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Enstrophy production and flow topology are numerically investigated for statistically
stationary compressible isotropic turbulence in vibrational non-equilibrium with a
large-scale thermal forcing. The net enstrophy production term is decomposed into
solenoidal, dilatational and isotropic dilatational terms based on the Helmholtz
decomposition. From the full flow field perspective, the net enstrophy production
mainly stems from the solenoidal term. For the dilatational and isotropic dilatational
terms, although their local magnitudes can be considerable, the positive values in the
compression region and the negative values in the expansion region cancel out on average.
For the solenoidal component of the deviatoric strain-rate tensor, the statistical properties
of its eigenvalues and alignments between vorticity and its eigenvectors are nearly
independent of the local dilatation and vibrational relaxation. The solenoidal components
of enstrophy production along three eigendirections are thus mainly affected by the
vorticity. For the dilatational component of deviatoric strain-rate tensor, the statistical
properties of its eigenvalues and alignments between vorticity and its eigenvectors closely
relate to the local dilatation and vibrational relaxation. The dilatational components of
enstrophy production along three eigendirections are therefore affected by the vorticity,
eigenvalues and alignments between the vorticity and eigenvectors. The topological
classification proposed by Chong et al. (Phys. Fluids, vol. 2, issue 5, 1990, pp. 765–777)
is employed to decompose the flow field into various flow topologies. In the strong
compression and strong expansion regions, the relaxation effects on the volume fractions
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of flow topologies and their relative contributions to the local enstrophy production are
significant.

Key words: compressible turbulence, isotropic turbulence

1. Introduction

The small-scale dynamics of turbulence can be described using the velocity gradient
tensor, and is closely related to many important turbulent flow processes, including viscous
dissipation of kinetic energy, enstrophy production and intermittency. There are numerous
investigations on the statistical properties of the vorticity field, enstrophy transfer and
strain-rate tensor for incompressible turbulent flows (Hamlington, Schumacher & Dahm
2008; Wallace 2009; Zhou et al. 2016; Carter & Coletti 2018). Ashurst et al. (1987)
pioneered numerical investigations of the alignments between vorticity and eigenvectors
of the strain-rate tensor in incompressible isotropic turbulence and homogeneous shear
turbulence. They found that the vorticity tends to align with the intermediate strain-rate
eigenvector, and the strain-rate eigenvalues have a preferred ratio of −4.0:1.0:3.0 in the
highly dissipative region. Tsinober, Kit & Dracos (1992) experimentally investigated the
velocity gradients in both homogeneous and inhomogeneous incompressible turbulence
based on the multi-hot-wire technique. Their results confirmed the strong tendency of
alignment between the vorticity and the intermediate strain-rate eigenvector. Meanwhile,
the preferred eigenvalue ratio was found to be −3.8:1.0:3.1, very close to −4.0:1.0:3.0.
These behaviours were also observed in the later investigations for a wide variety of
incompressible turbulent flows (Lüthi, Tsinober & Kinzelbach 2005; Buaria, Bodenschatz
& Pumir 2020). More details about the velocity gradient tensor in incompressible turbulent
flows can be found in the comprehensive review by Meneveau (2011).

Compared with incompressible turbulence, there are much fewer investigations on
the vorticity field and strain-rate tensor in compressible turbulent flows. Erlebacher
& Sarkar (1993) numerically investigated the velocity gradient tensor in a weakly
compressible homogeneous shear turbulence. A preferred strain-rate eigenvalue ratio of
−4.0:1.0:3.0 and the similar alignments between vorticity and strain-rate eigenvectors
were observed as in incompressible flows. Their results revealed that the statistics
of the velocity gradient tensor are not significantly modified by the local dilatation
when the turbulent Mach number is smaller than 0.3. Furthermore, the most probable
eigenvalue ratio for the dilatational component of deviatoric strain-rate tensor is found
to be −2.2:1.0:1.2 in the strong compression region, indicating the dominant role of
sheet-like structures in this region. Lee, Girimaji & Kerimo (2009) performed numerical
simulations of decaying compressible isotropic turbulence with initial turbulent Mach
numbers up to 0.885, wherein the strain-rate eigenvalue ratio of −4.0:1.0:3.0 and
the alignments between vorticity and strain-rate eigenvectors still hold, although the
preferential alignments are weakened in the strong compression region. One can expect
that a stronger compression could show observable impacts. For example, in Wang et al.
(2012), with the turbulent Mach number is around 1.0, although the eigenvalue ratio of the
solenoidal strain-rate tensor of approximately −3.7:1.0:2.7 is in good agreement with that
in the incompressible turbulence, the eigenvalue ratio of the dilatational strain-rate tensor
tends to be −1.0:0.0:0.0 in the high compression region, and the most probable eigenvalue
ratio of the strain-rate tensor is approximately −3.0:1.0:2.5 in the overall flow field. They
also found that the strong local compression motion enhances the enstrophy production,
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while the strong local expansion motion suppresses the enstrophy production by vortex
stretching.

A general classification of local flow topology based on the three invariants of
the velocity gradient tensor was proposed by Chong, Perry & Cantwell (1990). For
incompressible turbulence, the first invariant (P) is null, and the local flow topology is fully
characterized by the second (Q) and third (R) invariants. Extensive studies on the statistical
properties in the Q–R plane have been performed numerically and experimentally (Nomura
& Post 1998; Nomura & Diamessis 2000; Bijlard et al. 2010). A universal teardrop shape of
the joint probability density function (PDF) between the second and third invariants was
observed for a wide variety of incompressible turbulent flows, including wall-bounded
flows (Blackburn, Mansour & Cantwell 1996; Chong et al. 1998), isotropic turbulence
(Ooi et al. 1999) and the turbulence/non-turbulence interface in jets (da Silva & Pereira
2008), etc.

Relevant investigations on the flow topology of compressible turbulence are relatively
limited (Wang & Lu 2012; Vaghefi & Madnia 2015; Danish, Sinha & Srinivasan 2016;
Parashar, Sinha & Srinivasan 2019; Wang et al. 2020). Pirozzoli & Grasso (2004) reported
that the joint PDFs of the second and third invariants of the velocity gradient tensor in
decaying compressible isotropic turbulence share a similar teardrop shape at various initial
turbulent Mach numbers. Furthermore, the conditional average of the second invariant
of the deviatoric strain-rate tensor with respect to the third one always scales with the
1/3 power of the discriminant of the velocity gradient tensor. Suman & Girimaji (2010)
numerically investigated the local flow topology in compressible isotropic turbulence and
analysed the dilatational effect on the flow topology. The investigation was based on the
joint PDF of the second and third invariants of the velocity gradient tensor conditioned on
the local dilatation. They showed that, at low dilatational levels, the local flow topology is
similar to incompressible turbulence, while at high dilatational levels, the flow structures
are significantly changed. At a higher turbulent Mach number of around 1.0 (Wang et al.
2012), in the compression region, the teardrop shape of the joint PDF exhibits a more
extended tail in the fourth quadrant, which stems from the shocklet structures. In contrast,
in the expansion region, the joint PDF takes a more rounded shape with a shortened
bottom-right tail, and a nearly symmetric joint PDF appears in the strong expansion region.

In high-speed flows of practical interest, the hypersonic speed and/or the extreme levels
of shear result in a high temperature in the shock layer and boundary layer (Candler
2019). The vibrational non-equilibrium phenomenon resulting from the high temperature
thus widely exists in the high-speed flows. The advent of vibrational relaxation has
a profound impact on the flow dynamics (Fiévet & Raman 2018; Knisely & Zhong
2020), and renders the statistical properties of compressible turbulence more complicated.
The investigations of the statistical properties of compressible isotropic turbulence in
vibrational non-equilibrium were pioneered by Donzis & Maqui (2016), and followed
by Khurshid & Donzis (2019) and Zheng et al. (2020, 2021). In our companion paper
(Zheng et al. 2021), we numerically simulated the statistically stationary compressible
isotropic turbulence in vibrational non-equilibrium with a large-scale thermal forcing.
It was revealed that the flow structures and compressibility are significantly modified
due to the combined effects of vibrational relaxation and large-scale thermal forcing,
especially for the cases with a turbulent Mach number of approximately 0.22. To our
knowledge, the statistical properties of the small-scale structures of compressible isotropic
turbulence in vibrational non-equilibrium have never been investigated systematically.
In this work, we mainly focus on the combined impacts of vibrational relaxation and
large-scale thermal forcing on the statistical properties of the strain-rate tensor, vorticity
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field, enstrophy production and flow topology. Such a comprehensive investigation would
further deepen our understanding of small-scale features of compressible turbulence in
vibrational non-equilibrium. The large amount of conditional statistics in current study
will contribute to the development of accurate models for compressible turbulence in
vibrational non-equilibrium.

The rest of paper is organized as follows. In § 2, the governing equations,
thermodynamic and transport properties of compressible turbulence and a brief
description of the numerical methodology will be introduced. The one-point statistics
of the current simulated flows, including the statistical properties of the strain-rate
components and vorticity, are given in § 3. The combined effects of vibrational relaxation
and large-scale thermal forcing on the statistical properties of enstrophy production and
flow topology are respectively presented in §§ 4 and 5. Finally, a discussion building the
connection among various observations and the concluding remarks are provided in §§ 6
and 7.

2. Computational details

2.1. Governing equations and numerical method
In the current simulations, non-reactive mono-species gases and Newtonian fluids
are considered, for which the dynamic viscosity relies only on the temperature.
The dimensionless governing equations for compressible turbulence in vibrational
non-equilibrium can be written as follows (Donzis & Maqui 2016; Zheng et al. 2021):

∂ρ

∂t
+ ∂(ρuj)

∂xj
= 0 (2.1)

∂(ρui)

∂t
+ ∂[ρuiuj + pij]

∂xj
= 1

Re
∂σij

∂xj
+ Fi (2.2)

∂ε

∂t
+ ∂[(ε + p)uj]

∂xj
= 1

α

∂

∂xj

(
κtr

∂Ttr

∂xj
+ κv

∂Tv

∂xj

)
+ 1

Re
∂(σijui)

∂xj
− Λ + FI + Fjuj (2.3)

∂Ev

∂t
+ ∂(Evuj)

∂xj
= 1

α

∂

∂xj

(
κv

∂Tv

∂xj

)
+ E∗

v − Ev

τv

(2.4)

p = ρTtr/(γrM2) (2.5)

where ρ, ui, p, Ttr and Tv are the dimensionless density, velocity components,
pressure, translational–rotational and vibrational temperatures, respectively. The total
energy ε includes the kinetic energy (ρujuj/2), and the translational–rotational (Etr =
5ρTtr/(2γrM2)) and vibrational (Ev) energies. The dimensionless, large-scale forcings to
the fluid momentum and the translational–rotational energy are respectively denoted as
Fj and FI , which are explained in more detail in the appendix of Zheng et al. (2021). A
spatially uniform thermal cooling function Λ is adopted to sustain the internal energy in
a statistically steady state. In the equation of state (2.5), only the translational–rotational
temperature Ttr is adopted since the pressure mainly stems from the translational motion
of molecules rather than the rotational and vibrational motions (Vincenti & Kruger 1965).
The reference Reynolds number Re = ρrUrLr/μr, the reference Mach number M = Ur/cr
and the reference Prandtl number Pr = μrCpr/κr are three governing parameters. Here,
ρr, Ur, Lr and μr are respectively the reference density, velocity, length and viscosity
coefficient. The reference speed of sound is given by cr = √

γrRTr, where R is the specific
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gas constant and Tr = 1200 K is the reference temperature. The parameter γr = Cpr/Cvr
is the ratio of specific heat at constant pressure Cpr to that at constant volume Cvr ,
approximately equalling 1.324 according to the ratio of specific heats of dry air at
Tr = 1200 K. The dimensionless parameter α is defined as α ≡ PrRe(γr − 1)M2, where
Pr equals 0.71.

The vibrational energy per unit volume in equilibrium (E∗
v) and non-equilibrium (Ev)

for diatomic molecules, and the viscosity stress σij are given as

E∗
v = ρθv

γrM2[exp(θv/Ttr) − 1]
, (2.6)

Ev = ρθv

γrM2[exp(θv/Tv) − 1]
, (2.7)

and

σij = μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3
μθij. (2.8)

The parameter θv is the characteristic vibrational temperature normalized by Tr, while θ =
∂uk/∂xk is the velocity divergence. The temperature-dependent viscosity (μ) and thermal
conductivity coefficients (κtr and κv) are specified by the Sutherland and Eucken laws
(Vincenti & Kruger 1965; Anderson 2006). For their detailed expressions, please refer to
our previous publication (Zheng et al. 2020).

The vibrational rate Qv = (E∗
v − Ev)/τv in the vibrational energy governing equation

(2.4) is based on the widely used Landau–Teller relaxation model. The dimensionless
relaxation time (τv) relies closely on the local temperature and pressure, and is roughly
calculated by

τv = (C/p) exp(K2/Ttr)
1/3. (2.9)

Here, C and K2 are dimensionless constants relating to the molecular structure of gases.
In the current simulations, the dimensionless parameter 〈Kτ 〉 = 〈τv〉/τη is adopted to
characterize the time scale of the relaxation process, where the 〈 · 〉 operator stands for
the spatial average. Also, τη = [〈μ/(Reρ)〉/ε]1/2 is the Kolmogorov time scale, and
ε = 〈σijSij/Re〉/〈ρ〉 is the kinetic energy dissipation rate due to viscosity. The value of
K2 is set to be 2000.0, while the constant C is adjusted to obtain a specific 〈Kτ 〉 value.

The governing equations of compressible turbulence are numerically solved in a cubic
box with a side length equalling 2π and a 5123 grid resolution. Periodic boundary
conditions are adopted in all three spatial directions. The hybrid compact-weighted
essentially non-oscillatory (compact-WENO) scheme is applied, which couples a
eighth-order central compact finite difference scheme in smooth regions with a
seventh-order WENO scheme in shock regions (Lele 1992; Balsara & Shu 2000; Wang
et al. 2010). The time derivative is approximated by the total variation diminishing (TVD)
Runge–Kutta method (Gottlieb & Shu 1998). Following Samtaney, Pullin & Kosović
(2001), the velocity field, which is divergence free, is initialized using a random field with a
specified spectrum (E(k) = 0.011k4 exp(−k2/8), where k is the wavenumber). Meanwhile,
the normalized temperatures (Ttr and Tv) and density (ρ) are initialized with constant
values (1.0) at all spatial points, and the initial pressure is determined from the equation
of state (2.5). After the system reaches the statistically stationary state, 61 flow fields,
uniformly spanning the time period of 9.01 � t/Te � 14.41, are adopted to obtain the
statistical averages of quantities. Here, Te(=

√
3Lf /u′) is the large eddy turnover time and

Lf is the integral length scale.

950 A21-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.742


Q. Zheng, Y. Yang, J. Wang and S. Chen

2.2. Forcing strategy
The velocity field u(x, t) is transformed into the wave space using the Fourier transform,
and further decomposed into a solenoidal field (ûS(k, t)) and a dilatational field (ûD(k, t))
based on the Helmholtz decomposition, where k is the wave vector. The kinetic energy per
unit mass for each wave vector is thus decomposed as follows:

|û(k, t)|2
2

= |ûS(k, t)|2
2

+ |ûD(k, t)|2
2

. (2.10)

The kinetic energy in each of the first two wavenumber shells is calculated as

Eu(0.5 ≤ k < 1.5) =
∑

0.5≤|k|<1.5

( |û(k, t)|2
2

)
, (2.11)

and

Eu(1.5 ≤ k < 2.5) =
∑

1.5≤|k|<2.5

( |û(k, t)|2
2

)
. (2.12)

Similarly, the kinetic energy in the first two wavenumber shells is decomposed as

Eu(0.5 ≤ k < 1.5) = Eu,S(0.5 ≤ k < 1.5) + Eu,D(0.5 ≤ k < 1.5), (2.13)

and

Eu(1.5 ≤ k < 2.5) = Eu,S(1.5 ≤ k < 2.5) + Eu,D(1.5 ≤ k < 2.5). (2.14)

The large-scale momentum forcing is applied to the solenoidal velocity component,
while the dilatational velocity component is left untouched (Petersen & Livescu 2010;
Wang et al. 2010; Donzis & Jagannathan 2013). To maintain the total kinetic energy in
the first two shells to the prescribed levels Eu(1) and Eu(2), respectively, the solenoidal
velocity component is amplified. The forced velocity field û f (k, t) is given as

û f (k, t) = αûS(k, t) + ûD(k, t), (2.15)

where α for all modes in each wavenumber shell is set to be

α(0.5 ≤ k < 1.5) =
√

Eu(1) − Eu,D(0.5 ≤ k < 1.5)

Eu,S(0.5 ≤ k < 1.5)
, (2.16)

and

α(1.5 ≤ k < 2.5) =
√

Eu(2) − Eu,D(1.5 ≤ k < 2.5)

Eu,S(1.5 ≤ k < 2.5)
, (2.17)

where Eu(1) = 1.242 and Eu(2) = 0.391.
The large-scale thermal forcing for the translational–rotational temperature field is

similar to that for the solenoidal velocity field (Donzis & Maqui 2016; Wang et al. 2019).
The translational–rotational temperature field Ttr(x, t) is transformed into Fourier space to
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yield T̂tr(k, t). Similarly,

ETtr(0.5 ≤ k < 1.5) =
∑

0.5≤|k|<1.5

(|T̂tr(k, t)|2), (2.18)

and
ETtr(1.5 ≤ k < 2.5) =

∑
1.5≤|k|<2.5

(|T̂tr(k, t)|2). (2.19)

The forced translational–rotational temperature is given as

T̂ f
tr(k, t) = βT̂tr(k, t), (2.20)

where β for all modes in each wavenumber shell is set to be

β(0.5 ≤ k < 1.5) =
√

ETtr(1)

ETtr(0.5 ≤ k < 1.5)
, (2.21)

and

β(1.5 ≤ k < 2.5) =
√

ETtr(2)

ETtr(1.5 ≤ k < 2.5)
, (2.22)

where ETtr(1) = Eu(1)/100 and ETtr(2) = Eu(2)/100.
In present simulations, the momentum and thermal forcings act on the large scales, and

are expected to have a small impact on the statistics properties in the inertial regime.
However, the large-scale thermal forcing in the present simulations cannot completely
reproduce the shock-induced heating in the high-speed flows of practical interest.

3. Simulation parameters and one-point statistics

The overall statistics for the current simulations are summarized in tables 1–4. The
reference Reynolds number (Re) equals 400, and the reference Mach numbers (M) are
set to be 0.099 and 0.296. Three characteristic vibrational temperatures (θv = 1.0, 3.0 and
5.0) are employed. A smaller θv suggests an easier excitation for the vibrational mode.
The spatially averaged ratio of the vibrational energy to the total internal energy (i.e.
〈E∗

v/(Etr + E∗
v)〉) approximately equals 18.88 %, 5.92 % and 1.34 % with θv = 1.0, 3.0

and 5.0, respectively. The Taylor microscale Reynolds number (Reλ) and turbulent Mach
number (Mt) are respectively defined as

Reλ = Re
〈ρ〉u′λ√

3〈μ〉 , and Mt = M
u′

〈√Ttr〉
, (3.1a,b)

where the root mean square (r.m.s.) value of velocity magnitude (u′) and the Taylor
microscale (λ) are respectively given as

u′ =
√

〈u2
1 + u2

2 + u2
3〉, (3.2)

and

λ =
√

〈u2
1 + u2

2 + u2
3〉

〈(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2〉 . (3.3)
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Case Re M θv Reλ Mt 〈Kτ 〉 η/Δx θ ′ 〈ω2〉 〈DD
ij DD

ij 〉 〈DS
ijD

S
ij〉

I1 400 0.099 1.0 155.5 0.22 0.16 1.04 0.91 290.0 0.55 144.9
I2 400 0.099 1.0 158.4 0.22 0.77 1.04 0.58 277.5 0.23 138.7
I3 400 0.099 1.0 155.9 0.22 4.00 1.04 0.56 286.1 0.22 143.0
I4 400 0.099 1.0 160.2 0.22 9.80 1.05 1.53 243.6 1.68 121.8
I5 400 0.099 1.0 156.2 0.22 741.4 1.07 3.63 236.4 8.80 118.2

Table 1. Simulation parameters and resulting flow statistics for compressible turbulence with Mt ≈ 0.22.
Considering effects of 〈Kτ 〉.

Case Re M θv Reλ Mt 〈Kτ 〉 η/Δx θ ′ 〈ω2〉 〈DD
ij DD

ij 〉 〈DS
ijD

S
ij〉

I2 400 0.099 1.0 158.4 0.22 0.77 1.04 0.58 277.5 0.23 138.7
I6 400 0.099 3.0 157.7 0.22 0.84 1.06 1.09 261.2 0.81 130.5
I7 400 0.099 5.0 158.1 0.22 0.82 1.06 1.78 262.1 2.15 131.0

Table 2. Simulation parameters and resulting flow statistics for compressible turbulence with Mt ≈ 0.22.
Considering effects of θv .

Case Re M θv Reλ Mt 〈Kτ 〉 η/Δx θ ′ 〈ω2〉 〈DD
ij DD

ij 〉 〈DS
ijD

S
ij〉

II1 400 0.296 1.0 153.4 0.68 0.19 1.01 2.50 313.4 4.16 156.6
II2 400 0.296 1.0 159.6 0.68 0.86 1.04 2.10 275.7 2.94 137.8
II3 400 0.296 1.0 160.6 0.66 4.27 1.06 1.67 250.3 1.68 125.1
II4 400 0.296 1.0 151.9 0.68 9.98 1.01 2.59 301.8 4.44 150.9
II5 400 0.296 1.0 154.2 0.68 931.0 1.03 3.40 277.1 7.71 138.5

Table 3. Simulation parameters and resulting flow statistics for compressible turbulence with Mt ≈ 0.68.
Considering effects of 〈Kτ 〉.

Case Re M θv Reλ Mt 〈Kτ 〉 η/Δx θ ′ 〈ω2〉 〈DD
ij DD

ij 〉 〈DS
ijD

S
ij〉

II2 400 0.296 1.0 159.6 0.68 0.86 1.04 2.10 275.7 2.94 137.8
II6 400 0.296 3.0 154.0 0.68 0.97 1.01 2.57 303.4 4.40 151.6
II7 400 0.296 5.0 155.1 0.67 0.91 1.03 2.95 276.5 5.77 138.2

Table 4. Simulation parameters and resulting flow statistics for compressible turbulence with Mt ≈ 0.68.
Considering effects of θv .

Here, Mt roughly equals 0.22 and 0.68 for the M = 0.099 and 0.296 cases, respectively,
while Reλ is approximately 157.5 (tables 1–4). The value of 〈Kτ 〉 approximately equals
0.16–741.4 for the M = 0.099 cases, and 0.19–931.0 for the M = 0.296 cases. In the present
simulations, cases I1–I5 and II1–II5 are used to discuss the effect of 〈Kτ 〉, while cases I2, I6,
I7 and cases II2, II6, II7 are adopted to study the effect of θv . Note that cases I5 and II5 can
be approximately treated as frozen flow (Knisely & Zhong 2020) since their vibrational
relaxation times are significantly larger than the Kolmogorov time scale (i.e. 〈Kτ 〉 
 1.0).
In the tables of this article, cases I3, I5 and I7, as well as cases II3, II5 and II7, are marked
with colours as typical cases for easy comparison.
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As presented in tables 1–4, the resolution parameter η/Δx is in the range of 1.01 �
η/Δx � 1.07, where η is the Kolmogorov length scale and Δx is the grid spacing in each
direction. The resolution parameter kmaxη is therefore in the range of 3.18 � kmaxη �
3.37, where the largest wavenumber kmax is half of the number of grid points in each
direction. According to previous grid refinement studies (Wang et al. 2011, 2012), the
grid resolutions with kmaxη ≥ 2.77 is enough for the convergence of the flow statistics.

The r.m.s. value of the velocity divergence (θ ′) is used to characterize the flow
compressibility. The greater the θ ′, the stronger the flow compressibility. For the Mt ≈
0.22 cases (tables 1–2), θ ′ decreases from 0.91 to 0.56 as 〈Kτ 〉 increases from 0.16 to 4.00,
and sharply increases to 3.63 with 〈Kτ 〉 ≈ 741.4; θ ′ increases from 0.58 to 1.78 with θv

varying from 1.0 to 5.0. Similarly, for the Mt ≈ 0.68 cases (tables 3–4), θ ′ decreases from
2.50 to 1.67 as 〈Kτ 〉 increases from 0.19 to 4.27, and increases to 3.40 with 〈Kτ 〉 ≈ 931.0;
θ ′ increases from 2.10 to 2.95 with θv varying from 1.0 to 5.0. As revealed in Zheng
et al. (2021), the large-scale thermal forcing enhances the flow compressibility, while
the vibrational relaxation weakens it. From tables 1–4, cases I3 and II3 have the weakest
compressibility, which suggests that they have the strongest relaxation level.

The instantaneous contours of θ/θ ′ with four typical cases (I3, I5, II3 and II5) in figure 1
and the PDFs of θ/θ ′ in figure 2 show a balance between the vibrational relaxation and
the large-scale thermal forcing. One can see consistent results with tables 1–4. For the
Mt ≈ 0.22 cases, when the relaxation effect is significant (e.g. case I3), the large-scale
thermal forcing cannot strongly enhance the flow compressibility; no clear shocklet
structure can be observed in the flow field (figure 1a) and the PDF of θ/θ ′ is almost
symmetrical about the θ/θ ′ = 0.0 axis (figure 2a). As the relaxation effect fades (e.g.
case I5), the large-scale thermal forcing significantly enhances the flow compressibility;
the clear shocklet structures lie across the flow field (figure 1b), and the PDF of θ/θ ′ is
thus strongly skewed to the negative side (figure 2a). However, in comparison with the
Mt ≈ 0.22 cases, the large-scale thermal forcing and vibration relaxation have a weaker
impact on the flow compressibility for the Mt ≈ 0.68 cases, although similar phenomena
are observed. The flow compressibility for case II5 is obviously stronger than that of case
II3. For case II5, the shocklet structures are more clear (figure 1c,d) and there is a stronger
tendency for the PDF of θ/θ ′ to be skewed to a negative value (figure 2b). In order to
clarify possible similarities to incompressible turbulence, the component of the strain
tensor Sij (= (∂ui/∂xj + ∂uj/∂xi)/2) is separated into the deviatoric strain-rate term Dij (=
Sij − Skkij/3) and the isotropic dilatational term −Skkij/3 (Erlebacher & Sarkar 1993).
Based on the Helmholtz decomposition, Dij can be further decomposed into the solenoidal
and dilatational components, i.e. Dij = DS

ij + DD
ij , where DS

ij = (∂uS
i /∂xj + ∂uS

j /∂xi)/2 and
DD

ij = (∂uD
i /∂xj + ∂uD

j /∂xi)/2 − θij/3. The solenoidal velocity component uS satisfies
∇ · uS = 0, while the dilatational velocity component uD follows ∇ × uD = 0.

As shown in tables 1–4, the dependence of 〈DD
ij DD

ij 〉 on the vibrational relaxation behaves
quite similar to θ ′, being smaller when the relaxation effect is significant (i.e. cases
I3 and II3). For instance, 〈DD

ij DD
ij 〉 decreases from 0.55 to 0.22 as 〈Kτ 〉 increases from

0.16 to 4.00, and jumps to 8.80 with 〈Kτ 〉 ≈ 741.4 (Mt ≈ 0.22 cases, table 1). Similarly,
variations of 〈ω2〉 and 〈DS

ijD
S
ij〉 are consistent with each other. Here, the vorticity is defined

as ω = ∇ × u and 〈ω2〉 = 〈ω2
1 + ω2

2 + ω2
3〉. However, the variation of 〈ω2〉 (or 〈DS

ijD
S
ij〉) is

independent of the dilatation and vibrational relaxation.
Erlebacher & Sarkar (1993) mentioned that, in compressible homogeneous turbulence,

the dilatation is statistically independent of the vorticity and variables constructed from the
solenoidal velocity component. The statistical correlation between two parameters (i.e. f

950 A21-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.742


Q. Zheng, Y. Yang, J. Wang and S. Chen

1 2 3 4 5 6
–3.0
–1.8
–0.6
0.6
1.8
3.0

6

5

4

3

2

1

0

z

1 2 3 4 5 6

6

5

4

3

2

1

0

1 2 3 4 5 6
–3.0
–1.8
–0.6
0.6
1.8
3.0

6

5

4

3

2

1

0

z

y
1 2 3 4 5 6

6

5

4

3

2

1

0

y

(b)(a)

(d)(c)

Figure 1. Instantaneous contours of normalized dilatation (θ/θ ′). (a) Case I3, (b) case I5, (c) case II3, (d)
case II5. Here, x = 3.14.

and g) can be estimated by their correlation coefficient

Corr( f , g) = 〈( f − 〈f 〉)(g − 〈g〉)〉√
〈( f − 〈f 〉)2〉〈(g − 〈g〉)2〉

. (3.4)

The corresponding correlation coefficients for the Mt ≈ 0.22 and Mt ≈ 0.68 cases are
given in tables 5 and 6. For the Mt ≈ 0.22 cases (table 5), the small Corr(θ2, ω2),
Corr(θ2, DS

ijD
S
ij) and Corr(ω2, DD

ij DD
ij ) for different cases (<0.14) suggest a weak

correlation between the dilatation and the vorticity or the solenoidal component of the
deviatoric strain-rate tensor, as well as that between the vorticity and the dilatational
component of the deviatoric strain-rate tensor. However, for cases with a significant
relaxation effect (i.e. cases I1–I3, especially case I3), the correlation coefficients are larger
than the other cases. For compressible turbulence without considering the relaxation
effect, the correlation coefficients between the dilatation and any variables constructed
from the solenoidal velocity component are less than 0.01 (Erlebacher & Sarkar 1993).
However, in the current simulations, Corr(θ2, DS

ijD
S
ij) ≈ 0.137 for case I3, suggesting that

the correlation between the dilatation and the solenoidal component of the deviatoric
strain-rate tensor is enhanced by the relaxation effect. Similarly, the relaxation effect
weakens the correlation between the dilatation and the dilatational component of the
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Figure 2. PDFs of normalized dilatation for the (a) Mt ≈ 0.22 and (b) Mt ≈ 0.68 cases.

Case Corr(θ2, ω2) Corr(θ2, DS
ijD

S
ij) Corr(θ2, DD

ij DD
ij ) Corr(ω2, DS

ijD
S
ij) Corr(ω2, DD

ij DD
ij )

I1 0.026 0.053 0.662 0.530 0.045
I2 0.039 0.099 0.542 0.523 0.056
I3 0.060 0.137 0.285 0.530 0.094
I4 0.004 0.007 0.948 0.519 0.007
I5 0.009 0.013 0.948 0.526 0.013
I6 0.011 0.020 0.934 0.534 0.015
I7 0.009 0.014 0.941 0.534 0.012

Table 5. Correlation coefficients between some pairs of variables; Mt ≈ 0.22.

Case Corr(θ2, ω2) Corr(θ2, DS
ijD

S
ij) Corr(θ2, DD

ij DD
ij ) Corr(ω2, DS

ijD
S
ij) Corr(ω2, DD

ij DD
ij )

II1 0.011 0.010 0.919 0.612 0.037
II2 0.008 0.008 0.937 0.612 0.027
II3 0.013 0.014 0.921 0.592 0.038
II4 0.013 0.011 0.924 0.608 0.035
II5 0.013 0.011 0.920 0.604 0.032
II6 0.014 0.013 0.923 0.605 0.039
II7 0.013 0.012 0.923 0.612 0.033

Table 6. Correlation coefficients between some pairs of variables; Mt ≈ 0.68.

deviatoric strain-rate tensor. The value of Corr(θ2, DD
ij DD

ij ) ≈ 0.662 with 〈Kτ 〉 ≈ 0.16, and
sharply reduces to 0.285 with 〈Kτ 〉 ≈ 4.00. For cases I4–I7, where the relaxation effect
fades, Corr(θ2, DD

ij DD
ij ) ≈ 0.943. Interestingly, Corr(ω2, DS

ijD
S
ij) is almost not affected by

the vibrational relaxation, ≈0.528 (table 5).
For the Mt ≈ 0.68 cases (table 6), Corr(θ2, ω2) ≈ Corr(θ2, DS

ijD
S
ij) ≈ 0.012, indicating

that the dilatation is nearly uncorrelated with the vorticity and the solenoidal component
of the deviatoric strain-rate tensor. Similarly, Corr(ω2, DD

ij DD
ij ) ≈ 0.034. However, θ2

(or ω2) strongly correlates with DD
ij DD

ij (or DS
ijD

S
ij), where Corr(θ2, DD

ij DD
ij ) ≈ 0.924

and Corr(ω2, DS
ijD

S
ij) ≈ 0.606. Furthermore, the correlation between the dilatation (or
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vorticity) and the dilatational (or solenoidal) component of the deviatoric strain-rate tensor
is nearly not affected by the vibrational relaxation (table 6). To quantify the effects of
dilatation, the flow region is divided into six subregions based on the local dilatational
level: (i) strong compression region with θ/θ ′ ∈ (−∞, −2.0]; (ii) moderate compression
region with θ/θ ′ ∈ (−2.0, −1.0]; (iii) weak compression region with θ/θ ′ ∈ (−1.0, 0.0];
(iv) weak expansion region with θ/θ ′ ∈ (0.0, 1.0]; (v) moderate expansion region with
θ/θ ′ ∈ (1.0, 2.0]; (vi) strong expansion region with θ/θ ′ ∈ (2.0, +∞). Figure 3 presents
the averages of the normalized magnitude of the vorticity and deviatoric strain-rate
components conditioned on the local dilatation. For the Mt ≈ 0.22 cases, conditional
averages of ω2/〈ω2〉 and DS

ijD
S
ij/〈DS

ijD
S
ij〉 have similar behaviours (figure 3a,b). When the

relaxation effect is significant (e.g. cases I1–I3), as revealed in table 5, the correlation
between the dilatation and vorticity (as well as the solenoidal component of the deviatoric
strain-rate tensor) is stronger than the other cases. Consequently, the conditional averages
of ω2/〈ω2〉 and DS

ijD
S
ij/〈DS

ijD
S
ij〉 increase sharply in the strong expansion region. Similarly,

they increase with the local dilatational level in the strong compression region. However,
the growth rate for case I3 is obviously larger than the other two cases. For the cases
with a weak relaxation effect (e.g. cases I4–I7), the conditional averages of ω2/〈ω2〉
and DS

ijD
S
ij/〈DS

ijD
S
ij〉 approach 1.0 in the compression region, and increase slightly in the

expansion region. In figure 3(c), the conditional average of DD
ij DD

ij /〈DD
ij DD

ij 〉 approaches
zero at θ/θ ′ = 0.0, and increases with the local dilatational level in both compression
and expansion regions. As the flow compressibility for cases I1–I3 is weakened by the
relaxation effect, the conditional averages of DD

ij DD
ij /〈DD

ij DD
ij 〉 for these cases are thus

smaller than other cases with identical dilatational levels. Note that, in figure 3(a–c), the
lines fluctuate irregularly in the ranges of θ/θ ′ < −5.0 and θ/θ ′ > 5.0, especially for cases
I1–I3. This observation can be attributed to the insufficient data in these ranges due to the
weak dilatation, as shown in figure 2.

For the Mt ≈ 0.68 cases, the conditional averages of ω2/〈ω2〉 and DS
ijD

S
ij/〈DS

ijD
S
ij〉 are

almost constant, being nearly independent of the local dilatation in the strong compression
region (figure 3d,e). They decrease slightly in the range of −2.0 ≤ θ/θ ′ ≤ 0.0, and
increase monotonically in the expansion region. Meanwhile, the conditional average of
DD

ij DD
ij /〈DD

ij DD
ij 〉 rises with the local dilatation in both compression and expansion regions

(figure 3f ). Effects of vibrational relaxation on the conditional averages of ω2/〈ω2〉,
DD

ij DD
ij /〈DD

ij DD
ij 〉 and DS

ijD
S
ij/〈DS

ijD
S
ij〉 are negligible; the lines corresponding to different

cases almost overlap each other. These observations agree with the results in table 6.

4. Enstrophy production

4.1. Dilatational effect on enstrophy production
From the vorticity transport equation, the governing equation for enstrophy (ω2/2) can be
derived as follows (Wang et al. 2011; Papapostolou et al. 2017):

(
∂

∂t
+ uj

∂

∂xj

)
ω2

2
= ωiωjSij − ω2θ + ωi

εijk

ρ2
∂ρ

∂xj

∂p
∂xk

+ ωi
εijk

Re
∂

∂xj

(
1
ρ

∂σmk

∂xm

)
+ ωiεijk

∂Fk

∂xj
. (4.1)
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Figure 3. Conditional averages of the normalized magnitudes of the vorticity and deviatoric strain-rate
components; (a,d) 〈ω2/〈ω2〉 | θ/θ ′〉, (b,e) 〈DS

ijD
S
ij/〈DS

ijD
S
ij〉 | θ/θ ′〉 and (c, f ) 〈DD

ij DD
ij /〈DD

ij DD
ij 〉 | θ/θ ′〉. For (a–c)

Mt ≈ 0.22 and (d–f ) Mt ≈ 0.68.

In (4.1), Pω = ωiωjSij is the vortex stretching and tilting (strain) term, Dω = −ω2θ

is the dilatational term, Bω = (1/ρ2)εijkωi(∂ρ/∂xj)(∂p/∂xj) is the baroclinic term,
Vω = (1/Re)ωiεijk(∂/∂xj)(∂σ/∂xm) is the viscous term and Fω = ωiεijk(∂Fk/∂xj) is the
large-scale forcing term. The parameter Fω is expected to have a small impact on the
local enstrophy production because the momentum forcing is at large scales. The local
enstrophy production thus mainly includes contributions from the strain, dilatational and
baroclinic effects. However, the contribution from the baroclinic term is negligible in
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Case F(S∗
ij) F(DS

ij) F(DD
ij ) F(−θ/6) Case F(S∗

ij) F(DS
ij) F(DD

ij ) F(−θ/6)

I1 824.1 826.1 −0.65 −0.80 II1 908.4 914.9 −2.26 −3.72
I2 745.0 745.4 0.13 −0.30 II2 750.5 755.6 −1.40 −3.38
I3 801.6 803.6 −1.04 −0.57 II3 642.8 647.4 −2.04 −2.36
I4 609.7 609.8 0.44 −0.36 II4 862.6 869.4 −3.43 −3.05
I5 589.2 587.9 1.59 −0.05 II5 757.9 760.7 0.16 −2.70
I6 702.8 703.8 −0.07 −0.45 II6 864.5 869.5 −1.36 −3.18
I7 700.8 701.4 0.36 −0.57 II7 763.5 768.3 −1.72 −2.72

Table 7. Spatial averages of the net enstrophy production and its components; F(S∗
ij) = 〈ωiωjS∗

ij〉,
F(DS

ij) = 〈ωiωjDS
ij〉, F(DD

ij ) = 〈ωiωjDD
ij 〉 and F(−θ/6) = 〈−ω2θ/6〉.

compressible isotropic turbulence (Wang et al. 2011). The specific focus in the current
analysis is therefore on the strain and dilatational terms.

Equation (4.1) can be further derived as

∂(ω2/2)

∂t
+ ∂(ujω

2/2)

∂xj
= ωiωjS

∗
ij + ωi

εijk

ρ2
∂ρ

∂xj

∂p
∂xk

+ ωi
εijk

Re
∂

∂xj

(
1
ρ

∂σmk

∂xm

)
+ ωiεijk

∂Fk

∂xj
,

(4.2)

where the component of the modified strain-rate tensor S∗
ij = Sij − Skkij/2 = Dij −

Skkij/6. The net enstrophy production term (ωiωjS∗
ij) thus can be rewritten as

ωiωjS
∗
ij = ωiωjD

S
ij + ωiωjD

D
ij − 1

6
θω2. (4.3)

The spatial averages of the net enstrophy production and its components for the
Mt ≈ 0.22 and 0.68 cases are listed in table 7. It is clearly observed that 〈ωiωjS∗

ij〉 ≈
〈ωiωjDS

ij〉, while 〈ωiωjDD
ij 〉 and 〈−(1/6)θω2〉 are negligible. This indicates that, from the

full flow field perspective, the enstrophy production mainly stems from the solenoidal
component of the deviatoric strain-rate tensor. However, there is no obvious relationship
between the spatial averages of the net enstrophy production (or its components) and
the vibrational relaxation. Figure 4 illustrates the instantaneous contours of ω/ω′,
ωiωjDS

ij/〈ωiωjS∗
ij〉, ωiωjDD

ij /〈ωiωjS∗
ij〉 and −(1/6)ω2θ/〈ωiωjS∗

ij〉 for case I5. While the
correlation coefficients between vorticity and different enstrophy production terms
(including their absolute values) are listed in table 8. It is found that the structures of
the vorticity (ω/ω′) and enstrophy production terms (ωiωjDS

ij/〈ωiωjS∗
ij〉, ωiωjDD

ij /〈ωiωjS∗
ij〉

and −(1/6)ω2θ/〈ωiωjS∗
ij〉) are similar, for example, as marked by the circles with a

dashed line. Consequently, the vorticity has a strong correlation with the absolute values
of the enstrophy production terms. The correlation coefficients are larger than 0.53
(table 8). On the other hand, unlike the global averages in table 7, the local magnitudes
of ωiωjDD

ij /〈ωiωjS∗
ij〉 and −(1/6)ω2θ/〈ωiωjS∗

ij〉 can be considerable, especially for cases
with a weak relaxation effect (e.g. case I5, figure 4c,d). However, the positive values
in the compression region and the negative values in the expansion region cancel
out on average, leading to a negligible amount. This is why Corr(ω/ω′,W(DD

ij )) and
Corr(ω/ω′,W(−θ/6)) are close to zero (table 8).

Figures 5 and 6 present the spatial averages of ωiωjS∗
ij/〈ωiωjS∗

ij〉, ωiωjDD
ij /〈ωiωjS∗

ij〉,
ωiωjDS

ij/〈ωiωjS∗
ij〉 and −(1/6)θω2/〈ωiωjS∗

ij〉 conditioned on the local dilatation for the
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Figure 4. Instantaneous contours of (a) ω/ω′, (b) ωiωjDS
ij/〈ωiωjS∗

ij〉, (c) ωiωjDD
ij /〈ωiωjS∗

ij〉, (d)

−(1/6)ω2θ/〈ωiωjS∗
ij〉. Here, x = 3.14 and ω′ =

√
〈ω2

1 + ω2
2 + ω2

3〉. Case I5.

Corr(ω/ω′,W(S∗
ij)) Corr(ω/ω′,W(DS

ij)) Corr(ω/ω′,W(DD
ij )) Corr(ω/ω′,W(−θ/6))

0.493 0.510 0.006 −0.003
Corr(ω/ω′, |W(S∗

ij)|) Corr(ω/ω′, |W(DS
ij)|) Corr(ω/ω′, |W(DD

ij )|) Corr(ω/ω′, |W(−θ/6)|)
0.618 0.622 0.531 0.535

Table 8. Correlation coefficients between vorticity and enstrophy production terms (including their absolute
values). Case I5; W(S∗

ij) = ωiωjS∗
ij/〈ωiωjS∗

ij〉, W(DS
ij) = ωiωjDS

ij/〈ωiωjS∗
ij〉, W(DD

ij ) = ωiωjDD
ij /〈ωiωjS∗

ij〉 and
W(−θ/6) = (−ω2θ/6)/〈ωiωjS∗

ij〉.

Mt ≈ 0.22 and 0.68 cases, respectively. As illustrated in figure 5(a), the conditional
averages of ωiωjS∗

ij/〈ωiωjS∗
ij〉 among the Mt ≈ 0.22 cases are very different from each

other. The conditional averages of ωiωjS∗
ij/〈ωiωjS∗

ij〉 approximately equal 1.0 at θ/θ ′ =
0.0. When the relaxation effect is significant (e.g. cases I1–I3), the conditional averages
of ωiωjS∗

ij/〈ωiωjS∗
ij〉 increase in the strong expansion and compression regions, and case

I3 exhibits the largest growth rate. For cases with a weak relaxation effect (e.g. cases
I4–I7), the conditional averages of ωiωjS∗

ij/〈ωiωjS∗
ij〉 increase slightly in the compression
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Figure 5. Conditional averages of the net enstrophy production and its components; (a) 〈ωiωjS∗
ij/〈ωiωjS∗

ij〉 |
θ/θ ′〉, (b) 〈ωiωjDS

ij/〈ωiωjS∗
ij〉 | θ/θ ′〉, (c) 〈ωiωjDD

ij /〈ωiωjS∗
ij〉 | θ/θ ′〉 and (d) 〈−(1/6)ω2θ/〈ωiωjS∗

ij〉 | θ/θ ′〉.
Here, Mt ≈ 0.22.

region, and gradually change from increasing to decreasing in the expansion region as
the relaxation effect fades. For instance, the conditional average of ωiωjS∗

ij/〈ωiωjS∗
ij〉

for case I5 decreases from 1.0 to 0.0 in the range of 0.0 ≤ θ/θ ′ ≤ 4.0, and is negative
at θ/θ ′ > 4.0. In figure 5(b), the conditional averages of ωiωjDS

ij/〈ωiωjS∗
ij〉 for different

cases are positive in both the compression and expansion regions. Their variations are
similar to those of ω2/〈ω2〉 and DS

ijD
S
ij/〈DS

ijD
S
ij〉 (figure 3a,b). Furthermore, the magnitudes

of ωiωjDS
ij/〈ωiωjS∗

ij〉 are comparable to those of ωiωjS∗
ij/〈ωiωjS∗

ij〉, which agrees with the
observations in table 7. For ωiωjDD

ij /〈ωiωjS∗
ij〉 and −(1/6)θω2/〈ωiωjS∗

ij〉, their magnitudes
are much smaller than those of ωiωjS∗

ij/〈ωiωjS∗
ij〉. The magnitudes of ωiωjDD

ij /〈ωiωjS∗
ij〉

for different cases roughly equal 0.0 in the range of −2.0 ≤ θ/θ ′ ≤ 2.0. Beyond this
range, the magnitudes of ωiωjDD

ij /〈ωiωjS∗
ij〉 increase with the local dilatation in both

compression and expansion regions, and their growth rates are enhanced as the relaxation
effect increases (figure 5c). The conditional averages of −(1/6)θω2/〈ωiωjS∗

ij〉 for different
cases are positive in the compression region, and negative in the expansion region; their
magnitudes increase with the local dilatation (figure 5d). Interestingly, their growth rates
are weakened as the relaxation effect increases, different from the ωiωjDD

ij /〈ωiωjS∗
ij〉 term.
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Figure 6. Conditional averages of the net enstrophy production and its components; (a) 〈ωiωjS∗
ij/〈ωiωjS∗

ij〉 |
θ/θ ′〉, (b) 〈ωiωjDS

ij/〈ωiωjS∗
ij〉 | θ/θ ′〉, (c) 〈ωiωjDD

ij /〈ωiωjS∗
ij〉 | θ/θ ′〉 and (d) 〈−(1/6)ω2θ/〈ωiωjS∗

ij〉 | θ/θ ′〉.
Here, Mt ≈ 0.68.

For the Mt ≈ 0.68 cases (figure 6), the conditional averages of net enstrophy production
and its components are closely related to the local dilatation and vibrational relaxation.
The conditional averages of ωiωjS∗

ij/〈ωiωjS∗
ij〉 for different cases almost increase linearly

with the local dilatation in the compression region, and their growth rates are weakened by
the relaxation effect (figure 6a). In the expansion region, behaviours of ωiωjS∗

ij/〈ωiωjS∗
ij〉

are rather complicated: they first increase with the local dilatation, then decrease from
positive to negative. The weaker the relaxation effect, the sharper the decrease. This
suggests that the compression enhances the enstrophy production; however, the high
expansion weakens it. In the extreme expansion region (e.g. θ/θ ′ > 4.0 for case II5),
ωiωjS∗

ij can even become a enstrophy destruction term. As shown in figure 6(b), the
conditional averages of ωiωjDS

ij/〈ωiωjS∗
ij〉 for different cases are nearly not affected by the

local dilatation, remaining almost constant in the compression region. In the expansion
region, the conditional averages of ωiωjDS

ij/〈ωiωjS∗
ij〉 are enlarged. Their differences

among different cases are mainly manifested in the strong expansion region. Variations
of ωiωjDD

ij /〈ωiωjS∗
ij〉 and −(1/6)θω2/〈ωiωjS∗

ij〉 with the local dilatation are similar
(figure 6c,d). They are positive in the compression region and negative in the expansion
region, and their magnitudes increase with the local dilatation. Meanwhile, their growth
rates are weakened by the relaxation effect in both compression and expansion regions.
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However, the magnitude of ωiωjDD
ij /〈ωiωjS∗

ij〉 is smaller than that of −(1/6)θω2/〈ωiωjS∗
ij〉

with the same dilatational level.

4.2. Dilatational effect on deviatoric strain-rate tensor
The interaction between strain and vorticity can be described in the eigenframe of the
(deviatoric) strain-rate tensor. The modified strain-rate tensor is diagonalized into an
orthonormal basis, with its eigenvalues given by λi for i = 1, 2, 3 (with λ1 ≤ λ2 ≤ λ3) and
the corresponding eigenvectors denoted by Λi. Consequently, the net enstrophy production
term can be rewritten as

ωiωjS
∗
ij = ω2[λ1 cos2(ω, Λ1) + λ2 cos2(ω, Λ2) + λ3 cos2(ω, Λ3)], (4.4)

which isolates the individual contribution from each eigendirection. Similarly, the
enstrophy production terms due to the solenoidal and dilatational components of the
deviatoric strain-rate tensor (ωiωjDS

ij and ωiωjDD
ij ) can be rewritten as

ωiωjD
S
ij = ω2[λS

1 cos2(ω, ΛS
1) + λS

2 cos2(ω, ΛS
2) + λS

3 cos2(ω, ΛS
3)], (4.5)

and
ωiωjD

D
ij = ω2[λD

1 cos2(ω, ΛD
1 ) + λD

2 cos2(ω, ΛD
2 ) + λD

3 cos2(ω, ΛD
3 )]. (4.6)

Here, λS
i (or λD

i ) and ΛS
i (or ΛD

i ) are the eigenvalues and eigenvectors of the solenoidal (or
dilatational) component of the deviatoric strain-rate tensor (D).

The first eigenvalue and the third eigenvalue always make a negative and a positive
contribution to the enstrophy production, respectively, while the contribution of the
second eigenvalue relies on its sign and magnitude. In addition, the orientation of the
vorticity relative to the strain-rate eigenvector also plays a significant role in the enstrophy
production. In the following discussions, effects of the vibrational relaxation and local
dilatation on the statistical properties of strain-rate eigenvalues, alignments between the
vorticity and strain-rate eigenvectors and individual contributions to enstrophy production
from each eigendirection will be examined step by step.

In tables 9–12, the spatial averages of the eigenvalues, alignments between the vorticity
and strain eigenvectors and the individual contributions to the enstrophy production in
each eigendirection are summarized. The variable βX

i (X denotes D or S) is defined as

βX
i = λX

i√
(λX

1 )2 + (λX
2 )2 + (λX

3 )2
, (4.7)

which represents the relative amplitude of λX
i . For the solenoidal component of the

deviatoric strain-rate tensor (tables 9 and 11), the vibrational relaxation has little
influence on the ratio of 〈βS

i 〉. The ratio of 〈βS
i 〉 is approximately −0.743:0.117:0.626

for both the Mt ≈ 0.22 and 0.68 cases. The ratio of 〈Cos2(ω, ΛS
i )〉 roughly equals

0.158:0.528:0.314 for the Mt ≈ 0.22 cases, and 0.155:0.542:0.303 for the Mt ≈ 0.68 cases.
The alignment between the vorticity and the third eigenvector is enhanced slightly for
the Mt ≈ 0.22 cases, such that the dominant contribution to ωiωjDS

ij arises from the third
eigendirection for the Mt ≈ 0.22 cases, while it results from the second eigendirection
for the Mt ≈ 0.68 cases (tables 9 and 11). The ratio of 〈ω2λS

i Cos2(ω, ΛS
i )/〈ωiωjS∗

ij〉〉
roughly equals −0.348:0.632:0.716 and −0.285:0.672:0.619 for the Mt ≈ 0.22 and 0.68
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Case 〈βS
i 〉 〈Cos2(ω, ΛS

i )〉 〈ω2λS
i Cos2(ω, ΛS

i )/〈ωiωjS∗
ij〉〉

I1 −0.743 : 0.118 : 0.625 0.158 : 0.528 : 0.314 −0.350 : 0.632 : 0.720
I2 −0.743 : 0.118 : 0.625 0.157 : 0.530 : 0.313 −0.346 : 0.633 : 0.714
I3 −0.743 : 0.118 : 0.625 0.158 : 0.527 : 0.315 −0.351 : 0.632 : 0.721
I4 −0.743 : 0.118 : 0.625 0.157 : 0.528 : 0.315 −0.346 : 0.633 : 0.713
I5 −0.743 : 0.118 : 0.625 0.157 : 0.530 : 0.313 −0.343 : 0.634 : 0.707
I6 −0.743 : 0.118 : 0.625 0.158 : 0.527 : 0.315 −0.350 : 0.630 : 0.721
I7 −0.743 : 0.118 : 0.625 0.158 : 0.528 : 0.314 −0.350 : 0.633 : 0.717

Table 9. Statistics of various quantities in three eigendirections about ωiωjDS
ij. Here, Mt ≈ 0.22.

Case 〈βD
i 〉 〈Cos2(ω, ΛD

i )〉 〈ω2λD
i Cos2(ω, ΛD

i )/〈ωiωjS∗
ij〉〉

I1 −0.702 : 0.030 : 0.672 0.325 : 0.348 : 0.328 −0.056 : 0.003 : 0.052
I2 −0.696 : 0.019 : 0.677 0.322 : 0.356 : 0.322 −0.035 : 0.002 : 0.034
I3 −0.696 : 0.019 : 0.678 0.323 : 0.354 : 0.324 −0.036 : 0.001 : 0.033
I4 −0.701 : 0.027 : 0.674 0.328 : 0.342 : 0.330 −0.100 : 0.006 : 0.094
I5 −0.705 : 0.036 : 0.669 0.328 : 0.342 : 0.329 −0.224 : 0.022 : 0.204
I6 −0.701 : 0.028 : 0.673 0.326 : 0.346 : 0.328 −0.062 : 0.004 : 0.057
I7 −0.705 : 0.034 : 0.670 0.327 : 0.343 : 0.330 −0.104 : 0.008 : 0.096

Table 10. Statistics of various quantities in three eigendirections about ωiωjDD
ij . Here, Mt ≈ 0.22.

Case 〈βS
i 〉 〈Cos2(ω, ΛS

i )〉 〈ω2λS
i Cos2(ω, ΛS

i )/〈ωiωjS∗
ij〉〉

II1 −0.742 : 0.116 : 0.627 0.155 : 0.543 : 0.302 −0.280 : 0.675 : 0.612
II2 −0.742 : 0.115 : 0.627 0.155 : 0.542 : 0.302 −0.284 : 0.675 : 0.615
II3 −0.742 : 0.116 : 0.626 0.155 : 0.542 : 0.303 −0.285 : 0.668 : 0.624
II4 −0.742 : 0.116 : 0.626 0.155 : 0.542 : 0.303 −0.284 : 0.674 : 0.618
II5 −0.742 : 0.116 : 0.627 0.156 : 0.541 : 0.303 −0.287 : 0.669 : 0.621
II6 −0.742 : 0.116 : 0.627 0.155 : 0.541 : 0.304 −0.286 : 0.671 : 0.621
II7 −0.742 : 0.116 : 0.627 0.155 : 0.541 : 0.304 −0.288 : 0.673 : 0.622

Table 11. Statistics of various quantities in three eigendirections about ωiωjDS
ij. Here, Mt ≈ 0.68.

cases, respectively. Here, the sum of 〈ω2λS
i Cos2(ω, ΛS

i )/〈ωiωjS∗
ij〉〉 for each case is

approximately 1.0, implying that the net enstrophy production mainly stems from
the solenoidal component of the deviatoric strain-rate tensor from the full flow field
perspective. This observation agrees with the results in table 7.

Values of 〈βD
i 〉, 〈Cos2(ω, ΛD

i )〉 and 〈ω2λD
i Cos2(ω, ΛD

i )/〈ωiωjS∗
ij〉〉 (tables 10 and

12) are very different from those for the solenoidal component of the deviatoric
strain-rate tensor. The magnitudes of 〈βD

1 〉 and 〈βD
3 〉 are close to each other, while

that of 〈βD
2 〉 is much smaller. In addition, 〈βD

2 〉 and 〈βD
3 〉 are positive, and 〈βD

1 〉 +
〈βD

2 〉 + 〈βD
3 〉 = 0.0. The ratio of 〈Cos2(ω, ΛD

i )〉 approximately equals 0.326:0.347:0.327
for the Mt ≈ 0.22 cases, and 0.318:0.370:0.311 for the Mt ≈ 0.68 cases. The value of
〈Cos2(ω, ΛD

i )〉 roughly approaches 1/3 for each eigenvector, implying that ω and ΛD
i

are nearly distributed independently and uniformly from the full flow field perspective.
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Case 〈βD
i 〉 〈Cos2(ω, ΛD

i )〉 〈ω2λD
i Cos2(ω, ΛD

i )/〈ωiωjS∗
ij〉〉

II1 −0.700 : 0.024 : 0.675 0.317 : 0.372 : 0.310 −0.128 : 0.009 : 0.116
II2 −0.699 : 0.022 : 0.676 0.318 : 0.370 : 0.312 −0.109 : 0.007 : 0.100
II3 −0.697 : 0.018 : 0.679 0.319 : 0.369 : 0.312 −0.093 : 0.004 : 0.086
II4 −0.698 : 0.020 : 0.677 0.320 : 0.371 : 0.309 −0.128 : 0.009 : 0.116
II5 −0.702 : 0.031 : 0.671 0.317 : 0.371 : 0.312 −0.175 : 0.017 : 0.158
II6 −0.700 : 0.024 : 0.675 0.318 : 0.371 : 0.312 −0.130 : 0.010 : 0.118
II7 −0.701 : 0.027 : 0.673 0.318 : 0.370 : 0.311 −0.152 : 0.013 : 0.137

Table 12. Statistics of various quantities in three eigendirections about ωiωjDD
ij . Here, Mt ≈ 0.68.

The sum of 〈ω2λD
i Cos2(ω, ΛD

i )/〈ωiωjS∗
ij〉〉 for each case is approximately 0.0,

indicating the negligible contribution from the dilatational component of the
deviatoric strain-rate tensor to the net enstrophy production. The magnitudes of
〈ω2λD

1 Cos2(ω, ΛD
1 )/〈ωiωjS∗

ij〉〉 and 〈ω2λD
3 Cos2(ω, ΛD

3 )/〈ωiωjS∗
ij〉〉 are comparable, while

that of 〈ω2λD
2 Cos2(ω, ΛD

2 )/〈ωiωjS∗
ij〉〉 is one order of magnitude smaller than the

other two components. This should be attributed to the smaller 〈βD
2 〉. Meanwhile, the

magnitude of 〈ω2λD
i Cos2(ω, ΛD

i )/〈ωiωjS∗
ij〉〉 is enlarged as the relaxation effect fades.

For instance, the ratios of 〈ω2λD
i Cos2(ω, ΛD

i )/〈ωiωjS∗
ij〉〉 are respectively approximately

−0.036:0.001:0.033 and −0.224:0.022:0.204 for cases I3 and I5 (table 10).
Figure 7 shows the PDFs and conditional PDFs of the normalized eigenvalues of DS

ij
for cases I3 and I5, and figure 8 for cases II3 and II5. The three normalized eigenvalues
of DS

ij are respectively located in the ranges of [−0.816, −0.408], [−0.408, 0.408] and
[0.408, 0.816]. For cases I3 and II3, where the relaxation effect is significant, the lines
corresponding to different dilatational levels have a slight deviation; however, their peaks
are close (figures 7(a), 8(a)). When the relaxation effect declines (e.g. cases I5 and II5), the
lines corresponding to different dilatational levels almost overlap each other (figures 7(b),
8(b)). The effects of local dilatation and vibrational relaxation on the PDF of βS

i are
negligible, and this is consistent with the observations in tables 9 and 11. In the overall
flow field, the preferred eigenvalue ratio is approximately −4.0:1.0:3.0, in good agreement
with the results in incompressible turbulent flows (Ashurst et al. 1987).

Figures 9 and 10 present the PDFs and conditional PDFs of the normalized eigenvalues
of DD

ij for cases I3 and I5, as well as cases II3 and II5, respectively. Although the conditional
PDFs of βD

i are closely related to the local dilatational and vibrational relaxation, the
preferred ratio of βD

i is approximately −0.81:0.1:0.80 in the overall flow field for both
the Mt ≈ 0.22 and 0.68 cases. The first eigenvalue with βD

1 ≈ −0.81 dominates in
compression regions, while the third eigenvalue with βD

3 ≈ 0.80 dominates in expansion
regions (figures 9(a,c,d, f ) and 10(a,c,d, f )). When the flow compressibility is weak (e.g.
case I3), the peak value of the conditional PDF of βD

1 in the compression region is
much smaller than the other cases. Furthermore, the conditional PDFs of βD

1 do not have
an obvious peak in the expansion region. The intermediate eigenvalue βD

2 tends to be
positive in the compression region, and negative in the expansion region. As the flow
compressibility increases, this tendency becomes obvious (figures 9(b,e) and 10(b,e)).
The third eigenvalue βD

3 is positive. The value of βD
3 in the compression region becomes

smaller with the increase of flow compressibility, while that in the expansion region almost
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Figure 7. The PDFs and conditional PDFs of the normalized eigenvalues of DS
ij. (a) Case I3 and (b) case I5.

does not change. For instance, the preferred βD
2 and βD

3 in the strong compression region
approximately equal 0.11 and 0.79, respectively, for case I3; these values roughly equal
0.34 and 0.47, respectively, for case I5. The values of βD

2 and βD
3 become close in the

strong compression region as the flow compressibility increases, which implies that the
highly compressible structures are primarily sheet like, and parallel to the plane formed by
ΛD

2 and ΛD
3 .

Figures 11 and 12 display the PDFs and conditional PDFs of the alignments between the
vorticity and eigenvectors of the deviatoric strain-rate components (DD

ij and DS
ij) for cases

I3 and I5, respectively. The alignments between the vorticity and eigenvectors of DS
ij are

almost identical to those for incompressible turbulence (Ashurst et al. 1987; Buaria et al.
2020) and weakly compressible turbulence (Pirozzoli & Grasso 2004; Lee et al. 2009).
There is a strong tendency for the vorticity to be perpendicular to the first eigenvector
and align with the intermediate eigenvector (figures 11(a,b) and 12(a,b)). The PDF and
conditional PDFs of cos(ω, ΛS

3) approximately equal 0.5, implying that the distribution of
angle between the vorticity and the third eigenvector is relatively uniform (figures 11(c),
12(c)). Similar observations are made for the Mt ≈ 0.68 cases (not shown). Thus, the
effects of the vibrational relaxation and dilatation on the alignments between the vorticity
and eigenvectors of DS

ij are negligible. The above observations agree well with the results
of tables 5 and 6, where Corr(ω2, DS

ijD
S
ij) is found to be independent of the vibrational

relaxation.
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Figure 8. The PDFs and conditional PDFs of the normalized eigenvalues of DS
ij. (a) Case II3 and (b) case II5.

Obviously, alignments between the vorticity and eigenvectors of DD
ij are closely related

to the vibrational relaxation and local dilatation. For case I3, there is a tendency for the
vorticity to be perpendicular to the first eigenvector in the strong compressible region, and
to strongly align with the first eigenvector in the strong expansion region (figure 11d). Note
that the tendency is weakened as the local dilatation decreases. As shown in figure 11(e),
the vorticity slightly aligns with the intermediate eigenvector only in the strong expansion
region. Contrary to the first eigenvector, the vorticity tends to align with the third
eigenvector in the strong compressible region, and to be strongly perpendicular to the third
eigenvector in the strong expansion region (figure 11f ). However, for case I5, where the
relaxation effect is weak, there is no obvious tendency for alignment between the vorticity
and eigenvectors of DD

ij . The PDF and conditional PDFs of cos(ω, ΛD
i ) approximately

equal 0.5 (figure 12d,e, f ).
Figure 13 displays the PDFs and conditional PDFs of the alignments between the

vorticity and eigenvectors of DD
ij for cases II3 and II5. The conditional PDFs of cos(ω, ΛD

i )

are similar for cases II3 and II5. The vorticity aligns with the first eigenvector in the
expansion region, and with the third eigenvector in the compression region. Meanwhile,
the vorticity tends to be perpendicular to the first eigenvector in the compression region,
and to the third eigenvector in the expansion region. The alignment between the vorticity
and the second eigenvector of DD

ij is not clear for both cases II3 and II5 (figure 13b,e).
These observations are similar to that for case I3. This suggests that alignments between
the vorticity and eigenvectors of DD

ij are closely related to the flow compressibility for both
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Figure 9. The PDFs and conditional PDFs of the normalized eigenvalues of DD
ij .

(a–c) Case I3 and (d–f ) case I5.

the Mt ≈ 0.22 and 0.68 cases. The stronger the flow compressibility, the less significant
the alignments between the vorticity and eigenvectors of DD

ij .
Figures 14 and 15 display the conditional averages of the enstrophy production along

the three eigendirections of DS
ij and DD

ij for the Mt ≈ 0.22 and 0.68 cases, respectively.
As shown in figure 14(a,b,c), the conditional averages of ω2λS

1 cos2(ω, ΛS
1)/〈ωiωjS∗

ij〉 are
negative, while those of ω2λS

2 cos2(ω, ΛS
2)/〈ωiωjS∗

ij〉 and ω2λS
3 cos2(ω, ΛS

3)/〈ωiωjS∗
ij〉 are

positive in both compression and expansion regions. The ratio of the conditional averages
of ω2λS

i cos2(ω, ΛS
i )/〈ωiωjS∗

ij〉 is close to −0.33:0.58:0.66 at θ/θ ′ = 0.0. The magnitude
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Figure 10. The PDFs and conditional PDFs of the normalized eigenvalues of DD
ij .

(a–c) Case II3 and (d–f ) case II5.

of the conditional average of ω2λS
1 cos2(ω, ΛS

1)/〈ωiωjS∗
ij〉 for each case is much smaller

than those of the other two components. Furthermore, as mentioned above, the PDFs and
conditional PDFs of βS

i and cos(ω, ΛS
i ) are nearly independent of the local dilatation and

vibrational relaxation. Therefore, the variations of ω2λS
i cos2(ω, ΛS

i )/〈ωiωjS∗
ij〉 are thus

mainly affected by the vorticity. Here, we can observe that the dependencies of magnitudes
of ω2λS

i cos2(ω, ΛS
i )/〈ωiωjS∗

ij〉 on the local dilatation are similar to those of ω2/〈ω2〉
(figure 3a).

950 A21-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.742


Enstrophy production in compressible isotropic turbulence

(c) ( f )

(b)

(a) (d)

(e)

p
.d

.f

–1.0 –0.5

cos(ω, ΛS3)

0 0.5 1.0 –1.0 –0.5

cos(ω, ΛD3 )

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

p
.d

.f

–1.0 –0.5

cos(ω, ΛS2)

0 0.5 1.0 –1.0 –0.5

cos(ω, ΛD2 )

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

p
.d

.f

–1.0 –0.5

cos(ω, ΛS1)

0 0.5 1.0 –1.0 –0.5

cos(ω, ΛD1 )

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(–∞, +∞)
(–∞, –2)
(–2, –1)
(1, 2)
(2, +∞)

Case I3

Figure 11. The PDFs and conditional PDFs of the alignments between the vorticity and the eigenvectors
(a–c) ΛS

i and (d–f ) ΛD
i . Case I3.

Along the eigendirections of DD
ij , the conditional averages of ω2λD

1 cos2(ω, ΛD
1 )/

〈ωiωjS∗
ij〉 and ω2λD

3 cos2(ω, ΛD
3 )/〈ωiωjS∗

ij〉 are negative and positive, respectively; while
those of ω2λD

2 cos2(ω, ΛD
2 )/〈ωiωjS∗

ij〉 are positive in the compression region and negative
in the expansion region (figure 14d,e, f ). Their magnitudes are enlarged with the increase
of dilatation, and their growth rates are weakened by the relaxation effect. When the
relaxation effect is significant (e.g. case I3), the magnitudes of conditional averages of
ω2λD

1 cos2(ω, ΛD
1 )/〈ωiωjS∗

ij〉 in the compression region and ω2λD
3 cos2(ω, ΛD

3 )/〈ωiωjS∗
ij〉
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Figure 12. The PDFs and conditional PDFs of alignments between the vorticity and the eigenvectors (a–c)
ΛS

i and (d–f ) ΛD
i . Case I5.

in the expansion region are close to zero and almost remain constant. This is due
to the fact that the conditional average of cos(ω, ΛD

1 ) in the compression region and
that of cos(ω, ΛD

3 ) in the expansion region tend to be zero (figure 11d, f ). The above
observations suggest that, different from ω2λS

i cos2(ω, ΛS
i )/〈ωiωjS∗

ij〉, the dependency of
ω2λD

i cos2(ω, ΛD
i )/〈ωiωjS∗

ij〉 on the local dilatation is affected by the vorticity, eigenvalues
and alignments between the vorticity and strain eigenvectors.
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Figure 13. The PDFs and conditional PDFs of alignments between the vorticity and the eigenvector ΛD
i .

(a–c) Case II3 and (d–f ) case II5.

For the Mt ≈ 0.68 cases, as presented in figure 15(a,b,c), the conditional averages
of ω2λS

1 cos2(ω, ΛS
1)/〈ωiωjS∗

ij〉 are negative in both compression and expansion
regions, while those of ω2λS

2 cos2(ω, ΛS
2)/〈ωiωjS∗

ij〉 and ω2λS
3 cos2(ω, ΛS

3)/〈ωiωjS∗
ij〉 are

positive. The ratio of conditional averages of ω2λS
i cos2(ω, ΛS

i )/〈ωiωjS∗
ij〉 is close to

−0.25:0.57:0.54 at θ/θ ′ = 0.0. Their magnitudes almost remain constant in the range
of θ/θ ′ < −4.0, decline in the range of −4.0 ≤ θ/θ ′ ≤ 0.0 and increase sharply in the
expansion region. The influence of vibrational relaxation is mainly manifested in the
strong expansion region, especially for the intermediate eigendirection. It can be expected
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Figure 14. Conditional averages of the enstrophy production components along the three eigendirections of
the deviatoric strain-rate components (a–c) DS

ij and (d–f ) DD
ij . Here, Mt ≈ 0.22.

that the conditional averages of ω2λS
i cos2(ω, ΛS

i )/〈ωiωjS∗
ij〉 mainly relate to the vorticity.

Note that the magnitude of the conditional average of ω2λS
1 cos2(ω, ΛS

1)/〈ωiωjS∗
ij〉 for

each case is approximately half that of the other two components. On the other hand,
the conditional averages of ω2λD

1 cos2(ω, ΛD
1 )/〈ωiωjS∗

ij〉 and ω2λD
3 cos2(ω, ΛD

3 )/〈ωiωjS∗
ij〉

are respectively negative and positive in both compression and expansion regions; while
those of ω2λD

2 cos2(ω, ΛD
2 )/〈ωiωjS∗

ij〉 are positive in the compression region and negative
in the expansion region (figure 15d,e, f ). The magnitudes of conditional averages of
ω2λD

i cos2(ω, ΛD
i )/〈ωiωjS∗

ij〉 along three eigendirections are close to zero at θ/θ ′ = 0.0.
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Figure 15. Conditional averages of enstrophy production components along the three eigendirections of the
deviatoric strain-rate components (a–c) DS

ij and (d–f ) DD
ij . Here, Mt ≈ 0.68.

Their magnitudes are enlarged with the increase of dilatation, and their growth rates
are weakened by the relaxation effect. Meanwhile, the magnitude of the conditional
average of ω2λD

1 cos2(ω, ΛD
1 )/〈ωiωjS∗

ij〉 for each case is slightly larger than that of
ω2λD

3 cos2(ω, ΛD
3 )/〈ωiωjS∗

ij〉, while that of ω2λD
2 cos2(ω, ΛD

2 )/〈ωiωjS∗
ij〉 is much smaller.

The above observations are consistent with the results in tables 11 and 12.
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5. Flow topology of compressible turbulence in non-equilibrium

Based on the topological classification proposed by Chong et al. (1990), the local flow
pattern in a compressible flow field can be deduced by the three invariants of the
velocity gradient tensor A (Aij = ∂uj/∂xi). The first, second and third invariants of Aij are
respectively denoted by P, Q and R, which are defined as

P = −(ξ1 + ξ2 + ξ3) = −θ, (5.1)

Q = ξ1ξ2 + ξ2ξ3 + ξ3ξ1 = (P2 − SijSij + RijRij)/2, (5.2)

and
R = −ξ1ξ2ξ3 = (−P3 + 3PQ − SijSjkSki − 3RijRjkSki)/3. (5.3)

Here, Rij = (∂ui/∂xj − ∂uj/∂xi)/2 is the component of the skew–symmetric rotation
tensor. The three eigenvalues of the velocity gradient tensor are denoted as ξi (i = 1, 2, 3),
which satisfy the following characteristic equation:

ξ3
i + Pξ2

i + Qξi + R = 0. (5.4)

The discriminant Δ of the velocity gradient tensor is given as

Δ = 27R2 + (4P3 − 18PQ)R + (4Q3 − P2Q2). (5.5)

If Δ < 0, the three eigenvalues of the velocity gradient tensor are all real: ξ1 ≤ ξ2 ≤ ξ3. If
Δ > 0, only one eigenvalue is real, and the two other eigenvalues are complex conjugate
pairs: ξ1,2 = ξr ± iξi, and ξ3 is real, where ξr and ξi are real numbers.

The cases Δ < 0 and Δ > 0 correspond to the non-focal and focal regions, respectively.
The surface Δ = 0 can be split into two surfaces r(1a) and r(1b), which are given as

P(9Q − 2P2) − 2(−3Q + P2)3/2 − 27R = 0, (5.6)

and
P(9Q − 2P2) + 2(−3Q + P2)3/2 − 27R = 0. (5.7)

The two surfaces r(1a) and r(1b) osculate each other to form a cusp. In the region Δ > 0,
there is another surface r(2) which contains the points associated with purely imaginary
eigenvalues

PQ − R = 0. (5.8)

The P–Q–R space can thus be partitioned into different spatial regions by the surfaces
r(1a), r(1b), r(2) and R = 0. The flow topology can be studied conveniently in the Q–R
plane with a given value of P. The surfaces r(1a), r(1b), r(2) and R = 0 appear simply as
curves on the Q–R plane, dividing the plane into different regions, which correspond to
different topologies. The topological classifications in three representative Q–R planes are
given in figure 16, while the description of acronyms for various flow topologies is listed in
table 13 (Suman & Girimaji 2010). The term ‘stable’ means that the solution trajectories or
the local streamlines of Aij are directed toward the critical point, while the term ‘unstable’
suggests that the solution trajectories or the local streamlines of Aij are pointed away from
the critical point. Consequently, the stable topologies are associated with the tendency of
a fluid element to be compressive, and the unstable topologies relate to the tendency of
a fluid element to be expansive. Furthermore, when Δ > 0, the fluid element exhibits a
structure with rotational characteristics and an out-of-plane strain. When Δ < 0, the fluid
element appears to be non-swirling and straining. Besides, the fluid element exhibits a
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Q
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Figure 16. Topological classifications in three representative Q–R planes: (a) P = 0; (b) P > 0; (c) P < 0.
The description of acronyms for various flow topologies is given in table 13.

Sector Acronym Description Eigenvalues

S(1) UFC Unstable focus/compressing ξr > 0 and ξ3 < 0
S(2) UN/S/S Unstable node/saddle/saddle ξ1 < 0, ξ2 > 0, and ξ3 > 0
S(3) SN/S/S Stable node/saddle/saddle ξ1 < 0, ξ2 < 0, and ξ3 > 0
S(4) SFS Stable focus/stretching ξr < 0 and ξ3 > 0
S(5) SFC Stable focus/compressing ξr < 0 and ξ3 < 0
S(6) SN/SN/SN Stable node/stable node/stable node ξ1 < 0, ξ2 < 0, and ξ3 < 0
S(7) UFS Unstable focus/stretching ξr > 0 and ξ3 > 0
S(8) UN/UN/UN Unstable node/unstable node/unstable node ξ1 > 0, ξ2 > 0, and ξ3 > 0

Table 13. Description of acronyms of various flow topologies.

structure with two stretching directions and one contracting direction with positive R, and
a structure with two contracting directions and one stretching direction with negative R.

The joint PDF of the normalized second and third invariants (R/〈Qw〉3/2, Q/〈Qw〉,
where Qw = 〈ω2〉/4) at different dilatational levels for cases I3 and I5, as well as cases
II3 and II5 are displayed in figures 17 and 18, respectively. In weak compression and weak
expansion regions (−0.05 < θ/θ ′ < 0.05), the teardrop shape of the joint PDF is almost
identical to that in weakly compressible turbulence (figures 17(a,d) and 18(a,d)). However,
in the strong compression (−2.55 < θ/θ ′ < −2.45) and strong expansion (2.45 < θ/θ ′ <

2.55) regions, the relaxation effect on the volume fraction of the flow topology is
significant, especially for the Mt ≈ 0.22 cases. Tables 14 and 15 list the volume fractions of
various flow topologies for the Mt ≈ 0.22 and 0.68 cases, respectively. For case I3, where
the relaxation effect is significant, the shape of the joint PDF becomes rather sharp, with
an extended tail around the right branch of the null-discriminant curve (r(1b)) in the strong
compression and strong expansion regions (figure 17b,c). The topologies S(1), S(2) and S(4)

are thus predominant. As shown in table 14, for case I3, the topologies S(1), S(2) and S(4)

respectively account for volume fractions of 20.16 %, 31.41 % and 31.55 % in the strong
compression region, and 15.86 %, 44.52 % and 30.95 % in the strong expansion region.
For case I5, where the flow compressibility is significantly enhanced, the tails around the
right branch of the null-discriminant curve in the strong compression and strong expansion
regions are shortened, and the angle between the curve r(2) and Q-axis enlarges. The strong
compression region is therefore dominated by the stable topologies S(3), S(4) and S(5) with
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Figure 17. Logarithm of the joint PDF of the normalized second and third invariants of the velocity gradient
tensor: (a,d) −0.05 < θ/θ ′ < 0.05; (c,e) −2.55 < θ/θ ′ < −2.45; (c,e) 2.45 < θ/θ ′ < 2.55. (a–c) Case I3,
(d–f ) case I5.

volume fractions of 33.96%, 20.70% and 22.52%, respectively; while the strong expansion
region is respectively dominated by the unstable topologies S(1), S(2) and S(7) with volume
fractions of 13.62 %, 39.03 % and 36.39 %. Meanwhile, the volume fractions of topologies
S(6) and S(8) are thus slightly enhanced with 1.95 % and 2.55 %, respectively.

For the Mt ≈ 0.68 cases, the vibrational relaxation has little impact on the flow
compressibility, and the relaxation effects on the volume fractions of the flow topologies
are thus relatively weak, as shown in figure 18. In table 15, in comparison with the
Mt ≈ 0.22 cases in table 14, one can observe similar but smaller variations of the volume
fractions of the flow topologies as the relaxation effect fades. For case II3, the strong
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Figure 18. Logarithm of the joint PDF of the normalized second and third invariants of the velocity gradient
tensor: (a,d) −0.05 < θ/θ ′ < 0.05; (b,e) −2.55 < θ/θ ′ < −2.45; (c,f ) 2.45 < θ/θ ′ < 2.55. (a–c) Case II3,
(d–f ) case II5.

compression region is dominated by the topologies S(1), S(3) and S(4) with volume
fractions of 19.52%, 20.50% and 29.13%, respectively; while the strong expansion region
is dominated by the topologies S(2) and S(4) with 36.76 % and 23.13 %, respectively. As
the relaxation effect fades, for case II5, the strong compression region is dominated by the
stable topologies S(3), S(4) and S(5) with volume fractions of 30.69%, 23.30% and 19.15%,
respectively; while the strong expansion region is respectively dominated by the unstable
topologies S(1), S(2) and S(7) with 16.88 %, 34.74 % and 37.12 %.
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Case S(1)
−2.5 S(2)

−2.5 S(3)
−2.5 S(4)

−2.5 S(5)
−2.5 S(6)

−2.5 S(1)
2.5 S(2)

2.5 S(3)
2.5 S(4)

2.5 S(7)
2.5 S(8)

2.5

I1 19.44 25.22 15.42 31.89 8.02 0.01 18.21 40.44 4.40 29.14 7.81 0.01
I2 20.00 29.89 12.99 32.18 4.95 0.00 15.43 46.44 5.01 29.38 3.73 0.00
I3 20.16 31.41 12.54 31.55 4.34 0.00 15.86 44.52 5.10 30.95 3.57 0.00
I4 16.06 19.47 20.70 29.87 13.78 0.13 18.97 37.96 2.76 21.97 18.19 0.14
I5 10.60 10.27 33.96 20.70 22.52 1.95 13.62 39.03 0.85 7.55 36.39 2.55
I6 17.57 22.39 18.22 31.04 10.72 0.05 18.89 38.82 3.72 26.21 12.32 0.04
I7 15.40 18.28 22.63 28.68 14.80 0.20 18.54 38.30 2.58 20.71 19.67 0.20

Table 14. Volume fractions of various flow topologies (%). Here, S(i)
−2.5 and S(i)

2.5 denote the topology S(i) in
the −2.55 < θ/θ ′ < −2.45 and 2.45 < θ/θ ′ < 2.55 regimes, respectively; Mt ≈ 0.22.

Case S(1)
−2.5 S(2)

−2.5 S(3)
−2.5 S(4)

−2.5 S(5)
−2.5 S(6)

−2.5 S(1)
2.5 S(2)

2.5 S(3)
2.5 S(4)

2.5 S(7)
2.5 S(8)

2.5

II1 16.55 14.00 25.41 26.62 17.03 0.39 18.00 36.55 1.47 15.63 27.80 0.54
II2 18.57 15.50 22.91 27.56 15.24 0.22 18.41 36.45 1.99 20.13 22.75 0.26
II3 19.52 16.34 20.50 29.13 14.40 0.11 18.47 36.76 2.42 23.13 19.09 0.13
II4 17.12 13.68 25.27 26.48 17.06 0.38 18.78 34.54 1.42 14.97 29.76 0.52
II5 14.01 11.80 30.69 23.30 19.15 1.05 16.88 34.74 0.88 8.80 37.12 1.58
II6 16.89 14.26 24.94 26.81 16.76 0.35 18.61 35.42 1.57 16.22 27.74 0.45
II7 15.38 12.76 28.33 24.57 18.26 0.69 17.98 34.77 1.13 11.66 33.49 0.97

Table 15. Volume fractions of various flow topologies (%). Here, S(i)
−2.5 and S(i)

2.5 denote the topology S(i) in
the −2.55 < θ/θ ′ < −2.45 and 2.45 < θ/θ ′ < 2.55 regimes, respectively; Mt ≈ 0.68.

Tables 16 and 17 list the relative contributions from various flow topologies to the local
enstrophy production (ωiωjS∗

ij) (%) for the Mt ≈ 0.22 and 0.68 cases, respectively. When
the relaxation effect is significant (e.g. cases I3 and II3 ), in both strong compression and
strong expansion regions, the sum of relative contributions from topologies S(2) and S(4)

is larger than 90 %, indicating that they make major contributions to the locally averaged
enstrophy production. As the relaxation effect fades, in the strong compression region, the
relative contributions from topologies S(2) and S(4) decrease, while those from topologies
S(3) and S(5) increase. For instance, from case I3 to case I5, the relative contributions from
topologies S(2) and S(4) decrease respectively from 27.71 % and 71.11 % to 11.61 % and
59.29 %; while those of topologies S(3) and S(5) increase respectively from 6.00 % and
0.49 % to 14.06 % and 12.29 %. In the strong expansion region, the relative contributions
from topologies S(2), S(4) and S(7) increase as the relaxation effect fades. Meanwhile, the
significance of topology S(1) is amplified, and it plays a destruction role for enstrophy.
For example, the relative contribution from topology S(1) reduces from 3.21 % (case I3) to
−37.15 % (case I5), and from 0.82 % (case II3) to −22.66 % (case II5) (tables 16 and 17).

6. Discussion

The studies of the statistical properties of compressible isotropic turbulence in vibrational
non-equilibrium were pioneered by Donzis & Maqui (2016), and followed by Khurshid
& Donzis (2019) and Zheng et al. (2020). Different from our previous investigation
(Zheng et al. 2020), in the companion paper (Zheng et al. 2021) and the present work,
we mainly focus on the statistical properties of compressible isotropic turbulence in
vibrational non-equilibrium with a large-scale thermal forcing. Although the large-scale
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Case S(1)
−2.5 S(2)

−2.5 S(3)
−2.5 S(4)

−2.5 S(5)
−2.5 S(6)

−2.5 S(1)
2.5 S(2)

2.5 S(3)
2.5 S(4)

2.5 S(7)
2.5 S(8)

2.5

I1 −4.14 23.35 6.54 73.00 1.24 0.00 0.37 27.21 3.00 68.61 0.80 0.00
I2 −5.17 27.30 6.03 71.25 0.59 0.00 3.97 28.59 3.42 63.66 0.36 0.00
I3 −5.30 27.71 6.00 71.11 0.49 0.00 3.21 26.60 3.38 66.44 0.37 0.00
I4 −0.91 18.08 8.10 71.16 3.57 0.00 −8.88 28.92 2.35 74.19 3.41 0.00
I5 2.55 11.61 14.06 59.29 12.29 0.21 −37.15 43.70 1.49 82.15 10.14 −0.33
I6 −2.56 20.95 7.26 72.24 2.10 0.00 −2.73 27.95 2.82 70.43 1.53 0.00
I7 −0.66 17.58 8.62 70.34 4.12 0.01 −9.55 29.00 2.32 74.60 3.64 0.00

Table 16. Relative contributions from various flow topologies to the locally averaged enstrophy production
(ωiωjS∗

ij) (%). Here, S(i)
−2.5 and S(i)

2.5 denote the topology S(i) in the −2.55 < θ/θ ′ < −2.45 and 2.45 < θ/θ ′ <

2.55 regimes, respectively; Mt ≈ 0.22.

Case S(1)
−2.5 S(2)

−2.5 S(3)
−2.5 S(4)

−2.5 S(5)
−2.5 S(6)

−2.5 S(1)
2.5 S(2)

2.5 S(3)
2.5 S(4)

2.5 S(7)
2.5 S(8)

2.5

II1 −2.07 14.48 9.86 71.36 6.34 0.03 −2.46 25.72 1.84 67.72 7.19 0.00
II2 −5.31 16.20 8.78 75.44 4.86 0.01 0.31 23.84 2.06 68.95 4.84 0.00
II3 −7.18 16.64 8.10 78.41 4.04 0.00 0.82 24.22 2.17 69.39 3.39 0.00
II4 −2.75 13.68 9.65 72.90 6.49 0.03 −6.04 25.06 1.77 71.06 8.16 0.00
II5 0.74 12.30 12.24 65.41 9.21 0.11 −22.66 32.72 1.50 78.24 10.29 −0.10
II6 −2.32 14.53 9.62 72.12 6.03 0.02 −4.24 25.13 1.80 70.12 7.20 0.00
II7 −0.53 13.42 10.96 68.32 7.76 0.06 −10.72 27.51 1.66 71.68 9.89 −0.02

Table 17. Relative contributions from various flow topologies to the locally averaged enstrophy production
(ωiωjS∗

ij) (%). Here, S(i)
−2.5 and S(i)

2.5 denote the topology S(i) in the −2.55 < θ/θ ′ < −2.45 and 2.45 < θ/θ ′ <

2.55 regimes, respectively; Mt ≈ 0.68.

thermal forcing adopted in the present simulations cannot completely reproduce the
shock-induced heating in high-speed flows, it provides a simplified way to investigate the
effects of large-scale thermal forcing on the small-scale statistical properties of turbulence.
In the present simulations, the vibrational relaxation effect acts as a buffer between
the translational–rotational temperature and the vibrational temperature, relieving the
temperature fluctuations; while the thermal forcing injects the temperature fluctuations
at large scales. There is an inverse effect between the vibrational relaxation and the
large-scale thermal forcing, and they determine the flow compressibility together with
the turbulent Mach number (as shown in figures 1 and 2). The vibrational relaxation
weakens the flow compressibility and the large-scale thermal forcing enhances it.
Furthermore, because the dimensionless relaxation time is determined by the local
temperature and pressure (2.9), and the departure between the translational–rotational and
vibrational temperatures is dependent of the turbulent fluctuation, the state of vibrational
non-equilibrium thus closely relates to the flow compressibility for a flow system with
given Mt and large-scale thermal forcing. Here, the thermal forcing has a weaker impact on
the flow compressibility for the Mt ≈ 0.68 cases. This should be attributed to the fact that
their own temperature fluctuations at large scales are comparable to the thermal forcing in
these cases.

In Zheng et al. (2021), we found that the turbulent Mach number and vibrational
relaxation have little influence on the fluctuations of solenoidal velocity and pressure
components, and have a significant effect on the fluctuations of dilatational velocity
and pressure components. Similarly, in the present investigation, the impacts of local
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dilatation and vibrational relaxation on the conditional PDFs of normalized eigenvalues
of DS

ij and the alignments between the vorticity and eigenvectors of DS
ij are negligible.

The preferred ratio of eigenvalues of DS
ij and the alignments between the vorticity and

eigenvectors of DS
ij are close to those of incompressible turbulence. On the contrary, the

conditional PDFs of normalized eigenvalues of DD
ij and the alignments between vorticity

and eigenvectors of DD
ij closely relate to the local dilatation and vibrational relaxation.

Consequently, the ratio of 〈ω2λS
i Cos2(ω, ΛS

i )/〈ωiωjS∗
ij〉〉 roughly remains constant despite

varying the state of vibrational non-equilibrium (tables 9 and 11), while the ratio of
〈ω2λD

i Cos2(ω, ΛD
i )/〈ωiωjS∗

ij〉〉 is sensitive to the state of vibrational non-equilibrium
(tables 10 and 12). On the other hand, the volume fractions of various flow topologies
closely relate to the flow compressibility, and are dependent of the state of vibrational
non-equilibrium (tables 14 and 15), particularly for the Mt ≈ 0.22 cases. However, as
revealed in tables 16 and 17, the relative contributions from various flow topologies to
the locally averaged enstrophy production are somewhat confusing due to the advent of
vibrational relaxation. The slight change in volume fraction may lead to a significant
difference in the relative contributions to the locally averaged enstrophy production (e.g.
S(1)

2.5 in the strong expansion region, tables 14–17). The mechanism behind this confusing
phenomenon remains unclear, and requires further in-depth investigation.

7. Summary and conclusions

In this paper, the statistically steady compressible isotropic turbulence in vibrational
non-equilibrium is numerically investigated. The large-scale momentum forcing is used
to maintain the turbulence in a statistically stationary state, and the large-scale thermal
forcing is adopted to inject temperature fluctuations. Two series of cases are employed
with the turbulent Mach number (Mt) approximately equal to 0.22 and 0.68, and the
Taylor Reynolds number (Reλ) is approximately 157.5. The attention focuses on the
combined effects of large-scale thermal forcing and vibrational relaxation on the enstrophy
production and flow topology. The main conclusions are briefly summarized as follows.

The large-scale thermal forcing and vibrational relaxation have a great influence on
the flow compressibility for the Mt ≈ 0.22 cases. As the relaxation effect fades, the
flow compressibility is strongly enhanced and the clear shocklet structures lie across the
flow field. For the Mt ≈ 0.68 cases, the large-scale thermal forcing has a relative weaker
impact on the flow compressibility. The deviatoric strain-rate tensor can be decomposed
into the dilatational and solenoidal components. For the Mt ≈ 0.22 cases, due to the
relaxation effect, the correlation between the dilatation and solenoidal component of the
deviatoric strain-rate tensor is enhanced, while the correlation between the dilatation and
dilatational component of the deviatoric strain-rate tensor is weakened. Furthermore, for
the Mt ≈ 0.68 cases, the relaxation effects on the correlation between the dilatation and
the deviatoric strain components are negligible.

The net enstrophy production term (ωiωjS∗
ij) is decomposed into the solenoidal

(ωiωjDS
ij), dilatational (ωiωjDD

ij ) and isotropic dilatational (−(1/6)θω2) terms. From the
full flow field perspective, the net enstrophy production mainly stems from the solenoidal
term. For the dilatational and isotropic dilatational terms, although their local magnitudes
can be considerable, the positive values in the compression region and the negative values
in the expansion region cancel out on average. Furthermore, the variations of the net
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enstrophy production term and its components depend closely on the local dilatation and
vibration relaxation.

The eigenframe of strain-rate tensor is helpful to investigate the mechanism of enstrophy
production. Effects of the local dilatation and vibrational relaxation on the conditional
PDFs of normalized eigenvalues of DS

ij are negligible. In the overall flow field, the
preferred ratio of eigenvalues of DS

ij and the alignments between vorticity and eigenvectors
of DS

ij are similar to those of incompressible and weakly compressible turbulent flows.
On the other hand, the conditional PDFs of the normalized eigenvalues of DD

ij , and
the alignments between the vorticity and eigenvectors of DD

ij , are closely related to
the vibrational relaxation and local dilatation. The first normalized eigenvalue with
βD

1 ≈ −0.81 dominates in the compression region, and the third normalized eigenvalue
with βD

3 ≈ 0.80 in the expansion region. The intermediate eigenvalue βD
2 tends to be

positive in the compression region, and negative in the expansion region. When the
flow compressibility is weak, there is a tendency for the vorticity to be perpendicular
to the first eigenvector and align with the third eigenvector in the compressible
region, while strongly aligning with the first eigenvector and being perpendicular to
the third eigenvector in the expansion region. The stronger the flow compressibility,
the less significant the alignments between the vorticity and eigenvectors of DD

ij . The
solenoidal and dilatational terms of net enstrophy production can be rewritten as
ω2λS

i cos2(ω, ΛS
i )/〈ωiωjS∗

ij〉 and ω2λD
i cos2(ω, ΛD

i )/〈ωiωjS∗
ij〉, respectively. Dependencies

of ω2λS
i cos2(ω, ΛS

i )/〈ωiωjS∗
ij〉 on the local dilatation are mainly affected by the vorticity,

while those of ω2λD
i cos2(ω, ΛD

i )/〈ωiωjS∗
ij〉 are affected by the vorticity, eigenvalues and

alignments between vorticity and strain eigenvectors.
The topological classification proposed by Chong et al. (1990) is employed to

decompose the flow field into various flow topologies. From the joint PDF of the
normalized second and third invariants of the velocity gradient tensor conditioned on the
local dilatation, the classical teardrop shape in incompressible or weakly compressible
turbulent flows still holds in the weak compression and weak expansion regions. In the
strong compression and strong expansion regions, the relaxation effects on the volume
fractions of the flow topologies are significant for the Mt ≈ 0.22 cases. When the
relaxation effect is significant, the joint PDF has an extended tail around the right branch
of the null-discriminant curve in the strong compression and strong expansion regions; and
thus the topologies UFC, UN/S/S and SFS are predominant. As the relaxation effect fades,
the tails around the right branch of the null-discriminant curve in the strong compression
and strong expansion regions are shortened. The strong compression region is dominated
by the stable topologies SN/S/S, SFS and SFC, while the strong expansion region is
dominated by the unstable topologies UFC, UN/S/S and UFS. For the Mt ≈ 0.68 cases,
the relaxation effects on the volume fractions of flow topologies are relatively weak.
In comparison with the Mt ≈ 0.22 cases, similar but smaller variations of the volume
fractions of the flow topologies are observed as the relaxation effect fades.

The relaxation effects on the relative contributions from various flow topologies to the
local enstrophy production are similar for both Mt ≈ 0.22 and 0.68 cases. In the strong
compression and strong expansion regions, as the relaxation effect is significant, the
topologies UN/S/S and SFS make major contributions to the local enstrophy production
with the sum of their relative contributions being larger than 90 %. As the relaxation effect
fades, in the strong compression region, the relative contributions from topologies UN/S/S
and SFS decrease, while those from topologies SN/S/S and SFC increase; on the other
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hand, in the strong expansion region, the relative contributions from topologies UN/S/S,
SFS and UFS increase, while the significance of topology UFC is strongly amplified for
enstrophy destruction.
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