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We prove a duality between the functional forms of the Faxén formulas associated with
a particle of a given shape and material composition and the corresponding singularity
solutions for the velocity disturbances induced by that particle, and extend it to the case
of systems with coupled transport processes, enabling the solution of a large family of
problems via Faxén methods. Prior approaches to constructing proofs of duality of Faxén
formulas and Stokes-flow singularities relied on knowledge of all boundary conditions
on all particle surfaces, viz. the Lorentz reciprocal theorem approach. We recognized
that, in order to bypass the complexity of boundary conditions one can instead invoke
energy methods that give reciprocity between operators rather than between specific stress
and velocity fields. We derive reciprocal relations between operators, from which we
demonstrate that the Faxén/singularity duality is a consequence of a generalized reciprocal
relation between conjugate thermodynamic variables. We use our reciprocal relations to
derive expressions for the hydrodynamic force on a sphere of arbitrary composition, the
hydrodynamic stresslet exerted on a deformable droplet in an arbitrary velocity field,
the phoretic force exerted on a rigid particle in the thin double-layer limit in response
to arbitrary externally imposed field and the total stresslet on a charged particle in an
arbitrary velocity field, i.e. an electroviscous Faxén law.

Key words: Stokesian dynamics, particle/fluid flow

1. Introduction

Intricate coupling between particles, multi-length scale flow structures and different
types of transport processes make it challenging to obtain solutions of field equations
governing transport processes in colloidal suspensions. For example, computation of the
charge distribution in a flowing suspension requires solution of coupled Stokes, Poisson
and advection–diffusion equations which typically involve many-body interactions. This
issue may be resolved by reciprocal relations that relate particle motion to ambient physical
and chemical fields, allowing one to compute particle motion without solving the full field
equations. The notion of relating particle motion to macroscopic fields has its origin in
the celebrated result of Faxén (1922), who showed that the force and torque on a sphere of
radius a with no-slip boundaries held fixed at point y in an ambient fluid of viscosity η can
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be computed from the action of integro-differential operators on the far-field velocity u∞
i

FH
i = 6πηa

∫
u∞

i (ξ)

(
1 + a2

6
∇2

y

)
δ(ξ − y) dξ , (1.1a)

LH
i = 4πηa3εijk

∫
u∞

k (ξ)
∂

∂yj
δ(ξ − y) dξ , (1.1b)

where FH
i and LH

i are the hydrodynamic force and torque, respectively. Here, ξ is an
integration variable and εijk is the Levi-Civita symbol. Generalization of Faxén’s original
result includes extensions to higher-order traction moments (Batchelor & Green 1972;
Jeffrey, Morris & Brady 1993), to rigid non-spherical particles (Kim 1985) and to
particles of other material compositions such as rigid droplets (Rallison 1978). Extensions
to coupled physical and chemical transport processes have been limited, and include
thermophoresis of rigid spheres (Mohan & Brenner 2005) and droplets (Bafaluy et al.
1995). Derivation of each of these ‘generalized Faxén formulas’ requires a separate
(sometimes lengthy) proof, suggesting the need for a generalized framework.

Here, we present a framework for computing generalized Faxén formulas that can
be broadly applied to any coupled transport processes. Our results allow one to obtain
equations of motion for particles that can be used as the theoretical underpinning
for computational frameworks studying the particle-scale dynamics and properties of
suspensions in which physical and chemical rate processes are coupled.

2. Results

It has been noted that the functional forms of the Faxén formulas are remarkably similar
to the corresponding singularity solutions of the velocity fields around a particle held fixed
in a uniform flow of velocity U∞

i and angular velocity Ω∞
i , where the latter are given by

ui(x) = U∞
i − 6πηaU∞

j

∫
Jji(ξ , x)

(
1 + a2

6
∇2

y

)
δ(ξ − y) dξ , (2.1a)

ui(x) = εijkΩ
∞
j rk − 4πηa3εjk�Ω

∞
�

∫
Jki(ξ , x)

∂

∂yj
δ(ξ − y) dξ . (2.1b)

Here,

Jji(x, y) = 1
8πηa

(
δij

|x − y| + (xi − yi)(xj − yj)

|x − y|3
)

(2.2)

is the Stokeslet, the Green’s function of the Stokes equations for an unbound domain,
which generates the velocity field induced by a point force fi located at y: ui(x) =
Jij(x, y) fj, and δij is the Kronecker delta. This correspondence is not a coincidence. Indeed,
Hinch (1977) noted that the ‘similarity is rooted in the [Lorentz] reciprocal theorem for
Stokes flow’. Later, Kim (1985) provided a proof of this duality for arbitrarily shaped,
rigid particles using the Lorentz reciprocal theorem; another elegant proof, attributed to
Hinch, is given in Kim & Karrila (1991). An extension of this proof to rigid droplets and
to heat conduction in particles of arbitrary thermal conductivity emphasized the role of
internal singularities in two phase flow problems (Kim & Lu 1987). The authors deduced
via these cases that the singularity solution/Faxén operator duality reflects a symmetry
of the Stokes equations arising from the Lorentz reciprocal theorem (Hinch 1977; Kim
1985; Kim & Lu 1987), and they inferred but did not prove a more general duality.
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Faxén formulas for particles of arbitrary shape 910 A22-3

Prior mathematical proofs thus excluded important cases such as porous, core/shell,
deformable and slip-stick particles, and flows with coupled transport processes such as
diffusiophoresis or electrophoresis. A more comprehensive and widely useful formulation
of the Faxén/singularity solution duality requires a general proof amenable to treatment of
both arbitrary particle compositions and coupled transport processes.

Constructing such a proof is the primary purpose of this manuscript. The
Faxén/singularity solution duality can be expressed in the operator notation of Kim (1985)
as a relationship between the Faxén operators for the hydrodynamic force and torque on a
single particle of a given shape and material composition,

FH
i = F y

ji {u∞
j ( y)}, (2.3a)

LH
i = Ly

ji{u∞
j ( y)}, (2.3b)

and the singularity solutions for the velocity field exterior to that same particle held fixed
in a fluid with constant far-field velocity U∞

i and constant rotation rate Ω∞
i :

ui(x) = U∞
i − F y

jk {Jji( y, x)}U∞
k , (2.4a)

ui(x) = εijkΩ
∞
j rk − Ly

jk{Jji( y, x)}Ω∞
k , (2.4b)

where F y
ij and Ly

ij are linear operators and r = x − y is the position of a material point in
the fluid relative to the particle. The superscript y indicates that the operator acts on the
particle coordinate y. Note that, while Kim assumed that the operators act on the unbound
Green’s function, we can readily extend this duality to singularity solutions acting on
arbitrary Green’s functions, including a point-force interior to a sphere (Oseen 1927), near
a planar wall (Blake 1971) or between two walls (Liron & Mochon 1976). This extension
requires some care. The symmetry of the unbound Green’s function Jij(x, y) = Jij( y, x) =
Jji( y, x) allows one to freely exchange the index on which the operators F y

ij and Ly
ij act.

The more limited symmetries of the general Green’s function Jij(x, y) = Jji( y, x) lead to
the requirement that the operators act on the first index of the Green’s function. In support
of this extension, we note that Faxén/singularity solution duality has been verified by direct
computation for no-slip spheres between parallel walls (Swan & Brady 2010) and interior
to spherical cavities (Aponte-Rivera & Zia 2016).

The duality can be understood as a reciprocal relation; in (2.4) the operators F y
ij and Ly

ij
act on the Stokeslet to satisfy the boundary conditions on the particle surface for specified
flows. These same operators act on the u∞

i ( y) in (2.3) to extract moments of the traction
and give the hydrodynamic force and torque that arise from the arbitrary far-field flow. In
this sense, the operators may be understood as generalized resistance tensors that act on
a velocity field to produce the hydrodynamic force and torque. All familiar hydrodynamic
resistance tensors are encoded inside these operators, for instance, F y

ji {U∞
j } = RFU

ij U∞
j .

The benefits this duality holds are twofold: First, the Faxén operators can be obtained
analytically or numerically from the solution of simple boundary value problems, allowing
one to calculate particle motion in arbitrary flow fields by solving for motion of that same
particle in a much simpler flow. Second, the operators F y

ij and Ly
ij can be expressed as

positive semi-definite operators, making them ideal for implementation into simulations.
However, a proof of this duality for general particle types or for suspensions with coupled
transport processes, which is the aim of this work, is currently lacking.

The prior proofs of duality of (2.3) and (2.4) for rigid particles (Kim 1985) and
spherical droplets and heat conduction (Kim & Lu 1987) relied on the Lorentz
reciprocal theorem and thus require detailed knowledge of the boundary conditions on
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910 A22-4 B. E. Dolata and R. N. Zia

all particle surfaces. One could hypothetically construct similar proofs for particles of
other material compositions, e.g. porous, linear–viscoelastic, charged, or drop with mobile
surfactant, but one would need to construct a separate proof in each case, requiring
the development of reciprocal relations for each boundary condition, no small task.
Furthermore, one must construct a different proof for each traction moment, e.g. force,
torque, stresslet. A more general approach, i.e. one that is independent of the particle
boundary conditions, would allow us to bypass this complexity and to prove the operator
duality for particles of arbitrary shape and composition and, as we will show, we could
thence readily extend the methods to coupled transport processes such as diffusiophoresis
(coupled momentum and mass transport) and electrophoresis.

We recognized that this general approach can be found by invoking energy methods
that give reciprocity between operators rather than between fields. We note that the Faxén
operators themselves must encode the boundary conditions because they arise as solutions
to partial differential equations. This suggests that we could construct a proof of the
relationship between Faxén formulas and singularity solutions for particles of arbitrary
composition provided that expressions for the operators appearing in the singularity
solutions are known. We thus seek to obtain an explicit representation of these operators.

We seek a general operator Ay
i that is the sole and sufficient carrier of boundary

conditions on a particle of arbitrary shape and composition that produces velocity field
exterior to a particle held fixed in an arbitrary far-field velocity field u∞

i (x) as

ui(x) = u∞
i (x) − Ay

j {Jji( y, x)}. (2.5)

The operators F y
ij U∞

j and Ly
ijΩ

∞
j are particular examples of Ay

i for specialized far-field
flows. We seek a particular representation of Ay

j that is made valid for all particles
regardless of shape or composition by encoding the boundary conditions on the particle
surface Sp. The boundary integral representation due to Ladyzhenskaya (1969) yields an
expression for the fluid velocity external to the particle

ui(x) = u∞
i (x) −

∫
Sp( y)

[
Jji( y, x)σjknk − Σjki( y, x)uknj

]
dSy, (2.6)

where ni is the outward-facing unit normal of the particle. Notably, the fluid velocity
field is specified entirely by the far-field velocity and an integral operator encoding
how the boundary values of the hydrodynamic stress σjk and the fluid velocity uk on Sp
are propagated via the corresponding Stokes-flow singularities, the Stokeslet Jji and its
conjugate stress field

Σjki(x, y) = − 1
4π

δjk
xi − yi

|x − y|3 + η

(
∂Jji

∂xk
+ ∂Jki

∂xj

)
. (2.7)

In incompressible flows, the double-layer operator, the second term in (2.6), acts only
on the parts of Σjki that can be described with a Stokeslet, thus justifying the functional
forms of (2.3) and (2.4). This can be readily shown from a Taylor series expansion of the
double layer; the pressure singularity in the zeroth-order term of the expansion vanishes
from compressibility, while higher-order derivatives of the pressure singularity can be
expressed in terms of the Stokeslet using the relation η∇2

x ui = ∂p/∂xi. This property
of the double layer arises because pressure serves as a Lagrange multiplier enforcing
incompressibility, and is fully determined by the velocity field to within an additive
constant in all incompressible, Newtonian flows (Beris & Edwards 1994). An alternative
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Faxén formulas for particles of arbitrary shape 910 A22-5

representation would be required if one wished to compute Faxén operators for moments
of the pressure (Jeffrey et al. 1993).

Hence, comparing (2.5) and (2.6) reveals a representation of the operator Ay
i that is

valid for particles of arbitrary shape and composition

Ay
j {Jji( y, x)} =

∫
Sp( y)

[
Jji( y, x)σjknk − Σjki( y, x)uknj

]
dSy. (2.8)

We will use this representation to prove the duality between generalized Faxén formulas
and singularity solutions. The proof that follows applies as written to particles in an
unbound fluid, and to particles confined by external walls or boundaries by replacing Jji
and Σjki with the appropriate Green’s functions.

We will now apply energy methods to this integral representation of Stokes flow in order
to prove the Faxén formula/singularity solution duality. The functional Ay

i {u∞
i ( y)} gives

the increase in the rate of work arising from the presence of the particle in response to the
far-field flow. This can be shown through explicit representation of the action of Ay

i on u∞
i

Ay
i {u∞

i ( y)} =
∫

Sp( y)

(
u∞

i (ξ)σijnj − uiσ
∞
ij (ξ)nj

)
dSξ , (2.9)

where Sp( y) is the particle surface and σ∞
ij is the stress generated by the far-field flow.

Taylor expanding the far-field velocity about the particle centre yields

u∞
i (x) = U∞

i + εijkΩ
∞
j rk + E∞

ij rj + · · · , σ∞
ij = 2ηE∞

ij + · · · , (2.10a,b)

where E∞
ij is the shear rate far from the particle, which upon substitution into (2.9) yields

Ay
i {u∞

i ( y)} = FH
i U∞

i + LH
i Ω∞

j + SH
ij E∞

ij + · · · , (2.11)

which is identically the rate of work required to generate the flow in the presence of the
particles (Batchelor 1970). Here,

SH
ij =

∫
Sp( y)

1
2

(
σiknkrj + σjknkri − 2

3δijσk�nkr�

)
dS − η

∫
Sp( y)

(uinj + ujni) dS (2.12)

is the (irreducible) hydrodynamic stresslet. Note, the rate of work expression does
not truncate at the stresslet, and continues ad infinitum to higher-order force moments
(cf. appendix A of Dolata & Zia 2020). The above working is at the heart of the
singularity/Faxén duality: the operator Ay

i acts on the Stokeslet in (2.9) to produce flow,
and on the far-field velocity in (2.11) to yield the rate of work.

This can readily be used to prove a theorem of (the rate of) virtual work for the operator
Ay

i . The right-hand side of (2.11) can be represented as FᵀU , where F is a generalized
force vector containing every traction moment that acts on the particle surface, and U is a
generalized velocity vector containing all fluid velocity derivatives. The linearity of Stokes
flow dictates that the generalized force can be related to the generalized velocity through
the grand resistance matrix RFU as F = RFUU , giving the right-hand side of (2.11) as
UᵀRFUU . The virtual rate of work done by some arbitrary auxiliary velocity field ũ∞

i
is found by expanding Ay

i {ũ∞
i ( y)} in the same way; we find that the virtual work done

by the actual traction generated by particle motion via the virtual auxiliary velocity field
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910 A22-6 B. E. Dolata and R. N. Zia

is Ay
i {ũ∞

i ( y)} = ŨᵀRFUU . From the symmetry of the grand resistance matrix, we have
ŨᵀRFUU = UᵀRFUŨ , which immediately implies

Ay
i {ũ∞

i ( y)} = Ãy
i {u∞

i ( y)}, (2.13)

where Ãy
i is an auxiliary operator that enforces the boundary conditions on Sp for the

far-field flow ũ∞
i .

Our operator reciprocity broadens prior understanding that the Faxén formula/singularity
solution duality is a consequence of the Lorentz reciprocal theorem. Earlier works proved
that this duality and its connection to the Lorentz reciprocal theorem holds under specific
boundary conditions (Kim 1985; Kim & Lu 1987), but did not generalize beyond those
specific boundary conditions, possibly because each new particle type would require a
completely new proof. Our method bypasses the need to repeat the proof for each particle
type, by working with the singularity operators that encode the boundary conditions,
rather than the specific velocity and stress fields generated by these operators. We thus
provide general proof that the Faxén formula/singularity solution duality is a consequence
of the Lorentz reciprocal theorem, which holds for arbitrary particle composition (rigid,
porous, deformable, micropolar, etc.). Together, the broader understanding and general
proof provides a framework which we will subsequently use to model coupled transport
processes.

We can now prove the relation between Faxén’s formulas and the associated singularity
solutions through appropriate choice of the auxiliary velocity field. For instance, if we set
ũ∞

i = Ũ∞
i in (2.13), then Ãy

i = F y
ij Ũ∞

j as defined by (2.4a), and

FH
i Ũ∞

i = F y
ji {u∞

j ( y)}Ũ∞
i , (2.14)

where the left-hand side follows from (2.11). The far-field velocity is arbitrary and
may be removed using orthogonality arguments, thus proving the duality between the
singularity solution operator and the Faxén operator. This procedure can be repeated
for all higher-order velocity derivatives, proving that the operator duality holds for all
traction moments and for particles of arbitrary shape, surface conditions and composition.
We observe that the proven duality between generalized Faxén relations and singularity
solutions should be understood as restatements of the symmetry of the grand resistance
matrix, which was used to prove (2.13). An extension of this results to a system without
an obvious definition for a grand resistance matrix, namely a deforming droplet, is given
in § 3.2.

In order to extend our proof to coupled transport processes, we are guided by the
Onsager–Casimir reciprocal relations (Onsager 1931a,b; Casimir 1945), which lead to
symmetry relations between thermodynamic fluxes and forces in the entropy production
equation. The linearity of the Newtonian stress tensor in the symmetric part of the
velocity gradient is implied by the Onsager–Casimir relations. The symmetry of the
stress tensor and its linearity in the velocity gradient also lead directly to the Lorentz
reciprocal theorem, and ultimately to the existence and symmetry of the grand resistance
matrix. We may then view the symmetry of the grand resistance matrix, and hence
the operator reciprocal relation given in (2.13), as a corollary of the Onsager–Casimir
reciprocal relations. Following this line of reasoning implies the existence of an extended
Grand Resistance matrix that encodes the virtual work done by imposed macroscopic
fields (velocity, temperature, potential, etc.) on the associated flux (traction, heat flux,
current, etc.) on the particle surface. The important outcome of this approach is that we
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Faxén formulas for particles of arbitrary shape 910 A22-7

can derive reciprocal relations between operators for coupled transport processes, simply
by leveraging the expanded grand resistance matrix.

We can represent general transport processes with a field variable and its gradients
and the associated moments of the flux of a conserved quantity evaluated at the particle
surface. In the case of momentum transport, these quantities are the fluid velocity
field and the corresponding momentum flux, where the latter is characterized by the
fluid stress tensor that in turn produces traction moments on immersed surfaces. More
generally, we can represent momentum flux and other arbitrary transport processes of a
continuous phase such as molecular diffusiophoresis, electrophoresis or thermophoresis
via a generalized state vector Φ that contains the far-field values φ∞ of a field variable φ
(e.g. velocity, chemical potential, electric potential, temperature) and its spatial gradients.
The generalized current or transport flux of the affinity φ and its moments, evaluated at
the particle surface, can be represented by a generalized vector J .

The affinity drives current, a rate of transport, producing work at a rate Ẇ = ±JΦ. The
sign of the rate of work is physically important and depends on the parity of the transport
process under time reversal. For instance, momentum transport is time reversible, and
Ẇ = JΦ with J = F and Φ = U as above. In contradistinction are time irreversible
transport processes where Ẇ = −ΦJ , such as diffusion of solute, where Φ contains the
gradient of the chemical potential and J contains the moments of molar flux. In the linear
regime, the current J is linear in the inducing driving force Φ, where the strength of
the current is set by a generalized resistance matrix RJφ , which is assumed symmetric.
It is shown in appendix A that this assumption holds true provided a generalized Lorentz
reciprocal theorem is satisfied in the particle interior. In the case of coupled physical and
chemical transport processes, fluid motion can induce a generalized current J linear in
the driving flow U as J = RJUU . Likewise, the companion coupled field variable can
induce hydrodynamic forces on particle surfaces expressed as F = RFφΦ. As shown in
appendix A, there is a reciprocity between these coupled fluxes: RJU = ±(RFφ)ᵀ, where
the sign again depends on the parity of the transport processes under time reversal.

In many cases of interest, φ is a harmonic function (i.e. a solution of the Laplace
equation) and the flux is given by −α∂φ/∂xi, where α is a transport coefficient; examples
include diffusiophoresis, where α is a diffusivity, and the thin double-layer limit of
electrokinetic transport phenomena, where α is the ionic conductivity. Treatment of the
case of finite double layers requires a small modification to the proof, and is discussed in
§ 3.4. The value of φ at a material point may be given as

φ(x) = φ∞(x) − C y{G( y, x)}, (2.15)

in analogy with (2.5), where C y is an operator that acts on the Laplace Green’s function

G(x, y) = ∓ 1
4πα|x − y| (2.16)

to satisfy the boundary conditions of φ on Sp, i.e. to produce the potential. We note
that the sign in (2.16) is consistent with the rate of work done. We use the integral
representation of the Laplace equation, often termed Green’s third identity, in a manner
completely analogous to the proof above where we obtained the energy dissipation from
the Ladyzhenskaya (1969) integral representation, to prove that

C y{φ∞( y)} = ±JΦ, (2.17)

in analogy to (2.11). That is, C acts on the imposed potential to do work. A straightforward
generalization of our theorem of virtual work (cf. (2.13)) to coupled physical and chemical
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910 A22-8 B. E. Dolata and R. N. Zia

transport processes is then implied by the symmetry of the generalized grand resistance
matrix

Ay
i {ũ∞

i ( y)} + C y{φ̃∞( y)} = Ãy
i {u∞

i ( y)} + C̃ y{φ∞( y)}. (2.18)

Equation (2.18) is an extension of our generalized theorem of virtual work, and gives a
reciprocal relation between the operator Ay

i that generates flow exterior to a particle and
the operator C y which generates harmonic functions; as will be shown, (2.18) will form
the basis for calculating Faxén relations for systems with coupled physical and chemical
transport processes.

As shown in appendix A, the symmetry relations underpinning (2.18) will hold provided
that the governing equations of the velocity and potential interior to the particle obey a
generalized Lorentz reciprocal theorem

∫
Vp

∂

∂xj

(
uiσ̃ij ± φ j̃j

)
dV =

∫
Vp

∂

∂xj

(
ũiσij ± φ̃jj

)
dV, (2.19)

where the volume integral is taken both the particle interior and the infinitesimally thin
boundary layer between the particle and fluid. The importance of the fields interior to the
particle should not be a surprise; indeed, Kim & Lu (1987) emphasized the importance of
internal singularities in their proof of the Faxén/singularity solution duality for spherical
droplets. The requirements for (2.19) to hold are not severe. For rigid, solid particles and
perfect conductors, this reduces to the standard forms of the Lorentz reciprocal theorem
and Green’s second identity because stresses and currents are localized to the particle
surface. This generalized Lorentz reciprocal theorem holds for many other physical cases
of interest, such as droplets with zero surface tension or with viscous interfacial stresses,
porous particles governing by Brinkman’s or Darcy’s equations, as well as composite
particles constructed from multiple different material. Additionally, it has been proven to
hold for electrokinetic phenomena in Newtonian fluids (Brunet & Ajdari 2004). However,
there exists some problems of great interest for which this generalized Lorentz reciprocal
theorem does not hold, such as, for instance, the case of a droplet with finite surface
tension. This is a minor limitation of the model. One can still derive Faxén laws for
such system by invoking linearity of the governing equation external to the particle to
express the fluid velocity and other coupled processes as the superposition of solutions of
two model problems: one where (2.18) holds and hence a Faxén law exists, and a second
problem encoding degrees of freedom internal to the particle. This idea is explored further
in § 3.2, where Faxén laws for deformable droplets are derived.

3. Example problems

In this section, we employ the general framework derived in the prior sections to
study four example problems. In § 3.1, we derive expressions for Faxén formulas for the
hydrodynamic force on a spherical particle of arbitrary composition. The Faxén law for
the stresslet exerted on a deformable droplet is derived in § 3.2, demonstrating that our
method can be applied to deformable particles. The influence of coupled physical and
chemical transport problems is studied in § 3.3, where we compute a Faxén formula for the
electrophoretic force on a particle of arbitrary shape. Finally, we investigate the influence
of body forces and charges, which have heretofore been neglected, through the canonical
problem of the electroviscous effect in § 3.4.
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3.1. Hydrodynamic drag on spherical particles of arbitrary composition
From symmetry considerations, the Faxén formula for the hydrodynamic drag on spherical
particles of arbitrary shape and composition can be written as

FH
i = 4πηa

3

∫
u∞

i (ξ)
(

f1 + a2f2∇2
y

)
δ(ξ − y) dξ , (3.1)

where f1 and f2 are constants that depend on the boundary conditions at the particle
surface and on the equations of motion internal to the particle, and are directly related
to the coefficients in the singularity solution through the singularity/Faxén duality. This
general formula extends the results of Kim (1985) and Kim & Lu (1987) for rigid particles
and spherical droplets to arbitrary particle compositions, and explains the functional
similarity between singularity solutions and Faxén formulas for solid spheres (Faxén
1922), spherical droplets with infinite surface tension (Rallison 1978), porous spheres
using Darcy’s (Palaniappan 1993) and Brinkman’s (Padmavathi, Amaranath & Nigam
1993) models, double emulsions (Haj-Hariri, Nadim & Borhan 1993), composite particles
consisting of a solid core with a porous covering (Chen & Ye 2000) and, after typological
errors are corrected in their work, spheres with a Navier-slip boundary condition (Sri
Padmavati & Amaranath 2004). A Faxén law of the general form of (3.1) will exist for
all spherical particles that have translation described by a quasi-linear boundary value
problem. This restriction is not severe. One can construct quasi-linear Faxén operators for
particles with elastic stresses or other internal degrees of freedom, which typically involve
nonlinear boundary conditions, by introducing evolution equations for these additional
degrees of freedom. This idea is discussed further in the next section.

3.2. Faxén formulas for deformable droplets
A spherical droplet will deform under an imposed flow due to unequal normal stresses
across its surface. In general, the shape of the deformed particle is a nonlinear function
of the imposed flow, suggesting that, at first glance, there is no grand resistance matrix.
This, however, is not the case. The linearity of the Stokes equations allows us to express
the velocity field exterior to a deforming sphere as the superposition of two flows. The
first is the flow exterior to a droplet with zero surface tension; a droplet with zero surface
tension will have a grand resistance matrix dependent on the instantaneous shape of the
particle at a given moment because the droplet dynamics is reversible and arises only from
the imposed flow. The second flow is the retraction of the droplet towards its equilibrium
shape due to surface tension. This second flow is independent of the far-field flow and
depends only on the shape and material properties of the droplet. We use this partition
of the flow to derive Faxén formulas for the stresslet and degenerate octupole moment
induced on an inviscid droplet, and demonstrate how they may be used to compute the
time evolution of the stresslet under arbitrary imposed flows when supplemented with
kinetic equations for the surface deformations.

The boundary conditions for a droplet of viscosity λη and surface tension γ are given as

ui → u∞
i (x) as r → ∞, ui = ûi on Sp, σijnj = σ̂ijnj + γ ni

∂ni

∂xi
on Sp, (3.2)

where the hat represents the field values interior to the droplet. The linearity of the Stokes
equations allows us to re-express the flow as the superposition of two flows: the flow
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around a zero surface tension droplet under an imposed far-field flow

ui → u∞
i (x) as r → ∞, ui = ûi on Sp, σijnj = σ̂ijnj, (3.3)

and droplet retraction due to surface tension

ui → 0 as r → ∞, ui = ûi on Sp, σijnj = σ̂ijnj + γ ni
∂ni

∂xi
on Sp. (3.4)

This decomposition has previously been employed to study the deformation of droplets
under shear flow (Yu & Bousmina 2003). We may therefore express the total solution to
flow around a droplet as

ui(x) = u∞
i (x) − Ay,flow

j {Jji( y, x)} − Ay,ST
j {Jji( y, x)}. (3.5)

The operator Ay,flow
j encodes the flow induced by the presence of a zero surface tension

droplet in the far-field flow and satisfies (3.3); it is dependent on both the instantaneous
shape of the deformed droplet and the imposed flow, and encodes the grand resistance
matrix for a droplet of a given shape with no surface tension. The operator Ay,ST

j encodes
the droplet retraction due to surface tension and satisfies (3.4). This operator depends only
on the instantaneous shape and material properties of the droplet, and is independent of
the flow.

We can now obtain expressions for the Faxén formula for the stresslet on a deforming
droplet using these operators. Recall from (2.11) that Ay

j {E∞
ji ri} = SH

ij E∞
ji . Let Ay,flow

k =
E∞

ij E y
kij be the operator that encodes the flow around a zero surface tension droplet with the

far-field velocity u∞
i = E∞

ij rj. It follows from the Faxén/singularity solution duality that

SH
ij = E y

kij{u∞
k ( y)} + Δ

(2,2)

ijk� Ay,ST
k {r�}, (3.6)

where Δ
(2,2)

ijk� = 1
2δikδj� + 1

2δi�δjk − 1
3δijδk� projects a second-rank tensor into fully

symmetric and traceless form. The first term in (3.6) is the Faxén formula for the stresslet
on a droplet with zero surface tension and the second term is the additional stresslet arising
from surface-tension-induced deformation of the droplet.

These expressions are exact for droplets of arbitrary shape, viscosity and surface tension.
Their key utility is revealed in flows for which the droplet shape has an analytical
description. In the large deformation limit, this is typically done by employing area
(Wetzel & Tucker 1999) or volume (Wetzel & Tucker 2001; Jackson & Tucker 2003; Yu &
Bousmina 2003) tensors. Here, we will instead examine the small deformation regime. For
small deformations, the droplet shape can be expanded in spherical harmonics (Frankel
& Acrivos 1970). To linear order, only the second-degree spherical harmonic, which we
describe with a symmetric, traceless tensor Fij, contributes to the stresslet, meaning the
droplet shape is described by the shape function

f (r) = a
(

1 + rirj

r2
Fij

)
− r, (3.7)

which vanishes on the droplet surface. Consistency requires that Fij is asymptotically small,
so that droplet shape can be evaluated as a sphere to linear order.
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From Frankel & Acrivos (1970), the operator encoding surface retraction is given as

Ay,ST
j {Jji( y, x)}

= 8πηa3

3
4γ

ηa(2λ+ 3)
Fjk

∫
Jji(ξ , x)

(
1 + a2(3λ+ 2)

2(19λ+ 16)
∇2

y

)
∂

∂yk
δ(ξ − y) dξ . (3.8)

Substituting (3.8) into (3.6) yields the Faxén law for a slightly deformed viscous droplet

SH
ij = E y

kij{u∞
k ( y)} + 8πηa3

3
4γ

ηa(2λ+ 3)
Fij, (3.9)

where E y
kij is yet to be determined. The Faxén law for the stresslet can be combined with

the kinematic condition

niui = 1
|∇f |

df (r)
dt

, (3.10)

to obtain an expression for the temporal evolution for the stresslet.
The kinematic condition (3.10) reveals that the deformation of the droplet is given by the

flow normal to its surface. The flow arising from surface tension is given by (3.8), while
the flow arising from the deformation induced by the (arbitrary) far-field flow is given by
the multipole expansion

ui = u∞
i (x) −

∫
Jji(ξ , x)

(
SH,flow

jk + OH,flow
jk ∇2

y

) ∂

∂yk
δ(ξ − y) dξ + · · · . (3.11)

Here, OH,flow
ij is the degenerate octupole moment arising from the imposed flow; symmetry

considerations indicate that other force moments (force, torque, quadrupole moments) will
not contribute to the evolution of Fij. Substituting (3.8) and (3.11) into (3.10) yields an
equation for the droplet deformation rate

rinj
dFij

dt
=
(

− 40γ (λ+ 1)

η(2λ+ 3)(19λ+ 16)
Fij − 3

8πηa2
SH,flow

ij + 9
4πηa4

SH,flow
ij

)
ninj + niv

∞
i .

(3.12)
Multiplying by nkn� and integrating over the surface of the sphere gives a differential
equation for the droplet shape

dFij

dt
= − 40γ (λ+ 1)

aη(2λ+ 3)(19λ+ 16)
Fij − 3

8πηa3
SH,flow

ij + 9
4πηa5

OH,flow
ij +

(
1 + a2

14
∇2

)
E∞

ij ,

(3.13)
where E∞

ij and ∇2E∞
ij are evaluated at the centre of the sphere. All that remains is

to derive expressions for the flow-induced stresslet and octupole moment. The Faxén
operator for the stresslet can be obtained from the known solution of the velocity field
around a spherical droplet with no surface tension embedded in a constant shear rate field
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(Taylor 1934)

E y
kij{u∞

k ( y)} = 8πηa3

3
5λ− 5
2λ+ 3

Δ
(2,2)

ijk�

∫
u∞

k (ξ)

(
1 + a2

10
∇2

y

)
∂

∂y�

δ(ξ − y) dξ . (3.14)

The Faxén operator for the octupole moment is found from the solution solution of a zero
surface tension droplet in a flow where the Laplacian of the far-field shear rate is constant

O y
kij{u∞

k ( y)} = 4πηa3

3
λ− 1

2λ+ 3
Δ

(2,2)

ijk�

∫
u∞

k (ξ)

(
1 + 5a2

42
19λ+ 18
19λ+ 16

∇2
y

)
∂

∂y�

δ(ξ − y) dξ .

(3.15)
These Faxén operators, together with the evolution equation (3.9) and (3.13), yield
equations allowing for the computation of the stresslet on a deformable droplet in the
linear response regime. Our result is valid for all transient flows, provided the deformation
is small. In the steady state limit, Fij can be computed from (3.13), which upon insertion
into (3.9), yields

SH
ij = 8πηa3

3
5λ+ 2
2λ+ 2

Δ
(2,2)

ijk�

∫
u∞

k (ξ)

(
1 + a2λ

10λ+ 4
∇2

y

)
∂

∂y�

δ(ξ − y) dξ , (3.16)

which recovers the known result for a spherical droplet (Rallison 1978).
We have derived a Faxén formula for the stresslet exerted on a deformable droplet in

the linear response regime. This result can readily be extended to higher-order terms in
the deformation using well-known mathematical methods for computing flows around
slightly deformed droplets (Frankel & Acrivos 1970). It would also be straightforward to
extend these results to other constitutive equations for droplet interfaces, such as the elastic
interfaces that arise in elastic capsules (Barthès-Biesel & Rallison 1981), or interfaces with
Marangoni stresses arising from mobile surfactants (Danov 2001). Finally, these results
can be extended to large deformations, provided one can identify an appropriate shape
parameterization.

3.3. Electrophoretic force on a rigid particle of arbitrary shape
We will use the reciprocal relation (2.18) to obtain expressions for hydrodynamic traction
moments induced on a particle held fixed in the presence of an imposed potential field
φ∞. For ease of discussion, we choose the generic potential φ to represent the electric
potential arising from the presence of dissolved ions. However, the results are general
for any analogous transport process. Computation of the Faxén formulas for the phoretic
force and torque, that is, the hydrodynamic forces and torques induced on a particle by an
arbitrary far-field potential φ∞, requires the selection of the appropriate auxiliary problem.
Force and translational velocity are conjugate variables, which suggests that the phoretic
force can be computed from the streaming potential problem for a charged particle. In
this problem, a particle is held fixed in a uniform velocity field U∞

i in the absence of any
far-field potential (φ∞ = 0), distorting the velocity field. At the same time, shearing flows
normal to the double layer (i.e. normal stresses) induce a current within the double layer,
and hence generate an electric field. Conservation of charge within the double layer leads
to a relationship between the stresses and ionic current normal to the double layer (Bike
& Prieve 1992), requiring the addition of the electric potential φ to our set of singularity
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solutions

ui(x) = U∞
i − F y

jk {Jji( y, x)}U∞
k , (3.17a)

p(x) = −F y
ij {Pi( y, x)}U∞

j , (3.17b)

φ(x) = −S y
i {G( y, x)}U∞

i . (3.17c)

Here, the operator acting on the pressure is the same as that on the fluid velocity, since
both arise as solution to the same linear equation, and the operator S y

i yields the streaming
potential induced by fluid motion. Note that we have also included the fluid pressure
p in our set of singularity solutions. In incompressible flows, the pressure contains no
additional information that is not already expressed by the velocity field; the pressure
is simply a Lagrange multiplier that enforces compressibility. All information about the
flow is encoded in the operator F y

ij , which generates both the velocity and pressure field.
Thus, the inclusion of the pressure is not a matter of physical necessity. Indeed, one could
use the relationship η∇2

x ui = ∂p/∂xi to re-express everything that follows in terms of the
Stokeslet. Rather, we include the pressure in order to simplify our derivations by leveraging
the relationship between the unbound pressure Green’s function Pi and (2.16), the Green’s
function for the potential

Pi( y, x) = −α
∂G( y, x)

∂yi
. (3.18)

The apparent sign inconsistency of (3.18) with (2.16) arises because it is the electric field
Ei = −∂φ/∂xi that should appear in the virtual work production expression, rather than
the potential itself.

We substitute the auxiliary problem (3.17) into the right-hand side of (2.18) by setting
Ãy

i = F y
ij Ũ∞

j and C̃ y = S y
i Ũ∞

i , which yields

FH
i Ũ∞

i = F y
ji {u∞

j ( y)}Ũ∞
i + S y

i {φ∞( y)}Ũ∞
i , (3.19)

where the left-hand side again follows from the virtual work done by the imposed
fields and the electrostatic work is zero by prescription of no imposed far-field potential.
Equation (3.19) is a general Faxén formula for the hydrodynamic force on the surface of
a particle held fixed in an imposed arbitrary flow field and arbitrary far-field potential.
The first term on right-hand side of (3.19) is the generalized Faxén formula for the
hydrodynamic force induced by a far-field velocity, and the second term reveals that the
operator S y

i that acts on the far-field potential to give the phoretic force is identical to that
which acts on the Laplace Green’s function to give the potential field. Equivalent Faxén
operators for higher-order phoretic traction moments are found by choosing the appropriate
far-field velocity. We have thus extended the Faxén formula/singularity solution duality to
coupled chemical and physical transport processes.

In general, obtaining specific expressions for the phoretic Faxén S y
i in (3.19) for a

specific particle type (e.g. of a certain shape, composition and surface charge) requires
solution of the relevant boundary value problem. Here, we will give explicit expressions
for one such problem, namely, the phoretic (electro-hydrodynamic) force arising on the
surface of a particle with a thin ionic double layer. For rigid particles with thin double
layers, fluid velocity is unchanged by the presence of the ions, but the pressure gradient
induces a current, coupling the pressure and the potential at the boundary. The resultant
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surface boundary condition is (Bike & Prieve 1992)

αni
∂φ

∂xi
= μni

∂p
∂xi

on Sp, (3.20)

where μ is the electrophoretic mobility. Substituting (3.17b) and (3.17c) into (3.20) and
relating the pressure and potential Green’s functions through (3.18) yields the operator
sought

S y
i = −F y

ji
∂

∂yj
. (3.21)

Extending this result to the torque by imposing a far-field rotation as in (2.4b), we
immediately obtain the phoretic force and torque from our proven duality

Fphor
i = −μF y

ji

{
∂φ∞( y)

∂yj

}
, Lphor

i = −μLy
ji

{
∂φ∞( y)

∂yj

}
. (3.22a,b)

We thus find that the Faxén operators for the force induced by the far-field velocity and the
far-field potential are identical in the thin double-layer limit; the solution of Morrison Jr.
(1970) for electrophoretic motion of an arbitrarily shaped particle indicates that a similar
duality exists between the first moment of the ionic current induced by a far-field flow and
a far-field potential. Our specific result (2.24) recovers the known result that in the thin
double-layer limit, all particles acted on by a linear potential φ∞ = −g∞

i yj obtain the same
phoretic velocity Ui = μg∞

i and zero rotational velocity (Ωi = 0) regardless of shape or
size (Smoluchowski 1903; Morrison Jr. 1970). Particle velocities can be obtained using
our expressions for phoretic traction moments from the following overdamped equations
of motion:(

FH
i

LH
i

)
= −

(
RFU

ij RLU
ji

RLU
ij RΩL

ij

)(
Uj

Ωj

)
+
⎛
⎝F y

ji −μF y
ji

∂

∂yj

Ly
ji −μLy

ji
∂

∂yj

⎞
⎠(u∞

j ( y)

φ∞( y)

)
=
(

0

0

)
, (3.23)

where Ui and Ωi are the translational and rotational velocities of the particle, respectively,
and RFU

ij , RLU
ij and RLΩ

ij are resistance tensors. Setting φ∞ = −g∞
i yj, and solving yields

Ui = μg∞
i and Ωi = 0 in agreement with Smoluchowski and Morrison Jr.

3.4. Fluids acted on by body forces
In the prior sections, we have restricted ourselves to flows with no body forces or charges.
This is in general a good approximation in Stokes flow, but can fail in systems with
coupled physical and chemical transport processes. For instance, charged ions can exert
an electrostatic force on the fluid and dissolved molecules can induce an osmotic force on
the fluid during diffusiophoresis. Our proof can readily be extended to a fluid acted on by
a body force fi with two small changes. First, the integral representation in (2.8) must be
modified by the addition of a body force term

Ay
j {Jji( y, x)} =

∫
Sp( y)

[
Jji( y, x)σjknk − Σjki( y, x)uknj

]
dSy −

∫
V /∈Vp( y)

fjJji{( y, x)} dV,

(3.24)
where the volume integral is taken external to the sphere. Second, the generalized Lorentz
reciprocal theorem given in (2.19) must be extended to the region of fluid that contains
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body forces. With these modifications, one then finds that

Ay
i {u∞

i ( y)} = FiU∞
i + LiΩ

∞
j + SijE

∞
ij + · · · , (3.25)

where the force moments now are the total force exerted on the particle, i.e. the sum
of viscous and body forces. The singularity solution/Faxén formula duality then holds
provided the existence of a grand resistance matrix. In electrophoresis, this requires that
the Péclet number is small, so that the distribution of ions is only slightly perturbed by
the flow (Brunet & Ajdari 2004). All of the dualities discussed prior (force/translation,
torque/rotation, stresslet/strain, etc.) will then hold for fluids acted on by a body force.

In general, obtaining singularity solutions for a fluid acted on by a body force is a
challenging task due to the presence of the body force integral. However, if the body
force is localized near the particle so that limr→∞ rnfi(r) = 0 for all n > 0, the body force
integral can be Taylor expanded and it is sufficient to consider the asymptotic form of the
singularity solution far from the particle. This follows from the fact that the hydrodynamic
stresslet evaluated on a far-field surface is identical to the total stresslet evaluated in the
vicinity of the particle (Ohshima 2006).

We will use this extension of our method to compute the Faxén law for the stresslet
induced on a charged droplet of viscosity λη immersed in an electrolyte containing N
ionic species. Recall that the singularity operator for the flow around a particle generates
the Faxén law for the stresslet. Ohshima (2006) gave an analytical solution for the velocity
field around a charged sphere in a straining flow, from which we immediately obtain the
Faxén law for the stresslet on a charged droplet

Sij = 8πηa3

3
Δ

(2,2)

ijk�

∫
u∞

k (ξ)

(
s2 + a2s2

2
∇2

y

)
∂

∂y�

δ(ξ − y) dξ (3.26)

where

s1 = 5λ+ 2
2λ+ 2

+
∫ ∞

a

(
3λa2

20λ+ 20
− (5λ+ 2)x2

20λ+ 20
+ x5

10a3

)
G(x) dx, (3.27a)

s2 = λ

2λ+ 2
+
∫ ∞

a

(
(5λ− 2)a2

140λ+ 140
− λx2

20λ+ 20
+ x7

70a5

)
G(x) dx, (3.27b)

and

G(r) = − 2e
ηr2

dy

dr

N∑
i=1

Z2
i n∞

i exp(−Zi y)gi(r), y = eφ(0)

kT
. (3.28a,b)

Here, e is the charge of an electron, Zi and n∞
i are the valency and unperturbed number

density of species i, φ(0) is the electrostatic potential at thermodynamic equilibrium and k
is Boltzmann’s constant. The function gi(r) encodes how the electrochemical potential of
species i distorted by the flow

μi = −Zie
gi(r)

r2
r · E∞ · r (no summation on i), (3.29)

and is obtained from numerical solution of the ion transport equations. This Faxén law
recovers the calculation of the electroviscous effect for droplets given by Ohshima (2006)
in the limit of constant shear rate, and reduces to the Faxén formula for the viscous droplet
(Rallison 1978) in the limit where the electroviscous terms vanish.
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4. Conclusions

In this work, we have proven a duality relating Faxén formulas to singularity solutions
and extended the results to the case of coupled physical and chemical transport processes.
The utility of our proof is twofold. First, it shows that the Faxén formula for a given
problem can be inferred directly from the singularity solution for the associated boundary
value problem; and second, it explains that the Faxén/singularity solution duality is a
consequence of a generalized Lorentz reciprocal relation interior to the particle. We
demonstrated the utility of the expanded method by deriving Faxén formulas for the
phoretic force and torque exerted on a particle in the thin double-layer limit, which
recovered prior derivations in the limit of a constant far-field gradient. Our proof,
constructed from the integral representation of the Stokes and Laplace equations to
generate reciprocal relations between operators, can readily be extended to any other
governing equation for which an appropriate integral representation can be identified.

Moving forward, the proofs developed in this work provide a natural framework for
the extension of existing simulation methods. The integral representation of the Faxén
formulas could be used to derive generalized Rotne–Prager tensors for coupled transport
processes following the method of Wajnryb et al. (2013). Furthermore, our results could be
used to incorporating hydrodynamic interactions into the Laplacian dynamics (Bonnecaze
& Brady 1990; Yan & Brady 2016) framework. One could imagine using (3.23) and
similar equations derived for other boundary conditions to serve as a theoretical basis
for extending dynamic simulations to systems involving couplings between momentum
and mass, charge or heat transport.

The generality of our method also allows immediate application to heterogeneous
media. The expressions obtained from our framework are valid for arbitrary external
fields, allowing one to derive expressions for forces arising from statistically non-uniform
fields. For instance, one can imagine computing the stresslet induced by non-uniform
electric fields. Interestingly, (2.8) implies that the pressure gradient can induce forces,
torques, stresslets etc. for particles on which the double-layer operator does not vanish,
which suggests that the pressure gradient may play a role in the dynamics of suspensions
of deformable or porous particles, the latter of which permits a particularly simple
representation of the singularity operators (Masoud, Stone & Shelley 2013). Such
dynamics, if it exists, could be studied by using the results of this paper to compute traction
moments arising from the pressure gradient, and the method of Dolata & Zia (2020) to
compute the suspension stress.
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Appendix A.

Here, we derive the necessary and sufficient conditions required for the symmetry of
the generalized grand resistance matrix. Consider the integral∫

S∞

(
uiσ̃ijnj ± φ j̃ini

)
dS −

∫
S∞

(
ũiσijnj ± φ̃jini

)
dS, (A 1)
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over the surface S∞ located far from the particle. A straightforward working reveals that
this quantity is equivalent to

(F̃ᵀU ± J̃ ᵀΦ) − (FᵀŨ ± J ᵀΦ̃), (A 2)

where we have used the facts that the fluxes F and J evaluated at S∞ are identical to those
evaluated at Sp due to the conservation laws, and that the singularity operators produce
fields that decay as 1/r or faster. Application of the divergence theorem to (A 1) gives

−
∫

Vp

∂

∂xj

(
uiσ̃ij ± φ j̃j

)
dV +

∫
Vp

∂

∂xj

(
ũiσij ± φ̃jj

)
dV, (A 3)

where the volume integrals are taken over the particle interior. In deriving (A 3) we assume
that the field variables are continuous across the particle surface. As discussed by Nadim
(1996), this assumption does not cause a loss of generality because jump conditions can
be interpreted as volumetric forces present in a infinitesimally thin surface layer between
the particle and fluid. If this volume integral vanishes, equating (A 3) with (A 2) yields the
relation

F̃ᵀU + ±J̃ ᵀΦ = FᵀŨ + ±J ᵀΦ̃, (A 4)

from which the symmetry of the generalized grand resistance matrix readily follows.
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