes five main stages:

Fig. 2. Ultrasonic tool holder used in experiments.

Table 6. Technical details of MQL device

Property Value

Tank capacity 1.8 L

Air pressure 5–10 bar

Calibration Manual

Exit options Two piece with pressure regulator

Operating Selanoid Valve

Pressure display Pressure Manometer

Size 460 × 290 × 170 mm

Table 7. Design of experiments for 0.3 mm depth of cut

Machining conditions

Lubrication condition
Ultrasonic
vibration

Spindle speed (rpm) | Cutting speed (m/min) Feed (mm/tooth) Depth of cut (mm)

1500 | 47.12 0.03 0.3 Dry Wet MQL OFF ON

0.04 0.3 Dry Wet MQL OFF ON

0.05 0.3 Dry Wet MQL OFF ON

0.06 0.3 Dry Wet MQL OFF ON

2000 | 62.8 0.03 0.3 Dry Wet MQL OFF ON

0.04 0.3 Dry Wet MQL OFF ON

0.05 0.3 Dry Wet MQL OFF ON

0.06 0.3 Dry Wet MQL OFF ON

2500 | 78.5 0.03 0.3 Dry Wet MQL OFF ON

0.04 0.3 Dry Wet MQL OFF ON

0.05 0.3 Dry Wet MQL OFF ON

0.06 0.3 Dry Wet MQL OFF ON
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1. Selection of the input and the output data from the
experiments.

2. Normalization of the total data.
3. Adjusting network weights and training of the normalized data

using LM learning algorithm.
4. Testing the goodness of fit of the ANN model.
5. Comparing the model output with the target output with the

help of statistical criteria.

As a first stage, the total data are split into two sets, 75% and
25% of the total data for training and testing period, respectively.

The maximum and minimum values of the model parameters are
given in Table 9. It is worth to point out that ultrasonic vibrations
and lubrication conditions are integer data types in the model.

Data normalization helps to transpose model parameters into
the data range of sigmoid transfer function. To this aim, as a sec-
ond step, the data are normalized by using Eq. (5) (Turhan et al.,
2017):

xi = 0.1+ 0.8
xi − xmini

xmaxi − xmini
(5)

Here, xi represents data in the ith node, while xmini and xmaxi
are the minimum and maximum values of all vectors. In the
training period, the model takes only 75% of the total data and
the adequate network weights are calculated with the help of itera-
tions until the error function reaches minimum. Likewise, the
model uses adjusted weights in the testing period to predict cut-
ting forces. Finally, the performance of the model is evaluated by
multiple correlation coefficient (R2) and mean absolute percent-
age error (MAPE) and mean squared errors (MSE) which are
given in Eqs (6)–(8), respectively (Lewis, 1982).

R2 = 1−
∑

i |ti − oi|2∑
i (oi)

2

( )
(6)

MAPE = 100
p

∑
i

ti − oi
oi

∣∣∣∣
∣∣∣∣ (7)

MSE = 1
p

∑
|ti − oi|2 (8)

where ti is the target, oi specifies the output, and p represents the
number of input–output pairs of ith data. Note that calculated
MAPE, i.e., MAPE ≤ 10% means high prediction accuracy,
10%≤MAPE ≤ 20% good prediction; 20%≤MAPE≤ 50%

Table 8. Design of experiments for 3 mm depth of cut

Machining conditions

Lubrication
condition

Ultrasonic
vibration

Spindle
speed
(rpm) |
Cutting
speed
(m/min)

Feed
(mm/
tooth)

Depth
of cut
(mm)

1500 |
47.12

0.03 3 Dry MQL OFF ON

0.04 3 Dry MQL OFF ON

0.05 3 Dry MQL OFF ON

0.06 3 Dry MQL OFF ON

2000 |
62.8

0.03 3 Dry MQL OFF ON

0.04 3 Dry MQL OFF ON

0.05 3 Dry MQL OFF ON

0.06 3 Dry MQL OFF ON

2500 |
78.5

0.03 3 Dry MQL OFF ON

0.04 3 Dry MQL OFF ON

0.05 3 Dry MQL OFF ON

0.06 3 Dry MQL OFF ON

Fig. 3. Experimental setup of UAM and MQL.
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reasonable prediction, and MAPE ≥ 50% inaccurate forecasting
(Yadav and Chandel, 2014). Furthermore, R2 is expected to be
close to 1 for a good prediction (Lewis, 1982).

The further information on model parameters is given below.

Feed (f) (mm/tooth): The distance that cutting tool paves per unit
revolution along the workpiece. This movement of the tool
produces a chip, which moves up the face of the tool. Since
in milling processes, tools mostly have multiple cutting edges,
the amount of feed per tooth is calculated by the total amount
of feed divided by the number of cutting edges; therefore, the
unit is given as mm/tooth-rev. Generally, the cutting forces
increase with increasing feed (Kalpakjian and Schmid, 2009).

Cutting Speed (v) (m/min): The primary motion which provides
the major relative motion between cutting tool and workpiece
to perform the machining process. Rotating cutting tool in the
milling process provides this cutting speed in milling

Fig. 4. ANN structure of the study.

Fig. 5. Developed code used in the study.

Table 9. Model parameters used in the study

Data used in the model

Minimum Maximum SD

Input parameters

Feed (mm/tooth) 0.03 0.06 0.02

Cutting speed (m/min) 1500 2500 409.9

Depth of cut (mm) 0.3 3 2.1

Lubrication conditionsa 0 2 0.8

Ultrasonic vibrationsb 0 1 0.5

Output parameter

Cutting force (N) 93.3 448.7 87.9

a0 = dry, 1 = wet, and 2 = MQL.
b0 means no ultrasonic, while 1 is ultrasonic.
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operations. Depending on the cutting speed, how much mate-
rial passes over the cutting tool also changes. As a result, the
condition of the cutting tool will change, so the cutting forces
will also be affected (Groover, 2019).

Depth of cut (ap) (mm): In milling operations, there are two types
of depth of cut: Radial Depth of Cut (ae) and Axial Depth of
Cut (ap). In the milling process, ae is called the radial distance
that tool engages with workpiece, while ap is the amount of
axial distance that the tool goes into workpiece along its center-
line. Since in this study, the milling operation is a slot milling,
ae is always constant and equal to diameter of cutting tool
which is 10 mm and the varying depth of cut parameter is
ap. Depending on this depth, the amount of material that
will change directly affects the cutting forces (Altintas, 2012).

Lubrication Conditions: The presence of metal working fluid
affects the events between the workpiece and the cutting tool
during cutting. Metal working fluids are used to reduce the
effect of high temperatures in the cutting zone on the machin-
ing quality. It also aims to reduce the friction between the cut-
ting tool and the workpiece, which is one of the reasons for
these high temperatures. These variables, which affect the cut-
ting zone between the cutting tool and the workpiece, have a
large impact on the cutting forces, as they directly affect the
tool life and tool quality during machining (Sun et al., 2006).

Ultrasonic Vibrations: The vibrations given to the cutting tool at
high frequency (19 kHz) and low amplitude (6 μm) cause the
cutting tool to separate from the workpiece 19,000 times per
second and reunite. This feature, which is not available in con-
ventional milling, has different effects on cutting forces under
different cutting conditions (Ni et al., 2018).

Cutting Force (N): Cutting forces are one of the most important
outputs to measure the quality and stability of machining.
Cutting forces can help to calculate the power required to

machine the workpiece, give an idea of machinability of the
materials, measuring the frictional forces on the material and
finding ideal parameters on machining the material. Cutting
forces also help to understand the vibration during the process
(Altintas, 2012).

Results and discussion

An ANN model of the cutting forces is developed for five input
parameters which are feed, cutting speed and depth of cut, lubri-
cation conditions, and ultrasonic vibrations. The adequate num-
ber of layers and neurons is found by 100.000 iterations. In
addition, a three hidden layered model, each of layers with 50
neurons is selected as optimal neuron and hidden layer number
for the model. In the training process, the optimum learning
rate is found as 0.1. The optimum number of layers, hidden neu-
rons, learning rate, and iteration number are obtained by several
trials, in which part of them are shown in Table 10, in order to
get closest R2 value to 1 and minimize the error (MSE and
MAPE). The training data consist of 100 experimental results of
the cutting forces, while the remaining is used for testing.
Figure 6a compares the experimental and ANN model of cutting
forces. The figure clearly represents that the training of the ANN
model is successfully obtained because of the model results mostly
fit with experimental data with the highest R2 of 0.9996 and the
lowest MSE and MAPE of 11.55 and 1.72%, respectively.
Figure 6b shows the linearity of the residuals for the cutting
forces. A normal distribution of the residual in the figure indicates
the normality of the errors in the model. In addition, a symmetric
bell-shaped histogram graph of residuals shows the distribution of
residuals is around 0 (Fig. 6c). This result illustrates that the nor-
mality distribution of the residuals indicates that the model train-
ing is successfully accomplished. Finally, it is worth to note that

Table 10. Statistical data obtained using different structures for the study

Hidden layer neurons Iteration number Learning rate

Training Testing

MSE MAPE R2 MSE MAPE R2

30, 20 100000 0.2 9,718 1.669 0.999 31,556 2.6531 0.9968

50, 50, 50 100000 0.1 11,546 1.720 0.999 13,099 1.8507 0.9970

50, 50, 50 80000 0.1 16,123 2.136 0.999 15,389 2.1907 0.9970

30, 20 100000 0.1 17,948 2.245 0.999 19,921 2.1095 0.9970

50, 50, 50 100000 0.01 117,380 5.343 0.995 27,614 2.5004 0.9969

30, 20 80000 0.2 12,527 1.901 0.999 33,375 2.7781 0.9968

30, 20 80000 0.1 26,906 2.789 0.999 22,866 2.2770 0.9969

50, 50, 50 80000 0.01 135,225 5.738 0.994 34,068 2.7694 0.9968

50, 50, 50 100000 0.001 313,566 8.628 0.987 129,172 5.5172 0.9956

50, 50, 50 80000 0.001 339,775 9.058 0.986 142,873 5.9548 0.9954

30, 20 100000 0.01 122,995 5.126 0.995 30,538 2.7846 0.9968

30, 20 80000 0.01 146,129 5.552 0.994 33,167 2.8356 0.9968

30, 20 100000 0.001 390,533 9.765 0.983 126,586 5.5249 0.9956

30, 20 80000 0.001 431,632 10.018 0.982 133,915 5.6588 0.9955

50, 50, 50 100000 0.2 17235,912 67.471 −6.196 57596,787 128.1209 −22.9816

50, 50, 50 80000 0.2 17235,920 67.471 −6.196 57596,809 128.1210 −22.9817
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the predicted and experimental results of the cutting forces have a
close match with each other as shown in Figure 6d.

Figure 6e,f shows the 3D surface map of the estimated cutting
forces in the training phase. It is clearly seen that the results are
matched with real expectation values. According to Figure 6e,
the highest cutting forces are found at highest cutting speed
and feed conditions, the result is compatible with the literature
(Altintas, 2012). Figure 6f shows that cutting forces of combined
application of MQL and UAM varies as expected which is envi-
sioned as claimed by previous researches (Brehl and Dow, 2008).

The trained ANN model is tested with remaining 20 data sets
of experimental cutting forces. Figure 7a,b exhibits that the model
successfully predicts the cutting forces with an R2 value of 0.9970,
MSE and MAPE values of 13.1 and 1.85%, respectively.

In ANN models, overfitting has occurred if the model depicts
low bias but high variance due to the excessively accurate and
complicated model. Overfitting results with very small training
errors, while the model returns higher testing errors. To avoid
overfitting problem, the optimum size of the model structure

and algorithms are obtained during the construction process. In
this study, although the model suffers from quiet insignificant
overfitting, this problem of the developed ANN model is negligi-
ble (Table 10).

Besides, a number of ANN structures with various numbers of
neurons, hidden layers and iteration numbers is tested in order to
find the optimal performance values of the cutting forces.
Table 10 shows the results of the ANN model with a combination
of these parameters. It is worth to remind that the best result is
highlighted with bold characters.

Some significant comments can be drawn in this section. The
best result in these simulations isobtained by using a learning rate
of 0.1 and iteration number of 100000. When the modeling of the
cutting force is taken into account, the higher learning rates result
in over/under estimations in the model. For example, as shown in
Table 10 estimations with a learning rate of 0.2 gives higher R2

value compared to the optimal model (which learning rate is
equal to 0.1). However, the results from graphs clearly demon-
strate that the results are quite underestimated (Fig. 8). The reason

Fig. 6. Training results.
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Fig. 7. Testing results.

Fig. 8. Under estimation problem in the model with learning rate = 0.2.
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of this underestimation could be the uncertainties from the exper-
imental data and the structure of the ANN model. The uncertain-
ties on experimental data can be easily detected by Monte Carlo
Analysis (Rugen and Callahan, 1996); however, uncertainties on
the structure of the ANN model are minimized through trial
and error procedures during the validation process. For instance,
smaller learning rates slow down the converging process of the
ANN model, and consequently, higher iteration numbers will
be required. On the other hand, larger learning rates expedite
the converging process; however, multiplication of larger learning
rate to smaller error values since uncertainties increase the error
values even further and this results in over/under estimations in
model outputs. Considering these facts, the trial and error process
is carried out with multiple learning rates, layer and iteration
numbers as the results are illustrated in Figure 8 and Table 10.

On the other hand, high iteration numbers can be preferred
even if optimization is required. However, in the case of a
model with high iteration numbers, the structure may need a
higher number of calculations and obviously this will be time-
consuming. Changing neurons and hidden layer numbers may
improve the precision of simulations, but the training stage can
be computationally heavy and again it will be much time-
consuming. Regarding the developed ANN model, the acceptable
performances are quite limited; therefore, the optimum parame-
ters should be considered in constructing the structure.

Conclusions

The purpose of this study is to estimate cutting forces in
ultrasonic-assisted milling processes of hard-to-cut materials
with the help of the MQL method by developing an ANN
model which is written in Python language by the authors. The
input data of the model are chosen as feed, cutting speed, depth
of cut, lubrication conditions, and ultrasonic vibrations, while cut-
ting force is the output of the model. The ANN model extracts
100 experimental cutting force data for training, while the rest
test the model. The best result is obtained with learning rate of
0.1, iteration number of 100000. LM learning algorithm and
three hidden layers each of them containing 50 neurons. The
achieved results show that the cutting force is successfully pre-
dicted with an R2 value of 99.7%. MAPE and MSE values of
1.851 and 13.1, respectively.

The hybrid manufacturing processes such as UAM are mostly
developed to process new and advanced engineering materials
which have low machinability properties; therefore, machining
of these materials require expensive tools and tedious processing
time. These necessities make experiments difficult and too expen-
sive to perform. Additionally, the lack of experts also leads to gain
unsatisfactory and unreliable results. Thus, developing an alterna-
tive method such as ANN to prognosticate experimental outputs
without the limitations mentioned above seems inevitable. The
suggested ANN model can be considered as this alternative to
the experiments with the advantage of being cost and time effec-
tive, simplicity and less experiment requirements. Furthermore,
this model can detect the experimental errors, which may cause
faulty calculations based on miscalculated cutting forces, such
as energy requirements for cutting, chatter, surface integrity,
residual stress predictions, and so on. This model may also
enhance the design of experiments for the next extended studies
on ultrasonic-assisted milling by studying the outcoming results
of the model.

The ANN model is developed using Python from scratch.
However, there exist machine learning libraries in Python like
Scikit-Learn. The future study will include comparison of the
results with outcomes by using the aforementioned libraries in
Python and other commercial ANN tool boxes.

Finally, this study exhibits that the ANN model can predict
cutting force, with using only 120 data sets. Further studies will
include the increased number of data set, different materials, cut-
ting conditions, and also other advanced manufacturing methods.
By including these parameters, the accuracy of the model can be
increased.
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