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The decay of cyclonic eddies by
Rossby wave radiation
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(Received 3 February 1997 and in revised form 4 December 1997)

It is argued that because shallow water cyclones on a β-plane drift westward at a speed
equal to an available Rossby wave phase speed, they must radiate energy and cannot,
therefore, be steady. The form of the Rossby wave wake accompanying a quasi-steady
cyclone is calculated and the energy flux in the radiated waves determined. Further,
an explicit expression for the radiation-induced northward drift of the cyclone is
obtained. A general method for determining the effects of the radiation on the radius
and amplitude of the vortex based on conservation of energy and potential vorticity
is given. An example calculation for a cyclone with a ‘top-hat’ profile is presented,
demonstrating that the primary effect of the radiation is to decrease the radius of the
vortex. The dimensional timescale associated with the decay of oceanic vortices is of
the order of several months to a year.

1. Introduction
Observations of the Earth’s ocean and also of the atmosphere’s of Jupiter and

Saturn show that there is a predominance of anticyclones over cyclones (see e.g.
McWilliams 1985; Nezlin & Sutyrin 1994). This asymmetry is also evident in
non-quasi-geostrophic β-plane numerical experiments such as those performed by
Cushman-Roisin & Tang (1990). In particular, they demonstrated that anticyclones
emerge in preference to cyclones from an initially turbulent field. Furthermore, exper-
iments performed by Nezlin and co-workers (see Nezlin & Sutyrin 1994 for a review)
in a rotating paraboloid also demonstrated the longevity of anticyclones relative to
cyclones. The present work explores the possibility that the asymmetry may be due to
the differing westward propagation speeds of cyclones and anticyclones. This is not
a new idea. Indeed Nezlin & Sutyrin (1994) suggested that the asymmetry in the dis-
persive and nonlinear properties of cyclones and anticyclones was one of the essential
reasons for the observed predominance of anticyclones. Nycander (1994) develops the
idea further and advocates a necessary condition for the existence of steady vortex
structures, namely that the centre-of-mass speed of the vortex lies outside the range of
possible linear wave phase speeds. Otherwise the vortex will resonate with the linear
wave field, radiate energy (sometimes referred to as Cerenkov radiation), and sub-
sequently decay. Nycander illustrates the idea with examples from geophysical fluid
dynamics and magnetohydrodynamics where he compares the drift velocity of the
vortex obtained by global integration methods with the phase velocities of the waves
calculated from the linear dispersion relation. The purpose of the present work is to
calculate analytically the Rossby wave field accompanying a cyclone on a β-plane,
the associated energy loss, the meridional velocity and the response of the cyclone to
this energy loss.
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238 N. Robb McDonald

Before proceeding, it should be noted that the presence of a background potential
vorticity gradient (i.e. the β-effect) is not an essential ingredient for the production
of cyclone/anticyclone asymmetry. For example, the shallow water f-plane numer-
ical experiments of Polvani et al. (1994) clearly demonstrate the preference for the
emergence of anticyclones over cyclones from an initially turbulent field. Polvani et
al. (1994) speculate that the necessary asymmetry is provided by the different struc-
tural properties (e.g. different local deformation radius) of finite-amplitude shallow
water cyclones and anticyclones. It should also be noted that the evolving turbu-
lence experiments of Cushman-Roisin & Tang (1990) involve strong vortex–vortex
interactions and the wave–vortex mechanism to be explored here may not be the
primary mechanism responsible for the cyclone–anticyclone asymmetry observed in
their experiments.

The non-dimensional equations governing the motion of an eddy in a one-layer
reduced-gravity fluid on the β-plane are

ut + (u · ∇)u+ k(1 + β̂y)× u = −∇η, (1a)

ηt + ∇ · [(1 + η)u] = 0, (1b)

where u is the velocity field and η is the displacement of the free surface from the
background depth of unity. Variables have been made non-dimensional using the
inverse of the Coriolis parameter f as the timescale, and the deformation radius
L = (g′H)1/2/f as the lengthscale, where g′ is the reduced gravity and H is the

undisturbed layer depth. The non-dimensional parameter β̂ is given by β̂ = βL/f. The
lengthscale, assumed to be the Rossby radius, is representative of many geophysical
vortices and is used throughout the present work.

An example demonstrating the differing westward propagation speed U of cyclones
and anticyclones, derived by Cushman-Roisin, Chassignet & Tang (1990) assuming
small Rossby number and timescale (see their equation 15), is given by the formula:

U = −β̂

1 +
1

2

∫∫
η2dA∫∫
ηdA

 . (2)

In dimensional terms the zonal velocity scales with the long Rossby wave speed,
i.e. βL2. The formula is accurate to a relative error of order the Rossby number.
Moreover the meridional (north–south) velocity vanishes to the same degree of
accuracy. Following Cushman-Roisin et al. (1990) an eddy for which η > 0 (a
localized thickening of the fluid) is called an anticyclone and an eddy for which η < 0
(a localized depression) is called a cyclone. It will also be assumed that the eddy is a
monopole and that η does not change sign over the extent of the eddy.

The key observation regarding (2) is that if η > 0 the centre of mass of the

eddy travels at velocity c < −β̂ and if η < 0 the centre of mass of the eddy

travels at velocity c > −β̂. In fact, for a cyclone, since the minimum value of η

is −1, Cushmann-Roisin et al. (1990) show that (2) implies −β̂ < c < −β̂/2. This
difference in the westward drift velocities of cyclones and anticyclones is not present
in the quasi-geostrophic equations which assume that the free surface displacement
is infinitesimally small. In particular, in quasi-geostrophic theory, both cyclones and
anticyclones propagate westward at the same speed, namely the long Rossby wave
speed. Thus, crucial to the present work is the requirement that vortex amplitudes be
finite, i.e. not quasi-geostrophic.
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The decay of cyclonic eddies by Rossby wave radiation 239

Recall that free linear Rossby waves for a one-layer reduced-gravity fluid governed
by (1) have phase velocities cp such that

−β̂ < cp < 0. (3)

Importantly, anticyclones according to (2) have a westward drift speed outside the
range of linear Rossby wave phase speeds. In contrast, cyclones drift with a speed
which matches a possible Rossby wave phase speed. Thus, in the case of cyclones, an
exterior wave field must accompany the propagating eddy and they can no longer be
considered to be steady.

Recently, Benilov (1996) has obtained a formula similar to (2) for the westward drift
speed of a nonlinear shallow water eddy using a perturbation method based on the

smallness of β̂. His formula, valid for order-one Rossby numbers, also demonstrates
the property that cyclones have westward drift velocity which matches available
Rossby wave speeds, while anticyclones, on the other hand, drift westward faster
than all Rossby wave phase speeds. Both (2) and Benilov’s result are consistent with
the interpretation that coherent structures on a β-plane drift westward at the ‘local’
long Rossby wave speed. In particular, anticyclones have a greater local deformation
radius (owing to larger depth), and hence have greater long Rossby wave speed than
the surrounding fluid. Conversely, cyclones have a deformation radius smaller than
the ambient deformation radius and therefore have a smaller long Rossby wave speed
than the surrounding fluid. It is this property of differing westward drift speeds of
cyclones and anticyclones that is taken as the starting point for the present work.

A notable study of radiating vortex structures on a β-plane involving a single
active layer of fluid is that by Flierl & Haines (1994). Starting with quasi-geostrophic
theory they studied the radiative response of a modon which was forced to propagate
at a velocity which was resonant with a Rossby wave. Similar to the present work
they calculated the energy flux in the quasi-steady Rossby wave field and found that
the leading-order response of the modon was to decrease its radius. The present
work also has similarities to Korotaev & Fedotov (1994) who studied an intense
barotropic (rigid-lid) monopole on the β-plane. Again the westward drift implies the
generation of a resonant Rossby wave field. Korotaev & Fedotov showed that the
radiation implied a meridional drift in the vortex which also lead to a decrease in the
vortex radius. Numerical evidence was presented which qualitatively confirmed their
theoretical results.

The aim of this work is to calculate the form of the exterior Rossby wave field for
a shallow water cyclone in the quasi-steady limit and also the associated energy flux
in this wave field. By quasi-steady it is meant that the time-dependent parameters
of the system (specifically, the eddy radius and depth) are assumed to vary slowly
on a Rossby wave timescale, i.e. the time taken for a Rossby wave to propagate
the characteristic length of the vortex. This implies, for the purposes of calculating
the exterior Rossby wave field, that the vortex may be considered steady. This is
justified a posteriori. The flux of energy implies, of course, that the cyclone cannot be
steady but must lose energy and decay. The timescale and form of this decay is to be
calculated for a specific (‘top-hat’) eddy profile.

The plan of the paper is as follows: In § 2 the main assumptions are stated, the
governing equation for the exterior of the vortex derived and the boundary conditions
to which it is subject to are discussed. Section 3 analyses the non-radiating case of an
anticyclone. Section 4 derives the Rossby wave field associated with a cyclone and the
associated meridional drift. The radiative loss of energy of the cyclone is calculated
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240 N. Robb McDonald

in § 5. Coupled with the Lagrangian conservation of potential vorticity a method
enabling the response of the cyclone to Rossby wave radiation is also presented in
§ 5. In § 6 an example calculation for the decay of an idealized cyclone with ‘top-hat’
depth profile suggests that the wave decay mechanism may be of significance on
geophysical timescales. The work is concluded in § 7.

2. Problem formulation
The following assumptions are made.

(i) The eddy propagates in a westward direction with speed U = β̂u where β̂ � 1
and u < −1 for anticyclones and −1 < u < 0 for cyclones. For oceanic eddies, typically

β̂ ≈ 0.002− 0.01. This is the only small parameter required for the theory developed
in §§ 2–5. The possibility of motion in the meridional (y) direction is allowed for;
it is not prescribed but, rather, determined as consequence of the radiative process.
However, it is assumed that the meridional velocity V is small relative to the zonal
velocity, i.e. |V/U| � 1.

(ii) The eddy is intense. That is, the ratio of the eddy turnover time to the wave
propagation time is small. The intense assumption implies that the vortex itself does
not disperse into Rossby waves, but rather nonlinear effects are sufficiently large to
cause the vortex to propagate as a whole transporting fluid within a closed separatrix
of the field η +Uy. Reznik (1992) discusses similar separatrix formation for intense,
but admittedly singular, quasi-geostrophic vortices.

(iii) To leading order the eddy is assumed radially symmetric and remains so
throughout its evolution. That is η = η(r). To facilitate analytical progress, the eddy
boundary (i.e. the separatrix) is assumed to be a circle of radius a, which may be a
slowly varying function of time.

At the separatrix (r = a) the orbital (circulative) velocity of the vortex must be

of the same order as the drift velocity, namely O(β̂). Since this orbital velocity is
small, this implies that the flow here (and beyond) is, to leading order, geostrophic.

Hence, by (1 a), η = O(β̂) at r = a. Writing η = β̂ψ, where ψ is the geostrophic
streamfunction, it follows that the condition on the separatrix is

ψ + uy = C on r = a, (4)

where C is some constant to be determined. Note that the separatrix is essentially the
matching region between the interior flow where the swirl velocity of the vortex is
much greater than the drift velocity and the far-field velocity where the swirl velocity
is very much weaker than the drift velocity.

In a frame of reference moving zonally with the vortex at velocity β̂u the time

derivatives in (1 a, b) can be replaced by −β̂u ∂/∂x where smaller time derivatives
have been neglected through the quasi-steady assumption. Standard expansion of the

shallow water equations (1 a, b) in the parameter β̂ (i.e. putting u = β̂u and η = β̂ψ in
(1 a, b)) reveals that the small parameter is precisely the correct location for derivation

of the quasi-geostrophic equation for ψ. Note that, as in Benilov (1996), β̂ is playing
the role of the Rossby number since the swirl velocity of the vortex is of this order
at the separatrix. For r > a, ψ thus satisfies

uψx − u∇2ψx + J[ψ,∇2ψ] + ψx = 0, (5)

where J[f, g] = fxgy − fygx is the Jacobian. The essential point is that outside
the separatrix the flow is quasi-geostrophic. Benilov (1996) also derives this quasi-
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The decay of cyclonic eddies by Rossby wave radiation 241

geostrophic relation at the periphery of a shallow water vortex and beyond. The
nonlinear dynamics inside the separatrix are unspecified and are only important to
the following insofar as they determine the westward drift velocity u of the vortex,
i.e. through the boundary condition (4).

As in Korotaev & Fedotov (1994) it is assumed that the separatrix has only one
saddle point which is located in the upper half-plane for a cyclone and the lower
half-plane for an anticyclone. This assumption is born from the realization that flow
around a vortex is more like flow around a cylinder with circulation than without.
The forcing of a single stagnation point to the north or south of the vortex is an
attempt to model this feature and is clearly more realistic for monopoles than the
symmetrical fore and aft stagnation points that occur, for example, in the case of a
modon. The condition that forces this topology can be written as

ψy = −u, r = a,

{
θ = π/2, cyclone
θ = −π/2, anticyclone.

(6)

Finally, it is assumed that

ψ → 0 as r →∞. (7)

The mathematical task is to solve (5) subject to conditions (4), (6) and (7). For
the case of a cyclone, as will be seen, these conditions need to be supplemented by a
radiation condition.

Note that (5) can be written as

J[ψ + uy,∇2ψ + (u+ 1)y] = 0, (8)

which has solution

∇2ψ + (u+ 1)y = F(ψ + uy), (9)

where F(.) is some arbitrary differentiable function. A suitable choice for F for which
(9) becomes homogeneous, and consistent with the linear version of (5) (which is the
expected form of (5) in the far field), is F(z) = (u+ 1)z/u.

For this choice of F(z), ψ satisfies

∇2ψ − (u+ 1)

u
ψ = 0. (10)

Benilov (1996) also obtains this equation for the periphery of the vortex and beyond.
It follows from (2) that for an anticyclone (u+1)/u > 0 and for a cyclone (u+1)/u < 0.

3. Anticyclone
For completeness, and to contrast the forthcoming case of a cyclone, an analysis of

an anticyclone is done first. By the arguments presented in § 1 this should be a robust
object since its westward drift velocity lies outside the range of possible Rossby wave
phase speeds.

Let b2 = (u+ 1)/u, so that (10) becomes

∇2ψ − b2ψ = 0. (11)

The solution of (11) satisfying (4) and (7) is

ψ = C
K0(br)

K0(ba)
− uaK1(br)

K1(ba)
sin θ. (12)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

86
96

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098008696


242 N. Robb McDonald

4

2

0

–2

–4
–4 –2 0 2 4

x

y

Figure 1. Contours of ψ + uy for an anticyclone in the region r > a where a = 1 and u = −1.1.
The contour interval is 0.4.

The constant C is determined from the stagnation point condition (6):

C = −uaK0(ba)K2(ba)

[K1(ba)]2
, (13)

which is always positive implying that the sense of the circulation, ψr , at r = a is
negative, as expected for an anticyclone. Substituting (13) in (12) gives ψ:

ψ = − ua

K1(ba)

[
K2(ba)

K1(ba)
K0(br) +K1(br) sin θ

]
. (14)

A plot of ψ given by (14) for r > a is shown in figure 1. It is evident that the
streamfunction is evanescent for r > a and the streamfunction ψ decays exponentially
as r → ∞. The energy of an anticyclone remains localized and it is expected, at least
with respect to the (non)radiation of energy, that anticyclones are robust, long-lived
features.

4. Cyclone
Let b2 = −(u+ 1)/u, so that (10) becomes

∇2ψ + b2ψ = 0. (15)

For this case conditions (4) and (7) need to be supplemented by an appropriate
radiation condition which precludes upstream waves, namely

lim
r→∞

r1/2ψ(r, θ) = 0, π/2 6 θ 6 3π/2. (16)

The solution is constructed in a similar manner to Miles (1968) (see also Swaters
& Flierl 1991 and Swaters 1994) with the additional allowance for terms which are
symmetric about the x-axis such as occur in Flierl (1984) and Korotaev & Fedotov
(1994) (i.e. terms involving cos nθ). These terms are necessary in order to satisfy the
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saddle point condition (6) on the separatrix. To proceed, write ψ as

ψ =

∞∑
n=1

αn [Yn sin nθ + hn(r, θ)] /Yn(ba) +

∞∑
n=0

γn [Yn cos nθ + gn(r, θ)] /Yn(ba), (17)

where

hn(r, θ) =

∞∑
m=1

βn,mJm(br) sinmθ, (18a)

gn(r, θ) =

∞∑
m=0

εn,mJm(br) cosmθ. (18b)

Using the asymptotic forms for Jn and Yn as r → ∞ it follows from (16), (17) and
(18 a, b) that

sin(2nθ) =

∞∑
m=0

(−1)m+n+1β2n,2m+1 sin [(2m+ 1)θ)] , (19a)

sin [(2n+ 1)θ] =

∞∑
m=0

(−1)m+nβ2n+1,2m sin(2mθ), (19b)

and

cos(2nθ) =

∞∑
m=0

(−1)m+n+1ε2n,2m+1 cos [(2m+ 1)θ)] , (20a)

cos [(2n+ 1)θ] =

∞∑
m=0

(−1)m+nε2n+1,2m cos(2mθ). (20b)

The slow r−1/2 decay of Jn and Yn as r → ∞ implies that the exterior field has
infinite energy if, and only if, it extends to infinite radius. However the scenario to
bear in mind here is an initial value problem where, for large times after some initial
adjustment period, the wave field of the form (17) extends to large, but finite, r at
a position given by r = cgt where cg is the radial group velocity. Ahead of this
wavefront the streamfunction amplitude vanishes. Thus the energy is finite in the
exterior and the relevant quantity being sought is the energy flux in the wave field.

Equations (19 a, b) are the same as obtained by Swaters (1994) and have solution

βn,m =


4

π

n

m2 − n2
, m odd, n even

4

π

m

m2 − n2
, n odd, m even

0, m+ n even ,

(21)

where 0 is considered even for the purposes of the above calculation. Similarly the
solution to (20a, b) can be obtained:

εn,m =


4

π

m

m2 − n2
, modd, n even

4

π

n

m2 − n2
, n odd, m even

0, m+ n even.

(22)
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ab = 1.0 ab = 0.2

γ0/C −0.146 0.957
γ1/C 0.917 0.112
γ2/C 0.057 7.14×10−5

γ3/C 0.0142 6.24×10−5

γ4/C 2.5×10−4 1.19×10−8

Table 1. The first five values of γ/C with zero meridional velocity for two cases:
ab = 1.0 and ab = 0.2.

It remains to satisfy the boundary condition (4) on r = a, namely

ψ|r=a = −ua sin θ + C, (23)

where C is some constant to be determined using the stagnation point condition at
r = a and θ = π/2. Substitution of (17) into (23) gives (cf. Swaters 1994)

∞∑
n=1

αnΓn,m(ab) = −uaδm1,

∞∑
n=0

γnΓ
′
n,m(ab) = Cδm0, (24a, b)

where

Γn,m = δnm + βn,m
Jm(ba)

Yn(ba)
, Γ ′n,m = δnm + εn,m

Jm(ba)

Yn(ba)
. (25a, b)

Note that equations (23 a, b) and (24 a, b) represent two sets of infinite-dimensional
matrix equations for the unknown vectors α = (α1, α2, · · ·) and γ = (γ0, γ1, · · ·). Note
that the set (23 a) and (24 a) is precisely that solved by Swaters (1994). He points
out that as n → ∞, Γn,m(ab) ≈ δn,m which implies that relatively few terms of the
matrix Γn,m are needed for very accurate results. Indeed, he used the leading 20×20
finite systems of equations to show that for a = b = 1, α1 ≈ −0.97ua, α2 ≈ −0.12ua,
α3 ≈ −7.3×10−4ua, etc. For a� 1 convergence is even more rapid owing to property
that Γn,m(ab) ≈ δn,m as a → 0 for all n, m. For example, if a = 0.2 and b = 1 solving
the leading 20×20 system of equations gives α1 ≈ −0.999 997ua, α2 ≈ −1.2× 10−3ua,
α3 ≈ −3.3× 10−9ua, etc. As will be seen, the small-a limit is of practical significance,
since the main response of the cyclone to the radiation of Rossby waves is a decrease
in radius. Thus, for practical purposes such as calculating the energy radiated by the
Rossby waves, we shall take α1 = −ua and αm = 0 for m > 2.

Similarly, (24 b) and (25 b) also have the property that Γ ′n,m(ab) ≈ δn,m as n → ∞.
Again sufficient accuracy is obtained by approximating the infinite set of equations
by the leading 20×20 system. The behaviour is illustrated in table 1 where the first
five values of γi are given for a = b = 1.0 and a = 0.2, b = 1.0. Note however that the
presence of the cos θ term at r = a in (17) is suggestive of possible meridional motion.
More precisely, a cos θ-like dipole, which has an axis of antisymmetry aligned in the
meridional direction, will cause the eddy to move in that direction. The calculations
presented in table 1 were obtained by requiring the meridional motion to vanish,
i.e. the right-hand side of (24 b) for the equation involving cos θ vanishes since there
is no δm1 term. There is no reason, however, to a priori preclude the possibility of
meridional motion. Indeed, numerical experiments on eddy evolution frequently show
meridional motion (see, for example, Davey & Killworth 1984). Here we postulate
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ab = 1.0 ab = 0.2

γ0/C 0.9992 1.0
γ1/C 4.8×10−3 1.26× 10−7

γ2/C 1.7×10−3 −3.08× 10−10

γ3/C −9.3× 10−2 6.52× 10−5

γ4/C 2.05× 10−5 2.45× 10−13

Table 2. The first five values of γ/C with non-zero meridional velocity given by (27) for two cases:
ab = 1.0 and ab = 0.2.

the existence of meridional motion and, instead of (24b), solve the modified equation

∞∑
n=0

γnΓ
′
n,m(ab) = Cδm0 + vaδm1, (26)

where v is the meridional velocity which, for the moment, is undetermined. To
compensate for the extra degree of freedom due to meridional motion it is assumed
that most of the energy in the radiated wave field exists in the lowest-order mode
disturbance γ0 (that is γi � γ0 for i > 1). Some justification for this comes from the
solution of (24 a) where it was demonstrated that most of the energy occurs in the
lowest-order (i.e. sin θ) mode. Further justification is that it yields an explicit formula
for the meridional velocity which reduces to a known result in the barotropic limit
(see below). With this assumption it follows from (26) with m = 1 that

va = γ0Γ
′
0,1 = γ0

4

π

J1(ba)

Y0(ba)
. (27)

Equations (26) and (25 b) are then solved with v given by (27). The results are
displayed in table 2. It is evident that now convergence is now extremely rapid and
that indeed, as assumed, most of energy in the radiated field exists in the lowest mode
γ0 and, further, γ0 = C . Note that the original assumption γi � γ0 is only explicitly
used in the (26) with m = 1 and the subsequent infinite-dimensional system gives a
solution consistent with this assumption.

It remains to determine C . As in the case of the anticyclone this is done by invoking
the stagnation point condition (6), namely that ψy = −u on (r, θ) = (a, π/2). Note
that at this point cos[(2m + 1)θ] = sin[2mθ] = 0 as well as θy = 0 and ry = 1.
Thus differentiating (17) with respect to y and using (6) and the approximations
α = (−ua, 0, 0, · · ·) and γ = (C, 0, 0, · · ·) yields

C = γ0 = ua
Y0(ba)Y2(ba)

[Y1(ba)]2
. (28)

Substituting (28) into (27) finally gives a determinate expression for v:

v =
4

π
u
J1(ba)Y2(ba)

[Y1(ba)]2
. (29)

Before illustrating the general behaviour of v given by (29) consider first the limit
a → 0. Physically this corresponds to a vortex whose lengthscale is much less
than the deformation radius. This is equivalent to the barotropic limit. Asymptotic
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Figure 2. Plot of v as a function of u where v is given by (29) and b2 = −(u+ 1)/u
for −1 < u < −1/2 and a = 1.

expressions of the Bessel functions in (29) for small arguments give the leading-order
expression

v ≈ −2uab. (30)

The limiting result (30) agrees exactly with the result obtained by Korotaev & Fedotov
(1994)† who considered the motion of a barotropic vortex on a β-plane.

Choosing a = 1, a plot of v as a function of u is shown in figure 2. Note that
v > 0, i.e. the cyclone moves north as a result of the radiation. The magnitude
of the meridional velocity decreases as the westward drift velocity approaches −1,
i.e. the quasi-geostrophic limit. That is, smaller-amplitude cyclones have smaller
northward velocities. Observe that for much of the range of u, v is of the same
order of magnitude as u. This violates the assumption of the preceding analysis
that |v/u| � 1 (see assumption (i) in § 2). If the magnitudes of v and u are of
comparable order the governing equation (4) would contain terms involving v and
derivatives with respect to y. Moreover, it seems likely that the saddle point would
no longer be at θ = π/2, if there were to be significant meridional motion. Strictly
speaking the result (29) is valid only when u is less than, say, −0.9 where the
approximation |v/u| � 1 is valid. Note for such values of u, b � 1 and so for
cyclones of O(1) radius it follows that ab � 1. This is precisely the limit for which
the assumption that most of the radiated energy resides in the gravest mode holds
true. It is evident therefore that the assumption |v/u| � 1 is consistent with the
assumption that most of the radiated energy resides in the gravest mode. Even with
this caution, it is possible that (29) represents a wider range of u values since the
situation is reminiscent of Korotaev & Fedotov (1994) who also made the assumption
that |v/u| � 1, but found that their analysis predicted, for some parameter values,
that |v| ∼ u. Indeed they found that v > u in some cases. Even for such parameter
values they found good agreement between their theoretical predictions and numerical
experiment.

If for the purpose of illustrating ψ and calculating the energy flux in the wave-field
we take, to a good approximation, α = (−ua, 0, 0, · · ·) and γ = (C, 0, 0, · · ·) where C is

† In particular their equation (4.21). Note that there is a misprint in their equation: it should
read V = (Γ/2π)λ = 2R0(−U)1/2. Here a is equivalent to R0 and b is equivalent to (−1/U)1/2 in the
barotropic limit.
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Figure 3. Contours of ψ + uy for a cyclone for (a) −4 6 x, y 6 4 (contour interval of 0.5) and
(b) −40 6 x, y 6 40 (contour interval of 3.5). In each case b = 1/3 (u = −0.9) and a = 1.

given by (28), (17) yields

ψ = ua
Y2(ba)

[Y1(ba)]2

[
Y0(br) +

4

π

∞∑
m=0

J2m+1(br)

2m+ 1
cos[(2m+ 1)θ]

]

− ua

Y1(ba)

[
Y1(br) sin θ +

2

π

∞∑
m=1

4m2

4m2 − 1
J2m(br) sin[2mθ]

]
. (31)

This expression contains terms similar to Flierl & Haines (1994) and also Swaters
(1994). Sketches of the streamfunction given by (31) are given in figure 3(a, b). The
downstream waves are clearly evident as is the location of the saddle, or stagnation,
point on the northern side of the vortex.

5. The cyclone decay
As r →∞, using standard asymptotic results for Bessel functions, (31) becomes

ψ =

 2A

(
2

πbr

)1/2

sin
(
br − π

4

)
+ 2C

(
2

πbr

)1/2

cos
(
br − π

4

)
sin θ, x > 0

0, x < 0,

(32)

where

A = ua
Y2(ba)

[Y1(ba)]2
, C =

ua

Y1(ba)
. (33)

The leading-order energy density ρ = (ψ2
r + (1/r2)ψ2

θ + ψ2)/2 of the waves in (32) as
r →∞, after averaging the cyclic terms over one period, is

ρ =
2(1 + b2)u2a2[Y2(ba)]

2

πbr[Y1(ba)]4

[
1 +

[Y1(ba)]
2

[Y2(ba)]2
sin2 θ

]
. (34)
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In a frame of reference moving with zonal velocity u, linear quasi-geostrophic
Rossby waves have dispersion relation

ω(κ, θ) = −uκ cos θ − κ cos θ

1 + κ2
, (35)

where κ is the radial wavenumber and k = κ cos θ and l = κ sin θ are the zonal
and meridional wavenumbers respectively. In this frame of reference the waves are
stationary, i.e. cp = ω/k = 0. Thus

u = − 1

1 + κ2
. (36)

Recall that for a cyclone b2 = −(u+ 1)/u and so, from (36), κ2 = b2. The radial group
velocity cg is

cg =
∂ω

∂κ
=

2b2 cos θ

(1 + b2)2
. (37)

Note if b = 0 then cg = 0 and no energy is radiated by linear waves. This corresponds
to the case u = −1 and therefore, from (2), η ≡ 0, i.e. there is no eddy and so this
case is ignored.

The rate at which energy is lost from the eddy can now be calculated (recalling

that the non-dimensional amplitude of ψ is β̂):

dE

dt
= −β̂

2
∫ π/2

−π/2
ρcgrdθ

= −β̂
2 8a2b[Y2(ba)]

2

π(1 + b2)3[Y1(ba)]4

[
1 +

1

3

[Y1(ba)]
2

[Y2(ba)]2

]
. (38)

The smallness of the term on the right-hand side of (38) (i.e. order β̂
2
) justifies the

quasi-steady approximation.

In general, the energy of the eddy depends on both its radius a and its amplitude
η (which through (2) affects the magnitude of u and, in turn, b) both of which are
considered slowly varying quantities. Thus another equation in addition to (38) is
required in order to close the system. It will be supposed that, in the spirit of Flierl
& Haines (1994), the potential vorticity of the fluid column at the centre of the eddy
is conserved as it moves northward. Numerical experiments for monopole evolution
on a quasi-geostrophic β-plane by Sutyrin et al. (1994) show that that fluid particles
forming a central core of the eddy remain coherent throughout the evolution. Thus
it seems reasonable to choose the central fluid column for application of potential
vorticity conservation. Hence

D

Dt

(
∇2h+ 1 + β̂y

h

)
= 0, (39)

where the term in the round brackets is the potential vorticity of the central fluid
column. Equations (38) and (39) are sufficient to determine the evolution of cyclones
in response to Rossby wave radiation. An example calculation is presented in the
next section for the simple case of a cyclone with ‘top-hat’ profile.
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6. An example of decay: a cyclone with ‘top-hat’ profile
Consider a cyclone with depth profile

η =

{
−λ, r 6 a
0, r > a,

(40)

where λ > 0. Although perhaps on over-simplified choice of profile it does represent
the case when the leading-order energy is all potential and the leading-order potential
vorticity is function of fluid depth only. Incidentally, such properties are shared by
large-scale frontal geostrophic eddies where the relative vorticity can be ignored
(see e.g. Cushman-Roisin 1986). For the purposes of calculating the effects of the
radiative energy loss on the cyclone it is necessary to be able to calculate analytically
the westward drift velocity u given the profile (40). To do this, the formula (2) of
Cushman-Roisin et al. (1990) is chosen.

The following properties are calculated from (2) and (40): u = −1 + λ/2, b2 =
λ/(2 − λ) and the energy (all potential) E = πa2λ2/2. Using these quantities, and
noting that ∇2h = 0 for the central fluid column and h = 1 − λ and dy/dt = v the
conservation of peak potential vorticity (39) leads to

dλ

dt
= −β̂v(1− λ)

= −β̂
2
(1− λ)(−1 + λ/2)

4

π

Y2(ba)J1(ba)

[Y1(ba)]2
(41)

where the expression (29) has been used for v and also the fact that v = O(β̂). The
energy equation (38) yields

λ
da

dt
+ a

dλ

dt
= −β̂

2 8ab

π2(1 + b2)3λ

[Y2(ba)]
2

[Y1(ba)]4

[
1 +

1

3

[Y1(ba)]
2

[Y2(ba)]2

]
, (42)

where b2 = λ/(2 − λ). The task is to solve the coupled system (41) and (42) for a(t)
and λ(t) subject to given initial values of a and λ. This is done numerically. In the
numerical simulations it was noted that λ remained essentially constant throughout,
i.e. it stayed very close to its initial value. Comparison of the magnitude of the
terms on the right-hand side of each of equations (41) and (42) shows that indeed
dλ/dt is relatively small compared to da/dt. The implication is that the primary
response of the cyclone to Rossby wave radiation is to lose energy by a decrease
in radius rather than by a decrease in amplitude. This is consistent with the quasi-
geostrophic studies of Korotaev & Fedotov (1994) and Sutyrin et al. (1994) who
showed numerically that the vortex core (i.e. a region of ‘trapped particles’) shrinks
during its evolution.

Results showing a = a(τ) and λ = λ(τ) are presented in figure 4 a, b for values

of λ equal to 0.1 and 0.2 where τ = β̂
2
t. The initial radius is a(0) = 1. Note that

with such small interface displacements the Rossby number is small and so the use
of the Cushman-Roisin et al. (1990) formula is valid. Note that initially ab = 0.69
for the λ = 0.1 cyclone and ab = 1.0 for the λ = 0.2 cyclone. This puts them in
a parameter regime such that the approximation that most of the radiated energy
occurs in the gravest mode, detailed in the previous section, is valid (see also table
1) and hence consistent with the initial assumption that |v/u| � 1. Moreover, since a
decreases with time, this approximation gets better with time. The weaker (λ = 0.1)
cyclone in figure 4(b) decays more rapidly than the stronger cyclone (λ = 0.2)
in figure 4(a). The decay in radius appears to be exponential-like. In fact, in the
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Figure 4. (a) Evolution of the cyclone radius a and amplitude λ as a function of τ in response to the
radiative energy loss. Here a(0) = 1 and λ(0) = 0.2. (b) As in (a), but for weaker initial amplitude
λ(0) = 0.1. Note that in this case the decay time for the radius a is shorter than the stronger cyclone
in (a).

limit a � 1 it is precisely exponential decay. To see this, observe that for small
a, Y2(ab) ∼ −4/(πa2b2) and Y1(ab) ∼ −2/(πab). Thus, to leading order in a, (42)
becomes

da

dτ
= − 8ab

λ2(1 + b2)3
, (43)

which yields an exponential decay law for a with e-folding time equal to λ2(1 +
b2)3/8b = λ3/2(2− λ)−5/2. This is a monotone decreasing function of λ on the interval
[1, 0], reflecting the fact that weaker cyclones (smaller λ) decay more rapidly than
stronger cyclones.

Dimensionally, choosing a typical value relevant to oceanic vortices of β̂ = 0.006
and recalling that the dimensional timescale is f−1 (choosing f = 8 × 10−5s−1)
implies that τ = 1 is equivalent to about 4000 days. Figure 4(a, b) indicates that
cyclones undergo significant decay (i.e. decaying to half their original size) in 80
days (τ = 0.02) for the stronger cyclone and in 25 days (τ = 0.006) for the weaker
cyclone. Thus the radiative decay mechanism explored here may be equally, or
indeed more, significant to other non-conservative decay processes such as friction or
mixing.

Typical parameters relevant to the Jovian system are (see e.g. Williams & Yamagata

1984) β = 4 × 10−9 km−1 s−1, L = 1500 km and f = 2 × 10−4 s−1 giving β̂ = 0.03.
For this case τ = 1 corresponds to about 60 (Earth) days, implying that the decay
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of cyclones is much more rapid on Jupiter. Although the presence of significant
anticyclonic zonal shear flows on Jupiter make it debatable whether the present
theory is directly applicable to such vortices.

7. Conclusion
Analytic solutions have been found for the streamfunction field exterior to the sep-

aratrix for finite-amplitude shallow water cyclones and anticyclones. This calculation
is quite general and depends only on the zonal drift velocity of the vortex and the fact
that a circular separatrix exists in the geostrophic streamfunction field in the frame
of reference moving with the vortex. It does not require that the vortex amplitude be
vanishingly small compared to the mean layer thickness (i.e. quasi-geostrophic theory)
but is valid for finite vortex amplitudes. Indeed this is a necessary requirement, so
that the vortices drift westward at an amplitude-dependent speed, different from the
long Rossby wave speed. In the case of anticyclones, which drift westward faster than
all possible Rossby wave phase speeds, the exterior field is evanescent and steady
solutions are possible. This is not so for cyclones, because they drift westward at a
speed which matches an available Rossby wave phase speed. A quasi-steady assump-
tion along with a radiation condition enables the exterior streamfunction field to be
calculated analytically. The energy flux carried by these Rossby waves is then found
and, further, by assuming that most of the radiated energy occurs in the lowest-order
mode an expression for the northward drift velocity of the cyclone is obtained. This
expression reduces to that obtained by Korotaev & Fedotov (1994) in the barotropic
limit.

A general method of determining the response of cyclones to Rossby wave radiation
is presented based on relating the loss of energy in the Rossby wave wake to the
rate of change of energy of the cyclone and using the conservation of potential
vorticity for the central fluid column of the vortex. An example calculation for
a top-hat cyclonic vortex shows that the primary response to the radiation is a
decrease in vortex radius. This implies that mass must be lost from the interior of
the separatrix, and it is envisaged that this occurs in the vicinity of the stagnation
point as in Korotaev & Fedotov (1994). In particular, they showed numerically that
the resulting vortex sheet affects some aspects of the vortex evolution, primarily
its trajectory. It is probable that the situation in the shallow water case here is
similar and this would require numerical investigation. The shallow water numerical
experiments on β-plane cyclones by Davey & Killworth (1984) also show evidence
for mass leakage and subsequent decrease in radius. Moreover, consistent with the
findings here, they show that stronger cyclones are more robust. It is arguable,
however, whether it is fair to make a direct comparison with the results of Davey
& Killworth (1984) since it is possible that the behaviour they observe is due to the
initial adjustment of an initially stationary eddy. Also, their experiments were run
only the relatively short time of about 200 inertial periods, or about 20 days, which is
insufficient to observe significant decay in strong cyclones by the mechanism proposed
here.

The theoretical estimate for the timescale for the cyclone to decay to half its initial
radius obtained here (e.g. 60–120 days, depending on the initial amplitude of the
cyclone) is of possible relevance to oceanic vortices. In particular, the Rossby wave
radiation mechanism explored here may serve to explain the observed oceanic bias
towards greater numbers of anticyclones rather than cyclones.
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