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Abstract
In this paper, a novel statistical application of large deviation principle (LDP) to the robot trajectory tracking problem
is presented. The exit probability of the trajectory from stability zone is evaluated, in the presence of small-amplitude
Gaussian and Poisson noise. Afterward, the limit of the partition function for the average tracking error energy is
derived by solving a fourth-order system of Euler–Lagrange equations. Stability and computational complexity of
the proposed approach is investigated to show the superiority over the Lyapunov method. Finally, the proposed
algorithm is validated by Monte Carlo simulations and on the commercially available Omni bundleTM robot.

1. Introduction
The probability density is often used for a random variable to define its characteristic states and other
properties. It is always considered that the probabilities always exists, at least in the weak sense.
Probability computation is always centered around the mean values, the law of large numbers, and the
central limit theorem. To calculate the very small probabilities or the probability of rare events, classical
probability theory provides inconclusive outcomes. Therefore, unified theory of large deviations was
introduced by Varadhan to calculate the probability of rare events. The theory of large deviations deals
with rates at which probabilities of certain rare events decay as a natural parameter in the problem con-
verges to a given values [9]. In robotics, trajectory tracking under noisy conditions is a complex problem.
It is always difficult to predict the exit of actual trajectory following the desired trajectory under a small
noise [23]. The probability of this is very small, but increases as the noise input in increased. In this
paper, large deviation theory is applied to the robot trajectory tracking problem to evaluate the rates at
which the probability of exit of the trajectory tracking error from a threshold tends to zero in the almost
zero noise limit. The method involves computing the LDP rate function of a mixture of Gaussian and
Poisson process via the Legendre transform of the logarithmic moment generating function (MGF).

1.1. Related background
The prerequisite definitions and formulas are as follows: Consider a sum of random variables having
the form Sn = 1

2

∑n
i=0 Xi. For mutually independent and identically distributed (i.i.d.) random variables,

the probability density function (pdf) of Sn in simple case is given by pSn(s). Thus the joint pdf of
X1, X2, ..., Xn factorizes as p(X1, X2, ..., Xn)=∏n

i=1 p(Xi) where p(Xi) is the pdf of Xi’s [10].
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1. In rough terms, the random variable Sn or its pdf p(Sn) satisfies the LDP if the following limit
exists:

lim
n→∞
− 1

n
ln pSn(s)= I(s) (1)

where I(s) is called rate function and Sn denotes ensemble time average S̃n
n

.
2. The Gärter–Ellis (GE) theorem: It is an indirect method to establish LDPs of certain functions of

Sn even when Sn is not a sum of i.i.d. random variables. It is based on the existence of following
limiting logarithmic MGF:

λ(k)= lim
n→∞

1

n
ln E[enkSn ] (2)

where λ(k) is known as scaled cumulant generating function, Sn is an arbitrary random variable
and k is the real parameter. The GE theorem states that if λ(k) is differentiable then Sn satisfies
the LDP and the rate function I(s) is given by Legendre–Fenchel transform of λ(k):

I(s)= sup
kεR
{ks− λ(k)} (3)

where sup denotes the supremum.
3. Varadhan’s Theorem: This theorem is concerned with evaluation of functional expectation

having the following form:

Wn =E
[
enf (Sn)

]= ∫
R

pSn(s)enf (s)ds (4)

where f is some function of Sn satisfies an LDP with rate function I(s). We can write Wn ≈∫
R

e[f (s)−I(s)]ds with sub-exponential corrections in n. By defining the following functional: λ[f ]=
lim
n→∞

1
n

ln Wn(f ) using the LDP limit we obtain

λ(f )= sup
nεR

{f (s)− I(s)} (5)

4. The contraction principle: Let An be a families of random variables, which satisfies an LDP with
rate function IA(a) and Bn is the another families of random variable as a function of An that
is Bn = f (An). Now to find whether Bn satisfies an LDP and to find its rate function contraction
principle is applied. The pBn (b) is thus given by ≈ exp (− n inf

{a:f (a)=b}
IA(a)). This shows that p(Bn)

satisfies an LDP with rate function IB(b)= inf
{a:f (a)=b}

IA(a). This formula is known as contraction
principle.

5. Consider a stochastic differential equation (SDE) having the form:

Ḟ(t)= f (F(t))+√εξ (t) (6)

where F(t) is the random trajectory and ξ (t) is white Gaussian noise. Now, it is interesting and
important to find the pdf of the given random path F(t)T

t=0 having duration T in the limit, when
the noise power ε becomes zero. The pdf can be defined using path integrals and it is denoted by
p({F(t)}t=0

T ). As ε→ 0 the random path appearing as the solutions of the SDE should converge
in probability to the deterministic path Fd(t) solving the ordinary differential equation (ODE)
Ḟd(t)= f (Fd(t)), Fd(0)= 0, where ε→ 0 is the low noise limit or large deviation limit. The
functional LDP characterization of the the probability that the random path F(t)T

t=0 fluctuations
deviates away from the deterministic path Fd (as ε→ 0) is given by p({F(t)}t=0

T )≈ exp
(−I[F]

ε

)
,

where I[F]= ∫ T

0
[Ḟ(t)− f (F(t))2]dt is the rate functional and [F] denotes the integer part of F.

The minimum of the rate functional in the zero noise limit over a given set determine that trajec-
tory of the system which contributes maximally to the exit probability. The contraction principle
can be used to determine the pdf p(F,T ) of the state F(T ) reached after time T or in other words,
the probability of reaching F(T)= F from F(0)= 0 is provided by the path connecting these two
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endpoints having the largest probability. The LDP for the path eventually determines that path
with a given subset of paths having the largest probability and approximates in the low noise
limit the probability that the path falls in a set E by this largest probability

pε(E)≈ exp

(
−1

ε
inf I(ξ )

ξ∈E

)
= sup

ξ∈E
exp

(
−1

ε
I(ξ )

)
(7)

where the rate is denoted by ξ .

1.2. Related literature review
Trajectory tracking is a classical problem to test and investigate the proposed algorithm. In principle,
the actual trajectory is made to follow the desired trajectory by applying constraints. These constraints
may be controlled by appropriate control law like PD, PID, etc. The controller can be further divided
into continuous and discrete. Although all controllers are strictly discrete as they are implemented on
digital System on Chip (SoC) or microcontrollers, but if the time between samples are very small, then
theoretically it is considered in continuous domain. Also, the control action can be broadly bifurcated
into adaptive and nonadaptive control [22].

Adaptive sliding mode disturbance rejection control for robotic manipulators has been proposed in
ref. [15]. Singularities are avoided by defining a terminal sliding mode surface. Uncertainty in the robot
parameters are clubbed along with the disturbance torque.The trajectory tracking error is required to fall
in a bounded interval, which changes with time.

Further, the dynamics of the transformation error is computed using, which the dynamics of a sliding
mode surface is expressed as a function of the error. Finally, the dynamics of the sliding mode surface
is used to obtain the control law for minimizing the tracking error and disturbance estimation error. The
proof of convergence is based on Lyapunov function. This scheme fails in the presence of stochastic
noise because the Lyapunov energy function is not bounded anymore with change in growth rate of the
noise.

In ref. [16], an adaptive fault-tolerant control algorithm is designed for a space robot system with
uncertain parameters. Using the Euler–Lagrange system, the authors first set up the basic second-order
differential equation by taking model uncertainties into account as an additional disturbance effect on
the dynamics. The trajectory tracking error is then defined as a linear combination of the error and its
time derivative. The control law is obtained, which cause the error to converge to zero using Lyapunov
energy iteration. If the controller coefficients suddenly change due to random fluctuations in disturbance
above a given threshold, then the Lyapunov cannot guarantee its stability.

The differential equations for robots with unmeasurable angular velocity and multiple disturbances
along with equation for trajectory is provided in ref. [17]. The control law is based on state feedback
control and disturbance feed forward compensation. Finally, the trajectory error is minimized. However
the fast convergence and asymptotic stability cannot be guaranteed.

In ref. [18], fuzzy controller has been used to control a vehicle manipulator system. The basic advan-
tage of a fuzzy controller is that it replaces a nonlinear system by a fuzzy neural network (FNN) system.
The FNN learns from iterative training, which is major drawback of the system. Also if rare events occur
due to external disturbance then FNN fails.

Further, the LDP-related literature review is presented along with the dynamical systems. The empir-
ical logarithmic MGF of a random walk has computed a function of the realization ω→� and its
convergence properties are used to deduce almost sure large deviation principles [1]. Local fluctuations
of stochastic processes about the almost sure behavior can be studied using this method. We could also
apply this technique to our robot dynamics q(t, ω) by computing convergence properties of the empirical
logarithmic MGF �ω

n (λ)= 1
n

log ( 1
k(n)

∫ k(n)

0
exp(f (t)Tq(t, ω)dt)) to derive properties of local fluctuations

of the trajectory around the almost sure trajectory, where k(n)→∞ as n→∞.
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Dynamical system with random perturbation coupled to transmutation process, which makes jumps
has been presented in ref. [2]. Generalization of LDP results for diffusion exit from a domain has been
applied to the diffusion–transmutation processes. Specifically, LDP results for the exit position and
exit time have been obtained. We could also generalize our robot model by appending an additional
SDE for the robot parameters causing the mode of the robot to make transmutations and then apply the
LDP results of ref. [2]. By causing the robot parameters to satisfying another SDE driven by say jump
processes, we are able to model our uncertain knowledge of the robot parameters.

A system of interacting diffusion (X(t)) is presented, when the dynamics contains a disorder random
parameter k coming from the external magnetic filed [3]. The diffusion satisfy a langevin SDE containing
a potential term and linear interactions with neighbors characteristic of the Ising model. The LDP for
the quenched system, that is the probability measure of the diffusions after averaging w.r.t the disorder
parameter k is derived. We could also adopt this technique to our robot model by allowing the robot
parameters to have a pdf then studying the quenched robot process using LDP methods, by quenching
we mean the pdf of the robot trajectory after averaging w.r.t the pdf of the robot parameters.

Discrete time Gaussian process described by difference equation models like Autoregressive (AR)
process, Autoregressive Fractionally Integrated Moving Average (ARFIMA) have been considered in
ref. [4] and LDPs for their time averages has been derived sub-exponential for the LDP of long-range
correlation and power law decay for intermittent maps have been reported. This time series theory can
also be applied to our robot model by first linearizing the dynamics around the desired trajectories and
then discretizing the second-order different equation to obtain an AR(2) vector valued time series model.

LDP for graphs has been described in ref. [5]. Specifically, a graph is defined by a random matrix
f (x,y), where f (x, y)= 1 if vertex x connecting vertex y by an edge and 0 otherwise, p is the probability
of connecting x and y. Then LDP results for the random matrix (f (x, y)), 1≤ y≤N as the size N of
the matrix → 0 has been surveyed in ref. [5]. If we have a system of N robots communicating with
each other and p is the probability of the ith robot having a link with the jth robot, we require then to
determine the LDP of the system of robot trajectories when N→∞. By a link, we mean that the ith
robot gives feedback to the jth robot via a torque which forces the jth robot to follow the ith robot. In
short, we require to formulate an LDP for a dynamical system moving on the vertices’s of a random
graph.

A stationary stochastic process can be viewed as a dynamical system in sequence space having a shift-
invariant measure. So all theorems for such dynamical systems like the ergodic theorem, LDP theory,
etc., can also applied to stationary stochastic processes. In particular, we can use the results of ref. [6]
in our robot model after transients have died out and the robot trajectory in the absence of external
nonrandom torque executes a stationary vector valued random process.

In ref. [7], Varadhan has proved general theorems random walk in a random environment. Here, the
random walk transition probability depends upon the chance outcome ω in the environment with trans-
lations on the random walk lattice acting on this chance outcome in a special way. Large deviation rate
functions have been computed for the quenched random walk, that is for the ensemble of probability
measures on random walk path space indexed by the chance outcome of the environment. Further, the
rate function for the random walk distribution averaged over the environment has also been computed.
This can be applied to our own robot problem noting that

[
q(t) q̇(t)

]
, t≥ 0 is a Markov process in con-

tinuous time on R
4, which when discretized in time and space gives a discrete time Markov chain Z

4 and
the random environment ε0 is taken as the random fluctuation and damping forces or the robot coming
from the environment through which it moves. Translating the environment in one direction is equiv-
alent to trajectory the space of the robot in the opposite direction, that is p(τx, ω, z)= p(ω, z, x) where

x, z=
[

q

q̇

]
and hence the LDP results of ref. [7] are applicable to the robot problem.

In summary, the adaptive control methods heavily use Lyapunov method for stability purpose
[24–26]. Although adaptive control with Lyapunov method may provide desired results, but in case
of rare event it fails. The failure conditions are discussed in Section 5. Therefore, the failure outside the
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stability zone is worthy of investigation and LDP-based probability paves the path for investigation as
discussed in the literature review. Although the probability to exit the stable zone would be small with
the adaptive control.

1.3. Motivation
The LDP provides the probability of rare events. The rare events are always seen as the least unlikely of
all the unlikely ways. In general, all the unwanted events like noise, disturbance, etc., are included during
the system modeling, but still due to difference between mathematical models and actual measurements
some events always occur, which cannot be mathematically modeled. Furthermore, it becomes necessary
to calculate the probability of those unaccounted events or rare events. Therefore, in this paper, large
deviations theory is applied to the ideal robotic model without any control method to calculate the
probability of exit from the angular trajectory with mixture of Gaussian and Poisson noise. For example,
to count the number of collisions from two different parallel random walks growth rate, free energy per
monomer and mean value in equilibrium is needed. Further, the count can be represented in terms of
probability using LDP. Similarly, the same LDP can be applied to find out the probability of exit from
angular position data of robot in presence of small noise and further, we can develop various techniques
to reduce the probability of exit.

1.4. Problem statement
The trajectory tracking problem is divided into two following parts: (1) Apply and derive LDP-based
exit probability in case of rare event. (2) Design controller based on LDP. However, in this paper only
the first part is considered.

The classical model [12,13] for a robot is given by

M(q)q̈+N(q, q̇)q̇+G(q)= τ (t)+ d(t)+W(t) (8)

where M(q) is the mass moment of inertia matrix, N(q, q̇) is the Coriolis and centrifugal force, G(q)
is the gravity matrix, τ (t) is the operator torque, d(t) is the disturbance, and W (t) is the noise. There
is a general theorem of Levy–Khintchine [14], which states that any independent increment process
(i.e., a process whose derivation is white non-Gaussian) can be represented as a continuous process.
Further, any process in addition to the torque in Eq. (8) can be represented with any degree of accuracy
as a superposition of Gaussian and Poisson process. The robot dynamical equation after neglecting
the disturbance and in the presence of low-amplitude tremor noise comprising both a white Gaussian
component and Poisson component is given by

M(q(t))q̈(t)+N(q(t), q̇(t))= τ (t)+ (
√

εw1(t)+ εw2(t, ε)) (9)

where w1(t)= σ dB(t)
dt

and w2(t)=∑p
k=1 ck(Ṅk(t)− λk(ε)) with B(t) being standard d-dimensional

Brownian motion and N1(t), ..., N2(t) independent Poisson processes with ε dependent rates λ1(ε),
λ2(ε), ..., λp(ε). The M(q(t)) is the mass moment of inertia matrix, N(q(t), q̇(t)) is the Coriolis and cen-
trifugal matrix added with gravity matrix that is N(q(t), q̇(t))q̇(t)+G(q), and τ (t) is the input torque.
Further, in order to find the exit probability, few milestones given below are needed to achieved

1. Calculation of the logarithmic moment generating functional of the noise
√

εw1 + εw2(t, ε), 0≤
t≤ T and then apply the contraction mapping principle to obtain the LDP rate functional of
q(t), 0≤ t≤ T .

2. Using the rate functional and LDP theory, calculation of the probability of exit from the sta-
bility zone; P{max

0≤t≤T
||q(t)− qd(t)|| ≥ δ} for small ε where qd(t) satisfies the noiseless ε = 0 robot

equation.
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3. Calculating approximate rate functional for the noise
√

εw1 + εw2(t, ε), 0≤ t≤, ε→ 0 in a
quadratic from and also linearize the robot dynamics around the noiseless trajectory qd and hence
obtain approximate closed form formula from the probability of exit from the stability zone as
ε→ 0.

4. Finally, computation of the error energy partition function over the time duration [0,T ] using
Varadhan’s variational theorem in large deviation theory.

1.5. Research highlights
In the proposed research work, the authors have investigated and developed a state-of-the-art technique
using large deviation theory to accommodate the rare events. The noise crossing the desired variable
boundary at any time t is considered as an rare event. The probability of occurrence of the rare event is
derived for the robotic system. Further, the probability of occurrence of the rare event is used to estimate
the probability of crossing the boundaries around the desired robotic angular trajectory. The following
are the major highlights of the proposed research work.

1. The LDP is applied to the SDE that determine the dynamics of a robot with small-amplitude
tremor torque comprising a white Gaussian and Poisson noise.

2. Using formula for the LDP rate function of Brownian motion and Poisson process and applying
the contraction mapping method, the LDP rate function of the robot angular position process
over a finite time duration [0,T ] is determined.

3. Simplified approximate formulas for the rate function of the trajectories tracking error for the
robot angular position process are obtained based on linearization of a dynamical system. The for-
mulas for the logarithmic MGF of a mixture of Brownian and Poisson process and approximate
calculation of the corresponding Legendre transform of the MGF are derived.

4. Varadhan’s integral variation formula for the low-temperature limit of the MGF of a func-
tional family of random process is applied to calculate the low-temperature limit of the partition
function of the average tracking error energy of the robot over a finite time duration [0,T ].

5. The optimal trajectory error that maximizes the exponential integral (E-I) functional in
Varadhan’s variation formula is shown to satisfy a fourth-order linear differential equation and
hence the corresponding maximum values of E-I is obtained, which gives us the trajectory error
partition function.

6. The superiority of the proposed LDP-based approach over the Lyapunov-based method is
presented.

1.6. Organization of paper
Afterward, the paper is organized as follows: The application of LDP on d-link robot dynamics is
presented in problem formulation Section 2. The calculation of rate function and calculation of LDP
probabilities are derived in Sections 2.1 and 2.2. The error energy partition function is presented
in Section 2.3. Stability analysis is presented in Section 3. The software–hardware validations and
results are provided in Section 4. Further, the comparison between Lyapunov-based approach and LDP-
based approach with respect to stability and computational complexity is presented in Sections 5.1
and 5.2 respectively. The extension of purposed approach to other robots is presented in Section 5.2.
Furthermore, the conclusion is given in Section 6.

2. Problem Formulation
The dynamics of a d-link robot in the presence of white Gaussian noise and Poisson process is described
by a system of coupled nonlinear SDE, where the noise amplitude is small. The large deviation theory
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Figure 1. Block diagram showing problem formulation.

is applied to calculate the probability of exact exit of the robot from a stability domain. Further, the
approximate probability of trajectory exit from the stability domain within a finite interval of time [0,T ]
is calculated using the linearization process. These probabilities involve, computation of the LDP rate
function of the robot state process. Furthermore, the approximate evaluation of the MGF of the average
robot energy over a time interval [0,T ] using Varadhan’s integral lemma combined with the variational
calculus is presented. The block diagram for the problem formulation is provided in Fig. 1.

In the proposed work, we perform these computations in the general case where the noise has a white
Gaussian component with Poisson component. The Poisson component is the correct model for jerk
torque [11]. Consider a d-link robot so that the angular position vector of its kind q(t) ∈Rd and angular
velocity q̇(t) ∈Rd satisfy following SDE:

dq(t)

dt
= q̇(t) (10)

M(q(t))q̈(t)+N(q(t), q̇(t))= τ (t)+ (√εw1(t)+ εw2(t, ε)
)

(11)

or equivalently

M(q(t))dq̈(t)+N(q(t), q̇(t))dt= τ (t)dt+ (√εw1(t)+ εw2(t, ε)
)

dt (12)

where w1(t)= σ dB(t)
dt

and w2(t)=∑p
k=1 ck(Ṅk(t)− λk(ε)), ck ∈Rd with B(t) being standard d-dimensional

Brownian motion and N1(t), ..., N2(t) independent Poisson processes with ε dependent rates
λ1(ε), λ2(ε), ..., λp(ε). As ε→ 0, the system becomes deterministic and we assume a stable solution
q0(t) to it, that is

M(q0(t))q̈0(t)+N(q0(t), q̇0(t))= τ (t) (13)

where τ (t) is the sum of nonrandom machine torque and human operator torque, while
√

εw(t) is the
motor noise with human hand tremor torque. The aim is to determine the any asymptotic probability of
rare event

{
arg max

0≤t≤T
||q(t)− q0(t)||> δ

}
as ε→ 0 using the LDP rate function of the w(t, ε)=√εw1(t)+

εw2(t, ε). We shall use the notation w2(t) interchangeably with w2(t, ε). It should be noted that only with
the ε scaling defined above for the Gaussian and Poisson component λk(ε)ε→ λk0, we get meaningful
LDP rate function as ε→ 0. The limiting scaled logarithmic MGF �(f ) of the noise

√
εw1(t)+ εw2(t, ε)

is given by

�(f )= ε log E

(
exp

(1

ε

∫ T

0

f (t)T(
√

εw1(t))+ εw2(t)dt
))

(14)

= lim
ε→0

ε log E

[
exp

(
1√
ε

∫ T

0

f (t)Tw1(t)dt

)
+ exp

(∫ T

0

f (t)Tw2(t)dt

)]
(15)
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where f (t) is a parametric functional which indexes the MGF. It facilitates the calculation of the
moments. Now, we note that

∫ T

0
f (t)Tw2(t)dt=∑k

∫
f (t)Tck(dNk(t)− λk(ε)dt) and

E

[
exp

(
1√
ε

∫ T

0

f (t)TdB(t)+
∑

k

∫ T

0

(f (t)Tck)(dNk((λk(ε)dt))

)]

= exp

(
1

2

∫ t

0

||f (t)||2dt

)
exp

(∑
k

λk(ε)
∫ T

0

(
exp (f (t)Tck)− 1− f (t)Tck

)
dt

)
(16)

So,

�(f )= lim
ε→0

{
ε

[
1

2ε

∫ T

0

||f (t)||2 +
∑

k

λk(ε)
∫ T

0

(
exp (cT

k f (t))− 1− cT
k f (t)

)
dt

]}
(17)

assuming that ελk(ε)→
ε→0

λko we get

�(f )=
[

1

2

∫ T

0

||f (t)||2 +
∑

k

λk0

(∫ T

0

exp (cT
k f (t))− 1− cT

k f (t)

)
dt

]
(18)

If a family of random processes satisfies an LDP, then a functional of this family will also satisfy an
LDP with the rate function being determined by applying the contraction principle to the rate function
of the original family [8] (see item 4 Section 1.1). Using this idea, we formulate an expression for the
probability of the actual robot process to deviate from the desired noiseless process. The rate function
for the noise is then Legendre transform of �(f ) (see the Gärtner Ellis theorem in item 2 Section 1.1 Eq.
(3) and [8]) and is calculated as follows:

I(ξ )= sup
f

[∫ T

0

f (t)Tξ ′(t)dt−�(f )

]

= sup
f

[∫ T

0

f (t)Tξ ′(t)dt− 1

2

∫ T

0

||f (t)||2dt−
p∑

k=1

λk0

∫ T

0

(
exp

(
cT

k f (t)
)− 1− cT

k f (t)
)

dt

]
(19)

where ξ is the noise amplitude and I(ξ ) is the rate function. Further, by the contraction principle, the
exit probability is expressed as follows:

P

{
max
0≤t≤T
||q(t)− q0(t)||> δ

}
≈ exp

(
−1

ε
inf {I(ξ )} |ξ (t)

)

=M(q(t))q̈(t)+N(q(t), q̇(t))− τ (t), 0≤ t≤ T q ε Bq0(δ)c (20)

where Bq0(δ)=
{

max
0≤t≤T
||q(t)− qd(t)|| ≤ δ

}
and c denotes the complement. Furthermore, the evaluation

of the rate function in Eq. (19) is provided in Section 2.1.

2.1. Evaluation of I(ξ )
Calculation of the rate function of a mixture of Gaussian and Poisson noise involves solving a highly
nonlinear optimization problem. It is proved that the optimization hyperplane for the Legendre transform
of the logarithmic MGF actually yields a global maxima. It is evaluated by the derivative involved in the
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Legendre transform and proving it to be negative definite everywhere. The rate function I(ξ ) is calculated
as follows:

I(ξ )= sup
f

{∫ T

0

f (t)Tξ ′(t)dt−�(f )

}
(21)

= sup
f

[∫ T

0

f (t)Tξ ′(t)dt− 1

2

∫ T

0

f (t)T f (t)dt−
∫ T

0

p∑
k=1

λk0

(
ecT

k f (t) − 1− cT
k f (t)

)
dt

]
(22)

= sup
f

{X(f )} (23)

Setting the variational derivative w.r.t f (.) to zero that is δX(f )
δ̇f (t)
= 0 gives

ξ ′(t)− f (t)−
p∑

k=1

λk0ck

(
ecT

k f (t) − 1
)
= 0 (24)

since

δ2X(f )

δf (t)δf (s)
= δ(t− s)

{
−Id −

p∑
k=1

λk0ck0cT
k eckf (t)

}
(25)

is everywhere is negative definite, we are guaranteed that X will attain a global maximum, when f (t)
satisfies (24). Further, high computational efforts are needed to calculate the exit probability from this
method. Therefore, in Section 2.2 approximate calculation of exit probability is provided to reduce the
computational effort.

2.2. Approximate calculation of LDP probabilities through linearization
Approximate evaluation of the rate functional of the trajectory tracking error process involves lin-
earization of the dynamical system. The solution of the linearized system expresses the trajectory error
process as a linear functional of the Gaussian and Poisson noise. The rate functional of the error pro-
cess is directly calculated using the MGFs of Brownian motion and Poisson processes. Afterward, the
rate function of the error process is approximately calculated by the logarithmic MGF of the Poisson
component by a quadratic functional. The resulting approximate rate functional is then evaluated by
quadratic optimization which yields a set of linear equations that are easily solved. Using the rate func-
tion, the deviation probability is evaluated using the KL spectral expansion of positive definite kernels.
The approximate probability is calculated as follows: Consider Eq. (9)

M(q(t))q̈(t)+N(q(t), q̇(t))= τ (t)+√εw1(t)+ εw2(t, ε) (26)

let q(t)= q0(t)+ δq(t), where q0(t) is the noiseless trajectory. We need to evaluate Pr{max
0≤t≤T
||δq(t)||> δ},

thus linearizing (26) gives

M(q0(t))δq̈(t)+
d∑

k=1

∂M

∂qk

(q0(t)δqk(t)q̈o(t))+
∑

k

∂N(q0, q̇0)

∂qk

δqk

+ ∂N

∂ q̇k

(q0, q̇k)δq̇k(t)=√εw1 + εw2 (27)
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for q0(t)= qd(t) (i.e., the noiseless trajectory is the desired trajectory) the above equation can be
expressed as

M(qd(t))δq̈(t)+
d∑

k=1

∂M

∂q
(qd(t)δ(Id ⊗ q̈d)δq(t)+ ∂N

∂q
(qd(t), q̇d(t))δq(t)

+ ∂N

∂ q̇
(qd(t), q̇d(t))δq̇d(t)=√εw1(t)+ εw2(t, ε) (28)

or

δq̈(t)+ F1(t)δq̇(t)+ F2(t)δq(t)=G(t)(
√

εw1(t)+ εw2(t, ε)) (29)

2.2.1. Evaluation of rate function with Gaussian Noise
If noise is purely Gaussian, that is w2 = 0, then δq(t) is also a Gaussian process. Here, G(t)=M(qd(t))−1,
F1(t)=M(qd(t))−1 ∂N

∂ q̇
(qd(t), q̇(t)), and F2(t)=M(qd(t))−1 ∂M

∂q
(qd(t))(Id ⊗ q̈(t)) so

d

dt

[
δq(t)

δq̇(t)

]
=
[

0 Id

−F2(t) −F1(t)

] [
δq(t)

δq̇(t)

]
+√ε

[
0

G(t)

]
σ

dB(t)

dt
(30)

now the solution to the above Eq. (30) is expressed as[
δq(t)

δq̇(t)

]
= σ
√

ε

∫ t

0

�(t− s)

[
0

G(s)

]
dB(s) (31)

where ∂�(t,s)
∂t
=
[

0 Id

−F2(t) −F1(t)

]
�(t, s) for t > s and �(s, s)= I2d is the state transition matrix

with initial condition when t= s. Further,

{[
δq(t)

δq̇(t)

]
:t≥ 0

}
is a Gaussian process with δq(t)=

σ
√

ε
∫ t

0
�12(t, s)G(s)dB(s). Here we partition the 2d× 2d state transition matrix �(t, s) into four d× d

blocks �(t, s)=
[
�11(t, s) �12(t, s)

�21(t, s) �22(t, s)

]
. Further, MGF function is expressed as follows:

�(f )=E

{
exp

(∫ T

0

f (t)Tδq(t)dt

)}
(32)

=E

{
exp
√

ε

∫
0≤s≤t≤T

f (t)T�12(t, s)G(s)dB(s)

}
(33)

= exp

(
σ 2ε

2

∫ T

0

∫ ∥∥∥ ∫ T

s

�12(t, s)TG(s)f (t)dt
∥∥∥2

ds

)
(34)

so the rate function is

I(ξ )= sup
f

{ ∫ T

0

f (t)Tξ (t)dt− σ 2

2

∫
0≤s≤t1,t2≤T

f (t1)
T�12(t1, s)G(s)G(s)T f (t2)

T�12(t2, s)Tdt1dt2ds

}
(35)

Further,
{
σ 2
∫ T

max (t1,t2)
�12(t1, s)G(s)G(s)T�T

12(t2, s)ds
}

in Eq. (35) denotes the autocorrelation of ξ (t)

process, let it be denoted by R(t1, t2). Afterward, the rate function is expressed as
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I(ξ )= sup
f

{∫ T

0

f (t)Tξ (t)dt− 1

2

∫ T

0

∫ T

0

f (t1)
TR(t1, t2)f (t2)dt1dt2

}
(36)

= 1

2

∫ T

0

∫ T

0

ξ (t1)
TR−1(t1, t2)ξ (t2)dt1dt2 (37)

where
∫ T

0
R−1(t1, t2)R(t2, t3)dt2 = δ(t1 − t3). Therefore, we have the approximate result that

Pr

{
max
0≤t≤T
||δq(t)||> δ

}
≈ exp

(−Iδ
ε

)
, where

Iδ = inf
max ||ξ (t)||>δ

0≤t≤T

1

2

∫ t

0

∫ t

0

ξ (t1)
TR−1(t1, t2)ξ (t2)dt1dt2 (38)

Let R(t1, t2)=
{∑∞

k=1 λkφk(t1)φk(t2)T , 0≤ t1, t2 ≤ T
}

be the KL spectral representation of R(t1, t2).
Therefore, the inverse of R−1(t1, t2) is expressed as R−1(t1, t2)=∑k λ−1

k φk(t1)φk(t2) and the rate function
is expressed as

I(ξ )=−1

2

∫ T

0

∫ T

0

ξ (t1)
TR−1(t1, t2)ξ (t2)= 1

2

∑
k

λ−1
k ( < ξ , φk > )2 (39)

where < ξ , φk >= ∫ T

0
ξ (t)Tφk(t)dt and < φk, φj >= δkj and

∑
k |< ξ , φk > |2 = ||ξ ||2 (attained when

ξ = δφmax = δφk0). Thus, if λmax =max
k
{λk} = λk0 say, then Iδ = δ2

2λmax
. Finally, the exit probability is

expressed as

Pr

{
max
0≤t≤T
||δq(t)||> δ

}
≈ exp

( −δ2

2ελmax

)
(40)

Remark: If the unstable zone is defined in the L2 sense by
∫ T

0
||δ(t)||2dt > δ2 then its LDP probability

evaluates to Pr

{∫ T

0
||δq(t)||2dt > δ2

}
≈ exp (−Iδ

ε
).

2.2.2. Evaluation of rate function with Poisson and Gaussian Noise
Further, if Poisson noise is also taken into account then, the linearized robot dynamic equation
modifies to

δq̈(t)+ F1(t)δq̇(t)+ F2(t)δq(t)=G(t)(
√

εw1(t)+ εw2(t, ε)) (41)

Here, we assume only one Poisson component for simplicity, that is p= 1 and therefore Eq. (30) is
expressed as

δq̇(t)=
∫ t

0

�12(t, s)G(s)(
√

εw1(t)+ εw2(t))ds (42)

w2(t)= c
dN(t)

dt
(43)

where N(t) is Poisson with rate λ(ε)= λ0
ε

and c determines the strength of the jerk tremor torque in the

robot links. To find the rate function, we need to find E

{
exp

(
1
ε

∫ T

0
f (t)Tδq(t)dt

) }
and MGF as already

denoted in Eq. (21), as follows:

E

{
exp

(
1

ε

∫ T

0

f (t)Tδq(t)dt

)}
= exp

(
1

2ε

∫ T

0

∫ T

0

f (t1)
TR(t1, t2)f (t2)dt1dt2

)

exp

(
λ(ε)

∫ (
exp

(∫ T

s

f (t)T�12(t, s)G(s)cdt− 1

)
ds

))
(44)
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Further, the Gärtner–Ellis limiting logarithmic MGF is as follows:

�(f )= 1

2

∫ T

0

∫ T

0

f (t1)
TR(t1, t2)f (t2)dt1dt2 + λ0

∫ T

0

(
exp

(∫ T

s

f (t)T�12(t, s)G(s)cdt

)
− 1

)
ds

(45)

Finally, using Eqs. (44) and (45), the rate function can be expressed as I(ξ )= sup
f

(<f , ξ ′>−�(f )).

2.3. Error energy partition function
Further, to measure the distribution of error energy among the different trajectory error states, error
energy partition function is computed in this section. The evaluation of error energy partition function
provide a clear picture of error states with large energy difference and therefore, indication of trajectory
exit. It is well known in statistical mechanics that if T is the temperature of a system and pT(E) is the
probability of the system being in the energy state E at temperature T , then pT (E1)

pT (E2)
= exp

(
E2−E1

kT

)
. Thus, it

is interesting to compute the quantity E
[
exp

(
E(e)
kT

)]
in the low-temperature limit T→ 0. This statistical

theory, using Varadhan’s integral lemma is used to find the small deviation in trajectory.
Varadhan’s integral lemma gives the evaluation of lim

T→0
kT log E

[
exp

(
E(e)
kT

)]
as sup

q(.)
[E(e)− I(q)] (see

item 3 Section 1.1 (5)), where I(q) is the LDP rate function and E(e) is the difference of error energy
between the two energy states, that is (E2 − E1).

Analogously, here e(t)= qd(t)− q(t) is the deviation or trajectory error, where {q(t) ,0≤ t≤ τ } is the
system trajectory and {qd(t),0≤ t≤ τ } is the desired trajectory. Further, E(e)= ∫ τ

0
(C1||qd(t)− q(t)||2 +

C2||q̇d(t)− q̇(t)||2)dt is the tracking error energy, where C1, C2 are the position constants, which deter-
mine the relative contributions of the position and velocity error energies to the total error energy. For
our linearized system e(t)= δq(t) and I(q)→ I(δq). Now, the partition function is as follows:

lim
T→0

kT log E

[
exp

(
E(e)

kT

)]
= sup

δq(.)

[
E {δq} − I(δq)

]
(46)

= sup
δq

[ ∫ τ

0

(C1||δq(t)||2 +C2||δq̇(t)||2)dt

−
∫ τ

0

�∗(G(t)−1(δq̈(t)+ F1(t)δq̇(t)+ F2(t)δq(t)))dt

]
(47)

To fully evaluate the above Eq. (46), E(δq) and I(δq) needs to be evaluated first. Therefore, the rate
function

∫ τ

0
�∗(ξ̇ (t))dt is evaluated as follows (note: ξ̇ and ξ ′ are same and represents the derivative).

The noise process ξε is expressed as

ξ̇ε(t)=√εw1(t)+ εw2(t, ε)=√εσ
dB(t)

dt
+ εc

[
dN(t)

dt
− λ(ε)

]
(48)

with the λ(ε)= λ0
ε

.

Remark: The form of the noise as in Eq. (48) with ε→ 0 has been assumed. This means that the noise
is weak with the Poisson noise being weaker than the Gaussian noise by the factor

√
ε. However, we

assume that the Poisson rate ∝ 1
ε
, that is the rate grows as ε→ 0. These assumptions are made so that

the deviation probability can be well approximated using LDP rate function, which is easier to compute.
The method works well when the noise amplitude is weak and the spike rate is large.
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Further, the scaled logarithmic MGF is calculated as follows:

�ε = ε log

{
1

ε

∫ τ

0

f (t)T ξ̇ε(t)dt

}
exp

{
λ0

ε

(∫ τ

0

( exp (f (t)Tc)− cTf − 1)dt

)}
(49)

= σ 2

2

∫ τ

0

||f (t)||2dt+ λ0

∫ τ

0

(
exp (cTf (t))− cTf − 1

)
dt (50)

with the corresponding rate function being
∫ t

0
�∗(ξ̇ (t)), where

�∗(ξ̇ (t))= sup
f∈Rd

{
f T ξ̇ (t)− σ 2

2
||f ||2 − λ0

(
ecT f − cTf − 1

)}
(51)

Making the quadratic approximations (ecT f − 1− cTf )≈ 1
2
(f TccTf ), we get �∗(ξ ′)≈ sup

f
{f Tξ ′ −

f T

2
(σ 2Id + λ0ccT)f = 1

2
ξ ′(σ 2Id + λ0ccT)}. The partition function is expressed as

lim
ε→0

log E

{
exp

(
1

ε

∫ τ

0

E(δq(t), δq̇(t))dt

)}

= sup
δq(t) 0≤t≤τ

{∫ τ

0

E(δq(t), δq̇(t))dt−
∫ τ

0

�∗(G(t)−1(δq̈(t))+ F1(t)δq̇(t)+ F2(t)δq(t))dt

}
(52)

where

E(δq(t), δq̇(t))=C1||qd(t)− q(t)||2 +C2||q̇d(t)− q̇(t)||2 =C1||δq(t)||2 +C2||δq(t)||2 (53)

and E(δq)= E(e)= ∫ T

0
E(δq(t), δq̇(t))dt. Note that we are assuming that qd(t) satisfies the noiseless robot

differential equation M(qd(t))q̈d +N(qd(t), q̇d(t))− τ (t)= 0. The optimum choice of the error trajectory
δq(.) that maximizes the quantity within {} of Eq. (52) is given by the Euler–Lagrange equation

− d

dt

∂L
∂δq̇
+ d2

dt2

∂L
∂δq̈
+ ∂L

∂δq
= 0 (54)

where

L(t, δq(t), δq̇(t), δq̈(t))= E(δq(t), δq̇(t))−�∗(G(t)−1(δq̈(t)+ F1(t)δq̇(t)+ F2(t)δq(t))) (55)

= c1δq(t)Tδq(t)+ c2δq̇(t)Tδq̇(t)−�∗(G(t)−1(δq̈(t)+ F1(t)δq̇(t)+ F2(t)δq(t))) (56)

Now,

L(t, δq(t), δq̇(t), δq̈(t))≈ c1δqTδq+ c2δq̇Tδq̇− 1

2
(η− λ0c)T

[
σ 2

2
∗ Id + λ0ccT

]−1

(η− λ0c) (57)

where η=G(t)−1[δq̈+ F1(t)δq̇+ F2(t)δq]. The components of the Eq. (57) are as follows:
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∂L
∂δq
= 2c1δq− FT

2 G−T

(
σ 2

2
Id + λ0ccT

)−1

η (58)

∂L
∂δq̇
= 2c2δq̇− FT

2 G−T

(
σ 2

2
Id + λ0ccT

)−1

η (59)

∂L
∂δq̈
=−G−1

(
σ 2

2
Id + λ0ccT

)−1

η (60)

d

dt

∂L
∂δq̇
= 2c2δq̈− (G−1F1)′T

(
σ 2

2
Id + λ0ccT

)−1

η− (G−1F1)T

(
σ 2

2
Id + λ0ccT

)−1

η̇ (61)

d

dt

∂L
∂δq̈
=−(G−1)′T

(
σ 2

2
Id + λ0ccT

)−1

η−G−T

(
σ 2

2
Id + λ0ccT

)−1

η̇ (62)

d2

dt2

∂L
∂δq̈
=−(G−1)′ ′T

(
σ 2

2
Id + λ0ccT

)−1

η−G−T

(
σ 2

2
Id + λ0ccT

)−1

η̈− 2(G−1)′T
(

σ 2

2
Id + λ0ccT

)−1

η̇

(63)

where η̇= (G−1)′[δq̈+ F1δq̇+ F2δq]+G−1[δ
...
q + F1δq̈+ F2δq̇+ F1

′δq̇+ F2
′δq]

3. Stability Analysis
The aim of this section is to use the standard perturbation theory for stochastic differential equations
to derive an upper bound on the noise amplitude parameter ε that has been used in our LDP-based
calculation of the probability of deviation of the system trajectory from the desired trajectory by an
amount greater than δ. Let δq(t)= q(t)− q0(t), where q0(t) is the desired nonrandom trajectory and q(t)
is the true trajectory in the presence of noise. Further, the value of ε is computed so that

max
0≤t≤T

E
{‖ δq(t) ‖2

}
< Kδ (64)

where K is constant. Once this computation has been done, the same ε can be used to compute the LDP

probability exp

(
−ε−1 min

|δq|>δ
I(δq)

)
. In other words, the noise amplitude bound is fixed first by the stability

condition that the mean square value of the trajectory error is smaller than some constant multiple K of
δ. Afterward, the probability of deviation greater than δ is computed using this noise amplitude bound.
It is clear that if the multiple of δ is made larger, then the bound on ε will increase thereby causing the
LDP probability to increase. More generally, we can choose an energy function V(δq) rather than |δq|2
and compute a bound on ε so that

max
0≤t≤T

E {V(δq(t))}< Kδ (65)

and then use this ε in the proposed LDP calculation.
Linearizing the robot equation, we can write using first-order perturbation theory,

δq′ ′(t)+ A(t)δq′(t)+ B(t)δq(t)=√εC(t)w(t) (66)

where A(t), B(t) and C(t) are the coefficients and the noise is
√

εw(t). Solving this stochastic differential
equation using standard state variable methods gives us

δq(t)=√ε

∫ t

0

�(t, s)w(s)ds (67)
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where �(t, s) is the state transition matrix. Further, E
{|δq(t)|2} is as follows:

E
{|δq(t)|2}= εσ 2

∫ t

0

|�(t, s)|2ds (68)

where since the noise is white, we have written it as

E
{
w(t)w(s)T

}= σ 2δ(t− s) (69)

Note that this white noise can be Gaussian or Poissonian or a mixture of the two. We then get that the
condition on ε for the noise to be characterized as being weak is given by

ε ≤ Kδ

[σ 2max
0≤t≤T

∫ t

0
|�(t, s)|2ds]

(70)

More generally if V(.) is an energy function, then we can approximate

V(δq)≈ V(0)+ V ′(0)δq+ (1/2)δqTV ′ ′(0)δq (71)

and hence

E{V(δq(t))} ≈ V(0)+ 1

2
Tr

(
V ′ ′(0)σ 2

∫ t

0

�(t, s)�(t, s)T

)
(72)

Assuming V(0)= 0, we then get the required bound on ε as

ε ≤ Kδ

[σ 2max
0≤t≤T

Tr(V ′ ′(0)
∫ t

0
�(t, s).�(t, s)Tds)]

(73)

For Gaussian noise, V(.) is usually taken as a quadratic function while for Poissonian and other kinds
of non-Gaussian noise, an appropriate choice for V(.) would be a polynomial function modulated
by exponential functions. The choice of V would be dictated by the nature of the pdf of the noise
process.

4. Implementation and Results
4.1. Software simulation and results
The presented problem formulation is implemented and validated on a two-link planner robot coded in
the MATLAB software. The self-explanatory sequential steps for implementation are provided in Fig. 2
and Algorithm 1 with all variables defined in algorithm comments. The dynamics of the two-axis planner
robot is taken as Eq. (9) [27], where the mass moment if inertia matrix M(q) elements are given by[

((((1/3)m1)+m2)l2
1 + ((1/3)m2l2

2)+m2l2l1 cos (q2)) m2(1/3l2
2 + 1/2l1l2 cos (q2))

m2(1/3l2
2 + 1/2l1l2 cos (q2)) 1/3m2l2

2

]
(74)

the Coriolis and centrifugal force matrix C with gravity matrix G that is (N(q, q̇))=C+G is given by

G=
[

((1/2m1 +m2)+ l1 cos (q1)+ (1/2)m2l2 cos (q1+ q2))g

1/2m2l2 cos (q1+ q2)g

]
(75)

and

C=
[−m2l2l1 sin (q2)q̇1q̇2 − 1/2m2l1l2 sin (q2)q̇2

2

1/2m2l1l2 sin (q2)q̇2
1

]
(76)

The relative parameter and symbols are defined in Table I. The calculated probabilities are provided in
Table II. There are three observations in Table II with three different noise percentages, that is 0.3%,
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Algorithm 1 LDP Algorithm.
Input: qd, qB, q̇d, q̇B, τp, τd � Robot variables
Output: Probability � Probability for missing angular trajectory

1. M(q)←Mass moment of inertia matrix
2. N(q, q̇)←Coriolis and centrifugal force matrix+Gravity force matrix
3. τd←M(q)q̈+N(q, q̇)
4. τp = Poisson(λ) � Generate through Poisson Process with λ= 0.1
5. q̈d←M−1(q)(−N(q, q̇))+M−1(q)τ
6. qd←

∫ ∫
q̈

7. qB← Brownian() � Generate Brownian motion noise
8. for n← 1 to K do � K = 1000
9. τ [n]← τP[n]+ τd[n] � τP[n] is Poisson process-based torque & τd[n] is desired

end torque
10. for n← 1 to K do
11. q[n]← qB[n]+ qd[n] � qB[n] is Trajectory added to brownian noise & qd[n] is

end desired trajectory
12. for n← 1 to K do
13. δq[n]← q[n]− qd[n]

end
14. F1 =M−1(qd[n]) ∂N

∂ q̇
(qd[n], q̇d[n])

15. F2 =M−1(qd[n]) ∂M
∂q

(qd[n]) ∗ (kron(Id, q̈d[n]))
16. G=M−1qd[n]
17. A= δq̈[n]+ F1δq̇[n]+ F2δq[n]− λ0 ∗ c
18. for n= 1:K do
19. I(δq[n+ 1])= q[n]+ AT ∗ (G ∗GT + λ0 ∗ c ∗ cT)−1 ∗ A
20. if ||δq||> δ then � δ = 0.01
21. Zi = I(δq[n])

end
end

22. Z =min (Zi) � min (I[δq])
23. Pr ≈ exp(− 1

ε
∗ Z) � ε= 0.01

24. disp(Probability Pr)

0.5%, and 0.8% w.r.t to the input trajectory signal. Figure 3 shows the noise free desired trajectory
q0(t)= qd(t). The actual trajectory created by using the inverse dynamics of robot along with inputs: the
desired trajectory and Poisson noise is added to the torque. Afterward, from noisy torque the angular
trajectory is generated and the Brownian noise is added to the generated trajectory, the final actual
trajectory is shown in Fig. 4. The δq is shown in Fig. 5 along with its envelope. Figure 6 shows the
desired trajectory along with the noisy trajectory with envelope, to give a pictorial representation of the
boundary (or tube) of the exit probability. The width of envelopes are not constant because the envelope
is made randomly proportional to the magnitude of the noise and the randomness is controlled by δ (the
boundary of the tube). The variable nature of envelope provides the rare event scenario and whenever
the noisy trajectory crosses the tube/boundary it is counted as a rare event. Therefore, at some places it
touches the trajectory and at some places it is above the noisy trajectory.

4.2. Hardware implementation and results
The hardware implementation is done on a commercially available Omni Bundle robot. It is a 6-DOF
robot with three actuated and three non-actuated joints. Further, the Omni Bundle robot communicates

https://doi.org/10.1017/S0263574721000916 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000916


Robotica 923

Table I. Parameters and variables.

Notation Meaning Unit Value
m1 First Link mass kg 2
m2 Second Link mass kg 2
l1 Length of first link m 0.5
l2 Length of second link m 0.5
g Gravity acceleration m/s2 9.8

q1 Angular position of first link rad
q2 Angular position of second link rad/s
q̇1 Velocity of first link rad/s
q̇2 Velocity of second link rad/s
q̈1 Acceleration of first link rad/s2

q̈2 Acceleration of second link rad/s2

Table II. Exit probability.

S.no min
||δq>δ||

δq for both q1,q2 Exit Probabilitya for both q1,q2

1 0.1519, 0.1515 0.2189, 0.2199
2 0.1408, 0.1231 0.2447, 0.2919
3 0.1216, 0.1054 0.2965, 0.3484

aFor reference, 0.2 probability means exit probability is 20%.

Figure 2. Block diagram showing proposed technique.

with MATLAB software through USB to IEEE 802.3 LAN with the following softwares installed:
QUARCTM, Open haptics, and GeomagicTM touch driver. The Omni Bundle robot is also connected
to a DC power supply of 20V, 4.5A. The joints data are acquired through MATLAB for analysis.
For implementation purpose, only two-link (2-DOF), that is link2 (q2) and link3 (q3) configuration,
is used as shown in Fig. 7. The dynamics of robot with parameters is adequately presented and

https://doi.org/10.1017/S0263574721000916 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000916


924 Rohit Rana et al.

0 100 200 300 400 500 600 700 800 900 1000

Time

–5

0

5

0 100 200 300 400 500 600 700 800 900 1000
Time

–5

0

5

T
ra

je
ct

or
y 

[q
2 0

(t
)]

T
ra

je
ct

or
y 

[q
1 0

(t
)]

Figure 3. Trajectory without noise.
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Figure 4. Trajectory with Brownian noise and Poisson process noise. Note that the Poisson process
noisy trajectory is generated by adding Poisson Process to forward dynamics profile of the robot.

discussed in ref. [11]. The inertia matrix used for Omni Bundle robot simulation is given as fol-

lows M =
⎡
⎣M11 M12 M13

M21 M22 M23
M31 M32 M33

⎤
⎦, where M11=K1 +K22 cos (2θ2)+K3 cos (2θ3)+K4 cos (θ2) sin (θ3),

M12=K5 sin θ2, M13= 0, M21=K5 sin θ2, M22=K6, M23=−0.5K4 sin θ2 − θ3, M31= 0, M32=
−0.5K4 sin θ2 − θ3, M33=K7., where K1 = 0.00179819707554751, K2 = 0.000864793119787878,
K3 = 0.000486674040957256, K4 = 0.00276612067958414, K5 = 0.000308649491069651,
K6 = 0.00252639617221043, K7 = 0.000652944405770658, K8 = 0.164158326503058, K9 =
0.0940502380783103 and K10 = 0.117294768011206 [19]. The link lengths are L1 = 0.132 and
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Figure 5. Plot showing δq with respective envelopes.
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Figure 6. Plot showing the desired trajectory and the actual noisy trajectory with respective envelopes

L2 = 0.132 m. The link masses are M1 = 0.035 and M2 = 0.1 kg respectively. The rest of parameters of
Omni Bundle are given in ref. [20].

The same Algorithm 1 (obviously with Omni Bundle dynamics) is used to implement on MATLAB
Simulink � by using MATLAB functions. Afterward, the Simulink model is downloaded in Omni bundle
to test the algorithm. The sensory data received form Omni Bundle is used to calculate the LDP exit
probability of the trajectory. The torque added with Poisson noise is shown in Fig. 8 and the noise
angular trajectory is shown in Fig. 9. The calculated δq for both the links is shown in Fig. 10. Afterward,
the data are saved in the MATLAB workspace and the exit probability was found to be p(q1)= 0.1216,
p(q2)= 0.1428. The Gaussian noise and Poisson noise are considered at 1% of the input trajectory
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Figure 7. Hardware setup shown with PC connected with Omni Bundle q2 and q3.
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Figure 8. Plot showing torque trajectory of two Omni bundle links q2 and q3.

amplitude. The exit probability increases exponentially as the noise percentage in trajectory is increased
in the same pattern as demonstrated in Table II of software simulation.

The software and hardware simulation shows that it is important to choose δ (width of tube) wisely.
This is the only controllable parameter to classify the rare event, and changes made to δ would directly
result in increase or decrease in number of rare events. Further, the probabilities of Table II matches with
the exponential increase of probability when noise is increased with constant δ. This probability can be
used to further develop control methods as the existing control methods does not include probabilistic
approach.
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Figure 9. Plot showing noisy angular trajectory after adding Gaussian noise.
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Figure 10. Plot showing δq for both links of Omni Bundle.

5. Discussion
In this section, the advantages of LDP approach and extendibility of the proposed LDP method to other
robots is discussed.

5.1. Lyapunov versus LDP approach
The following shows why LDP approach is preferred over Lyapunov energy method. Consider the linear
SDE Eq. (29).

δq′ ′ + F1(t)δq′ + F2(t)δq=G(t)w(t) (77)
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In state variable notation, Eq. (29) can be written as

d

dt

(
δqt

δωt

)
=
(

0 I

−F2(t) −F1(t)

)(
δq(t)

δω(t)

)
+
(

0

G(t)

)
.dB(t) (78)

The solution to Eq. (78) is given by(
δqt

δωt

)
=
∫ t

0

�(t, s)

(
0

G(s)

)
.dB(s) (79)

and hence the correlation matrix of the state vector is given by

R(t)=E

[(
δqt

δωt

)
.[δqT

t , δωT
t ]

]
(80)

=
∫ t

0

�(t, s)

(
0

G(s)

) [
0, G(s)T

]
�(t, s)Tds

=
∫ t

0

(
�12(t, s)G(s)G(s)T�12(t, s)T �12(t, s)G(s)G(s)T�22(t, s)T

�22(t, s)G(s)G(s)T�12(t, s)T �22(t, s)G(s)G(s)T�22(t, s)T

)
ds (82)

Now let Q be a positive definite matrix. Define the stochastic Lyapunov energy at time t as

V(t)= 1

2
[δqT

t , δωT
t ]Q

(
δqt

δωt

)
(83)

Then, we get by applying the Ito differential rule:

d

dt
E(V(t))=E

[
dV(t)

dt

]
(84)

=E

(
[δqT

t , δωT
t ]

(
0 −FT

2

I −FT
1

)
Q

(
δqt

δωt

))
+ (1/2)Tr

(
Q

(
0

G(t)

)
[0, G(t)T]

)
(85)

Equation (85) evaluates to

d

dt
E(V(t))=−

∫ t

0

Tr(F2(t)Q21�12(t, s)G(s)G(s)T�12(t, s)T)ds

−
∫ t

0

Tr(F1(t)Q22�22(t, s)G(s)G(s)T�22(t, s)T)ds

−
∫ t

0

Tr(F2(t)Q22�22(t, s)G(s)G(s)T�12(t, s)T)dsTr(F1(t)Q21�12(t, s)G(s)G(s)T�21(t, s)T)ds

+ (1/2)Tr(Q22G(t)G(t)T) (86)

If we assume that F1, F2 are approximately constant matrices for large times and the eigenvalues of the
matrix

X =
(

0 I

−F2(t) −F1(t)

)
(87)
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all have negative real part, then using the eigen decomposition of this matrix X in the spectral represen-
tation form

∑
k λkukvT

k , where uk right eigen vector, vk is the left eigen vector, both corresponds to the
eigen value λk of X. Therefore, the state transition matrix is approximately given by

�(t, s)=
∑

k

exp(λk(t− s))ukv
T
k (88)

and the above expression (86) for the rate of change of the average Lyapunov energy is approximately
given by an expression of the form (for large times t)

d

dt
E(V(t))=

∑
k,m

c(k, m)(exp(λk + λm)t− 1)+ (1/2)Tr(Q22G(t)G(t)T) (89)

It is easily seen that under the condition that F1, F2, G are approximately constant matrices, the first two
terms on the rhs of the above expression behave with t as −(1− exp(λkt))/λk, which converges to a
constant as t→∞ provided that the eigenvalues of the matrix X all have negative real part. Thus, we
have proved the result that the rate of increase of the Lyapunov energy cannot grow with time for large
times, it can atmost be bounded in time. Further, if ε >E{δq2(t)} then

d

dt
E{V(t)}> 0 (90)

and the Lyapunov method will fail in this case. Therefore, the two major concerns in Lyapunov method
are that: first, although the above analysis shows that the rate of increase of Lyapunov energy is bounded
by a constant, however, the Lyapunov energy may grow linearly with time. Second, in sudden jerks in
δq, that is ε >E{δq2(t)}.

On the other hand if we use LDP, the rate function

I(δq)=−1

2

∫ T

0

∫ T

0

δq(t1)TR−1(t1, t2)δq(t2) (91)

The probability of exit from the stability zone is given by

Pr

{
max
0≤t≤T
|δq|> δ

}
≈ exp

(
− 1

2ε

(
min
||δq||>δ

I(x)

))
(92)

where ||δq|| =max
0≤t≤T
|δq(t)|. In this case the only priority is to minimize the probability, which can be

easily achieved by choosing the maximum value out of the set of minimum values of rate function with
the boundary conditions where the rare event occurs that is ||δq||> δ. Therefore, we choose control
coefficient K in a prescribed region R, so that this probability is minimum, that is

K̂ = arg max
a∈R

(
min
||δq||>δ

I(x)

)
(93)

The Lyapunov method gives in general the result that the average Lyapunov energy can grow linearly
with time, when the noise is present and hence, we can atmost design the controller, so that the rate of
growth is small. The LDP method of controller design, on the other hand, guarantees that the probability
of the error exceeding a given threshold over the entire duration of the trajectory is very small and
hence the error energy with a large probability will stay bounded. Equivalently, with a large probability,
the rate of error energy increase will be zero if we use LDP. Further, in Lyapunov energy method, for
general boundaries, trajectory exit may happen with rare spikes in δq. However, the LDP method-based
controller design mitigates any abrupt change in the trajectory of this sort as this theory at its core is
developed considering the probabilities of rare events only. Therefore, it is suitable even if the boundaries
has arbitrary shape, whereas the Lyapunov method is considered only for general boundary shapes.
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5.2. Computational complexity
A comparison of the computational complexities required to assess the performance of the Lyapunov
energy-based method and the LDP-based method. It is seen that in the Lyapunov-based method, the
Lyapunov energy rate of change converges to nearly a positive constant dictated by noise terms in a time
duration T , say. Therefore, the time taken by Eq. (89) to converge is expressed as follows:

1

2
min

k,m
|Re (λk + λm)| = 1

2
min

k
|Re (λk)| = T (94)

If the number of computations required in computing the Lyuapunov energy from the state of the system
per iteration is p and the time discretization step size is �, then the total computational complexity
required in computing all the values of the Lyapunov energy until its rate of change converges to a
constant value is approximately pN where N = T/�. On the other hand, we have noted that the LDP
rate function of the perturbation in the angular position velocity process over the time interval [0,T ]
is computed as a quadratic form I(ξ )= (1/2)]ξ TR−1ξ where R is an N ×N correlation matrix with
N = T/�. The probability of exit from the stability zone over this time duration is according to LDP
theory expressed as

exp

((−1

ε

)
min
‖ξ‖>δ

I(ξ )

)
(95)

which evaluates to

exp

( −δ2

2ελm

)
(96)

where λm is the maximum eigenvalue of the positive definite matrix R. Note that here we are using the
L2-norm and not the L∞-norm for defining the stability zone. The computational complexity required
in computing the eigenvalues of R is the same as that of finding the roots of the Nth degree poly-
nomial {det (R− λI)} and this is quite large even when using fast numerical algorithms. However,
using Rayleigh’s variational principle for Hermitian matrices, this complexity can be reduced. Further,
the LDP method is preferred to overcome the limitations of Lyapunov method already discussed in
Section 5.1, with less weightage for complexity.

5.3. Extension of proposed LDP method to other robots
The proposed method may be applied on any type of robot where the robot differential equation has the
following generalized form:

Ẋ = F(X|θ )+√εG(X|θ )W(t) (97)

where X is the actual trajectory, F(X|θ ) and G(X|θ ) denotes the dependence of X on θ as a function,
and ε denotes the scaling factor of noise W (t). The objective is to determine the control parameters θ so
that if d(t) is the desired robot trajectory, then the error ||X(t)− d(t)||, 0≤ t≤ T is a minimum in some
appropriate sense. We have interest to minimize the

lim
T→0

kT ln E

{
exp

(
1

kT

∫ T

0

||X(t)− d(t)||2dt

)}
= sup

X

∫ T

0

||X(t)− d(t)||2 − I(X|θ ) (98)

where I(X|θ ) is the rate function of X(t) and ε = kT . The supremum of (98) is evaluated using the
Euler–Lagrange differential equation. In similar way the proposed theory is applied to any robot as in
ref. [21].

Statistically, Eq. (8) is a generic model and is ideally the same for any number links with any degree
of freedom. The basic electrical elements of robots are nearly the same except for the kind of motion
they provide. They all have angular position sensors, motors, rigid body (i.e., links), and a motion con-
troller. The use of other robot would not affect the flexibility of the proposed method as in two-link
2-DOF robot, all matrix elements of Eq. (8) are present like Coriolis and centrifugal force matrix, which
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are absent in one-link robotic system. The hardware results are incorporated on a commercial 6-DOF
robot(not planner). However, to test our algorithm we took only two links (2-DOF). Therefore, the results
and methodology may be replicated and extended on any available robotic system, which satisfies the
generalized Eq. (8).

6. Conclusion
The presented application of LDP theory for trajectory tracking problem has been derived and pre-
sented with conclusive results. The LDP probabilities exit from desired zone have been evaluated for
low-amplitude noise given by a superposition of Gaussian and Poisson processes. Further, the novel
error energy partition function is presented as fourth-order linear differential equation to give the exact
time and condition of trajectory exit form stable domain. The condition for noise amplitude ε to get a
stable system is also derived in stability analysis. It is proved conclusively that the LDP, a probability-
based approach is better than the energy-based Lyapunov approach. The successful simulation and
implementation on hardware with small noise ε→ 0 provided desirable results. Further, the simula-
tion and hardware results are in good agreement. The future scope of this work is to develop LDP-based
probabilistic control methods.
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