
J. Fluid Mech. (2021), vol. 929, A2, doi:10.1017/jfm.2021.813

Symmetry breaking of turbulent flow in porous
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The focus of this paper is a numerical simulation study of the flow dynamics in a
periodic porous medium to analyse the physics of a symmetry-breaking phenomenon,
which causes a deviation in the direction of the macroscale flow from that of the applied
pressure gradient. The phenomenon is prominent in the range of porosity from 0.43 to
0.72 for circular solid obstacles. It is the result of the flow instabilities formed when
the surface forces on the solid obstacles compete with the inertial force of the fluid flow
in the turbulent regime. We report the origin and mechanism of the symmetry-breaking
phenomenon in periodic porous media. Large-eddy simulation (LES) is used to simulate
turbulent flow in a homogeneous porous medium consisting of a periodic, square lattice
arrangement of cylindrical solid obstacles. Direct numerical simulation is used to simulate
the transient stages during symmetry breakdown and also to validate the LES method.
Quantitative and qualitative observations are made from the following approaches:
(1) macroscale momentum budget and (2) two- and three-dimensional flow visualization.
The phenomenon draws its roots from the amplification of a flow instability that emerges
from the vortex shedding process. The symmetry-breaking phenomenon is a pitchfork
bifurcation that can exhibit multiple modes depending on the local vortex shedding
process. The phenomenon is observed to be sensitive to the porosity, solid obstacle shape
and Reynolds number. It is a source of macroscale turbulence anisotropy in porous media
for symmetric solid-obstacle geometries. In the macroscale, the principal axis of the
Reynolds stress tensor is not aligned with any of the geometric axes of symmetry, nor
with the direction of flow. Thus, symmetry breaking in porous media involves unresolved
flow physics that should be taken into consideration while modelling flow inhomogeneity
in the macroscale.
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1. Introduction

1.1. Background
Microscale turbulence in porous media possesses dual character with features of both
classical internal and external turbulent flows. Unique flow phenomena are anticipated
when the two features interact inside a porous medium. In this paper, we analyse a
symmetry-breaking phenomenon in the turbulent flow field that results in both micro-
and macroscale flow deviation. We define symmetry breaking as the deviation of the
resultant flow field in a symmetrically posed problem. Therefore, the geometry and the
flow conditions must share symmetric axes. The flow deviation originates in the microscale
flow field, specifically the solid-obstacle surface forces, before it is transferred to the
macroscale. In this work, the microscale is defined as the range of length scales that are
smaller than the pore size (consistent with Nield (2002)). Using the volume average theory
(VAT) (Slattery 1967), we reduce the dimension of the microscale flow properties to obtain
macroscale flow variables. We present the origin and mechanism of symmetry breaking
using numerical simulation data.

Previous research in porous media has aimed to provide a universal description
of the flow for model development. Early attempts employed Reynolds averaging to
further reduce the order of macroscale turbulence models. For a detailed account of the
development of macroscale turbulence models in porous media, see de Lemos (2012),
Lage, de Lemos & Nield (2007), Vafai (2015) and Vafai et al. (2009). These models
enabled the study of transport processes in physical systems as applied to canopy flows,
pebble-bed nuclear reactors, heat exchangers, porous chemical reactors and crude oil
extraction, to name a few applications (Jiang et al. 2001; Mujeebu, Mohamad & Abdullah
2014; Wood, He & Apte 2020). However, there are a lot of unanswered questions about
the flow physics of turbulence in porous media.

Initial attempts to study the microscale flow in porous media used Reynolds-averaged
Navier–Stokes (RANS) simulations (Kuwahara & Nakayama 1998; Pedras & de Lemos
2003; Kundu, Kumar & Mishra 2014). However, the information that is extracted from
microscale RANS simulations is limited by the modelling error (Iacovides, Launder &
West 2014). To overcome this, the large-eddy simulation (LES) approach was used to study
the microscale flow physics and develop LES–VAT models (Jouybari & Lundström 2019;
Wood et al. 2020). Microscale LES has also been used to determine turbulence statistics
for model closure (Kuwahara, Yamane & Nakayama 2006; Kuwata & Suga 2015; Suga
2016). The use of LES is a leap forward in revealing the transport of large-scale turbulence
(Zenklusen, Kenjereš & von Rohr 2014).

There are two key observations about turbulence in porous media that are relevant to this
work. The first is the proposition of the pore-scale prevalence hypothesis (Jin et al. 2015;
Uth et al. 2016), which introduced the notion of a pore-scale turbulence mixing layer (Jin
& Kuznetsov 2017). Spatiotemporal scale suppression was also confirmed by the direct
numerical simulation (DNS) studies of He et al. (2018, 2019). The second is the contrast
in turbulence anisotropy properties between the micro- and macroscale introduced by the
volume average operation (Chu et al. 2019). It is also noted that the turbulence anisotropy
in the bulk of the flow diminishes with an increase in the Reynolds number. This finding
is consistent across DNS studies (Chu, Weigand & Vaikuntanathan 2018; He et al. 2019)
and particle image velocimetry measurements for packed beds (Patil & Liburdy 2015;
Khayamyan et al. 2017; Nguyen et al. 2019).

Turbulent flow statistics in porous media have been extensively studied by researchers,
but there is a lack of understanding about the dynamics of turbulent structures, particularly
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microscale vortices. From the pore-scale prevalence hypothesis, microscale vortices
(microvortices) are the source of large-scale turbulent structures in porous media. They
cause microscale flow-field inhomogeneity (Linsong et al. 2018) and are responsible for
the strong geometry dependence that has been observed in porous media flows (Vafai &
Kim 1995). Both attached and detached vortex systems are observed in porous media flows.
In the turbulent flow regime in porous media, the von Kármán instability is observed in
the detached vortex system that is formed behind solid obstacles (Kuwahara et al. 2006).
Descriptions of von Kármán vortex shedding for the flow around a single cylinder, its
origin and manifestation can be found in von Kármán (1911), Boghosian & Cassel (2016)
and Durgin & Karlsson (1971). Unlike in a classical flow around a cylinder, a von Kármán
vortex street cannot be formed in porous media (see § 3.1.2). The von Kármán instability
acts in a confined space and has significant repercussions for the flow in porous media.

Several instances of vortex-induced flow instabilities and bifurcations have been
reported in porous media. Yang & Wang (2000) reported a bifurcation that occurs at the
pore scale in periodic porous media that also affects the macroscale flow field. It results
in the possibility of either a symmetric or an asymmetric vortex rotation in the microscale
beyond a critical value of inlet velocity. A Hopf bifurcation is also observed to occur in
porous media (Zhang 2008; Agnaou, Lasseux & Ahmadi 2016). Beyond a critical value of
Reynolds number, the flow in a porous medium begins to oscillate due to the unsteadiness
that is present in the vortex system. Spectral analysis of the transverse velocity has revealed
that the unsteady flow is characterized by distinct frequencies at lower Reynolds numbers,
with a greater degree of disorder (more frequencies) appearing as the Reynolds number
increases. A detailed description of the origin and the mechanism of these phenomena has
not yet been reported.

The present work focuses on a symmetry-breaking bifurcation phenomenon, which
causes macroscale flow to deviate from the principal axes of symmetry (referred to
hereafter as deviatory flow). The phenomenon was first observed by Iacovides et al. (2013,
2014) and West, Launder & Iacovides (2014) in the context of cross-flow in in-line circular
tube bank heat exchangers. The deviation from symmetry is said to increase when the tubes
are placed closer together. The deviation is attributed to the flow’s tendency to follow
the path of least resistance. The phenomenon was further examined by Abed & Afgan
(2017) who also made use of in-line circular tube banks. Asymmetry in the location of
the ‘separation shear layer’ and the blockage influence of downstream tubes are believed
to characterize this phenomenon. However, the origin of this phenomenon and the details
of its occurrence remain unknown. It is important to understand the mechanics of this
phenomenon due to the abundance of porous media with low porosity utilized throughout
various applications (Nield & Bejan 2017).

In this paper, the dynamic flow development from symmetry to symmetry breakdown
is investigated. It is shown in § 3.1.1 that symmetry breaking is effected through the
amplification of a microscale imbalance in the pressure distribution that arises from the
von Kármán instability. Several geometric criteria determine the occurrence of symmetry
breaking, which are explored in § 3.2, but the parameters that control it are limited to the
momentum supply and the magnitude of confinement. The phenomenon suggests a strong
dependence of the macroscale field variables on the interaction between the microvortices.
In practice, macroscale amplification of microscale instability provides a platform for
enhanced fluid mixing in porous media and a source for macroscale instabilities that are
larger than the pore scale.

Modelling symmetry breaking in the turbulent flow regime in flows with low porosity
requires an understanding of the underlying flow physics since the phenomenon is strongly
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dependent on geometry and boundary conditions. The mechanism by which the microscale
events are transferred to the macroscale variables, which would result in macroscale
symmetry breaking, is dependent on a range of parameters, some of which are identified
in § 3.2. To elucidate the interplay between microscale and macroscale variables, a
comprehensive momentum budget is also presented.

1.2. An overview of the regimes of turbulent flow in porous media
The microscale flow patterns in a porous medium are determined by the geometry. This is
supported by evidence from the present work, and also Chu et al. (2018), Iacovides et al.
(2014), Suga, Chikasue & Kuwata (2017) and Uth et al. (2016). In § 3.2, we show that
the porosity of the porous medium is one of the fundamental parameters that influences
the symmetry-breaking phenomenon. The macroscale flow characteristics are strongly
influenced by the porosity as a result of the change in the microscale flow field. In
this section, we summarize the influence of porosity on the microscale flow patterns for
circular-cylinder solid obstacles.

The porosity (ϕ) changes the volume of fluid in a porous medium, which explicitly
influences the macroscale flow. For porous media with circular-cylinder solid obstacles,
we mark ϕ = 0.8 as the boundary between high and low porosity. At low porosity (ϕ < 0.8
in this work), there is a strong interaction between the flow around adjacent solid obstacles.
Here, the term interaction refers to the impingement of microvortices on the neighbouring
solid obstacles and the influence of the solid obstacle surface forces. Both streamwise and
transverse flow interactions are observed. The symmetry-breaking phenomenon reported
in this paper occurs at low values of porosity where the properties of the flow enable the
amplification of flow instabilities. At high porosity, the flow behind a solid obstacle has
a weaker interaction with the neighbouring solid obstacles in the porous medium when
compared to the flow in low porosity. The interaction can be strong in the streamwise
direction, but it is virtually non-existent in the transverse direction.

The distinct regions of primary flow and secondary (vortex) flow that are observed
(see figure 1a) will change with the porosity. At high values of porosity (ϕ > 0.8), the
core diameter of the microvortices scales with the diameter of the solid obstacle. At low
values of porosity (ϕ < 0.8), the core diameter of the microvortices is limited by the size
of the void space, leading to smaller microvortices than at high porosity. The change in
the length scale of the largest flow structures with the porosity is more severe in the case
of symmetry breaking. It will influence the turbulence transport process in porous media
flows.

2. Computational details

2.1. Simulation conditions
The geometry of a porous medium is often intricate with significant spatial variation that
can potentially alter the flow within. In this work, the porous medium is abstracted into
a homogeneous generic porous matrix (GPM) that consists of solid obstacles populated
in a simple square lattice. The diameter of the solid obstacle (d) and the pore size (s)
are used to define the GPM. Setting aside the reduction in computational cost, the use of
a homogeneous GPM facilitates a reduction in the number of variables in the problem.
The idea is analogous to that of classical homogeneous isotropic turbulence research.
A representative elementary volume (REV) of the GPM with periodic boundaries is
used for simulations, which has the dimensions of 4s × 4s × 2s. A cubic domain of size
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Figure 1. (a) Mean flow streamlines overlaid on contours of the time-averaged, microscale x-direction velocity
〈u1〉 at the midplane normalized by the time-averaged, macroscale x-direction velocity um. The primary
(yellow) and secondary (pink) flow region boundaries are illustrated. (b) Two-dimensional view of the GPM.
The REV-T is used as the size of the computational domain, shown by dashed lines.

s is adequate to represent the geometry of the GPM. However, the turbulent two-point
correlations will decorrelate after a distance of s (Jin et al. 2015; Uth et al. 2016).
Accounting for the decorrelation width (2s) and boundary effects, a turbulence REV
(REV-T) size of 4s is chosen (see figure 1b). Cylindrical solid obstacles are chosen to
represent an anisotropic porous medium, similar to the geometry of heat exchangers. The
sizing requirement for the REV-T is relaxed to 2s in the direction of the cylinder axis due to
a lack of geometric variation. It should be noted that several researchers have successfully
utilized smaller domains for turbulence simulations in porous media (Kuwahara et al.
2006; Iacovides et al. 2014). The adequacy of the size of the REV-T has been analysed
and the results are presented in Appendix A.

A Reynolds number of 1000 is used in this work to study geometric parameter
variation. The definition of the Reynolds number (Rep) is provided in (2.1), where um
is the time-averaged, superficially averaged x velocity, d is the obstacle diameter and
ν is the kinematic viscosity of the fluid. Note that the operator 〈 〉 denotes Reynolds
time-averaging. In the literature, several definitions of the characteristic length scale of
a porous medium are used (He et al. 2019; Li et al. 2020; Wood et al. 2020). The
obstacle diameter is chosen to remain consistent with previous work (Jin et al. 2015).
At Rep = 1000, the flow through a porous medium is within the fully turbulent regime
(Seguin, Montillet & Comiti 1998a).

Rep = umd
ν

. (2.1)

Both LES with a subgrid-scale model and fine-grid DNS without any turbulence model
are used in this work. Both LES and DNS are performed using the commercial CFD solver
Ansys® Academic Research Fluent, Release 16.0. Unstructured grids constructed with a
block-structured topology are used for the simulations. For LES, the grids are designed as
per the guidelines established by Chapman (1979) and Choi & Moin (2012). The aspect
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ratio of the cells in the bulk of the computational domain is set equal to 1. The maximum
cell size is of the order of the Taylor microscale of the flow, which is estimated using Rep
as given by Pope (2000). Setting the filter cut-off width equal to the Taylor microscale
has been shown to give good agreement of classical Smagorinsky LES results with DNS
for channel flows (Addad et al. 2008). Grid stretching with a cell growth ratio of 1.1 is
used near the walls such that the maximum value of y+ is less than one for the first grid
point in the wall-normal direction. For DNS, the maximum grid size is set equal to the
estimated Kolmogorov length scale. The Kolmogorov length scale is estimated using the
Reynolds number according to the Kolmogorov hypothesis. The DNS grid is qualitatively
identical to the LES grid with regard to its structure. The smallest scale of turbulence is
expected to be less than the Kolmogorov scale estimate since the flow is wall-bounded.
This compromise is accepted since the finest scales of turbulence are not of interest in
this paper. The objective of the high-resolution DNS is to minimize the numerical error.
Moser & Moin (1987) noted that a majority of turbulence dissipation happens at scales 15
times larger than the Kolmogorov scale for curved channel flows. The energy spectra had
at least 100 : 1 reduction in the small scales when compared to the largest scale, which is
confirmed in Appendix B. Details of the grid sizes used for the simulations are presented
in Appendix B.

The dynamic one equation turbulent kinetic energy (DOETKE) subgrid model (Kim
& Menon 1997) is used for the LES cases. The RANS turbulence models are a cheap
alternative to LES provided their calibration is suitable for porous medium flows. However,
Rodi (1997) showed that the performance of the k–ε RANS models is inferior to that
of LES for bluff body flows. The LES results show close agreement with experiments
(Jin et al. 2016) while providing information about the dynamics of the large eddies.
An additional transport equation for subgrid turbulent kinetic energy is solved in this
work to model subgrid scales near the solid obstacle wall at higher Reynolds numbers.
Krajnovic & Davidson (2000) demonstrated the effectiveness of the DOETKE model in
predicting parameters associated with vortex shedding in the absence of adequate mesh
resolution, despite the absence of the near-wall turbulence streaks in the resolved flow
field. Abba, Cercignani & Valdettaro (2003) highlighted the shortcomings of the DOETKE
model, which showed poor performance in predicting the near-wall turbulence dissipation.
The DOETKE model assumes that the subgrid scales are isotropic in nature, which is
reasonable if the subgrid scales are in the dissipative scales within the purview of the
Kolmogorov hypothesis. Such an assumption will fail in the near-wall regions, which
are dominated by small-scale anisotropic structures that are subject to a large dissipation
rate. To account for this, smaller cells are used near the wall with the help of grid
stretching.

Details of the numerical methods are presented in the next section. All of the simulations
that are presented in this work are three-dimensional. Flow statistics have been averaged
over 100 flow cycles for a single solid obstacle. The simulations have been run on the
North Carolina State University Linux Cluster. Suggestive computation time for LES is
30 000 CPU-hours, and for DNS is 100 000 CPU-hours (1 CPU-hour = computation time
in hours for a single CPU).

2.2. Numerical methods
The numerical methods and models used in this paper are described in §§ 2.2.1 and 2.2.2.
The grid convergence study for the numerical methods and the details of the grid size are
presented in Appendix B.
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2.2.1. Large-eddy simulation
The filtered Navier–Stokes equations, written in (2.2) and (2.3) (the tilde notation denotes
spatial filtering), are solved in conjunction with the DOETKE subgrid model using the
finite volume method. The computational grid in the finite volume method implicitly
applies a box filter. The pressure term p̃ in (2.3) corresponds to a filtered periodic pressure
(terminology adopted from the documentation of ANSYS Inc. (2016)). In periodic flows,
the pressure gradient term in the governing equations can be decomposed into a constant
pressure gradient term ρgi and the gradient of the periodic pressure ∂ p̃/∂xi. The sum of
the periodic pressure and the linearly varying pressure is the static pressure. A transport
equation for the subgrid turbulence kinetic energy kSGS (equation (2.4)) is solved to
estimate the subgrid velocity scale. The subgrid length scale Δ is set equal to the cube
root of the cell volume. The subgrid turbulence eddy viscosity is estimated using (2.5).
The model constants Ck and Cε are determined dynamically according to Kim & Menon
(1997). A test scale solution is constructed from the grid-scale solution using a top hat test
filter with a width Δ̂ that is equal to twice the size of the grid filter width Δ. The grid filter
width Δ is defined as the cube root of the grid cell volume. The similarity between the
subgrid-scale stress tensor τ ij and the test Leonard stress tensor Lij is invoked to determine
Ck ((2.6) and (2.7)). The value of Ck is limited by −μ/(k1/2

SGSΔ). Similarity between the
dissipation rate at the grid level εSGS and the test level εtest is invoked to determine Cε

((2.8) and (2.9)).

∂ ũj

∂xj
= 0, (2.2)

∂ρũi

∂t
+ ∂ρũiũj

∂xj
= − ∂ p̃

∂xi
+ ∂

∂xj

[
(μ + μT,SGS)

(
∂ ũi

∂xj
+ ∂ ũj

∂xi

)]
+ ρgi, (2.3)

∂kSGS

∂t
+ ∂(ũjkSGS)

∂xj
=

[
Ckk1/2

SGSΔ

(
∂ ũi

∂xj
+ ∂ ũj

∂xi

)]
∂ ũi

∂xj
− Cε

k3/2
SGS
Δ

+ ∂

∂xj

(
μT,SGS

∂kSGS

∂xj

)
,

(2.4)

μT,SGS = Ckk1/2
SGSΔ, (2.5)

τij = −2Ckk1/2
SGSΔS̃ij + 2

3δijkSGS; Lij = −2Ckk1/2
test Δ̂

̂̃Sij + 1
3δijLkk, (2.6a,b)

Ck = 1
2

Lijσij

σijσij
; σij = −Δ̂k1/2

test
̂̃Sij; ktest = 1

2
( ̂̃ukũk − ̂̃uk ̂̃uk), (2.7a–c)

Cε = B̂ − (∂̂̃ui/∂xj)(∂̂̃ui/∂xj)

((μ + μT,SGS)Δ̂)
−1

k3/2
test

, (2.8)

where
B = (∂ ũi/∂xj)(∂ ũi/∂xj). (2.9)

The spatial derivatives are approximated using a bounded second-order central scheme
(according to the work of Leonard (1991)) for the convective terms and a second-order
central scheme for the viscous terms. The location of the pressure variable is staggered
such that it is stored at the centroid of the face of the cell. The governing equations are
solved in a segregated manner using a pressure-implicit scheme with splitting of operators
(PISO). A second-order implicit backward Euler method is used for time advancement.
The momentum source term gi is used to specify a linear pressure drop to sustain flow
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in the periodic domain. The value of gi required to sustain a flow with a given Reynolds
number is not known a priori. For incompressible flow, the specification of the mass flow
rate is sufficient to maintain a constant Reynolds number (see (2.1) for the definition of the
Reynolds number). Therefore, gi is determined iteratively during the pressure correction
step from the difference between the desired and the current mass flow rate. The fluid
material is chosen to be water since the solver uses the dimensional form of the governing
equations. The results presented in the paper are normalized using characteristic length
and velocity scales, and the applied pressure gradient.

2.2.2. Direct numerical simulation
The Navier–Stokes equations written in (2.10) and (2.11) are solved using the same finite
volume method as in the case of LES. The pressure term p in (2.11) corresponds to a
periodic pressure. In this paper, the term DNS refers to a numerical simulation of the
Navier–Stokes equations without using a turbulence model. The grid resolution for DNS
is finer that that used for LES, as given in § 2.1 and Appendix B. It is noted in Appendix B
that the small-scale eddies do not contribute any new information in our simulations, and
that only the large-scale turbulent structures are of interest.

∂uj

∂xj
= 0, (2.10)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂

∂xj

[
μ

(
∂ui

∂xj
+ ∂uj

∂xi

)]
+ ρgi. (2.11)

The magnitude of gi is maintained constant in the DNS, since it was determined in the LES
for the same geometry and Reynolds number. If the resulting Reynolds number is different
from that of the corresponding LES, the value that follows from the DNS is reported.

3. Results and discussion

In this section, the symmetry-breaking phenomenon is analysed in detail and presented as
follows:

i First, the development of symmetry breaking is analysed from a macroscale
perspective. A macroscale momentum budget is computed and the components that
are relevant to the symmetry-breaking process are identified. Spectral analyses of the
macroscale forces are used to contrast the flow properties before and after symmetry
breaking.

ii With the knowledge of the relevant macroscale flow physics, the microscale
flow field distribution and the turbulent structures are visualized to understand
the relationship between the turbulent vortex motion and the symmetry-breaking
phenomenon. The characteristics of the turbulent structures are determined a
priori to isolate the swirling turbulent structures, which have a more significant
contribution to symmetry breaking.

iii The influence that symmetry breaking has on macroscale turbulence transport is
determined. The porosity and the Reynolds number are parametrized for this study.
The influence of the shape of the solid obstacles in the GPM on symmetry breaking
is briefly discussed.

Microscale turbulent structures were defined earlier as the turbulent structures that have a
length scale smaller than the pore scale. In this work, there is no scope for the presence
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Case Reynolds number (Rep) Flow properties

A1 100 Laminar – two-dimensional flow structures
A2 225 Turbulent – emergence of three-dimensional features in the

flow structures
A3 300 Turbulent – completely three-dimensional flow structures
A4 489 Turbulent – deviatory flow
A5 1000 Turbulent – deviatory flow
A6 3000 Turbulent – deviatory flow
A7 10 000 Turbulent – deviatory flow

Table 1. The DNS cases A1–A4 simulated to analyse the development of symmetry breaking. The LES cases
A5–A7 simulated to study Reynolds number dependence. The solid obstacles are circular cylinders and the
porosity is 0.5 for all of these cases.

of any macroscale turbulent structures. Therefore, macroscale turbulence is the volume
average of the microscale turbulent flow field.

3.1. The origin and the development of the symmetry-breaking phenomenon
In this section, a detailed study of the origin of symmetry breaking and the mechanism of
its development are presented. The transient stages of the symmetry-breaking phenomenon
are simulated using DNS with the intention of simplifying the data analysis. Unlike DNS,
the use of LES will introduce additional terms in the macroscale momentum budget that
depend on the grid resolution. The high grid resolution in DNS is favourable for flow
visualization, especially while extracting three-dimensional coherent turbulent structures
using the Q-criterion. In this work, the choice of LES model and numerical schemes
introduces sources of artificial dissipation and numerical error. These limitations will
influence the critical Reynolds number for the transition to turbulence and also to the
subsequent deviatory flow. This makes DNS the more desirable method to simulate the
dynamic process. Circular-cylinder solid obstacles are used to represent a porous medium
(see figure 1b) with a porosity of 0.50. The Reynolds number is increased from 100
to 10 000 across flow regimes consisting of unique properties as shown in table 1. The
flow properties in cases A1–A4 contribute to the understanding of how the phenomenon
develops, as demonstrated in the next section.

3.1.1. Macroscale momentum budget
The macroscale momentum budget is computed using the macroscale momentum
conservation equation (de Lemos 2012). The macroscale momentum conservation
equations are derived from the Navier–Stokes equations (2.11) by applying the VAT. The
authors note that other forms of the conservation equation may be adopted to suit the
modelling requirements, such as in Lasseux, Valdés-Parada & Bellet (2019). The time
dependence of the conservation equation is retained. Applying this to the transient flow
through the periodic porous medium, the macroscale spatial derivatives are eliminated to
result in the following:

ρ
∂

∂t
(ϕ〈ui〉i)︸ ︷︷ ︸

inertial

= ρϕgi︸︷︷︸
applied

+ μ

�V

∫
Ainterface

nj∂jui dS︸ ︷︷ ︸
viscous drag

− 1
�V

∫
Ainterface

nip dS︸ ︷︷ ︸
pressure drag

. (3.1)
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The operator 〈 〉i denotes an intrinsic volume average in the fluid domain, �V is the total
volume of the periodic REV, Ainterface is the interfacial area and ni is the normal vector
of Ainterface. The value of �V for all the cases with a 4 × 4 GPM is 3.2 × 10−5 m3. The
value of Ainterface can be calculated as 50(1 − ϕ)�V . The sum of the macroscale pressure
drag and viscous drag in (3.1) (referred to hereafter as macroscale pressure and viscous
forces) gives the total drag Ri. In this paper, the term drag is used to denote any force
acting on the solid obstacle surface. In this porous medium system, an applied pressure
gradient is used to sustain mass flow, all the forces that oppose it are called drag regardless
of the convention. The authors note that there is a different naming convention followed
in the aerodynamics community. At steady state, the Reynolds average of the drag 〈Ri〉
is balanced solely by the contribution of the applied pressure gradient 〈ρgi〉. The applied
pressure gradient acts as a source of mechanical energy in the REV. The drag force on the
solid obstacles will act as a sink of mechanical energy in the REV. The drag force in the
x direction needs to be compensated for by the applied pressure to sustain the flow. In the
case of symmetric flow, symmetry in the stress distribution on the solid obstacle surface
results in zero pressure and viscous drag forces acting in the y direction after Reynolds
averaging. In the case of deviatory flow, stress distribution on the solid obstacle surface
is not symmetric about the y axis (Appendix C). Since the conservation of mechanical
energy is satisfied by the numerical method in all three directions, a net zero y-direction
drag force acts on the solid obstacle surface in deviatory flow. Note that there is no applied
pressure gradient in the y direction to counteract the flow.

The question arises as to how a net zero drag force is possible in the absence of
symmetric stress distribution on the solid obstacle surface. The answer lies in the balance
in the components of drag force themselves. Note that we are still considering the
Reynolds-averaged flow field where the inertial term in (3.1) vanishes. The integration of
the pressure and viscous stress distributions on the solid obstacle surface yields non-zero,
residual y-direction pressure and viscous force values that have ∼5 % the magnitude
of the x-direction pressure drag force. The y-direction pressure and y-direction viscous
drag forces have equal magnitude and act in opposite directions resulting in a net zero
drag force (see figure 2a). This unique feature of the Reynolds-averaged deviatory flow
is elucidated in Appendix C. It is shown in the following discussion that the pressure
force is substantially larger than the viscous force in the x direction, consistent with the
expectations at the range of Reynolds numbers used in this work (100 < Rep < 10 000). It
is also shown that the viscous force has a small magnitude when compared to the pressure
and inertial forces for the instantaneous flow in all three directions.

The symmetry-breaking phenomenon is considered a bifurcation because the deviatory
flow solution is equally probable in both the positive and negative y directions (in figure 2a,
the positive deviation is illustrated). The polarity of the macroscale y-direction viscous
and pressure forces will interchange for the two possible symmetry-breaking solutions.
Several modes of deviatory flow are possible from the two solutions, which are discussed
at a later stage. Therefore, the interplay between the components in the x and y momentum
budget is different. In the x direction, the pressure drag and the applied pressure gradient
are dominant. Consider the case A1 (table 1) of laminar flow through the porous medium.
The balance of x-direction forces for case A1 is illustrated in figure 2(b). The forces in the y
and z directions are five orders of magnitude less than those in the x direction. For case A1,
the microscale flow is strictly two-dimensional and the macroscale flow can be considered
one-dimensional. Even at laminar Reynolds numbers, the macroscale pressure force is four
times the magnitude of the macroscale viscous force. It will become apparent later on that
the macroscale pressure force and the microscale pressure distribution dominate the flow
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Figure 2. (a) A two-dimensional sketch of the forces that are acting on the solid obstacle in deviatory flow
(the force vectors are not to scale). (b) The macroscale x-direction momentum budget computed for the laminar
case A1. The individual components of the budget are calculated in the units of force per unit volume and then
normalized by the applied pressure force per unit volume g1.

properties for all of the simulations. In the y direction, both components of the drag –
pressure and viscous – are relevant only in the Reynolds-averaged deviatory flow. It is
prudent to bear this in mind while analysing the dynamic response of the fluid flow.

For packed beds, the limit of the laminar flow regime is at a pore-scale Reynolds
number of 180 (Seguin et al. 1998a). The onset of the fully turbulent regime in finite
porous media is gradual and can occur in the range 180 < Rep < 900 (Seguin et al. 1998b).
The transition regime may not exist for periodic porous media since the flow field is
continuously perturbed and fed back into the REV. Transition and intermittency may be
possible only through the local re-laminarization of the flow. However, transition effects
are not encountered in any of the simulations in this paper. Turbulence has been observed
in infinite porous media for Reynolds numbers as low as 478 for circular-cylinder solid
obstacles (Uth et al. 2016). In this work, the dynamic nature of the flow emerges at a
Reynolds number of Rep = 225 (case A2, table 1). The macroscale momentum budget for
case A2 is plotted against time in all three directions in figure 3. Note that the applied
pressure gradient is maintained at a constant value for this case.

We first look at the properties of macroscale turbulence before symmetry breaking
(cases A2 and A3). For the transient flow, the macroscale pressure and inertial components
are dominant in the x and y directions when compared to the viscous component. Since
the flow is symmetric, the viscous force in the y direction is virtually zero. The macroscale
pressure force is zero in the z direction since the solid obstacles are cylindrical in shape
with their axes oriented in the z direction. From the macroscale perspective, the random
fluctuation of the components of the budget indicates that the flow at Rep = 225 is
turbulent. The order of magnitude of the forces in the z direction is only one order less
than that in the y direction, which is indicative of three-dimensionality. We primarily study
the momentum budget in the x and y directions since we only observe small perturbations
in the z direction. The development of symmetry breaking is not studied starting from
Rep = 225 because the flow after symmetry breaking is vastly different, as shown in the
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Figure 3. The dynamic macroscale momentum budget for case A2 (turbulent, Rep = 225). The budget is
computed for the (a) x, (b) y and (c) z directions. The time is non-dimensionalized using d/um, and the force
components using the applied force component.

following sections. Thus, the variation in the flow properties cannot be solely attributed to
the symmetry-breaking phenomenon, but also to the development of turbulence.

The von Kármán instability is present at Rep = 225, which introduces dynamic
behaviour to the flow (figure 3). The macroscale force is calculated by summing the
forces acting on the 16 solid obstacles present in the REV-T. The pressure force acting
on the individual solid obstacles and their Fourier transform (absolute values) are plotted
in figure 4. There are two features to note in the pressure force plots in the time and
frequency domain: (1) the existence of two distinct, dominant time scales and (2) the
phase difference between the drag forces acting on individual solid obstacles. The phase
difference can be identified in figures 4(a) and 4(c), where the peaks in the pressure
force on individual solid obstacles do not coincide in time. The high-frequency peaks
at non-dimensional frequency f = 3.8 in figures 4(b) and 4(d) correspond to the vortex
shedding frequency. This is corroborated with the peak frequencies in y velocity that are
measured at the midpoint between two solid obstacles. The results are also supported by
the visualization of the vortex shedding process using the streamlines and the skin-friction
lines on the surface of the solid obstacle. We use the non-dimensional frequency f to
analyse the time series of force components. The frequency is defined as the reciprocal
of time and it is non-dimensionalized using the characteristic length and velocity.
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Figure 4. The pressure force acting on individual solid obstacles inside the REV-T for case A2 (table 1) in the
x direction versus non-dimensional (a) time and (b) frequency, and in the y direction versus non-dimensional
(c) time and (d) frequency. See pressure drag definition in (3.1). The colours represent the location of the solid
obstacle in the 4 × 4 matrix. Example: (2,3) refers to the solid obstacle in second place in the x direction and
third place in the y direction.

The form of the non-dimensional frequency f is similar to that of the Strouhal number. The
Strouhal number is used in studies of the von Kármán vortex shedding frequency. In this
paper, other flow instabilities are present due to the presence of an array of solid obstacles
in the porous medium geometry. The porous medium geometry introduces a spectrum of
frequencies of vortex shedding even at low Reynolds numbers. It is not common practice
to use the Strouhal number for analysis in these conditions. However, note that the value of
f at the vortex shedding frequency in some cases (e.g. case A2) is similar to the Strouhal
number. Note that the Strouhal number does not take a constant value in porous medium
flows at a moderate Reynolds number, unlike the flow around a single circular cylinder.
Therefore, there is no need to use the Strouhal number in this paper.

The low-frequency peak is observed at two different values of frequency in the x and
y directions ( f = 0.3 and f = 0.6). The discrepancy is attributed to the finite sample size
of the signal used for the fast Fourier transform and the peaks are, therefore, associated
with the same phenomenon. The low-frequency oscillations arise from a secondary flow
instability. The plots of the pressure force in the frequency domain (figures 4b and 4d)
are qualitatively similar to the velocity probe measurements that are reported by Agnaou
et al. (2016). The low-frequency peak is a derivative of a Hopf bifurcation in periodic
porous media. Since the porosity is low in this case (ϕ = 0.5), there exists a strong
interaction between the primary and secondary flows. The macroscale pressure and inertial
components of the macroscale momentum budget are in competition (figure 3), which
results in the formation of the secondary flow instability. The presence of phase difference
between the pressure forces acting on the solid obstacles alleviates the high magnitude of
macroscale adverse pressure gradient that is introduced by the flow instability.
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Figure 5. The pressure force acting in the y direction on the individual solid obstacles inside the REV-T
versus non-dimensional frequency for (a) Rep = 300 (case A3) and (b) Rep = 489 (case A4).

At higher Reynolds numbers Rep ≥ 300 (cases A3 to A7), the power spectrum of
the pressure force is spread over a band of frequencies. Sharp peaks like those seen
in figure 4(d) for case A2 become more diffuse at high Reynolds numbers, which is a
characteristic of turbulence. The pressure forces for Rep = 300 and Rep = 489 (cases A3
and A4) are plotted versus f in figure 5. For case A3, there are three dominant frequencies
for the pressure force, one more than for case A2. The peak at f = 0.333 corresponds
to the secondary flow instability that was present in case A2. The peak at f = 3.331
corresponds to the vortex shedding process. The frequency band 0.333 < f < 3.331 is also
excited as a result of turbulence. The oscillation in the dimensional pressure force has a
higher amplitude in case A3 than in case A2. The higher amplitude alludes to an increased
strength of the vortex shedding process, which is verified using the magnitude of vorticity
associated with the vortices. In figure 5(a), however, the non-dimensionalization of the
pressure force using the applied pressure gradient shows a decrease in the magnitude
due to the nonlinear increase in mean drag force. For case A4, a band of frequencies is
excited with no distinct peaks in the power spectrum. The vortex shedding frequency is
no longer one of the dominant frequencies for the oscillation in the pressure force. The
maximum power is observed in the frequency range 1 < f < 3 in figure 5(b), which is
one order of magnitude less than the mean vortex shedding frequency. The low-frequency
oscillations of the flow instability that were present in case A3 are not present in case
A4. The change in the dynamics of the flow from case A3 to A4 is brought about by the
symmetry-breaking process. The flow after symmetry breaking has only one stagnation
point on the solid obstacle, as opposed to the two stagnation points observed in symmetric
flow. After symmetry breaking, the stagnation point is not formed by the incidence of a
vortex with the solid obstacle (see § 3.1.2).

As mentioned before, the phase difference in the drag forces between individual solid
obstacles arises from asynchronous vortex shedding. The phase difference in the drag
forces on individual solid obstacles has an influence on the macroscale flow field in a
manner similar to wave interference phenomena. It causes a reduction in the amplitude
of oscillation of the total drag force inside the REV. The phase difference in the vortex
shedding increases the dispersion in the microscale velocity fluctuations. This is an
important consideration in the definition of the macroscale Reynolds stress terms used
in turbulence modelling. Although the order in which volume and Reynolds averaging
are applied to dependent quantities in the governing equations does not change the result
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(Pedras & de Lemos 2001), the order in which these two averaging procedures are applied
to model parameters, such as the macroscale turbulence kinetic energy, may change the
result. The vortex shedding inside the porous medium provides a physical reason for why
the two definitions of the macroscale turbulence kinetic energy that are used in porous
medium turbulence modelling simulate entirely different physical phenomena (reported
in de Lemos (2012) and Pinson, Grégoire & Simonin (2006)). The two commonly used
definitions are 〈〈u′

iu
′
i〉/2〉i and 〈〈u′

i〉i〈u′
i〉i〉/2. The prime denotes a fluctuation term obtained

from Reynolds averaging. It is noted in the work of Kuwata, Suga & Sakurai (2014) that
the first definition is the total turbulent kinetic energy and that the second definition is a
macroscale turbulent kinetic energy. According to this, the total turbulent kinetic energy
can be calculated as the sum of a macroscale and a microscale turbulent kinetic energy.
The macroscale turbulent kinetic energy contributes a very small fraction of the total
turbulent kinetic energy. This observation is also reported by Kuwata & Suga (2015). The
dominance of microscale turbulent kinetic energy is attributed to large-scale oscillations
due to vortex shedding. The phase difference in the vortex shedding behind the individual
solid obstacles is also a factor, which increases the dispersion of the velocity fluctuations
inside the REV. These observations can be extended to the other terms of the Reynolds
stress tensor (RST) as well. Since the first definition (〈〈u′

iu
′
j〉/2〉i) is more commonly used

for modelling, we use this definition of the Reynolds stress later in § 3.2. It encompasses all
the relevant physics observed inside the porous medium. The presence of phase difference
also validates the need for large REVs to simulate turbulent porous media flows. The use
of a domain with a single solid obstacle will only simulate a special case where all of the
vortex systems are acting in phase. The size of the REV-T should be sufficiently large that
the influence of phase difference becomes invariant, which we demonstrate in Appendix A.

To summarize the discussion about the transition from symmetric to deviatory flow,
changes in both the flow topology and the flow dynamics are expected. From the observed
change in the power spectrum before and after symmetry breaking, the underlying physics
of the phenomenon is related to the following:

• The presence of a flow instability before symmetry breaking that causes large-scale
pressure oscillations and its disappearance after symmetry breaking.

• The increase in the amplitude of the oscillation of pressure until symmetry breaking
occurs, followed by a decrease.

• The reduction in the dominance of the vortex shedding process on the pressure force
after symmetry breaking.

The results suggest that the symmetry breaking is brought about by the amplification
of the flow instability with the increase in Reynolds number, which ultimately leads to
the breakdown of symmetry. To confirm this, the transient stages of symmetry breaking
are simulated using the following methodology. At the beginning of the simulation, the
applied pressure gradient is maintained at a constant value such that the volumetric flow
rate corresponds to a Reynolds number of 300. Then, a step function is used to change the
applied pressure gradient at tum/d = 0 to that of a Reynolds number of 489. The constant
value of applied pressure gradient that sustains the Reynolds number of 500 is determined
a priori to use in the present simulation. The discrepancy between the prescribed Reynolds
number (Rep = 500) and the actual Reynolds number (Rep = 489) is a result of the pathway
that the bifurcation takes in this simulation. The step function is used to avoid any
oscillations that will be introduced by using a control system to maintain the flow rate. This
enabled the study of the transient stages towards deviatory flow without having to account
for the large-scale noise that would have come from the time-advancement algorithm.
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Figure 6. The macroscale momentum budget for the symmetry-breaking process (Rep = 300 to 489). The
budget is computed for the (a) x, (b) y and (c) z directions. The time axis is shifted such that the step change in
applied pressure gradient occurs at t = 0.

However, it is not possible to segregate the momentum contribution of the
symmetry-breaking phenomenon and the change in applied pressure gradient, since
they occur concurrently. Therefore, the analysis of the macroscale momentum budget
is supplemented by an inspection of the microscale flow field (§ 3.1.2) to confirm the
observations.

All of the components of the macroscale momentum budget at tum/d = 0 amplify
in magnitude as a result of the increased supply of momentum (figure 6). The
three-dimensionality of the flow increases as a result of the increase in the Reynolds
number (see figure 6c). However, the magnitudes of the forces in the z direction are
two-orders-of-magnitude less than those in the x and y directions. It is sufficient to take
only the x and y directions into consideration for this macroscale analysis, while bearing
in mind that the microscale flow is three-dimensional. Both the macro- and microscale
turbulence are strongly anisotropic, such that the streamwise direction is dominant.
Before symmetry breaking, the streamwise direction is aligned with the x direction. After
symmetry breaking, the deviatory flow results in a macroscale flow angle (θmacro) between
the streamwise direction and the x direction in the xy plane. The macroscale flow angle
θmacro is calculated as the deviation of the direction of the macroscale velocity vector
from the x direction.
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Symmetry breaking of turbulent flow in porous media

Among the components of the macroscale momentum budget, the macroscale inertial
and pressure forces dominate the dynamics of the macroscale flow. The viscous force
is essential for the formation of the vortices and the flow instabilities, but it is not the
driving component in symmetry breaking. In the x direction, the change in the applied
pressure gradient (ρgi) leads to an increase in the macroscale x-direction pressure force
and its amplitude of oscillation (figure 6a). The macroscale x-direction pressure force does
not grow after tum/d = 5 onwards as long as the applied pressure gradient is unchanged.
The amplitude of oscillation of the macroscale x-direction pressure force decreases after
tum/d = 4, which is followed by the onset of macroscale symmetry breaking at tum/d = 7.3
(see macroscale y-direction pressure force in figure 6b). In the y direction, the change
in the applied pressure gradient increases the amplitude of oscillation of the macroscale
y-direction pressure force. Small-amplitude oscillations in the macroscale y-direction
pressure force are first observed in 0 < tum/d < 7.3 as a direct result of the change in applied
pressure gradient. Large-amplitude oscillations in the macroscale y-direction pressure
force are observed for tum/d > 7.3 because of the deviatory flow from symmetry breaking.
The change in the amplitude of oscillation of the pressure force due to symmetry breaking
is more prevalent in the y direction (figure 6b) than in the x direction (figure 6a). In
the y direction, amplitude of oscillation of the pressure force increases by one order of
magnitude due to the deviatory flow. Therefore, the transformation of the microscale flow
field in the xy plane after symmetry breaking is more evident in the y-direction macroscale
momentum budget than in the x direction.

The macroscale y-direction pressure force oscillates about zero both before and after
symmetry breaking. This is counterintuitive to the observations in figure 2(a), where a
non-zero y-direction pressure force is balanced by a non-zero y-direction viscous force
in order to sustain the deviatory flow. If the components of the y-direction macroscale
momentum budget have a zero mean value after symmetry breaking, how can the deviatory
flow solution exist? To answer this question, the pressure forces that are acting on the
individual solid obstacles are examined (figure 7). The 4 × 4 matrix of solid obstacles is
indexed by dividing the matrix into rows and columns. The rows are aligned with the x
axis and the columns are aligned with the y axis.

After symmetry breaking has developed (tum/d > 10), the y-direction pressure forces on
the individual solid obstacles in a single row have different magnitudes and signs. Two
solid obstacles in the row have a positive y-direction pressure force and the other two
have a negative y-direction pressure force, which results in a zero sum. The y-direction
pressure forces on all of the solid obstacles in a single column have similar magnitudes
and sign. We noted earlier that the y-direction pressure force on the solid obstacle can be
positive or negative for a corresponding positive or negative macroscale flow angle. Since
there are four columns of solid obstacles in this REV-T, the deviatory flow behind each
solid obstacle can assume either solution behind each column. In this paper, each unique
combination of the y-direction pressure forces on the individual solid obstacles is called a
mode, analogous to wave modes. Modes are formed in the x direction alone, along which
the pressure gradient is applied. The modes of deviatory flow need not be symmetric in
the x direction. The modes are illustrated in § 3.1.2. If the REV-T consists of one solid
obstacle, only a single mode of the symmetry-breaking phenomenon with a unidirectional
y-direction pressure force can be formed. However, the case of unidirectional deviatory
flow is only a subset of the possible solutions in periodic porous media. The number of
possible modes of deviatory flow is decided by the number of solid obstacles in the REV
in the direction of applied pressure gradient. This confirms the requirement that the size
of the REV-T must be greater than one pore size.
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Figure 7. The pressure forces acting in the (a) x and (b) y directions on the individual solid obstacles inside
the REV-T versus time for the transient simulation (Rep = 300 to 489).

The onset of macroscale symmetry breaking is evident in the x-direction pressure forces
at tum/d = 7.3 (figure 7a). Since the magnitude of the change of the x-direction pressure
force at tum/d = 0 is large, the amplitude of oscillation of the x-direction pressure force
is small in relation. Therefore, the y-direction pressure forces are used to analyse the
symmetry-breaking phenomenon behind individual solid obstacles. There exists a phase
difference between the pressure forces on the individual solid obstacles (figure 7). The
onset of microscale symmetry breaking is marked by the first increase in the y-direction
pressure force on the solid obstacles. The flow around the solid obstacle at location (2,3)
is the first to deviate from symmetric behaviour (figure 7b). The deviation occurs sooner
in the microscale (tum/d = 6) than it does in the macroscale (tum/d = 7.3), implying that
symmetry breaking begins as a localized, microscale phenomenon.

The flows around the individual solid obstacles break symmetry at different times
because of the phase difference in the vortex shedding. The solid obstacle at location
(2,3) is defined to have the leading phase at the time of microscale symmetry breaking.
The increasing order of phase lag for the solid obstacles in the third row of the REV-T
is the following: (2,3) < (3,3) < (1,3) < (4,3). This order is identified by determining the
solid obstacle locations where the y-direction pressure force will peak next after the solid
obstacle at (2,3). The order in which the flow around each solid obstacle breaks symmetry
is the same as that of the phase lag. Thus, the phase lag determines the time at which
symmetry breaking occurs for each solid obstacle. Therefore, the phase of the vortex
shedding cycle at which the flow breaks symmetry is different for each solid obstacle.
The phase difference is only partly responsible for the formation of the different modes.
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Symmetry breaking of turbulent flow in porous media

It is shown in § 3.1.2 that the flow field around the neighbouring solid obstacle plays a role
in the formation of the modes as well.

The formation of the phase difference and the randomness in the vortex motions behind
the solid obstacles suggest the independence of the microscale flow behind each solid
obstacle. The formation of modes of deviatory flow along the rows of solid obstacles
suggests the dependence of the microscale flow behind a solid obstacle on the flow around
the neighbouring obstacles. The flow patterns around the solid obstacles in the direction
of the applied pressure gradient are not identical, but the flow patterns are identical in the
normal direction.

3.1.2. Microscale flow field and turbulent structure visualization
The macroscale momentum budgets for cases A1–A4 in table 1 revealed that the flows
before and after symmetry breaking are dominated by the pressure forces. The dynamic
behaviour of the flow is determined by the microvortices, formed as a result of the viscosity
of the fluid. However, the viscous force has little influence in the macroscale momentum
budget. In this section, the microscale flow field is visualized to connect the observations
of the macroscale flow to the microscale flow physics. The laminar flow patterns at
Rep = 100 are similar to those in figure 1(a), with distinct primary and secondary flow
regions. The secondary flow region consists of a recirculating (attached) vortex system.
Upon transition to turbulence, three-dimensional features appear in the microscale flow at
Rep = 225, consistent with the macroscale momentum budget in figure 3. Even though
the microvortices at Rep = 225 and at Rep = 100 appear similar, they begin to deform
in the z direction at Rep = 225 due to the vortex stretching process in turbulence. The
two-dimensional turbulent structures in figure 8(a) are the microvortices, which possess
a swirling characteristic. Note that we are using the term ρg1�V to scale the microscale
pressure distribution to be consistent with the definition of pressure drag force in (3.1).
The pressure drag force can be calculated from the pressure distribution by integrating the
microscale pressure distribution over the area of the solid obstacle.

The microvortices at Rep = 225 evolve in time due to turbulence production and
dissipation. The microvortices are stationary in the void space between two solid obstacles.
The microvortices interact with the primary flow to form flow stagnation points on the
solid obstacle surface at the converging portion of the GPM. This leads to the formation
of the secondary flow instability. The converging geometry intrinsically introduces a
local streamwise favourable pressure gradient. However, the flow stagnation reduces the
favourability of the pressure gradient in the converging section, which is the source of
macroscale pressure drag. The ratio of the stagnation pressure to the applied pressure
gradient increases with Reynolds number. The presence of a substantial stagnation
pressure in the converging region supports the notion that the flow instability should arise
from the competition between the pressure and inertial components of the macroscale
momentum budget.

There is a stark contrast between the turbulent structures observed at Rep = 225
(figure 8a) and Rep = 300 (figure 8b). At Rep = 225, semi-infinite two-dimensional
turbulent structures with three-dimensional deformations are visible. The turbulent
structure has infinite dimension in the z direction because of the periodic boundary
condition. The deformations that are present in the turbulent structures arise from turbulent
vortex stretching. At Rep = 300, the turbulent structures are finite and three-dimensional
and they assume the shape of hairpin vortices. The hairpin vortices are oriented in
a reverse direction when compared to the observations in classic external flows like
turbulent boundary layer flow (Eitel-Amor et al. 2015). Unlike the boundary layer flow,
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Figure 9. (a) Instantaneous vortex core lines before and after symmetry breaking projected on a plane at z = 0
overlaid on contours of z-direction vorticity. (b) A sketch illustrating the process of formation of the reverse
hairpin vortices in porous media.

the head-to-tail direction of the hairpin vortex aligns with the streamwise direction of the
flow. Reverse hairpin vortices have also been observed in periodic porous media by Jin
& Kuznetsov (2017) for spherical solid obstacles. To understand the unique vortex shape,
the microscale turbulent structures are classified into the following based on the swirl:
microvortices and turbulent eddies. The regions of swirl-dominated flow are identified by
determining the centre of swirling flow using the algorithm developed by Sujudi & Haimes
(1995). The microvortices are characterized by swirling flow. The turbulent eddies do not
possess a swirling vortex core. The turbulent structures that are observed in the Q-criterion
plots (figure 8) in the regions without vortex core lines (figure 9a) are turbulent eddies.
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Symmetry breaking of turbulent flow in porous media

The direction of the hairpin vortex structure is dependent on the microscale spatial
inhomogeneity in turbulence dissipation, brought about by distinct primary and secondary
flow regions. At Rep = 300 (case A3), the microvortex core lines are concentrated in the
secondary flow region (figure 9a). The swirling motion of the microvortex is localized in
the secondary flow region. The primary and secondary flow regions are separated by a
region of strong shearing flow (see vorticity contours in figure 9a). In order to understand
the reversed direction of the hairpin vortices, consider an unperturbed vortex filament
that is present in the secondary flow region (figure 9b). The microvortex is perturbed and
stretched in the z direction by turbulence. As it stretches, the perturbed microvortex is
subjected to the swirling secondary flow region and the highly dissipative primary flow
region simultaneously. The low velocity and the rotational nature of the secondary flow
region are favourable for the sustenance of the microvortex. The high rate of strain and the
presence of a pressure gradient in the primary flow region are adverse to the sustenance of
the microvortex. Therefore, the microvortex breaks up in the primary flow region, while
it continues to sustain in the secondary flow region. This results in the formation of the
reverse hairpin vortex with the head in the secondary flow region and the tail in the primary
flow region.

The head of the reverse hairpin vortex will reduce in size as the vortex is gradually
weakened due to energy dissipation in the flow. The phase difference in the microvortex
motions behind the different solid obstacles is visualized by comparing the size of the head
of the reverse hairpin vortices. In figure 8(b), the three-dimensional turbulent structures
for the two adjacent solid obstacles show that the head of the reverse hairpin vortex
is larger for the upstream vortices. Therefore, the upstream vortices are lagging behind
resulting in a phase difference in the vortex motions. This observation is supported by
the fact that the upstream vortices have a lower magnitude of pressure associated with
them when compared to their neighbours. The phase difference in the pressure forces
was also observed in figure 7(b). The reverse hairpin vortices in figure 8(b) possess
some degree of order in their arrangement, forming a ‘knit’ pattern of three-dimensional
turbulent structures. The formation of the pattern of similar turbulent structures that
arise from the microvortices is consistent with the formation of significant peaks in the
frequency distribution of the pressure forces (figure 5a). The microvortex patterns behind
all of the solid obstacles have a similar size, shape and turnover time. The summation
of the influence of an infinite number of these vortices on the solid obstacles leads to
the excitation of the pressure force at the frequency of vortex shedding. The inherent
randomness in the microvortex pattern is responsible for the excitation of the other
frequencies.

Before symmetry breaking, microvortices are not transported beyond a single pore space
(figure 9a). The microvortices transform into turbulent eddies in the shear-flow region.
These turbulent eddies are observed to move downstream beyond a single pore space
while continuing to diminish in size. The turbulent eddies have a random shape that
does not bear resemblance to the reverse hairpin vortices. On this basis, the domain of
influence of the microvortex motion behind one solid obstacle is limited to its neighbours.
An indirect influence is present from the propagation of turbulent eddies until they are
completely dissipated. After symmetry breaking, the distinction between the primary and
the secondary flow regions is lost, as is the distinction between regions of microvortices
and turbulent eddies. The flow separation point advances to a downstream location
resulting in the formation of a small vortex wake and a weak shear layer. The microvortices
propagate downstream and transform into turbulent eddies under the influence of
the near-wall dissipation and the pressure gradient from the solid-obstacle geometry.
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Figure 10. (a) Coherent turbulent structures visualized using the iso-surfaces of the Q-criterion for Rep = 489
(case A4). The Q-criterion is normalized using the maximum value and the iso-surfaces of Q/Qmax = 0.02 are
plotted. A sub-volume of dimensions (3s, 2s, 2s) of the REV-T is shown. (b) Instantaneous three-dimensional
flow streamlines projected on a plane at z = 0 overlaid on contours of static pressure. (c) Coherent turbulent
structures visualized using the Q-criterion for a sub-volume of dimensions (2s, 0.5s, 2s).

The degree of confinement of the turbulent structures in the pore space is reduced by
the occurrence of symmetry breaking evidenced by the microvortices travelling a greater
distance before completely dissipating.

At Rep = 489, the deviatory flow results in the formation of fine-scale turbulent
structures (figure 10), when compared to Rep = 300. Fine-scale turbulent structures are
formed because of the reduction in the width of the microvortex wake after symmetry
breaking. Fine-scale turbulent structures are also formed because of increased shredding
of the turbulent structures at higher Reynolds numbers (Wood et al. 2020). The ‘knit’
pattern in the microvortices (figure 8b) is no longer present due to increased turbulence
intensity. This is reflected in the loss of dominance of the vortex shedding frequency on
the pressure force and the distribution of the pressure force across a band of frequencies
(figure 5b). The overall distribution of turbulent structures is chaotic. The deviatory flow
is not evident from the Q-structures because of the formation of a mode of deviatory
flow that increases the tortuosity of the streamlines (figure 10b). For this reason, the
visualization of three-dimensional Q-structures is supplemented by the visualization of
two-dimensional projections of the flow streamlines. The streamline plot shows that the
flow around each solid obstacle consists of a single stagnation point and a detached
vortex system. Separation bubbles are formed when the location of the stagnation point
changes between adjacent solid obstacles. The low-pressure turbulent structures formed
in the detached vortex system (at obstacles 1 and 4 in figure 10c) are microvortices
with a vortex core line inside of them. The elongated, high-pressure turbulent structures
near the stagnation point (at obstacles 2 and 3 in figure 10c) are microvortices that are
impinging from the upstream neighbouring solid obstacle, marking the beginning of their
transformation to turbulent eddies.

The three-dimensional turbulent structures observed in figures 10(a) and 10(c) after
symmetry breaking bear no resemblance to the reverse hairpin structures and the ‘knit’
pattern observed before symmetry breaking (figure 8b). The reverse hairpin structures are
formed by the vortex stretching of a two-dimensional vortex structure that is semi-infinite
in the z direction at the time of formation. A virtually one-dimensional flow separation
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Figure 11. Skin-friction lines (black) plotted on the surface of the solid obstacles for the flow (a) before
symmetry breaking and (b) after symmetry breaking. The red and green lines are iso-lines of zero shear stress
indicating the flow separation line and the vortex regions, respectively.

line is formed in the rear of the solid obstacle (figure 11a). After symmetry breaking
(Rep = 489), the size of the vortex core decreases and fine-scale structures are formed.
The flow separation line after symmetry breaking is more complex (figure 11b). The flow
separation lines are two-dimensional and discontinuous with local flow re-reattachment,
which together result in the formation of finite three-dimensional vortex structures. The
microvortices are the primary source of turbulent structures in periodic porous media.
Therefore, the difference in the large-scale turbulent structures before and after symmetry
breaking results in the change in the turbulence intensity and degree of anisotropy.

The origin of microscale symmetry breaking can be traced from the following
differences in the microscale flow before and after symmetry breaking:

1. The nonlinear increase in the microscale flow stagnation pressure with increase in
the Reynolds number.

2. The change in the location and the number of flow stagnation points. The change
in the location of the flow separation points and the microvortex core size. The
formation of fine-scale turbulent structures as a result of the change in microvortex
size.

3. The disappearance of the order in the flow patterns after symmetry breaking and the
increased turbulence intensity and dissipation in the microscale flow.

The transient simulation that is shown in figure 6 is revisited to visualize the stages of
symmetry breaking. The flow field is three-dimensional for the entire duration of the
simulation. The microscale flow field is visualized using a two-dimensional projection of
the instantaneous flow streamlines (figure 12). Microscale flow structures are visualized
using three-dimensional coherent structures with the Q-criterion and two-dimensional
contour plots of vorticity magnitude (figure 13; supplementary movies 1 and 2 available at
https://doi.org/10.1017/jfm.2021.813). The stages of symmetry breakdown are summarized
in table 2.

The macroscale x-direction velocity increases when the applied pressure gradient is
increased. The use of a constant value of the Q-criterion normalized by the maximum
value for all of the time steps will reduce the visualization quality. Therefore, the
Q-criterion is normalized using the solid-obstacle diameter d and the instantaneous
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Figure 12. The transient stages (a) A, (b) B, (c) C, (d) D and (e) E of the symmetry-breaking process from
symmetric to deviatory flow. Instantaneous flow streamlines are seeded on the plane z = 0 and projected on the
contours of pressure on the plane at z =−s.

Stage Time tum/d Flow properties

A 0.00 The applied pressure gradient is increased to change Rep from 300 to 489.
A recirculating vortex is present in the secondary flow region

B 3.14 The magnitude of microscale pressure increases in response to the applied pressure
gradient

C 4.71 The three-dimensionality of the flow increases, fine-scale turbulent structures
appear. The recirculating vortex system breaks down into a recirculating system
of small turbulent structures

D 7.85 The high magnitude of stagnation pressure ‘plugs’ the flow, resulting in lateral
favourable pressure gradient locally. Deviatory flow follows the breakup of the
recirculating vortex behind column 2 of the REV

E 11.00 The flow around the remaining columns of the REV breaks symmetry, propagating
away from column 2

Table 2. The stages of symmetry breaking inferred from the transient simulation illustrated in figures 12
and 13.

macroscale x-direction velocity 〈u1〉i. The microscale flow field at stage A is taken as
the reference point before symmetry breaking (figure 12a). The flow streamlines show a
large recirculation zone in the secondary flow region with a size similar to the radius of
the circular-cylinder solid obstacles. The three-dimensional hairpin structures that were
introduced in figure 8(b) are visible as hairpin-shaped streaks in the vorticity magnitude
plot (figure 13c). The tail length of the reverse hairpin vortices increases from stage A to B,
signifying an increase in vortex deformation due to higher strain rate in stage B compared
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Figure 13. Transition in the three-dimensional flow features before symmetry breakdown due to increase in gi.
Three-dimensional turbulent structures coloured by pressure are visualized in the sub-volume (3s, 2s, 2s) of the
REV-T using iso-surfaces of Q(d/〈u1〉i)2 = 50. Turbulent structures are identified by the vorticity magnitude
distribution shown on the boundary of the REV-T. Vorticity contours below a magnitude of 5 are not displayed.

to A. The three-dimensional nature of the flow is not apparent in the flow streamline plots,
which is the case in subsequent time steps as well. However, the flow streamlines in the xy
plane clearly indicate the onset and development of symmetry breaking.

Flow recirculation in the secondary flow region before symmetry breaking forms a
strong pressure ‘plug’ in the flow. The word ‘plug’ is in quotation marks because it is
not a solid plug and therefore allows mass to flow through it. Before symmetry breaking,
two stagnation points are formed where the microvortex meets the solid obstacle on its
top and bottom surfaces (θ ∼ ±π/3 in figure 11a). The stagnation points are located in
the converging portion of the GPM (−π/2 <θ < 0 and 0 < θ <π/2). The stagnation point
creates a region of locally adverse pressure gradient, which is followed by the intrinsically
adverse diverging portion of the GPM (π/2 <θ <π and −π < θ <−π/2). The magnitude
of stagnation pressure increases by a factor of 100 during symmetry breaking, when
the applied pressure gradient is only increased by a factor of six (see figure 11b versus
figure 11a). A pressure ‘plug’ in the flow is formed by the substantial increase in the
stagnation pressure that increases the adversity of the pressure loss in the GPM. An adverse
pressure gradient in the turbulent flow increases turbulence dissipation and reduces the size
of the vortex structures (Lee & Sung 2008; Tanarro, Vinuesa & Schlatter 2020).

929 A2-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

81
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.813


V. Srikanth, C.-W. Huang, T.S. Su and A.V. Kuznetsov

Fine-scale turbulence structures are observed at tum/d = 4.71 as a result of the increased
adverse pressure gradient and the increase in Reynolds number (compare figures 13a
and 13c with 13b and 13d). The flow streamlines do not change significantly from stage
A to C, implying that the velocity distribution of the large-scale microscale flow is
unchanged. Recall that the flow transition from tum/d = 3.14 to 4.71 is characterized by an
increase followed by a decrease in the amplitude of oscillation of the y-direction pressure
force (figure 7). In stage C, the three-dimensionality of the flow field increases and the
reverse hairpin vortex structures are no longer visible. The large-scale microvortex breaks
down into smaller vortices that continue to possess the large-scale swirling motion. The
fine-scale microvortices rotate about the same vortex core, seen at stage A. However, the
large-scale swirling motion is weakened by the vortex breakdown and subjected to the
continuous interaction of the constituent small turbulent structures.

When the pressure ‘plug’ is formed in the streamwise direction (x direction), the
pressure gradient in the lateral direction (y direction) becomes favourable. The flow
instabilities (von Kármán and secondary flow instabilities) cause asymmetry in the
instantaneous pressure force that is acting on the solid obstacles. The asymmetry in the
y-direction pressure, compounded by the increase in the stagnation pressure, will introduce
a sufficient lateral favourable pressure gradient to sustain lateral flow. The y-direction
pressure force sustains the deviatory flow after symmetry breaking (figure 2a). Therefore,
only a trigger is required to induce symmetry breaking, after which the deviatory flow
is sustained by the lateral favourable pressure gradient. At stage D (figure 12d), the flow
behind the solid obstacles at column 2 of the REV-T begins to deviate from the symmetric
flow configuration. Symmetry breaking is triggered by the breakup of the swirling vortex
motion at the top. The vortex breakup is caused by the strong turbulent shear and the
interaction between the weaker turbulent structures in the secondary flow region. The
vortex breakup results in an efflux of fluid from the secondary flow region to the primary
flow region. The efflux is compensated by the influx of fluid from the bottom recirculating
vortex motion aided by the lateral favourable pressure gradient. The induced fluid flow in
the y direction triggers the symmetry-breaking process.

The information about the symmetry breaking of the flow around solid obstacles
in column 2 of the REV-T propagates to the neighbouring solid obstacles. The flow
around the solid obstacles in column 3, downstream of column 2, is the next to break
symmetry. The flow around the solid obstacles in column 1, upstream of column 2, also
changes to accommodate the deviatory flow, followed by column 4. Symmetry breaking to
deviatory flow propagates away from its location of incidence, similar to the propagation
of perturbations in waves. The final mode of deviatory flow field after symmetry breaking
is reflected in the flow streamlines at stage E (figure 12e). The mode is decided by the
phase of the vortex motion at the time that the symmetry-breaking perturbation reaches
the column of solid obstacles. The direction of the lateral favourable pressure gradient at
the time chooses the direction of symmetry breaking. This behaviour is more discernible
from the y-direction pressure force plots in figure 7(b). The mode of the deviatory flow
after symmetry breaking is sustained forever, as long as the Reynolds number (Rep) is
maintained above the critical value for symmetry breaking. An investigation of the modes
of deviatory flow due to symmetry breaking in porous media is beyond the scope of this
paper.

3.2. The influence of geometry and flow parameters on symmetry breaking
The different modes of deviatory flow will impart a unique contribution to the macroscale
flow properties. In order to understand how the microscale flow symmetry breaking
929 A2-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

81
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.813


Symmetry breaking of turbulent flow in porous media

π/4

π/6

π/12

0

0.4 0.5

10–1

10–3

10–5

0.4 0.5 0.6 0.7 0.80.6 0.7 0.8

O
ri

en
ta

ti
o
n
 w

it
h
 x

- 
ax

is

C
o
m

p
o
n
en

ts
 o

f 
th

e

m
ac

ro
sc

al
e 

R
S

T

Porosity ϕ Porosity ϕ

ϕ = 0.50 ϕ = 0.61 ϕ = 0.67 ϕ = 0.72

|τmacro,11|
|τmacro,22|
|τmacro,33|
|τmacro,12|
|τmacro,13|
|τmacro,23|

θmacro
θRST

Unit sphere with the Cartesian axes, the principal axes of the macroscale RST, and

the macroscale velocity vector direction

y

xz

y

xz

y

xz

y

xz

(a)

(c)

(b)

Figure 14. (a) The macroscale flow angle θmacro and the principal axis of the macroscale RST projected on
the x axis θRST and (b) the components of the macroscale RST (note log scale on vertical axis) versus porosity
ϕ for Rep = 1000. (c) The Cartesian axes (geometric axes), the principal axes of the macroscale RST and the
macroscale velocity vector in a three-dimensional unit sphere.

influences macroscale turbulence transport, the case of unidirectional deviatory flow is
considered to reduce the complexity of the analysis. This is a mode of deviatory flow
where the direction of symmetry breaking is identical behind all of the solid obstacles.
To enforce this particular mode, the deviatory flow field for an REV with only one solid
obstacle is periodically repeated and interpolated onto the REV-T with the 4 × 4 solid
obstacles. The flow solution is equilibrated and then sampled for turbulence statistics.

3.2.1. Porosity
The symmetry-breaking phenomenon is a result of the influence of geometric confinement
on the pressure distribution on the solid-obstacle surface. The porosity is the geometric
parameter that controls the degree of flow confinement in the porous medium. The
Reynolds number of the flow is fixed at Rep = 1000 and the porosity is decreased in the
range 0.80 ≥ ϕ ≥ 0.43 (table 3). The degree of flow symmetry breaking can be measured
by using the macroscale flow angle θmacro, introduced in § 3.1.1. The macroscale flow
angle varies continuously with the porosity between zero before symmetry breaking and
a finite value after symmetry breaking (figure 14a). The flow transitions from symmetric
to deviatory flow at the critical value of porosity, which lies between 0.67 and 0.72 for
the case of the circular-cylinder solid obstacles. Symmetry breaking is dependent on two
conditions that are related to the porosity: (1) asymmetry in the stagnation pressures before
symmetry breaking and (2) the proximity of the solid-obstacle surfaces. Together, these
conditions create the lateral favourable pressure in the secondary flow region. This is why
deviatory flow is non-existent at higher porosities even though the von Kármán instability
is present.
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Case Porosity (ϕ) Flow properties

B1 0.43 Deviatory flow – second configuration
B2 0.50 Deviatory flow – second configuration
B3 0.56 Deviatory flow – second configuration
B4 0.61 Deviatory flow – second configuration
B5 0.67 Deviatory flow – first configuration
B6 0.72 Deviatory flow – first configuration
B7 0.80 Symmetric flow

Table 3. The LES cases simulated to analyse the dependence of symmetry breaking on the porosity ϕ. The
solid obstacles are circular cylinders and the Reynolds number (Rep) is 1000 for all of these cases.

When the porosity is less than the critical value for symmetry breaking (ϕ < 0.72),
two flow configurations are observed within the deviatory flow regime. The first is
observed in the range 0.61 <ϕ < 0.72, where there is flow separation on either side
of the plane of geometric symmetry. There exists an asymmetry in the vortex core
diameter of the microvortices formed on either side of the plane of geometric symmetry.
The microvortices enter the primary flow region and they diminish in size in the
converging–diverging section of the solid-obstacle geometry. The second configuration
is observed in the range 0.43 < ϕ < 0.61, where the flow separation occurs on the same
side of the plane of geometric symmetry. The degree of asymmetry in the vortex core
diameter is less in the second configuration than in the first configuration. In the second
configuration, the microvortices impinge on the solid obstacles in the lateral direction.

Deviatory flow is a source of macroscale turbulence anisotropy in homogeneous porous
media with symmetric solid obstacles. The non-diagonal terms in the macroscale RST are
typically zero in such porous media because the microscale RST is an even function about
the plane of geometric symmetry (Chu et al. 2018). The microscale and macroscale RSTs
are defined in (3.2) and (3.3), respectively. The variable u′ refers to the microscale velocity
fluctuation. The naming convention followed in de Lemos (2012) is used here.

τmicro,ij = 〈u′
iu

′
j〉, (3.2)

τmacro,ij = ϕ〈〈u′
iu

′
j〉〉i. (3.3)

The double-averaged governing equations contain other terms than τmacro,ij that would
also be influenced by the deviatory flow. Terms such as the turbulent dispersion stress
〈〈iu′

i
iu′

j〉〉i and turbulent RST 〈〈u′
i〉i〈u′

j〉i〉 from macroscale velocity fluctuations also pertain
to turbulence. However, the turbulent dispersion stress dominates the turbulent Reynolds
stress and becomes virtually equivalent to the macroscale RST. This is shown in § 3.1.1
and also in the work of Kuwata & Suga (2015). The qualitative observations made
below about the principal axis of the macroscale RST can be expected for the turbulence
dispersion stress tensor as well. The non-turbulent stress terms such as dispersion
stress and macroscale convection are not analysed here. A comprehensive budget of the
double-averaged equations is beyond the scope of this paper but could be a valuable study
in future work. In this paper, the analysis of the macroscale RST is adequate to indicate
the implications of symmetry breaking on macroscale turbulence anisotropy. When the
microscale flow symmetry is broken, the microscale RST ceases to be an even function
about the plane of geometric symmetry. After volume averaging, the macroscale RST
has non-zero non-diagonal terms (figure 14b). The magnitude of τmacro,12 increases when
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Symmetry breaking of turbulent flow in porous media

the porosity decreases in the case of the first flow configuration (0.61 < ϕ < 0.72). The
magnitude of τmacro,12 decreases afterwards when the porosity decreases in the case of
the second flow configuration (0.43 < ϕ < 0.61). The magnitude of the xy microscale RST
τmicro,12 is higher in the microvortex region. In the first flow configuration, the magnitude
and the degree of asymmetry in the vortex core diameter are high, which results in the
higher magnitude of τmacro,12 in the first flow configuration. The components of the
macroscale RST τmacro,13 and τmacro,23 are virtually zero, since they are three orders of
magnitude less than the diagonal components. They are not exactly equal to zero since the
simulation has not been averaged for infinite time.

Symmetry breaking in the microscale flow field causes symmetry breaking between the
macroscale velocity vector and the macroscale RST. The principal axes of the macroscale
RST are rotated by an angle θRST from the Cartesian axes. The orientation of the principal
axis of the macroscale RST with respect to the Cartesian axes is determined by computing
its eigenvectors. The direction vector of the macroscale velocity is not identical to the
orientation of the principal macroscale Reynolds stresses θRST (figure 14a). In other
words, the macroscale RST is not oriented in the direction of the macroscale flow. This
suggests that the macroscale turbulence anisotropy cannot be taken into account by axis
transformation. The non-diagonal terms in the macroscale RST will need to be explicitly
modelled.

To summarize, the microscale flow breaks symmetry at a critical value of porosity due
to a lateral favourable pressure gradient that sustains macroscale deviatory flow. After
symmetry breaking, the macroscale velocity vector is oriented at an angle θmacro with
respect to the x axis. The influence of symmetry breaking extends beyond the macroscale
velocity vector. If the coordinate axes are rotated by an angle of θmacro such that the axes
are aligned with the macroscale velocity vector, the macroscale RST is not oriented along
the transformed axes. The principal axes of the macroscale RST are not aligned with either
the macroscale velocity vector or the Cartesian axes (figure 14c). This indicates a complete
breakdown of symmetry in both the microscale and macroscale flow without the presence
of a single plane of symmetry in the flow.

3.2.2. Reynolds number
The Reynolds number is another critical parameter that determines the possibility of
symmetry breaking, since it controls the magnitude of the stagnation pressure in the
microscale flow. The porosity is set equal to 0.5 and the Reynolds number is increased
from Rep = 100 to 10 000 (table 1). The critical value of Reynolds number for symmetry
breaking lies between Rep = 300 and 500, and the details of its progression are discussed
in §§ 3.1.1 and 3.1.2. A jump discontinuity is observed in the macroscale flow angle as the
Reynolds number crosses the critical value. The critical Reynolds number is a necessary
condition for symmetry breaking to occur. Unlike the porosity, symmetry breaking cannot
be parameterized using the Reynolds number to control the deviatory flow. When the
Reynolds number is changed, deviatory flow can either emerge or disappear resulting in a
binary change with zero or a constant value of θmacro depending on the porosity. Whereas,
an increase in the porosity can result in a non-binary, incremental change in θmacro.

The anisotropy in the macroscale RST of turbulence after symmetry breaking is evident
for all values of Reynolds numbers above the critical value (figure 15). Microscale
turbulence is expected to become more isotropic as the Reynolds number increases
(Wood et al. 2020). However, the deviatory flow after symmetry breaking leads to
an increase in τmacro,12 with the Reynolds number, which results in an increase in
the macroscale anisotropy of turbulence. The consistent increase in τmacro,12 with the
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Case Porosity (ϕ) Reynolds number (Rep)

C1 0.50 1000
C2 0.67 1000
C3 0.50 10 000

Table 4. The LES cases simulated to analyse the dependence of symmetry breaking on the solid-obstacle
shape. The solid-obstacle shape is square cylinder for all of these cases.
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Figure 15. The components of the macroscale RST versus Reynolds number for ϕ = 0.5.

Reynolds number implies that the macroscale anisotropy is not formed from the microscale
turbulence structures. In § 3.1.2, the microscale turbulence structures after symmetry
breaking were observed to be three-dimensional fine-scale structures as opposed to the
two-dimensional large-scale structures observed before symmetry breaking. Therefore, the
origin of macroscale anisotropy is purely the asymmetry in the microscale flow topology
arising from symmetry breaking. Here, microscale flow topology refers to the microscale
velocity and pressure distribution, the location of the primary and secondary flow regions
and the location and the number of flow separation and stagnation points.

3.2.3. Solid-obstacle shape
The shape of the solid obstacles influences the vortex shedding process and the location
of flow stagnation points, which are the source of the symmetry-breaking phenomenon.
Therefore, deviatory flow cannot occur for all solid-obstacle shapes. Take for instance
a square-cylinder solid obstacle forming a porous medium with a porosity of 0.5. This
value of porosity is within the critical porosity for symmetry breaking in a porous matrix
with circular-cylinder obstacles. Deviatory flow is not observed for the square-cylinder
solid obstacles for any of the simulated cases (table 4). The Hopf bifurcation has been
reported to occur for square solid obstacles (Agnaou et al. 2016). An asymmetric vortex
pair is formed behind each solid obstacle (figure 16). Microscale flow symmetry is broken
as a result of these instabilities, but it does not get translated into deviatory flow in the
Reynolds-averaged macroscale flow field.

In the case of a square-cylinder porous medium with low porosity (case C1), the flow
separation and stagnation occur at the vertices of the square shape (figure 16b). Thus,
the locations of the flow separation and stagnation are predetermined by the geometry.
A low value of porosity is required for the formation of a lateral favourable pressure
gradient. The microvortices formed in this case are characterized by slow turnover and
resemble the flow in an open cavity flow (figure 16b). The primary and secondary flow
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Figure 17. The convergence of (a) the applied momentum source and (b) the macroscale turbulence kinetic
energy (TKE) with increase in the REV size.

regions are distinct. The primary and secondary flow regions are separated by a strong
shear layer (figure 16a), which ‘channels’ the primary flow with little intervention from
the secondary flow. The secondary flow region is confined between the solid obstacles
by the primary flow. A sufficient magnitude of lateral favourable pressure gradient is
not observed when the porosity is increased (case C2) or when the Reynolds number is
increased (case C3). The solid-obstacle shape must possess a greater degree of circularity
for the symmetry-breaking phenomenon to occur. The occurrence of deviatory flow for
more solid-obstacle geometries is shown in the supplementary material.

4. Summary

A symmetry-breaking phenomenon is reported to occur in microscale turbulent flow
inside periodic porous media with a low porosity. The symmetry-breaking phenomenon
results in a macroscale deviatory flow that is oriented with the direction of applied
pressure gradient by an angle θmacro. The Reynolds-averaged deviatory flow satisfies the
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Figure 18. Turbulence energy spectrum for LES cases (a) ϕ = 0.50, (b) ϕ = 0.61, (c) ϕ = 0.72 and (d) ϕ = 0.80
at Rep = 1000. The red square data points correspond to �xmax/s = 0.03, green triangles to �xmax/s = 0.02, blue
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conservation of momentum in the lateral direction with a net zero force, even though
the stress distribution is not symmetric. Residual values of the viscous and the pressure
components of the lateral drag force have equal magnitude and act in opposite directions
to cancel each other out. In the instantaneous flow field, symmetry breaking originates
from a low-frequency flow instability that is formed by the competition of the macroscale
inertial and pressure forces. The formation of the low-frequency flow instability results
in high-amplitude oscillations of the pressure force. High-frequency oscillations of the
pressure force due to the von Kármán instability in vortex shedding are superimposed on
the low-frequency oscillations. The transition to turbulence precedes the occurrence of
the symmetry-breaking phenomenon. Turbulence in the flow aids the symmetry-breaking
phenomenon through the breakup of microvortices and the increase in the adverse pressure
gradient. It also leads to the formation of random modes of deviatory flow. The occurrence
of the symmetry-breaking phenomenon is marked by the disappearance of the low-
and high-frequency oscillations from the power spectrum. Instead, the power spectrum
consists of a band of frequencies that are characteristic of turbulence. When the applied
pressure gradient is increased such that the Reynolds number is above the critical value
for symmetry breaking, the amplitude of the oscillation of the pressure forces increases
to a critical point. The high amplitude of the pressure force induces symmetry breaking
and flow in the lateral direction. After symmetry breaking, the amplitude of oscillation
of the pressure force reduces. This shows that symmetry breaking diminishes the highly
unsteady flow instabilities that were present in the subcritical Reynolds numbers. The
phase difference that is present in the pressure forces acting on the individual solid
obstacles leads to the formation of the modes of deviatory flow. In infinitely periodic
porous media, infinite combinations of the two directions of symmetry breaking are
possible behind each solid obstacle. Each combination will result in a unique mode of the
deviatory flow. The direction of symmetry breaking is influenced by the phase of vortex
shedding behind each solid obstacle and its immediate neighbours.

Symmetry breaking first emerges in the microscale flow field, which is then transferred
to the macroscale flow through the pressure drag force. The microscale flow field before
symmetry breaking consists of recirculating vortex tubes that deform to form a knit pattern
of three-dimensional reverse hairpin vortices. The microvortices form flow stagnation
points on the solid-obstacle surface on either side of the plane of geometric symmetry.
The stagnation points are located in the converging portion of the GPM geometry. A net
adverse pressure gradient is experienced in the direction of applied pressure gradient as
a result of the flow stagnation. When the applied pressure gradient is changed to induce
symmetry breaking, the flow structures break down from the orderly knit pattern of large
hairpin structures to random fine-scale structures. Thus, the recirculating vortex tube is
broken down into a recirculation zone consisting of smaller turbulent structures. The
adverse pressure gradient experienced by the flow in the primary flow region breaks
up the large-scale turbulent structures into fine-scale turbulent structures. Meanwhile, a
nonlinear increase in the magnitude of flow stagnation pressure increases the strength
of the adverse pressure gradient, forming a pressure plug in the converging portion of the
GPM. The breakup of a recirculation vortex system triggers microscale symmetry breaking
through a lateral favourable pressure gradient. Symmetry breaking propagates away from
the location of incidence resulting in deviatory flow throughout the REV. The direction of
deviatory flow and the formation of the modes are decided by the phase of vortex shedding
at the time of symmetry breaking. Deviatory flow is sustained by the lateral favourable
pressure gradient provided the Reynolds number is maintained above the critical
value.
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solid-obstacle surface for case B2.

Deviatory flow due to symmetry breaking alters the macroscale properties of turbulence
in porous media. The asymmetry in the microscale flow field results in non-zero
non-diagonal components of the macroscale RST, especially in the plane of symmetry
breaking. The principal axes of the macroscale RST form a three-dimensional angle with
the geometric axes. The orientation of the principal axes does not coincide with either
the macroscale velocity vector or the geometric axes, signifying a complete breakdown
of symmetry in the flow. Therefore, flow symmetry breaking is a source of macroscale
turbulence anisotropy in symmetric porous media.

The occurrence of symmetry breaking is dependent on the porosity, Reynolds number
and solid-obstacle shape. Critical values of porosity and Reynolds number are required
as a necessary condition for symmetry breaking. The symmetry-breaking phenomenon
is driven by the presence of a high magnitude of lateral favourable pressure gradient in
a confined geometry. Two configurations of microscale flow separation about the plane
of geometric symmetry occur based on the degree of confinement in the geometry.
They possess unique properties due to the difference in the location of flow separation
and stagnation. The circularity of the solid-obstacle shape also decides the location of
flow separation and stagnation. Therefore, the circularity of the solid-obstacle shape is a
necessary condition for symmetry breaking as well.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2021.813.
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Appendix A. Validation of the size of the REV-T

In this appendix, the convergence of the macroscale flow solution at the chosen REV size
is demonstrated. Case B7 from table 3 is chosen as the representative case. The turbulent
structures will be restricted the least at a porosity of 0.8 by the solid boundaries of the
obstacles. If the REV size is adequate for ϕ = 0.8, it is reasonable to assume that it will be
adequate for cases with lower porosity. At ϕ = 0.8, the solid-obstacle shape has the least
influence on the macroscale properties among all of the cases. A Reynolds number of 1000
is chosen since a majority of cases assume this value or less. Unlike Rep = 225, the flow at
Rep = 1000 is not close to the turbulence transition point and is, therefore, representative
of the limiting cases of turbulence transport in this paper with regard to REV size.

With these parameters fixed, the REV size is increased from 1s to 5s in increments of 1s.
A grid resolution of 0.02s is used to perform LES as per § 2.2.1 for each of the REV sizes.
Two macroscale quantities are analysed in this study: the mean applied momentum source
〈gi〉 and the macroscale turbulent kinetic energy 〈k〉i (figure 17). The applied momentum
source term is directly linked to the drag force on the surface of the solid obstacles
inside the porous medium. The macroscale turbulent kinetic energy indicates whether an
adequate sample of the turbulence fluctuations is captured by the REV. Both 〈gi〉 and 〈k〉i

converge at an REV size of 4s with changes of only 0.4 % and 0.25 % respectively when
the REV size is increased to 5s. When the size of the REV is increased from 1s, there
is a staggered trend observed depending on whether an odd or even number of obstacles
are present in the REV. The cause of the staggering is a decoupling between the odd- and
even-number REVs. The decoupling is brought about by the influence of the periodic
boundary condition that is imposed, and also the number of modes of the microscale
flow instability that can be present in the domain. The distinction between the odd- and
even-number REVs diminishes at the REV size of 4s. This offers further confirmation that
the REV size of 4s is adequate for the simulations presented in this paper. We decreased
the REV size in the z direction for cylindrical solid-obstacle geometries from 4s to 2s. The
turbulence two-point correlation function was found to decorrelate in the z direction in a
span of 1s. The turbulent structure visualizations also showed smaller turbulent structure
size in the z direction.

Appendix B. Validation of the numerical grid

In this appendix, the adequacy of the grid resolution is established for the LES and DNS
methods. The grids are designed using an a priori estimation using the Taylor microscale
λ. A majority of simulations that are presented in this work adopt a Reynolds number of
1000 or less. The value of λ/d at this Reynolds number is estimated as 0.1 according to the
definition given in Pope (2000). The porosity of the medium is varied from 0.80 to 0.43.
Since the size of the largest eddy is expected to be of the size of the pore, grid resolution
tests are performed for an REV with a single solid obstacle by parameterizing the cell sizes
(non-dimensionalized by the pore size). The grid resolution tests have been performed for
four values of porosity, ϕ = 0.50, 0.61, 0.72 and 0.80, of a medium with circular-cylinder
solid obstacles (see tables 5 and 6). A Reynolds number of 1000 has been chosen for
the tests. The idea behind performing the grid resolution test is to determine whether the
contribution of the energetic scales of motion is captured.

For LES and DNS, the turbulence kinetic energy spectrum is used to identify the scale
regimes of turbulence that have been resolved in this work. The turbulence kinetic energy
of the inertial range of eddies is characterized by a (−5/3) slope in the wavenumber domain
according to the Kolmogorov similarity hypothesis. The velocity fluctuation correlation
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Coarse grid, Intermediate grid, Fine grid,
Porosity ϕ �xmax/s = 0.03 �xmax/s = 0.02 �xmax/s = 0.01

0.50 0.65 0.76 0.76
0.61 0.55 0.56 0.72
0.72 0.48 0.53 0.58
0.80 0.53 0.42 0.49

Table 5. The maximum value of non-dimensional near-wall grid spacing, �y+
max, measured on the surface of

the solid obstacles for the grid resolution test cases. The value of the grid size �xwall/s was set equal to 0.001
for all of the cases.

Coarse grid, Intermediate grid, Fine grid,
Porosity ϕ �xmax/s = 0.03 �xmax/s = 0.02 �xmax/s = 0.01

0.50 Minimum 0.37 0.42 0.54
Average 0.90 0.94 0.98

0.61 Minimum 0.56 0.63 0.66
Average 0.93 0.95 0.98

0.72 Minimum 0.48 0.48 0.49
Average 0.93 0.96 0.99

0.80 Minimum 0.46 0.46 0.60
Average 0.93 0.96 0.99

Table 6. The value of LES_IQ measured in the fluid volume for the grid resolution test cases. Both the
minimum and the volume-averaged values are reported (ranges from 0 to 1, high values indicate high resolution
with a large fraction of the turbulence kinetic energy being resolved).

function Rij is calculated at the midpoint of the void volume using (A1). The operator 〈 〉
denotes Reynolds averaging, x0 is located at the centroid of the void space (see figure 1a)
and r varies along the z direction. The Fourier transform of the correlation function Rij
is obtained using an fast Fourier transform routine and the energy spectrum is computed
as the power spectral density of the Fourier-transformed correlation function. The present
formulation of the turbulence energy spectrum assumes isotropy. It is used only to serve as
a measure of grid resolution. The turbulence kinetic energy spectra versus the wavenumber
(ks) for the LES test cases are shown in figure 18.

Rij(r, x0) = 〈u′
i(x0)u′

j(x0 + r)〉. (A1)

The energy spectrum plots show that the dissipative scales of turbulence are not resolved
by these grids. A grid resolution of �xmax/s = 0.03 is not sufficient to capture the inertial
subrange. The grids with �xmax/s = 0.02 offer a reasonable compromise between grid
resolution and computation time for LES. It is sufficient to capture the large-scale turbulent
vortex system that scales with (s − d), which corresponds to a ratio of 10 : 1 with s. The
turbulence energy spectra for all three grid sizes are almost identical for ks = 1–10 with
only the coarse grid starting to show deviation at ks = 10. The LES cases in subsequent
discussions will adopt �xmax/s = 0.02 as the grid resolution. The DOETKE subgrid model
(§ 2.2.1) was set active to capture the unresolved scales of turbulence. A quality measure
known as the LES index of quality or LES_IQ (Celik, Cehreli & Yavuz 2005) has
also been calculated for the LES test cases. LES_IQ provides the fraction of the total
turbulence kinetic energy that is resolved by the grid. Pope (2004) recommends that 80 %
of the energy must be resolved in LES, resulting in a quality criterion of LES_IQ > 0.8.
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Celik et al. (2005) remark that simulations with LES_IQ > 0.9 may be considered to be
of DNS quality. This is the case for all of the LES in this work after time averaging. The
minimum and spatially averaged values of LES_IQ at an instant in time are reported in
table 6. The minimum instantaneous value is less than 0.8 for all of the test cases. The
minima are located at the core of the small streaks of turbulent structures that interact with
the solid obstacles. The streaks are local, and the low LES_IQ that is associated with them
will vanish when it is averaged in the z direction. Premature dissipation of eddies in the
near-wall region is expected in this work, which is derived from the diffusive nature of
the subgrid model. For the DNS, a grid size of �xmax/s = 0.0095 is chosen. In figure 18,
the energy density for �xmax/s = 0.01 at ks = 100 is smaller than that of the largest eddies
by a factor of 10−4 for all the tested values of porosity. Further grid refinement will result
in a change in the solution that is not paramount to the study of the large-scale motions.
The primary reason for DNS resolution is to minimize the error, which is less than 10 %
throughout the DNS case.

The grid study for DNS is performed by repeating the LES cases with a high-order
DNS solver, Incompact3d (Laizet & Lamballais 2009). The purpose of using Incompact3d
is to independently verify the occurrence of the symmetry-breaking phenomenon and to
confirm the ability of ANSYS Fluent to perform DNS calculations. For the Incompact3d
simulations, the finite difference method is used with sixth-order spatial discretization and
second-order explicit time integration. The spectral method is used to solve the pressure
Poisson equation. Cartesian grids are used for the REV and the solid obstacles are imposed
using the immersed boundary method. The symmetry-breaking phenomenon is observed
in the DNS using Incompact3d. The resulting turbulence energy spectra are plotted in
figure 19. The magnitude range of the turbulence kinetic energy is similar for the LES
and DNS cases. For the wavenumber range ks = 10–100, the features of the turbulence
energy spectrum at the different values of porosity are also similar. For ϕ = 0.5 and 0.61,
the spectra in ks = 10–100 for the three grid resolutions are spaced apart. For ϕ = 0.72
and 0.8, the spectra in ks = 10–100 are identical. Therefore, the observations made for the
LES can be extended to the DNS. For the DNS, a grid resolution of �xmax/s = 0.0095 is
finer than any of the cases shown in figure 18. ANSYS Fluent is used for DNS since it
supports body-fit grids.

Appendix C. Surface stress distribution for the Reynolds-averaged flow in case A4

In this appendix, we provide additional plots that support figure 2(a). The momentum
conservation in the y direction for the deviatory flow for the Reynolds-averaged flow
field is ensured by the y-direction pressure and viscous forces (defined in (3.1)). The
inertial and applied forces are zero in the y direction for the Reynolds-averaged flow.
The pressure and viscous stresses are distributed on the solid-obstacle surface such that
the y-direction resultant force is zero. Figure 20 shows the y-direction pressure and viscous
stress distributions on the surface of a single solid obstacle for case B2 as per the definition
given under the integral symbol in (3.1). Note that the deviatory flow results in asymmetric
stress distributions on the surface of the solid obstacle. The resulting pressure and viscous
forces in the y direction are non-zero in deviatory flow (unlike in symmetric flow). The
forces are calculated by integrating the stress distributions over the solid-obstacle surface
as given in (3.1). Therefore, it is important to note that a point-by-point match between the
pressure and viscous stresses is not expected.

The deviatory flow forms a high-stagnation-pressure region in the lower-left quadrant
of the cylindrical solid obstacle. Therefore, the y-direction pressure force is going to
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act in a positive direction. In case B2, the y-direction pressure force divided by ρg1d is
8.903 × 10−5 m2. Note that the total surface area of the solid obstacles inside the REV is
8.037 × 10−3 m2. The y-direction force magnitude is 5 % of that in the x direction. The
x-direction pressure force divided by ρg1d is 1.793 × 10−3 m2. Note that we do not apply
any pressure gradient in the y direction, but we apply a pressure gradient in the x direction
to sustain the flow. Therefore, we consider the y-direction forces to be a significant
contribution brought by symmetry breaking. The resultant instantaneous pressure force
in the y direction causes the deviatory flow. The microvortices are located on the top-right
quadrant of the cylinder resulting in low shear magnitudes in that location. The bifurcation
of the flow at the stagnation point (lower-left quadrant) forms high magnitudes of shear
stress. Due to a lack of symmetry in the shear stress distribution, there is a net y-direction
shear force in the negative direction. The y-direction viscous force divided by ρg1d is
−8.949 × 10−5 m2. Since momentum must be conserved, the y-direction pressure and the
y-direction shear forces have equal magnitudes so that they cancel each other by acting
in opposing directions. The margin of error in obtaining a zero net force (divided by
ρg1d) is 4.6 × 10−7 m2, which is two-orders-of-magnitude less than the magnitude of the
y-direction residual forces. The small numerical error arises from the finite time interval
used for sampling the flow variables. While two orders of magnitude is an adequate
tolerance for the statistically averaged variables in this study, note that the error will
decrease further the closer we are able to get to an ‘infinite’ sampling time interval.
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