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POINTS IN A FOLD
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Abstract

When a page, represented by the interval [0, 1], is folded right over left n times, the right-hand fold contains
a sequence of points. We specify these points and the order in which they appear in each fold. We also
determine exactly where in the folded structure any point in [0, 1] appears and, given any point on the
bottom line of the structure, which point lies at each level above it.
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1. Introduction

When the line joining 0 to 1 (or a rectangular piece of paper with [0, 1] at its edge)
is folded in half, right over left, the point 1/2 is at the fold. When the line is then
folded in half again, right over left, the points 1/4 and 3/4 are at this second fold,
in that order, as indicated by the horizontal arrow, from the outside of the fold to its
interior in Figure 1. We have ignored the fact that, strictly speaking, a line with no
thickness, when halved and completely folded back upon itself, would have all points
superimposed, not juxtaposed at the fold.

Proceeding in this way, the sequence of points from the outside of the third fold
to the inside becomes 〈1/8, 7/8, 5/8, 3/8〉. Their placing, prior to the third fold, is
indicated by the vertical arrow in Figure 1.

DEFINITION 1.1 (nth fold sequence). After we have folded the line n times, the
sequence of points from the outside of the nth fold to the inside is designated as the
nth fold sequence, Sn, and the jth term in Sn is designated as Sn,j.

EXAMPLE 1.2. The sequences after 2, 3 and 4 folds are:

S2 = 〈S2,1, S2,2〉 =
〈

1
4 , 3

4

〉
,

S3 = 〈S3,1, S3,2, S3,3, S3,4〉 =
〈

1
8 , 7

8 , 5
8 , 3

8

〉
,

S4 = 〈S4,1, S4,2, S4,3, S4,4, S4,5, S4,6, S4,7, S4,8〉 =
〈

1
16 , 15

16 , 9
16 , 7

16 , 5
16 , 11

16 , 13
16 , 3

16

〉
.
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FIGURE 1. Points in a fold after two folds.

The line after n folds has the following properties:

• the nth fold, Sn, is on the right;
• the ends of the line appear at the bottom on the left;
• the first fold, S1, then the second fold, S2, all the way through to the (n − 1)th fold,

Sn−1, appear immediately above the ends of the line, in ascending order.

For points found in the folds in [0, 1], we will determine:

• the jth term, Sn,j, in Sn in terms of n and j (Theorems 3.2 and 3.4);
• the relationship between points in the same fold (Theorems 3.5 and 3.6);
• the exact position in the folded structure of any point of [0, 1] (Theorems 3.7

and 3.9);
• given a point on the bottom line of the structure, which point lies at any level above

it (Theorem 3.1).

The line when unfolded shows a sequence of ∨ and ∧ creases, which form the
paperfolding sequence which has been studied in [1, 2–4, 7].

2. Folds and prefolds

We now show one of the properties of Sn.

THEOREM 2.1 (Points of Sn). The set of points in Sn is
{2k + 1

2n

∣∣∣∣ 0 ≤ k < 2n−1
}
.
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[3] Points in a fold 9

PROOF. Each new fold places a crease midway between creases from earlier folds as
well as a new crease midway between 0 and the first crease and another crease midway
between 1 and the last crease. Thus the nth fold places a new crease at 1/2n and further
new creases thereafter at intervals of 1/2n−1 units. Thus for k = 0, 1, 2, . . . , 2n−1 − 1,
points in the nth fold occur at the locations

1
2n +

k
2n−1 =

2k + 1
2n . �

We note that Sn is the sequence of middle points of the set of overlaid intervals,
each of length 1/2n−1, formed after n − 1 folds and listed from bottom to top. To help
determine this order we introduce the concept of prefolds. We begin with the definition
of an nth prefold sequence.

DEFINITION 2.2 (nth prefold). Fold the line from 0 to 1 n times, where n ≥ 0. Let j
be an integer such that 0 < j ≤ 2n and a be a real number such that 0 < a < 1/2n. Then
we have the following properties.

(1) Fn(a, j) is the jth term from the bottom, lying at, or directly above a; we call
Fn(a, j) the jth term of the nth prefold sequence at a.

(2) Fn(a) is the sequence of all terms in the nth prefold sequence at a, that is,

Fn(a) = 〈Fn(a, 1), Fn(a, 2), Fn(a, 3), . . . , Fn(a, 2n)〉.

(3) F̃n(a) is the reverse nth prefold sequence at a, that is,

F̃n(a) = 〈Fn(a, 2n), . . . , Fn(a, 3), Fn(a, 2), Fn(a, 1)〉.

By Definition 2.2, Fn(a, 1) = a and we can express Sn in terms of Fn−1.

THEOREM 2.3. For n > 0,

Sn = Fn−1

( 1
2n

)
=

〈
Fn−1

( 1
2n , 1
)
, Fn−1

( 1
2n , 2
)
, Fn−1

( 1
2n , 3
)
, . . . , Fn−1

( 1
2n , 2n−1

)〉
.

EXAMPLE 2.4. For n = 3,

S3 =
〈
F2

(
1
8 , 1
)
, F2

(
1
8 , 2
)
, F2

(
1
8 , 3
)
, F2

(
1
8 , 4
)〉
=
〈

1
8 , 7

8 , 5
8 , 3

8

〉
.

We now derive connections between prefolds.

LEMMA 2.5 (Form of Fn(a)). For 0 < a < 1/2n,

Fn(a) =
〈
Fn−1(a), F̃n−1

( 1
2n−1 − a

)〉
.

PROOF. The nth fold occurs at 1/2n. It involves Fn−1((1/2n−1) − a) for 0 < a < 1/2n

being rotated anticlockwise around 1/2n and then placed atop Fn−1(a) to form Fn(a),
giving the result. �

Lemma 2.5 gives a recursion for Fn.
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THEOREM 2.6 (Recursive expression of prefolds).

Fn(a, j) =

⎧⎪⎪⎨⎪⎪⎩Fn−1(a, j), if 1 ≤ j ≤ 2n−1,
Fn−1((1/2n−1) − a, 2n − j + 1), if 2n−1 < j ≤ 2n.

THEOREM 2.7 (Prefold expression of folds).

Sn =

〈
Fn−2

( 1
2n

)
, F̃n−2

( 3
2n

)〉

=

〈
Fn−2

( 1
2n , 1
)
, Fn−2

( 1
2n , 2
)
, . . . , Fn−2

( 1
2n , 2n−2

)
,

Fn−2

( 3
2n , 2n−2

)
, Fn−2

( 3
2n , 2n−2 − 1

)
, . . . , Fn−2

( 3
2n , 1
)〉

.

3. The main result

THEOREM 3.1. Let s ≤ 2n.

(i) If s = j + 1 where j =
∑r

p=1 2tp ≤ 2n with r ≥ 0 and t1 > t2 > · · · > tr > 0 if r > 0,
then

Fn(a, s) =
r∑

p=1

1
2tp
+ a.

(ii) If s = j with j as in (i), then

Fn(a, s) =
1

2tr−1 −
r−1∑
p=1

1
2tp
− a.

PROOF. The proof is by induction on n. If n = 1 and j = 0 then r = 0 and Fn(a, j + 1) =
a, so we have (i). If n = 1 and j = 2 then r = tr = 1 and Fn(a, j) = 1 − a, so we have (ii).

Assume the result for n.
If 1 ≤ s ≤ 2n, by Theorem 2.6(i), Fn+1(a, s) = Fn(a, s). The induction hypothesis for

s = j gives (ii) with n + 1 for n and, for s = j + 1 ≤ 2n, it gives (i) with n + 1 for n.
If 2n < s ≤ 2n+1, we have t1 = n and by Theorem 2.6(ii),

Fn+1(a, s) = Fn

( 1
2n − a, 2n+1 − s + 1

)
.

If s = j + 1, we can write

2n+1 − (j + 1) + 1 =
r−1∑
i=1

( ti+1+1∑
p=ti−1

2p
)
+ 2tr
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because the double sum is the sum of the powers of 2 from 2t1−1 to 2tr+1 omitting
2t2 , 2t3 , . . . , 2tr−1 . By the induction hypothesis,

Fn+1(a, j + 1) =
1

2tr−1 −
r−1∑
i=1

( ti+1+1∑
p=ti−1

1
2p

)
+ a − 1

2n ,

where the double sum is the sum of the powers of 1
2 from 1/2t1−1 to 1/2tr+1, omitting

1/2t2 , 1/2t3 , . . . , 1/2tr−1 . This shows Fn+1(a, s) is as in (i) because

1
2tr−1 −

1
2n =

1
2tr
+

1
2tr+1 + · · · +

1
2t1−1 +

1
2t1

.

If s = j, we can write

2n+1 − j + 1 =
r−1∑
i=1

( ti+1+1∑
p=ti−1

2p
)
+ 2tr + 1.

By the induction hypothesis,

Fn+1(a, j) =
r−1∑
i=1

( ti+1+1∑
p=ti−1

1
2p

)
+

1
2tr
+

1
2n − a,

where the double sums are as in the s = j + 1 case. Since

1
2tr
+

1
2n =

1
2tr−1 −

( 1
2tr+1 + · · · +

1
2t1−1 +

1
2t1

)
,

Fn+1(a, s) is as in (ii). �

THEOREM 3.2. Let s ≤ 2n.

(i) If s = j + 1 where j =
∑r

p=1 2tp ≤ 2n with r ≥ 0 and t1 > t2 > · · · > tr > 0 if r > 0,
then

Sn,s =

r∑
p=1

1
2tp
+

1
2n .

(ii) If s = j with j as in (i), then

Sn,s =
1

2tr−1 −
r−1∑
p=1

1
2tp
− 1

2n .

PROOF. The result follows from Theorem 3.1 with a = 1/2n. �

EXAMPLE 3.3. Since 11 = 23 + 2 + 1, we can take r = 2, t1 = 3 and t2 = 1 in Theorem
3.2(i) to give

S6,11 =
1
23 +

1
2
+

1
26 =

41
64

.
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Similarly, since 26 = 24 + 23 + 2, we can take r = 3, t1 = 4 and t2 = 3 in Theorem
3.2(ii) to give

S6,26 =
3
2
−
( 1
24 +

1
23 +

1
2
+

1
26

)
=

51
64

.

The next result gives some special cases of Theorem 3.2.

THEOREM 3.4. Let p ∈ N.

(i) Sn,2p−1 = 1 − (1/2p−1) + (1/2n) if n ≥ 1, 0 < p ≤ n.
(ii) Sn,2p = (1/2p−1) − (1/2n) if n > 1, 0 < p < n.
(iii) Sn,2p+1 = (1/2p) + (1/2n) if n > 2, 0 < p < n.
(iv) Sn,2p+2 = 1 − (1/2p) − (1/2n) if n > 2, 0 < p < n.

We can relate consecutive elements of Sn.

THEOREM 3.5. If j =
∑r

p=1 2tp ≤ 2n−1, r > 0 and t1 > t2 > · · · > tr > 0, then

(i) Sn,j+1 + Sn,j = 3/2tr ,
(ii) Sn,j−1 + Sn,j = 1.

PROOF. (i) This follows from Theorem 3.2.
(ii) As j − 1 =

∑r−1
p=1 2tp + 2tr−1 + 2tr−2 + · · · + 2 + 1, by Theorem 3.2(i),

Sn,j−1 =

r−1∑
p=1

1
2tp
+

tr−1∑
i=1

1
2i +

1
2n =

r−1∑
p=1

1
2tp
+ 1 − 1

2tr
+

1
2n .

The result follows because

Sn,j =
1
2tr
−

r−1∑
p=1

1
2tp
− 1

2n . �

THEOREM 3.6. For n ≥ 2,

Sn,j = Sn,2n−1−j+1 +
(−1)j

2n−1 .

PROOF. For j even, if j =
∑r

p=1 2tp ≤ 2n−1 where r > 0 and t1 > t2 > · · · > tr > 0, then

2n−1 − j + 1 =
n−2∑

i=t1+1

2i +

r−1∑
i=1

( ti−1∑
p=ti+1+1

2p
)
+ 2tr + 1.

By Theorem 3.2,

Sn,2n−1−j+1 =

n−2∑
i=t1+1

1
2i +

r−1∑
i=1

( ti−1∑
p=ti+1+1

1
2p

)
+

1
2tr
+

1
2n
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and

Sn,j =
1

2tr−1 −
r−1∑
p=1

1
2tp
− 1

2n .

So

Sn,2n−1−j+1 − Sn,j =

n−2∑
i=t1+1

1
2i +

tr+1∑
i=t1

1
2i −

1
2tr
+

1
2n−1 = −

1
2n−1 .

For j odd, let j =
∑r

p=1 2tp + 1 with r > 0 and t1 > t2 > · · · > tr > 0. Then

2n−1 − j + 1 =
n−2∑

i=t1+1

2i +

r−1∑
i=1

( ti−1∑
p=ti+1+1

2p
)
+ 2tr .

So, by Theorem 3.2,

Sn,2n−1−j+1 =
1

2tr−1 −
n−2∑

i=t1+1

1
2i +

r−1∑
i=1

( ti−1∑
p=ti+1+1

1
2p

)
− 1

2n

and

Sn,j =

r∑
p=1

1
2tp
+

1
2n .

Thus

Sn,2n−1−j+1 − Sn,j =
1

2tr−1 −
n−2∑

i=t1+1

1
2i −

tr+1∑
i=t1

1
2i −

1
2n−1 =

1
2n−1 . �

The next two theorems allow us to determine exactly where in the n times folded
structure any point b of [0, 1] appears.

THEOREM 3.7. If 0 ≤ b ≤ 1, b � (2k + 1)/2n+1, then b lies on level j of the n times
folded structure at, or directly above, a, where 0 ≤ a < 1/2n.

(i) If 	2nb
 is even, that is, 	2nb
 = ∑s
p=1 2up where s = 0, or s = 1 and u1 = n, or

n > u1 > u2 > · · · > us > 0, then

a = b − 	2
nb

2n and j = 1 +

s∑
p=1

2n−us−p+1.

(ii) If 	2nb
 is odd, that is, for some m, 0 ≤ m < n, 	2nb
 = 2n−m − 1 −∑v
p=1 2wp where

v = 0 or v > 0 and n − m − 1 > w1 > w2 > · · · > ws > 0, then

a =
	2nb


2n +
1
2n − b and j =

v∑
p=1

2n−wv−p+1 + 2m+1.
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PROOF. Note that a and j are such that 0 ≤ a < 1/2n, 1 ≤ j ≤ 2n and b = Fn(a, j).
(i) Let j =

∑r
p=1 2tp + 1, where n > t1 > t2 > · · · > tr > 0 if r > 0. By Theorem

3.1(i),

b =
r∑

p=1

1
2tp
+ a.

Consequently 	2nb
 = ∑r
p=1 2n−tp . If 	2nb
 = ∑s

p=1 2up , then r = s and tp = n − us−p+1
for 1 ≤ p ≤ s. So

j = 1 +
s∑

p=1

2n−us−p+1 .

As t1 < n, j can only be odd if us > 0, that is, 	2nb
 is even.
(ii) Let j =

∑r
p=1 2tp , where r > 0 and t1 > t2 > · · · > tr > 0. By Theorem 3.1(ii),

b =
1

2tr−1 −
r−1∑
p=1

1
2tp
− a.

Consequently 	2nb
 = 2n−tr+1 − 1 −∑r−1
p=1 2n−tp . If j is even then 	2nb
 must be odd. If,

for some m with 0 ≤ m < n, we have 	2nb
 = 2n−m − 1 −∑v
p=1 2wp with v = 0 or v > 0

and n − m − 1 > w1 > w2 > · · · > wp > 0, then

2n−m −
v∑

p=1

2wp = 2n−tr+1 −
r−1∑
p=1

2n−tp .

As n − m > w1 + 1 and n − tr + 1 > n − tr−1 + 1, we must have tr = m + 1, r = v + 1
and tp = n − wv−p+1 for 0 ≤ p ≤ r − 1. So

j =
v∑

p=1

2n−wv−p+1 + 2m+1. �

EXAMPLE 3.8. If n = 5 and

b =
9

32
+
π

180
=

25 − 24 − 22 − 2 − 1
25 +

π

180
.

then 	25b
 = 25 − 24 − 22 − 2 − 1 = 9. So by Theorem 3.7(ii) with n = 5, m = 0, v = 3,
w1 = 4, w2 = 2 and w3 = 1,

a =
5
16
− 9

32
− π

180
=

1
32
− π

180
and j = 24 + 23 + 2 = 26.

If n = 5 and

b =
5
16
+
π

180
,
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then 	25b
 = 23 + 2 = 10. So by Theorem 3.7(i) with s = 2, u1 = 3 and u2 = 1,

a =
5
16
+
π

180
− 5

16
=
π

180
and j = 1 + 22 + 24 = 21.

THEOREM 3.9. Let Sn,j = (2k + 1)/2n.

(i) If k =
∑s

p=1 2up where n − 1 > u1 > u2 > · · · > us > 0 or s = 1 and u1 = n − 1,
then

j = 1 +
s∑

p=1

2n−1−us−p+1 .

(ii) If k = 2n−1−m − 1 −∑v
p=1 2wp where v = 0 or v > 0 and n − m − 2 > w1 > w2 >

· · · > wv > 0, then

j = 2m+1 +

v∑
p=1

2n−1−wv−p+1 .

PROOF. If Sn,j = (2k + 1)/2n, then Fn−1(1/2n, j) = (2k + 1)/2n and 	2n−1(2k + 1)/2n
 =
k, so we use Theorem 3.7 with (2k + 1)/2n for b and n − 1 for n.

(i) If k =
∑s

p=1 2up where s = 1 and u1 = n − 1 or n − 1 > u1 > u2 > · · · > us > 0,
then

j = 1 +
s∑

p=1

2n−1−us−p+1 .

(ii) If k = 2n−1−m − 1 −∑v
p=1 2wp where v = 0 or v > 0 and n − m − 2 > w1 > w2 >

· · · > wv > 0, then

j = 2m+1 +

v∑
p=1

2n−1−wv−p+1 . �

EXAMPLE 3.10. For n = 5, k = 9, m = 0, v = 2, w1 = 2 and w2 = 1, we have S5,14 =

19/32.
For n = 5, k = 14, u1 = 3, u2 = 2, u3 = 1 and s = 3, we have S5,15 = 29/32.

4. Folds and the triangular array T(n, k)

We thank the referee for drawing our attention to Sigrist’s triangular array T(n, i)
[6] which also arises from paperfolding. Our sequences Sn,i are related to T(n, i) by

T(n, i) = 2n−1Sn,i +
1
2 .

As a result, our Theorem 3.2 gives the following result for T(n, i).
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THEOREM 4.1. Let s ≤ 2n.

(i) If s = j + 1 where j =
∑r

p=1 2tp ≤ 2n, r ≥ 0 and t1 > t2 > · · · > tr > 0 if r > 0, then

T(n, s) =
r∑

p=1

2n−tp−1 + 1.

(ii) If s = j, with j as in (i), then

T(n, s) = 2n−tr −
r−1∑
p=1

2n−tp−1.

PROOF. The statements follow from Theorem 3.2. If s is as in (i), then

T(n, s) = 2n−1
( r∑

p=1

1
2tp
+

1
2n

)
+

1
2
=

r∑
p=1

2n−tp−1 + 1.

If s is as in (ii), then

T(n, s) = 2n−1
( 1
2tr−1 −

r−1∑
p=1

1
2tp
− 1

2n

)
+

1
2
= 2n−tr −

r−1∑
p=1

2n−tp−1. �

Similarly, Theorems 3.4 and 3.5 give the following results.

THEOREM 4.2. We have:

(i) T(n, 2p − 1) = 2n−1 − 2n−p + 1 if n ≥ 1, 0 < p ≤ n;
(ii) T(n, 2p) = 2n−p if n > 1, 0 < p < n;
(iii) T(n, 2p + 1) = 2n−p−1 + 1 if n > 2, 0 < p < n;
(iv) T(n, 2p + 2) = 2n−1 − 2n−p−1 if n > 2, 0 < p < n.

THEOREM 4.3. If j =
∑r

p=1 2tp ≤ 2n−1, r > 0 and t1 > t2 > · · · > tr > 0, then:

(i) T(n, j + 1) + T(n, j) = 3.2n+tr−1 + 1;
(ii) T(n, j − 1) + T(n, j) = 2n−1 + 1.

Write out the elements of T(n, i) as

T(1, 1) = a(1),
T(2, 1) = a(2), T(2, 2) = a(3),

T(3, 1) = a(4), T(3, 2) = a(5), T(3, 3) = a(6),
...

Shallit [5] observed that a(n) is a 2-regular sequence defined by the recursion

a(4n) = a(2n),
a(4n + 2) = a(2n) − a(2n + 1) + a(4n + 1),
a(4n + 3) = a(2n + 1),
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a(8n + 1) = −2a(2n + 1) + 3a(4n + 1),
a(8n + 5) = −a(2n + 1) + 2a(4n + 1).

As, clearly, T(n, i) = a(2n−1 + i − 1), we have a(2n−1 + i − 1) = 2n−1Sn,i + 1/2. This
leads to the following result.

THEOREM 4.4. We have:

(i) 2Sn,4j+1 = Sn−1,2j+1 if n > 2;
(ii) 2Sn,4j+3 = Sn−1,2j+1 − Sn−1,2j+2 + 2Sn,4j+2 if n > 2;
(iii) 2Sn,4j+4 = Sn−1,2j+2 if n > 2;
(iv) 2Sn,8j+2 = 3Sn−1,4j+2 − Sn−2,2j+2 if n > 3;
(v) 4Sn,8j+6 = 4Sn−1,4j+2 − Sn−2,2j+2 if n > 3.

PROOF. If n > 2, then a(2n−1 + 4j) = a(2n−2 + 2j), so 2n−1Sn,4j+1 = 2n−2Sn−1,2j+1, giving
(i). A similar approach gives the remaining results. �
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