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The analysis of turbulence by way of higher-order spectral moments is uncommon,
despite the relatively frequent use of such statistical analyses in other fields of physics
and engineering. In this work, higher-order spectral moments are used to investigate the
internal intermittency of the turbulent velocity and passive-scalar (temperature) fields.
This study first introduces the theory behind higher-order spectral moments as they pertain
to the field of turbulence. Then, a short-time Fourier-transform-based method is developed
to estimate these higher-order spectral moments and provide a relative, scale-by-scale
measure of intermittency. Experimental data are subsequently analysed and consist of
measurements of homogeneous, isotropic, high-Reynolds-number, passive and active grid
turbulence over the Reynolds-number range 35 ≤ Rλ ≤ 731. Emphasis is placed on third-
and fourth-order spectral moments using the definitions formalised by Antoni (Mech. Syst.
Signal Pr., vol. 20 (2), 2006, pp. 282–307), as such statistics are sensitive to transients
and provide insight into deviations from Gaussian behaviour in grid turbulence. The
higher-order spectral moments are also used to investigate the Reynolds (Péclet) number
dependence of the internal intermittency of velocity and passive-scalar fields. The results
demonstrate that the evolution of higher-order spectral moments with Reynolds number is
strongly dependent on wavenumber. Finally, the relative levels of internal intermittency
of the velocity and passive-scalar fields are compared and a higher level of internal
intermittency in the inertial subrange of the scalar field is consistently observed, whereas a
similar level of internal intermittency is observed for the velocity and passive-scalar fields
for the high-Reynolds-number cases as the Kolmogorov length scale is approached.

Key words: intermittency, isotropic turbulence, turbulent mixing

1. Introduction

The work of Kolmogorov (1941a,b) (referred to herein as K41) proposed the existence of
an inertial subrange that separates the dissipative scales from the energy-containing ones
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in the limit of sufficiently high Reynolds numbers. These notions were later extended to
passive-scalar fields by Oboukhov (1949) and Corrsin (1951) (referred to herein as KOC),
who proposed analogous concepts to those in K41, such as local isotropy of passive-scalar
fields and the existence of an inertial–convective subrange. As established by K41 and
KOC, two important parameters of turbulent flows are the dissipation rates of the turbulent
kinetic energy and scalar variance, respectively defined as

〈ε〉 = 2ν〈sijsij〉, (1.1)

and

〈εθ 〉 = γ

〈
∂θ

∂xi

∂θ

∂xi

〉
, (1.2)

where sij = 1
2(∂ui/∂xj + ∂uj/∂xi) is the fluctuating strain rate, ui is the velocity

fluctuation, θ is the passive-scalar fluctuation, ν is the kinematic viscosity and γ is the
scalar diffusivity. K41 and KOC theories make use of the mean dissipation rates (〈ε〉 and
〈εθ 〉). However, it is now known that ε and εθ exhibit strong variations in time and space
(Landau 1944; Sreenivasan & Antonia 1997; Warhaft 2000) – a phenomenon known as
internal intermittency.

The effect of internal intermittency on the predictions of K41 and KOC theories has
frequently been described in the context of structure functions. Using the longitudinal
velocity (u) field as an example, Kolmogorov theory predicts that the nth-order,
inertial-range structure function scaling exponents (ζn), defined by

〈[�u(r)]n〉 ≡ 〈[u(x + r) − u(x)]n〉 ∼ rζn, (1.3)

where r lies within the inertial range, must be equal to n/3, in the limit of high
Reynolds numbers. However, the effects of internal intermittency have been found to
change the higher-order scaling exponents, such that (i) ζn < n/3 for n > 3, and (ii) the
deviation from the Kolmogorov prediction increases with increasing structure function
order (e.g. Anselmet et al. 1984). As a consequence of Kolmogorov’s 4/5 law (or,
equivalently, Yaglom’s 4/3 law for passive scalars; Yaglom 1949), the scaling of third-order
structure functions must be equal to 1 (their K41/KOC predicted value) and is not
affected by internal intermittency. Moreover, the deviation of second-order structure
function scaling exponents from their Kolmogorov predictions are theorised to be of
the opposite sign to those of the higher-order structure function scaling exponents (i.e.
ζ2 > 2/3, Frisch (1995), p. 139). Note that this corresponds to an inertial-range slope
of the power spectrum that is steeper than the K41/KOC prediction of −5/3, the power
spectrum being the analogue in the frequency domain of the second-order structure
function. However, given that the effects of internal intermittency become more prominent
as the statistical order is increased, the deviations arising from intermittency, when
considering second-order statistics, are quite small and generally within the uncertainty
of the experiments/simulations, which is why higher-order statistics more readily lend
themselves to the study of intermittency.

Batchelor & Townsend (1949) were the first researchers to experimentally demonstrate
the intermittency of turbulence, especially present at small scales. They differentiated
a time series of velocity up to third order and demonstrated that the signal became
increasingly intermittent as the order of differentiation increased, observing periods of
activity followed by periods of relative quiescence. They used the flatness factor of the
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velocity derivative

Fn ≡ 〈(∂nu/∂xn)4〉
〈(∂nu/∂xn)2〉2 , (1.4)

to quantify the extent to which the probability density function (PDF) of the velocity field
deviated from that of a Gaussian distribution and observed a tendency of the flatness factor
to increase with the order of differentiation (n). Kennedy & Corrsin (1961) subsequently
demonstrated that the findings of Batchelor & Townsend (1949) were particular to
turbulence by (experimentally and analytically) showing that this increase in flatness factor
did not occur for all nonlinear random processes. Further work by Kuo & Corrsin (1971)
attempted to locate the intermittency in wavenumber space by band-pass filtering turbulent
signals and calculating the flatness factor within each band. They observed that the flatness
(and thus the intermittency) increased when increasing the centre frequency of the band.
They also found that the flatness tended to 3 at low wavenumbers, implying that the
large scales of turbulence exhibited little intermittency. Additionally, they reinforced the
idea that the degree of intermittency is Reynolds-number dependent by overlaying their
results with those of Batchelor & Townsend (1949) and Wyngaard (1967), showing that
the flatness factor (measured over all scales of the turbulence) increased with Reynolds
number. Research in more recent years has suggested that the flatness factor of the first
derivative of the (longitudinal) velocity fluctuation increases monotonically with Reynolds
number, possibly as F1 ∼ R3/8

λ (see Van Atta & Antonia 1980; Sreenivasan & Antonia
1997), although more recent work by Djenidi, Antonia & Tang (2019) claims that the
flatness factor reaches a plateau at high Reynolds numbers. The relationship between the
flatness factor of derivatives and the Reynolds number has also been described using
the multifractal formalism (e.g. Nelkin 1990). The intermittency of passive-scalar fields
has been subjected to less scrutiny, although data compiled by Sreenivasan & Antonia
(1997) depict a stronger Reynolds-number dependence of the flatness factor of the scalar
derivative than that of the longitudinal velocity derivative. Additionally, Sreenivasan &
Antonia (1997) point out that the deviations from Gaussian behaviour of passive-scalar
fields are typically more significant than those of velocity fields, thus implying a stronger
level of intermittency in scalar fields. It has moreover been demonstrated that intermittency
in scalar fields can even occur when advected by (non-intermittent) Gaussian velocity
fields (Pumir, Shraiman & Siggia 1991; Holzer & Siggia 1994; Kraichnan 1994). Warhaft
(2000) also confirmed that the intermittent behaviour of passive-scalar fields extends
to scales larger than the dissipative ones, as is the case for velocity fields. Lepore &
Mydlarski (2012) used the kurtosis of passive-scalar increments (�θ = [θ(x + r) − θ(x)])
to study the evolution of intermittency with separation r and found that scalar fields
exhibited significant departures from the Gaussian predictions for small and intermediate
separations. However, it is worth noting that structure functions include contributions from
all scales less than or equal to the scale r over which the increments are calculated (Meyer,
Mydlarski & Danaila 2018).

Although our understanding of internal intermittency has greatly improved with time,
questions remain. For example, the scale dependence of internal intermittency within
velocity and/or passive-scalar fields has not been extensively studied, even though the
spectral nature of turbulent fields has been the object of much research. Spectral-based
tools to detect bursts and transients have been used extensively in other fields of physics
and engineering, especially in fault detection of rolling machines and bearings (see Antoni
& Randall 2006; Leite et al. 2016, and Hu et al. 2019). Herein, we use the term ‘transients’
to denote fluctuations that are substantially different (generally non-Gaussian) from those
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that are typical of the non-stationary, but statistically steady, flow. Another example is
the use of higher- (i.e. third- and fourth-) order spectral moments to analyse acoustic
signals contaminated by under-ice noise (Dwyer 1983). Dwyer argued that conventional
spectral analysis methods (such as power spectral densities) are incapable of detecting
highly impulsive and non-Gaussian transients, and that higher-order spectral moments
are more appropriate. He separately used the real and imaginary parts of the complex
third- and fourth-order normalised moments (i.e. the spectral skewness and kurtosis)
to identify transients of under-ice noise in the frequency domain. Pagnan, Ottonello &
Tacconi (1994) later refined the technique and favoured the use of the magnitude of
the complex fourth-order moment to obtain a more complete picture of the transients
present in the signal. When using this method, however, one must be aware of the
change of expected distributions due to the squaring operations necessary to obtain the
magnitude of the complex Fourier modes. Antoni (2006) subsequently undertook a more
rigorous derivation of the properties of the spectral kurtosis, demonstrating that this
higher-order moment is particularly well suited for the detection of transients in a signal.
However, he also demonstrated that care must be taken in constructing an appropriate
estimation method that favours the detection of short transients. With a few exceptions,
such approaches have generally not been applied to turbulent flows, which are nonetheless
both spectral and intermittent in nature. Successful attempts at isolating deviations from
Gaussian behaviour in wavelet space have been presented by Meneveau (1991) and Farge
(1992), although these studies only considered the behaviour of velocity fields (without
passive scalars) and limited their analysis to wavelet decomposition, as opposed to the
more common Fourier analysis. As discussed in Bos, Liechtenstein & Schneider (2007),
there is a clear correspondence between Fourier- and wavelet-based analyses. Although
wavelet decompositions can also be used, we favour the use of higher-order moments in the
frequency domain for the present work because they constitute a natural extension to the
power spectrum (i.e. the second-order spectral moment) while still allowing the flexibility
to focus on different ranges of turbulent activity in wavenumber space by varying the size
of the analysis window. The use of fourth-order moments in the Fourier domain for the
analysis of turbulence was investigated by Chevillard et al. (2005), who calculated the
flatness factor of experimental velocity data in the frequency domain to demonstrate the
higher level of intermittency of vorticity compared with longitudinal velocity.

Given the above, the objective of the present study is threefold. First, we investigate
internal intermittency in turbulent flows by way of third- and fourth-order spectral
moments. To do so, we propose a short-time Fourier-transform-(STFT-) based method
(similar to that of Antoni 2006) that makes use of higher-order spectral moments to
quantify the internal intermittency in the frequency/wavenumber domain. The proposed
tool (i) does not necessitate band-pass filtering of time series of data, (ii) permits the
investigation of internal intermittency as a function of frequency/wavenumber and (iii)
allows the possibility of variable window lengths (discussed in later sections), akin to the
analysis of Antoni (2006). The second objective is to make use of higher-order spectral
moments to explore the Reynolds-number dependence of the internal intermittency of
both velocity and scalar fields. Finally, the third objective is to compare the intermittency
of both velocity and passive-scalar fields on a spectral basis.

2. Theory and implementation of spectral moments

As noted in § 1, higher-order spectral moments are seldom used in fluid mechanics,
although they are encountered much more commonly in other fields of physics and
engineering, such as those mentioned above. Similar tools are used herein to detect
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intermittent behaviour in turbulent signals caused by internal intermittency. This section
begins with a presentation of the mathematical background necessary to calculate
higher-order spectral moments. It is followed by a discussion of the method used to analyse
time series of turbulent velocity and passive-scalar fields.

2.1. Mathematical background
Let a continuous process x(t) be sampled at a frequency fs. The resulting discrete time
series can then be divided into M segments of length N (via the use of windowing
functions, which will be discussed in depth in § 2.2), such that the sampled time series
can be denoted as

x(n, m) = x([n + N(m − 1)]/fs), (2.1)

with n = 0, . . . , N − 1 and m = 1, . . . , M. The discrete Fourier transform of each
individual segment (denoted by m) is then calculated as follows:

X(ωn, m) =
N−1∑
k=0

x(k, m) ejkn/N, (2.2)

where j = √−1 and ωn = 2πnfs/N. Note that this operation is normally performed using
the fast Fourier transform (FFT) algorithm. The power spectral density (referred to as the
‘spectrum’ from here on) is calculated from the average of the square of the modulus of
X(ωn, m), evaluated at each frequency bin (centred at ωn), over each segment of length M

E(ωn) = 1
fsM

M∑
m=1

|X(ωn, m)|2, (2.3)

where the factor 1/fs is necessary, such that:

〈x2〉 =
∫ ∞

−∞
E(ωn) dωn. (2.4)

This segmenting and averaging method has multiple advantages, including a reduction in
the number of computations required (since it is more efficient to take the FFT of multiple
short segments than taking the FFT of the equivalent longer segment) and a lower noise
level (Welch 1967).

Although the spectrum is used extensively in the study of turbulence to compare the
relative intensity of the fluctuations at the various scales of the turbulence, it fails to
capture the non-Gaussian behaviours induced by internal intermittency because it is not
very sensitive to the tails of the distribution of a signal (Kuo & Corrsin 1971; Dwyer
1983). The spectrum is therefore not well suited for situating intermittency in wavenumber
space. As previously noted, attempts to experimentally filter velocity signals using narrow
bands to locate intermittency in wavenumber space have been made (e.g. Kuo & Corrsin
1971), but there exists a simple, flexible (in terms of frequency bin resolution) and
rigorous alternative that employs the frequency-domain signal X(ωn, m) to locate and
quantify intermittency in the frequency/wavenumber domain. This method makes use
of higher-order spectral moments, which are able to capture deviations from Gaussian
behaviour in the tails of the PDFs. By viewing the N segments of data created from the
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signal x(t) as independent observations, one can create a PDF of the spectral coefficients
at each frequency bin, and then define the spectral skewness, S̃

S̃(ωn) =

1
M

M∑
m=1

|X(ωn, m)|3

(
1
M

M∑
m=1

|X(ωn, m)|2
)3/2 , (2.5)

and the spectral kurtosis, K̃

K̃(ωn) =

1
M

M∑
m=1

|X(ωn, m)|4

(
1
M

M∑
m=1

|X(ωn, m)|2
)2 , (2.6)

as the normalised third- and fourth-order moments of the frequency-domain PDFs. Note
that (i) tildes denote spectral moments in this work, and (ii) the above definitions differ
slightly from those of the spectral skewness and kurtosis presented by Dwyer (1983),
which separately employed the real and imaginary parts of the Fourier-transformed signal
(Xr(ωn, m) and Xi(ωn, m), respectively), producing pairs of spectral moments that must
be analysed individually. For a stationary Gaussian process, a spectral skewness of 0
and a spectral kurtosis of 3 are to be expected with Dwyer’s method. However, the
aforementioned revised definitions of S̃(ωn) and K̃(ωn), given by Pagnan et al. (1994)
and Antoni (2006), employ the modulus of the Fourier transform ((2.5) and (2.6)), to
simplify each spectral moment to a single parameter. Use of the magnitude of the complex,
Fourier-transformed variables changes the nature of their distribution such that Gaussian
statistics would give rise to a chi distribution, with the following probability density
function (Forbes et al. 2011):

f (X, σ, L) = 21−L/2XL−1

Γ (L/2)σ L e−X2/2σ 2
, (2.7)

where L is the degree of freedom (L = 2 for the magnitude of complex numbers), σ is
the standard deviation of Xr(k, l) and Xi(k, l), and Γ is the gamma function. (See Millioz,
Huillery & Martin (2006) for more details.) The raw moments of the chi distribution can
thus be calculated from

μj = 〈X j〉 =
∫ ∞

−∞
X j 21−L/2XL−1

Γ (L/2)σ L e−X2/2σ 2
dX, (2.8)

which reduces to

μj = σ j2j/2 Γ (1
2(L + j))

Γ (1
2 L)

(2.9)

(Forbes et al. 2011). Therefore, if the signal x(t) is stationary and Gaussian, the definitions
proposed in (2.5) and (2.6) lead to a spectral skewness of

S̃ = μ3

μ
3/2
2

= Γ (5/2) ≈ 1.33, (2.10)
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and a spectral kurtosis of

K̃ = μ4

μ2
2

= 2. (2.11)

The present work employs the modulus in the definition of higher-order spectral moments
because of its simplicity. It should therefore be recalled that, at a given scale, and in
the absence of intermittency, the third- and fourth-order spectral moments of a turbulent
velocity or scalar field will take on the values of 1.33 and 2, respectively, at that particular
scale.

2.2. Spectral moment estimation
The higher-order spectral moment estimation method proposed herein makes use of
window functions to create multiple sets of data from a time series x(t). The creation
of segments proposed in (2.1) is equivalent to the application of a square window and
therefore results in considerable amounts of spectral leakage due to the non-negligible
sidelobes present in the Fourier transform of the square window. The use of a symmetrical
window function that gradually decreases to zero at either end, such as the Hann window,
is preferable as it reduces spectral leakage (Press et al. 2007). In practice, we therefore
multiply the signal under investigation by a window function, w(k), before the taking the
Fourier transform, such that (2.2) becomes

X(ωn, m) =
N−1∑
k=0

w(k)x(k, m) ejkn/N . (2.12)

This method, often referred to as the STFT, approximates the spectral content of the signal
around the time where the window function is centred. Although the time at which a
given spectral event occurs may not be of immediate interest in the analysis of internal
intermittency, the repeated extraction of spectral content done by taking the STFT at
different times in the signal x(t) creates a distribution in the frequency domain from which
one can extract the third- and fourth-order moments. Note that the STFT coincides with
the usual Fourier transform when the window is chosen to be very large (i.e. for N of the
order of the size of the entire record).

Despite its ability to extract the spectral content of a signal and identify frequencies at
various points in time, the STFT has certain limitations. The results depend (to a certain
extent) on the smoothness of the chosen windowing function, although this dependence
was not observed to be strong enough to influence the conclusions presented in later
sections. A preliminary analysis (not shown) that compared the Blackman, Chebyshev,
Gaussian, Hann (used herein) and rectangular windows demonstrated that similar results
are obtained when any windowing function is used, apart from the rectangular one.
However, substantial research (e.g. Press et al. 2007) has shown that the use of rectangular
windows leads to significant spectral leakage, which is the main reason it is not used
herein. Of the four windowing functions that gave similar results, the Hann window was
favoured for the sake of consistency between our manuscript and previous work done on
higher-order spectral moments (e.g. Antoni 2006).

The results of the STFT method are also affected by the length of the chosen windows.
To illustrate this, consider the turbulent time series of velocity shown in figure 1(a). The
largest wavelength (lowest frequency) that the windowing function (dashed line in figure 1)
can resolve corresponds to the width of the window itself. Therefore, any frequency lower
than the frequency corresponding to the filtering window’s length cannot be resolved.
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Figure 1. A turbulent velocity time series (−) with window functions (−−) applied. (a) The original velocity
signal, (b) the velocity signal with a short window applied and (c) the velocity signal with a long window
applied.

One solution to this issue is to increase the width of the filtering window (figure 1c).
However, as the width of the window increases, issues related to the central limit theorem
arise. Specifically, Peligrad & Wu (2010) have demonstrated that, for ergodic processes
and for large enough sample sizes, the central limit theorem holds for Fourier transforms.
Thus, if a windowed Fourier transform is performed, one should expect the length of
the window (N) to influence the distribution of the Fourier-transformed data. This is
readily demonstrated by considering a hypothetical random variable x(t) and its sampled
time series x(n, m). The time series has a skewness of 0.0 and a kurtosis of 2.5, such
that its PDF is not Gaussian. A windowed STFT, with window lengths ranging from
N = 22 to N = 29, was performed on this time series, giving rise to the complex random
variable X(ωn, m). The mean of the kurtosis of this random variable (taken over all
frequency bins) was then calculated, first considering only Xr(ωn, m) (i.e. the real part
of X(ωn, m))

〈K̃r(ωn)〉ωn =
〈

1
M

M∑
m=1

Xr(ωn, m)
4

/(
1
M

M∑
m=1

Xr(ωn, m)
2

)2〉
ωn

, (2.13)
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then only Xi(ωn, m) (i.e. the imaginary part of X(ωn, m))

〈K̃i(ωn)〉ωn =
〈

1
M

M∑
m=1

Xi(ωn, m)
4
/(

1
M

M∑
m=1

Xi(ωn, m)
2
)2〉

ωn

(2.14)

and finally |X(ωn, m)| (i.e. the magnitude of X(ωn, m))

〈K̃(ωn)〉ωn =
〈

1
M

M∑
m=1

|X(ωn, m)|4
/(

1
M

M∑
m=1

|X(ωn, m)|2
)2〉

ωn

, (2.15)

which is simply the mean of the spectral kurtosis defined in (2.6) and noting that 〈·〉ωn
denotes averaging over all frequency bins. The evolution of these quantities as a function
of window length is depicted in figure 2, which depicts how the kurtosis is influenced
by the window length. As the window length tends to one (N → 1), the platykurtic
(i.e. sub-Gaussian) character of the original time series forces 〈K̃r(ωn)〉 and 〈K̃i(ωn)〉 to
decrease towards the value of the kurtosis of the original time series (2.5). Conversely, as
the window length increases toward infinity (N → ∞), 〈K̃r(ωn)〉 and 〈K̃i(ωn)〉 approach
the Gaussian value of 3, even though the original time series x(n, m) was non-Gaussian.
This is a result of the central limit theorem which states that, for a large enough sample
size, the distribution of the sample mean (or sample Fourier transform) becomes Gaussian
regardless of the original distribution. Note that the behaviour of 〈K̃(ωn)〉 is similar,
although it does not tend to the value of the kurtosis of the original time series (2.5) as
N → 1 because of the aforementioned change in distribution resulting from the squaring
operation necessary to calculate the magnitude. Moreover, as N → ∞, 〈K̃(ωn)〉 tends to
the value of 2 instead of 3, for the reasons discussed in § 2.1.

We have now established that higher-order spectral moments estimated with large
windows cannot be used to detect intermittency due to the central limit theorem. Moreover,
excessively short windows fail to capture low frequency transients. Therefore, the length
of the window used to divide a time series must be chosen with care to ensure that
the transient frequencies of interest are captured. If one can estimate the length (or
duration) of each transient within the signal, then the window length to be used should
correspond to the approximate length of the transient itself. This is attributed to the fact
that windows of the same length as, or slightly shorter than, the transients fully encompass
these without much interference from the stationary data, which results in strong Fourier
modes within the transient frequencies. These strong Fourier modes, which arise from
the presence of transients, significantly contribute to the tails of the distributions at
the corresponding frequency bins and are more easily captured by higher-order spectral
moments. Conversely, the higher-order spectral moments decrease significantly as the
window width is increased beyond the length of the transients because the windows that
contain the transients become dominated by the stationary data. However, the length of
each transient is rarely known a priori, and thus the ideal window length to be used remains
initially unknown. The solution is therefore to compute the windowed Fourier transform
using different window lengths to determine the optimum value (keeping in mind that
relatively large windows will systematically result in Gaussian higher-order spectral
moments). If one knows the approximate location of the transients in the frequency domain
space beforehand, one can identify a few window lengths that may work well. However,
in the case where the frequency location of the transients is unknown, one may use the
Kurtogram algorithm, proposed by Antoni (2007). This algorithm efficiently conducts
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Figure 2. The mean spectral kurtosis plotted as a function of the window length (N) expressed in terms of
number of samples for (a) the real part of X(ωn, m), (b) the imaginary part of X(ωn, m) and (c) the magnitude
of X(ωn, m).

a preliminary analysis and sweeps through the signal of interest using multiple window
lengths to determine the optimal window to be used for further analysis. The results
of this method are analogous to performing successive zooms in wavenumber space. A
similar method in which window lengths were increased in successive steps to improve
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the frequency resolution was initially used herein to find the approximate locations of the
intermittent activity. Then, the most relevant window length to be used for analysis was
determined by first establishing the wavenumber range to be studied using higher-order
spectral moments (e.g. κ1low ≤ κ1 ≤ κ1high). The lower bound (κ1low), which dictated the
window size, was selected as a function of the range of scales of interest, whereas κ1high
was always equal to 1/η in the present work. κ1low was then converted to a frequency
(using Taylor’s hypothesis: flow = 〈U〉κ1low/(2π)), which resulted in the lowest frequency
needing to be spanned by the window. The minimum window length (in terms of samples,
Nmin) is given by Nmin = fsamp/flow, where fsamp is the sampling frequency.

3. Apparatus

The data analysed herein were obtained by Mydlarski & Warhaft (1998) from experiments
conducted in two different wind tunnels in the Sibley School of Mechanical and Aerospace
Engineering at Cornell University. The first one has a test section that is 40.65 × 40.65 cm2

in cross-section and 4.5 m long, and the test section of the second one has a 91.44 ×
91.44 cm2 cross-section and is 9.1 m in length. The flow parameters for the cases analysed
herein are presented in table 1.

For the Rλ = 35 and Rλ = 86 cases, the turbulence was generated by means of passive
grids with 2.54 cm and 10.19 cm mesh lengths, respectively. The turbulent flow fields
in all other cases were generated using active grids based on the design of Makita
(1991). The active grids contain bars driven by stepper motors that independently
actuate rows of agitator wings to create approximately homogeneous, isotropic turbulence
(Mydlarski & Warhaft 1996; Mydlarski 2017). Active grids were used in both tunnels
to achieve a maximum Taylor microscale Reynolds number of Rλ = 731. A uniform,
mean, cross-stream temperature gradient was generated using differentially heated metallic
ribbons at the entrance to the wind tunnels’ settling chambers. The action of the turbulent
velocity field on this mean temperature gradient resulted in a turbulent passive-scalar
(temperature) field.

Simultaneous two-component (u, v) velocity and passive-scalar (temperature)
measurements were made in all but two cases. Only longitudinal velocity measurements
were made at Rλ = 671, and separate longitudinal velocity and temperature measurements
were made Rλ = 731. In these two (Rλ = 671 and Rλ = 731) cases, the velocity
measurements were obtained using a single-normal tungsten hot-wire sensor, whereas an
X-wire sensor was used for all the other cases. In all cases, hot-wire overheat ratios of 1.8
were employed using Dantec 55M01 constant temperature anemometers. The temperature
measurements were made using a cold-wire thermometer sensor placed in a plane parallel
to, but 0.5 mm away from, the X-wire sensor. The data were low- and high-pass filtered,
and then digitised using an A/D card. Further information on the equipment, as well as
detailed descriptions of the wind tunnels and the active grids, are given in Mydlarski &
Warhaft (1996) and Mydlarski & Warhaft (1998).

4. Results and discussion

Before situating and quantifying internal intermittency in turbulent velocity and scalar
fields using the approach outlined in § 2, benchmarking of the algorithm was undertaken
to ensure that the algorithm can properly detect transients. Therefore, this section first
presents a brief summary of the algorithm’s testing procedures and outcomes. This is
followed by an investigation of the internal intermittency of turbulent velocity fields by
way of higher-order spectral moments. Then, the Reynolds-number dependence of the
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Tunnel Horiz. Vert. Horiz. Horiz. Vert. Vert. Horiz. Vert. Horiz. Horiz. Horiz.
grid passive active passive active active active active active active active active

Mesh (cm) 2.54 5.08 10.2 11.4 5.08 5.08 11.4 5.08 11.4 11.4 11.4
〈U〉 (m s−1) 6.3 3.3 6.2 3.3 3.6 12.2 3.3 11.4 7 7.3 6.9
x/M 70 68 70 62 68 68 62 68 62 35 31
β (◦C m−1) 5.9 4.8 7.4 2.5 3.3 5.2 2.7 3.6 3.6 n/a 5.1
ν (×106 m2 s−1) 15.9 16.0 15.8 15.5 16.0 16.0 16.0 16.0 16.0 15.5 15.0
〈u2〉 (m2 s−2) 0.0134 0.0156 0.0208 0.029 0.0629 0.311 0.0911 1.04 0.583 1.42 1.44
〈u2〉1/2/〈U〉 (%) 1.8 3.8 2.1 5.2 7.0 4.9 9.1 8.9 10.9 16.4 17.4
〈ε〉 (m2 s−3) 0.135 0.0314 0.0559 0.0418 0.118 2.33 0.0833 6.13 0.94 4.48 3.88
l(= 0.9〈u2〉3/2/ε) (m) 0.010 0.056 0.048 0.11 0.12 0.067 0.3 0.16 0.43 0.34 0.4
Rλ(= 〈u2〉{15/(νε)}1/2) 35 85 86 140 177 197 306 407 582 671 731
Rl(= 〈u2〉1/2l/ν) 75 440 441 1200 1900 2300 5600 9900 20300 26000 32100
η(= (ν3/〈ε〉)1/4) (mm) 0.42 0.6 0.52 0.55 0.43 0.21 0.47 0.16 0.26 0.17 0.17
〈εθ 〉 (◦C2s−1) 0.0284 0.0595 0.140 0.128 0.0665 0.197 0.360 0.215 0.789 n/a 1.70
〈θ2〉 (◦C2) 0.0081 0.062 0.143 0.176 0.083 0.055 0.8 0.08 1.07 n/a 2.05
lθ (= 〈θ2〉1/2)/β (m) 0.015 0.052 0.051 0.17 0.087 0.0451 0.33 0.079 0.29 n/a 0.28
fη(= 〈U〉/(2πη)) (kHz) 2.4 0.88 1.9 0.95 1.3 9.4 1.1 11.3 4.3 6.8 6.5

Table 1. Flow parameters. These eleven cases were used to calculate the higher-order spectral moments. The velocity and scalar dissipation rates were determined using
〈ε〉 = 15ν

∫∞
0 κ2

1 F11(κ1) dκ1 and 〈εθ 〉 = 3γ
∫∞

0 κ2
1 Fθ (κ1) dκ1. The Prandtl number (Pr) was 0.7.
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Figure 3. Spectral skewness (open symbols) and kurtosis (closed symbols) of Gaussian white noise evaluated
using window lengths of 16 (◦, • – black), 32 (�, � – blue), 64 (�, � – red) samples. The lines represent the
expected values of spectral skewness (dashed) and spectral kurtosis (solid) for stationary, Gaussian signals.

higher-order spectral moments of turbulent velocity and scalar fields is examined. Finally,
the higher-order spectral moments of velocity and scalar fields are compared.

4.1. Algorithm testing and validation
As a first test, a time series of Gaussian white noise was generated using MATLAB and
its spectral skewness and kurtosis were evaluated using the procedure described in § 2 to
ensure that the algorithm did not falsely detect transients. The artificial signal consisted
of 244 blocks of 4096 data points sampled at a frequency of 10 kHz. As recommended in
§ 2, several window lengths were evaluated to ensure that the results were consistent and
not systematically forced to their Gaussian values by the central limit theorem. Figure 3
confirms that the algorithm returns the values of Γ (5/2)(≈ 1.33) and 2 for the spectral
skewness and kurtosis, respectively, of a stationary, Gaussian signal. It is therefore clear
that the algorithm does not detect significant deviations from Gaussianity, regardless of
the window length, such that any future observed deviations from Gaussianity will have
originated from the intermittent behaviour of the turbulent signal.

To further test the algorithm’s ability to detect transients and intermittent behaviour,
another synthetic signal was constructed. It consisted of Gaussian white noise to which 11
short-lived transients of the form

xtrans(t) = A cos(2πft) e(λ(t−τ)2), (4.1)

were superimposed, where f (the frequency of the transient) was varied from 990 to
1010 Hz and a unique temporal offset (τ ) was randomly attributed to each transient. The
discretised signal had a sampling frequency of 10 kHz and the magnitude of each transient
was within 99.9 % of its maximum amplitude (A) for 0.0074 s. Note that the purpose of
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this synthetic signal was not to emulate turbulence, as the physics underlying the internal
intermittency of turbulent flows are much more complicated. Rather, the synthetic signal is
used to benchmark the ability of the higher-order spectral moments tools developed in § 2
to detect short, intermittent behaviour. The higher-order spectral moments of this signal
are depicted in figure 4, in which one can observe a clear deviation from Gaussianity
being detected by the algorithm around 1.0 kHz, which corresponds to the frequency of
the added transients. Note that the skewness captures and locates the transients well, even
though rare events in a given process may occur symmetrically (i.e. evenly in both tails
of the distribution). The reason the spectral skewness is capable of detecting transients
is that the tails of the distribution become combined when taking the magnitude of
the Fourier modes. This concentrates the rare events to a single tail, which skews the
distribution. Moreover, it is worth noting that the spectral kurtosis appears to be more
sensitive to transients than the spectral skewness. This results from the higher statistical
order of the spectral kurtosis. Figure 4 also clearly demonstrates that the magnitudes of
the deviations from Gaussian behaviour decrease with increasing window length, further
reinforcing the notion that higher-order spectral moments are dependent on the window
length (N). In this particular example, the effects of the window length are easily explained
by comparing the length of the transients (ntrans) to N. The number of sample points
contained within each transient is equal to ntrans = fs ∗ ttrans, where fs is the sampling
frequency and ttrans is the duration of the transient. As previously mentioned, the transients
in this example are approximately 0.0074 s long, yielding approximately 74 data points
within each transient. Therefore, given the discussion in § 2.2, one could anticipate that a
window length of N = 74, or slightly shorter, would maximise the higher-order spectral
moments. The results presented in figure 4 support this argument, as the peak value of
both spectral moments decreases as the length of the windows exceeds the length of the
transients in the signal. Moreover, as the window length is shortened significantly below
the length of the transients, the peak values of the higher-order spectral moments decrease
as well. Nevertheless, the deviations from Gaussian behaviour are accurately situated and
quantified in the frequency domain regardless of the window length, thus showing that
the algorithm constructed in § 2 is capable of capturing rare, intermittent events in an
otherwise Gaussian time series.

4.2. Higher-order spectral moments of turbulent velocity fields
In this section, a systematic investigation of the evolution of the internal intermittency of
turbulent velocity and passive-scalar fields in wavenumber space is undertaken by way
of an analysis of the higher-order spectral moments of turbulent time series. To this end,
figures 5 and 6 respectively plot the spectral skewness and spectral kurtosis of a turbulent
velocity field at Rλ = 582 as a function of normalised wavenumber κ1η, where η is the
Kolmogorov length scale. Power spectra are also plotted in these figures to better identify
the various ranges of the flow (e.g. the inertial subrange). Note that these results were
obtained using STFT windows of length N = 625η. Although shorter windows would have
maximised the higher-order spectral moments, longer windows include a larger range of
frequencies, which is preferable at the initial stages of the analysis, given that they allow
low-frequency deviations from Gaussianity to be captured. Results obtained using shorter
windows that highlight the intermittency at higher frequencies are presented in subsequent
sections.

It is worthwhile noting that some insight could have been gained from calculating the
higher-order moments of differences in turbulent quantities (e.g. the kurtosis of velocity
increments, K�u, (�u = [u(x + r) − u(x)])), as those are the real-space analogues of the

932 A20-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

95
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.951


Intermittency and higher-order spectral moments

S̃, K̃

f (Hz)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N = 32

N = 64

N = 128

N = 256

N = 32

N = 64

N = 128

N = 256

S̃ K̃

Figure 4. Spectral skewness (open symbols) and kurtosis (closed symbols) of Gaussian white noise with
added transients evaluated using window lengths of 32 (◦, • – black), 64 (�, � – blue), 128 (�, � – red),
256 (♦, � – green) samples.
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Figure 5. Longitudinal (u) velocity spectrum (solid black line) and spectral skewness (dashed blue line) at
Rλ = 582. Results are obtained using a window length 625η.
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Figure 6. Longitudinal (u) velocity spectrum (solid black line) and spectral kurtosis (dashed blue line) at
Rλ = 582. Results are obtained using a window length 625η.

spectral moments of equivalent statistical order. However, as noted in § 1, an important
reason for undertaking the present analysis in the spectral domain is that structure
functions (e.g. �u(r)) include contributions from all scales less than or equal to the scale
r (see, for example, Meyer et al. 2018), whereas spectra quantify the contribution only at a
specific scale (κ1 ∼ 1/r).

The first important observation to be made regarding figures 5 and 6 is that both
higher-order spectral moments asymptotically tend to their Gaussian values (S̃ = Γ (5/2)

and K̃ = 2) at large scales (low wavenumbers), thus confirming that little intermittency
is present at the largest scales of the turbulence. Conversely, at high wavenumbers, one
observes a sharp increase in both the spectral skewness and kurtosis, thus highlighting the
highly intermittent behaviour of the turbulent velocity field at dissipative scales. Note that
these observations are consistent with figure 6 of Brun & Pumir (2001) and figure 1(a) of
Chevillard et al. (2005), who observed a plateau at large scales and increased intermittent
activity in the dissipation range using fourth-order spectral moments applied to time
series of velocity fields from numerical and experimental data, respectively. Chevillard
et al. (2005) also calculated the fourth-order spectral moment of an intermittent synthetic
signal, as a proxy for turbulence at high Reynolds number (with no dissipation range),
which yielded a similar plateau. They found that the magnitude of the plateau evolved
as a power law of the width of the windowing function (arguing that longer windows
were associated with larger scales and therefore lower values of the fourth-order spectral
moments). However, our prior analysis demonstrated that longer window lengths are
associated with lower values of the higher-order spectral moments due to consequences
of the central limit theorem.

These preliminary observations clearly demonstrate that both higher-order spectral
moments studied herein are able to detect deviations from Gaussianity and thus internal
intermittency. Moreover, the insight provided by the higher-order spectral moments
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compared with time-domain statistical moments is also readily demonstrated. The
calculation of higher-order moments in short spectral bands allows (i) deviations from
Gaussian behaviour to be located in wavenumber space, and (ii) an evaluation of the
relative magnitude of the deviations from Gaussianity at each scale. The deviation from
Gaussianity extends to the high-wavenumber end of the inertial subrange. This will
be further discussed when short-window results are introduced, as these provide an
even better depiction of inertial subrange intermittency. These features of higher-order
spectral moments will be used to study the internal intermittency of turbulent velocity and
passive-scalar fields in the following subsections.

4.3. Reynolds-number dependence of higher-order spectral moments
Figure 7 depicts the evolution of the spectral skewness and kurtosis of the longitudinal
velocity fluctuations (u), transverse velocity fluctuations (v) and scalar fluctuation (θ ) in
grid-generated turbulence at five different Reynolds numbers in the range 35 ≤ Rλ ≤ 582.
Note that these results were generated using a shorter window length of N = 150η, thereby
highlighting transient behaviour at the smaller-scale end of the inertial subrange and in the
dissipation range. The results depict a very clear dependence on Reynolds number, even
at Rλ < 100 which was previously observed to be the threshold for the hydrodynamic
(inertial-range) intermittency exponent (μ) to depart from zero (Mydlarski & Warhaft
1998). However, Mydlarski & Warhaft (1998) observed the scalar field intermittency
exponent (μθ ) to be non-zero at even the lowest of Reynolds/Péclet numbers. A significant
increase in non-Gaussian behaviour is exhibited by all spectral moments as the Reynolds
number is increased. Note that this increase in magnitude of the spectral moments occurs
at all scales covered by the chosen window length, and applies to all turbulent fields
under study (i.e. u, v and θ ). Moreover, note that the scale at which a strong and rapid
departure from Gaussianity is observed shifts towards larger scales as the Reynolds
number increased.

One can further explore the Reynolds-number dependence of internal intermittency
by investigating the evolution of the magnitude of the higher-order spectral moments
evaluated at a particular length scale. A length scale of interest is the wavenumber at which
the dissipations of turbulent kinetic energy and turbulent scalar variance spectra peak,
which is observed to occur around κ1η = 0.2 for the velocity and scalar fields, although
the exact location of this peak is Reynolds-number dependent (Tennekes & Lumley 1972;
Mydlarski & Warhaft 1996, 1998). The value of the spectral skewness and kurtosis at a
normalised wavenumber of κ1η = 0.2 is plotted in figure 8 as a function of Rλ over the
range 35 ≤ Rλ ≤ 731. Note that the higher-order spectral moments shown in figure 8 were
obtained using the same window length as that used in figure 7 (N = 150η). Although
some scatter is observed, the plots confirm the increase in both the spectral skewness
and spectral kurtosis (and therefore in internal intermittency) at a fixed wavenumber as
Rλ is increased. Moreover, considering each higher-order spectral moment individually,
note that the power law fits are consistent for the longitudinal and transverse velocity and
passive-scalar fields, with S̃(κ1η = 0.2) increasing as R0.1

λ and K̃(κ1η = 0.2) increasing as
R0.3
λ for the spectral kurtosis. The evolution of the spectral skewness and kurtosis is further

explored in figure 9, in which the Reynolds-number dependence of both spectral moments
evaluated at κ1η = 0.8 is investigated. Note that the chosen length scale of κ1η = 0.8 is
believed to offer a good representation of the intermittent behaviour of the flow as the
Kolmogorov length scale is approached (κ1η → 1), while staying sufficiently far away
from the Kolmogorov length scale where errors due to low-pass filter roll-off and probe
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Figure 7. Spectral skewness (a,c,e) and kurtosis (b,d, f ) of the longitudinal velocity fluctuations u (a,b), the
transverse velocity fluctuations v (c,d) and the scalar (temperature) fluctuations θ (e, f ) at Rλ = 35 (∗, blue),
Rλ = 86 (♦, magenta), Rλ = 140 (+, green), Rλ = 306 (◦, black) and Rλ = 582 (�, red). Results are obtained
using a window length N = 150η.
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Figure 8. Reynolds-number dependence of the spectral skewness (a,c,e) and kurtosis (b,d, f ) of the
longitudinal velocity fluctuations u (a,b), the transverse velocity fluctuations v (c,d) and the passive-scalar
(temperature) fluctuations θ (e, f ) evaluated at κ1η = 0.2. The solid black lines represent the best fit power
laws. Results are obtained using a window length N = 150η.
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Figure 9. Reynolds-number dependence of the spectral skewness (a,c,e) and kurtosis (b,d, f ) of the
longitudinal velocity fluctuations u (a,b), the transverse velocity fluctuations v (c,d) and the passive-scalar
(temperature) fluctuations θ (e, f ) evaluated at κ1η = 0.8. The solid black lines represent the best fit power
laws. Results are obtained using a window length N = 150η.
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frequency resolution (especially with cold-wire thermometers) may occur (Kuo & Corrsin
1971). As was the case at κ1η = 0.2, the Reynolds-number dependence of the spectral
skewness and kurtosis at κ1η = 0.8 is consistent with a power law increase, although a
stronger dependence on Reynolds number is observed at this smaller length scale. These
changes in power law exponents with κ1η highlight the wavenumber dependence of the
evolution of the higher-order spectral moments with Rλ.

To place these results in the context of prior studies of internal intermittency, it is
of benefit to compare the present work with prior investigations of the dependence of
internal intermittency on Reynolds number, which was historically investigated using the
kurtosis of derivatives of turbulence quantities (e.g. K∂u/∂x, K∂θ/∂x) as measures of the
degree of intermittency in turbulent flows (see Van Atta & Antonia 1980; Sreenivasan
& Antonia 1997). Studies have shown that K∂u/∂x and K∂θ/∂x are strongly dependent on
Reynolds number, with K∂u/∂x increasing as ∼ R3/8

λ (Van Atta & Antonia 1980), which is
consistent with the observations of the spectral kurtosis evaluated at κ1η = 0.2 (figure 8).
As previously noted, the Reynolds-number dependence of the spectral skewness and
kurtosis was specifically evaluated at κ1η = 0.2 because this normalised wavenumber
(κ1η = 0.2) approximately corresponds to that of the peak of the dissipation spectrum
(Tennekes & Lumley 1972). Given that dissipation spectra can also be interpreted as
the spectra of the derivative, studying the higher-order spectral moments at κ1η = 0.2
evaluates them at the wavenumber at which the derivative has its maximum contribution,
thus explaining the agreement between the observed trends (∼ R0.3

λ ) and those obtained by
examining the Reynolds-number dependencies of K∂u/∂x and K∂θ/∂x (∼ R3/8

λ ). However,
it bears reiterating that the present results have demonstrated that the Reynolds-number
dependence of internal intermittency depends upon wavenumber, as demonstrated by the
scale-by-scale analysis achieved by way of higher-order spectral moments.

In addition to the above results, another approach was also employed in an attempt
to investigate any possible Reynolds-number dependencies associated with the use of a
window length of fixed multiples of η as the Reynolds number changes. To this end, the
data were reanalysed using a window length (N) that evolved with Reynolds number in
such a way the window length was equal to the separation that corresponds to the mid-point
of the inertial subrange for each flow. To determine the required window length for this
approach, we followed the methodology employed in Mydlarski & Warhaft (1996, 1998),
who developed an approach for the calculation of conditional statistics of inertial-range
velocity and scalar increments (e.g. �u(r)) as the Reynolds/Péclet number increased. This
approach is depicted in figure 23 of Mydlarski & Warhaft (1996). These authors chose
a single value of r (denoted as ra in Mydlarski & Warhaft 1996) that corresponded to
the wavenumber κ1 (r = 2π/κ1) that lay half-way between the beginning and end of the
scaling range for each spectrum. Thus as the scaling range dilated with Reynolds number,
ra, remained in the same relative position within the inertial subrange. Using this approach,
the window lengths varied from one case to the next, but always remained in the same
relative position on the spectrum, independent of Reynolds number.

Figure 10 plots the spectral skewness and kurtosis of the u, v and θ fields using this
approach for different Reynolds numbers for window lengths N equal to ra. Although
there are differences in the results when this new methodology is employed to specify the
window widths, the overall (quantitative and qualitative) results and trends in figures 7
and 10 remain quite similar, thus justifying the robustness of the analysis herein and
confirming the relative insensitivity of the effect of window width when the Reynolds
number is varied.
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Figure 10. Spectral skewness (a,c,e) and kurtosis (b,d, f ) of the longitudinal velocity fluctuations u (a,b), the
transverse velocity fluctuations v (c,d) and the scalar (temperature) fluctuations θ (e, f ) at Rλ = 35 (∗, blue),
Rλ = 86 (♦, magenta), Rλ = 140 (+, green), Rλ = 306 (◦, black) and Rλ = 582 (�, red). Results are obtained
using window lengths corresponding to the midpoint of the inertial subrange.
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Figure 11. Spectral skewness of the longitudinal velocity fluctuations u (◦, black), transverse velocity
fluctuations v (�, blue) and scalar (temperature) fluctuations θ (�, red) at (a) Rλ = 85, (b) Rλ = 140,
(c) Rλ = 306 and (d) Rλ = 582. Results are obtained using a window length N = 220η.

4.4. Higher-order spectral moments of turbulent scalar fields
Given the different nature of scalar fields (Pumir et al. 1991; Holzer & Siggia 1994;
Warhaft 2000), it is of particular interest to study the relative levels of intermittency of
both velocity and passive-scalar fields. To this end, a preliminary analysis (not shown)
concluded that a window length of N = 220η captured the signal transients while also
fully capturing frequencies in the dissipation range and most of the inertial–convective
subrange.

Plots of the spectral skewness and kurtosis of u, v and θ are given in figures 11 and
12, respectively. The overall behaviour of all higher-order spectral moments is similar
for all three quantities. More specifically, the curves all show a significant departure
from Gaussian behaviour at small scales, and both the spectral skewness and kurtosis
exhibit a higher degree of internal intermittency in the inertial–convective subrange for
passive-scalar fields (compared with the longitudinal and transverse velocity fields, which
are both very similar in magnitude in the inertial subrange). Note that these results are
consistent with those of Mydlarski & Warhaft (1998), who used the velocity and scalar
intermittency exponent to show that scalar fields were more intermittent in the inertial
subrange and that their level of intermittent activity increased with Reynolds number.
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Figure 12. Spectral kurtosis of the longitudinal velocity fluctuations u (◦, black), transverse velocity
fluctuations v (�, blue) and scalar (temperature) fluctuations θ (�, red) at (a) Rλ = 85, (b) Rλ = 140,
(c) Rλ = 306 and (d) Rλ = 582. Results are obtained using a window length N = 220η.

Moreover, they also showed that the level of inertial range intermittency of passive-scalar
fields remains higher than that of velocity fields at all Reynolds numbers.

The results presented in figures 11 and 12 show that the spectral skewness and
spectral kurtosis of the scalar fluctuations remain at a higher level at small scales (high
wavenumbers) when compared with the longitudinal and transverse velocity statistics for
the two lower Rλ cases shown in figures 11 and 12. However, the spectral skewness and
spectral kurtosis of the longitudinal and transverse velocity fluctuations undergo a rapid
increase in the dissipation range and reach levels similar to that of the passive-scalar
field as κ1η → 1 for the two higher Rλ cases. This suggests that passive-scalar fields
are more intermittent in the inertial–convective subrange and in part of the dissipation
range, but the degree of intermittency of the streamwise and transverse velocity fields
becomes similar to that of the scalar field as the Kolmogorov length scale is approached
at high Reynolds numbers. This is consistent with the remarks made in § 4.3 regarding
the wavenumber dependence of the Reynolds-number evolution of higher-order spectral
moments. The plots of figure 9 showed that dependence of higher-order spectral moments
on Reynolds number was stronger for the velocity field than the passive-scalar field at high
wavenumbers. This is the reason figures 11 and 12 show that the higher-order spectral
moments of both components of the velocity field reach levels similar to those of the
passive-scalar field at high wavenumbers for the two highest Rλ cases.
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5. Summary and conclusions

Higher-order spectral moments have been used to investigate internal intermittency in
grid-generated turbulent velocity and passive scalar fields. In this study, an overview
of the theory behind the third- and fourth-order spectral moments was first presented.
Then, a STFT-based estimator was used to develop an algorithm capable of calculating
higher-order spectral moments. The estimator was validated using Gaussian and
non-Gaussian test signals, and the dependence of the estimator on window length was
investigated. It was demonstrated that higher-order spectral moments can be used to situate
intermittency in wavenumber space and compare the relative levels of intermittency at
different scales. Higher-order spectral moments of turbulent flows were shown to exhibit
repeatable behaviours, asymptotically moving to Gaussian values at large scales and
departing from Gaussian behaviour in the inertial subrange, reaching their maximum
values at the smallest scales of the dissipation range. Additionally, it was demonstrated
that higher-order spectral moments are Reynolds-number dependent. The spectral kurtoses
of the longitudinal and transverse velocity fields at κ1η = 0.2 were found to increase
as K̃uα (κ1η = 0.2) ∼ R0.3

λ over the range of Reynolds numbers studied herein, which is
consistent with the behaviour of the overall kurtosis of velocity derivatives observed by
Van Atta & Antonia (1980). Moreover, the Reynolds-number dependence of the intensity
of internal intermittency was shown to depend on wavenumber by way of the present
approach.

The magnitude and wavenumber dependence of the internal intermittency of
passive-scalar fields was compared with that of velocity fields with the spectral skewness
and kurtosis revealing that the level of intermittency of passive-scalar fluctuations is
higher in the inertial subrange and part of the dissipation range when compared with
those of the longitudinal and transverse velocity fluctuations. However, for the higher
Rλ cases and as κ1η → 1, the levels of intermittency of the longitudinal and transverse
velocity fluctuations were seen to increase and eventually become similar to those of the
passive-scalar field.

The results herein suggest that our knowledge of internal intermittency can be expanded
by way of higher-order spectral moments. In the present work, the latter provided an
insightful means of investigating the Reynolds-number dependence of intermittency and
comparing the intermittent behaviour of velocity and passive-scalar fields. Future work
shall be aimed at comparing the wavenumber dependence and levels of intermittency
between different classes of flows. It is hoped that higher-order spectral moments can be
used to investigate additional turbulence phenomena, such as the evolution of the coherent
structures in wall-bounded flows, or other intermittent phenomena.
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