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A new analytical model is derived based on physical concepts and conservation laws, in
order to evaluate the post-shock gas velocity, the gas density and the spray dispersion
topology during the interaction of a shock wave and a water spray in a one-dimensional
configuration. The model is validated against numerical simulations over a wide range
of incident Mach numbers Ms and particle volume fractions τv,0. Two regimes of shock
reflection have been identified depending on Ms, where the reflected pressure expansion
propagates either opposite to the incident shock-wave direction for weak incident Mach
numbers or along with it for strong Mach numbers. The numerical simulations reveal
the presence of a particle number-density peak for Ms > 2 and with particle diameters
of the order of O(10) μm. The formation of the number-density peak is discussed and a
necessary condition for its existence is proposed for the first time.
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1. Introduction

High-pressure blast waves are present and important in many natural and industrial
processes, such as rocket propulsion systems, aerial boosters and explosions. Particularly
important for current industrial safety issues, the accidental initiation of shock waves,
such as hydrogen explosions in a confinement building, can lead to a potential hazard
due to devastating effects on human lives and subsequent damage to the integrity of
buildings. For safer engineering applications, several shock- and blast-wave mitigation
techniques are proposed. A water spray system is one of the possible techniques used
inside industrial buildings or on offshore facilities to preserve the containment integrity in
case of severe accidents (Foissac et al. 2011). The mitigation effects of a spray system
are directly dependent on the spray dispersion topology, which can be much affected
by the shock-wave propagation. The interaction between spray and shock wave is also
important in reacting flows, such as in internal combustion engine systems, where the
combustion properties are much affected by the liquid fuels. As reported by Gelfand
(1996), compression waves can, under some circumstances, coalesce and generate shock
waves in two-phase reactive flows.
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In the past, there have been many theoretical and experimental studies investigating
the physics of the interaction of droplets or solid particles/obstacles with shock waves
(Carrier 1958; Rudinger 1964; Olim et al. 1990; Geng et al. 1994; Chaudhuri et al. 2012,
2013; Balakrishnan & Bellan 2017; Mouronval et al. 2019; Gai et al. 2020). Commonly, the
particles are assumed to be at rest before they meet the shock at a given velocity. In terms
of flow dynamics and after the passage of the shock, the shocked gas induces high-velocity
flow, which accelerates the particles. On the other hand, the particles decelerate the
post-shock gas and thus attenuate the shock intensity (Jourdan et al. 2010, 2015; Britan
et al. 2013; Del Prete et al. 2013). In the case of a water spray and for high gas velocity,
a secondary liquid droplet atomization may be encountered under certain flow conditions
(e.g. Weber number We > 12), which leads to the formation of a fine droplet spray that
enhances shock energy dissipation (Pilch & Erdman 1987; Gelfand 1996; Guildenbecher,
Lopez-Rivera & Sojka 2009). The role of atomization processes is thus to increase the
transfer surface (Yeom & Chang 2012) and to intensify the heat (evaporation) as well as the
mass transfer. These transfer processes largely affect the thermal equilibrium conditions
of the post-shock gas (Kersey, Loth & Lankford 2010) and may change the topology of the
cloud dispersion, leading to shock-wave mitigation and/or a flame extinction in the case of
reacting flows (Thomas 2000; Gai et al. 2019).

The physical mechanism of shock–droplets interaction is yet to be elucidated both
quantitatively and qualitatively by means of well-conducted experiments and/or numerical
modelling for low- and high-Mach-number regimes (Sugiyama et al. 2019). Considering
the complexity of droplet deformation, evaporation and the breakup mechanisms, rigid
particles are easier to handle from the experimental viewpoint and simpler to model from
the numerical side. The basic concept of the interactions between a shock wave and a
single particle or an array of particles has been much discussed in the recent literature
(Ling, Haselbacher & Balachandar 2011; Mehta et al. 2016; Dahal & McFarland 2017),
where the effects of particles on the gas flow are weak. Dense particles or droplet curtains
have also been investigated (Wagner et al. 2012; Theofanous, Mitkin & Chang 2016) in
which the collision between the particles becomes important.

In this study, we focus on the problem of shock waves interacting with particles having a
volume fraction of the order of O(10−4–10−3), which are typical values for the sprays found
in industry. According to Elghobashi (2006), a two-way formalism, which accounts for the
mutual interaction between the gas flow and the droplets, can be used in such a case to
describe the shock–spray interaction, meaning that the deceleration effects of the particles
on the gas flow have to be taken into account, while the collisions between particles can
be neglected.

From a practical point of view, concerning the modelling of an industrial building,
the current existing numerical simulations cannot be applied directly as a result of high
computational expense, especially for the simulation of high-Reynolds-number flows.
By the necessity to develop a simple model, this paper presents a new methodology
for modelling a shock wave propagating into spray droplets. The objective is twofold:
(i) developing a reduced-order model of spray dispersion in the presence of shock waves
taking into account the two-way interaction; and (ii) better understanding the different
regimes of reflected pressure waves for both weak- and strong-Mach-number cases. From
the highly resolved numerical simulation results, several fundamental hypotheses can
be deduced for the shock–spray interaction. The reduced-order model is established
by conservation laws, then validated through numerical simulations. The formation of
the compressed gas zone is particularly discussed and a number-density peak of cloud
particles is predicted, which is also seen in the highly resolved numerical simulations.
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2. Modelling assumptions

In general, the following assumptions and simplifications are made in the numerical
simulations: (i) The gas is considered as inviscid and obeys the perfect-gas law, and the
fluid viscosity and conductivity are neglected except in the interaction with the particles.
(ii) The particles are considered as inert, spherical, rigid and of uniform diameter, with
constant heat capacity and a uniform temperature distribution. (iii) The volume fraction
of the particles is taken to be small so that collisions between particles can be neglected,
while the two-way shock–particles interaction is considered (Elghobashi 2006). (iv) Only
the viscous drag forces are supposed to act on the particles. The particle-to-gas density
ratio is assumed to be of the order of O(103), the Basset force can be neglected (Thomine
2011) and we assume that the particles do not spin (the Magnus force is neglected). Gravity
is at least one order of magnitude smaller than the drag force for the range of parameters in
this study, and therefore it is neglected. (v) Heat transfer between gas and particles is not
considered at present for the dilute, homogeneous cloud of particles (Theofanous, Mitkin
& Chang 2018). (vi) Finally, the turbulent fluctuations of the solid particles are neglected
in the one-dimensional configuration.

3. Governing equations

The structure of the shock–spray interaction is elucidated through direct numerical
simulations carried out with a Navier–Stokes solver, named Asphodele, developed
in CORIA Rouen to simulate two-phase dispersed fluid flows (Thomine 2011). The
Eulerian–Lagrangian approach is used with an unresolved discrete particle model
(UDPM), which relies on a larger computation cell with regard to the particle sizes and
uses a drag force model to describe the gas–particle interactions. The space discretization
uses a fifth-order weighted essentially non-oscillatory (WENO) scheme of Jiang &
Shu (1996) with a global Lax–Friedrichs splitting, and the time resolution employs a
third-order Runge–Kutta method, with a minimal storage time-advancement scheme of
Wray (1991).

In the Eulerian–Lagrangian frame, the mass, momentum and energy equations for the
carrier gas phase can be written as:

∂ρg

∂t
+ ∂

∂x
(ρgug) = 0, (3.1)

∂

∂t
(ρgug) + ∂

∂x
(ρgu2

g + p) = −f D, (3.2)

∂

∂t
(ρgEg) + ∂

∂x
(ρgHgug) = −ug f D, (3.3)

with

f D = 3
4D

CDτvρg|ug − vp|(ug − vp), (3.4)

where the subscripts g and p represent the gas and particle phases, τv denotes the particle
volume fraction, Hg is the specific total enthalpy of air, u and v represent the air and
particle velocities, CD is the drag coefficient defined as

CD = 24
Rep

(1 + 0.15Re0.687
p ) with Rep = ρg|ug − vp|D

μg
, (3.5)
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Rep is the particle Reynolds number, μg is the dynamic viscosity of the gas and D is the
diameter of the particles.

For a solid particle, the general motion equation gives

mp
dV(t)

dt
= F D = πD3

6τv

f D, (3.6)

where mp = πρpD3/6 is the particle mass, ρp is the particle density and F D is the drag
force on the particle.

Conventionally, the unsteady terms of the gas–particle interaction, such as the
added-mass effect and unsteady viscous force, are neglected for the conditions addressed,
as a result of the high particle–gas density ratio ρp/ρf = O(103) and the low particle
volume fraction τv,0 = O(10−4) in the highly dilute homogeneous gas-cloud system (Ling,
Parmar & Balachandar 2013; Theofanous & Chang 2017). In this study, we mainly focus
on the dynamic aspect of the shock–particle interaction. The heat transfer between the
particle cloud and the gas flow may indirectly influence the gas and particle motion.
However, this effect is considered to be of secondary importance for the development of
the one-dimensional analytical model (Ling et al. 2012). The drag law is reported to yield
good agreements with the dispersive behaviour found in experiments of one-dimensional
shock–particle cloud interactions (Theofanous et al. 2018). The turbulent dispersion of the
particle cloud is not considered during the shock passage.

4. Interaction mechanism

In this study, we consider the problem of the interaction between a planar shock wave
and a gas–particle two-phase mixture, as illustrated in figure 1(a). This test problem
represents one of the basic configurations commonly used to study shock-wave attenuation
in multiphase flows (Chang & Kailasanath 2003). A wave travelling at velocity Vs in a
shock tube of constant cross-sectional area is generated by a piston moving at a speed
ug,1. After the passage of the wave, four states can be distinguished: (1) the pure gas,
(2) the compressed gas, (3) the post-shock gas–particle mixture and (4) the pre-shock
gas–particle mixture. Let Ms = Vs/c0 (with c0 being the speed of sound in the unshocked
gas region) denote the incident shock Mach number. For a low-velocity impact, i.e.
weak Mach number (Ms < 2), the incident shock generates a transmitted wave and a
reflected left-running pressure wave with respect to the incident shock (see figure 1b). The
gas–particle contact surface moves with the transmitted shock at velocity Vi. For stronger
incident Mach number, the reflected pressure expansion is seen to propagate along the
original shock-propagation direction as shown in figure 1(c).

Space–time diagrams are plotted for the two different regimes of shock reflection, as
seen in figures 2(a) and 2(b). The propagation direction of the pressure expansion is closely
related to the properties of the compressed gas region. For simplicity, the properties are
denoted with the indices of the corresponding area as presented in figure 1. The spherical
particles are assumed to have a volume fraction of τv,0 = Vp/(Vp + Vg) = 5.2 × 10−4,
where Vp and Vg are the volume of particles and the volume of gas, respectively.

Particles with a mean diameter of 1 μm are used in the numerical simulations to
investigate the shock–spray interaction mechanism, since they have a small characteristic
response time τp. Figure 3 gives a space distribution of gas density ρg (figure 3a)
and velocity ug (figure 3b) at a given time. One can identify the different zones
of the interaction as well as the two regimes of shock reflection for weak- and
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FIGURE 1. Sketch of the two regimes of shock–particle cloud interaction: (a) initial
configuration; (b) weak Mach number Ms < 2; and (c) strong Mach number Ms > 2. Here CG =
compressed gas, and P = particles.
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FIGURE 2. Space–time diagrams of shock–particles interaction for numerical simulations
at two different Mach numbers: (a) Ms = 1.1 and (b) Ms = 4.0. Curves: transmitted wave
(blue-green dot-dashed); reflected wave (blue dotted); particle interface (red solid); and initial
particle interface (orange dashed).

strong-Mach-number cases as described in figure 1. In what follows we will derive
the relationships between pressure, gas density and velocity. These observations will
contribute to the development of the reduced-order modelling approach.

4.1. Pressure and density relationships in the compressed gas
To better represent the quantities in different zones, the gas density and velocity evolutions
in figures 3(a) and 3(b) are sketched in figure 4. The evolutions of the particle volume
fraction and the particle mean density are shown in figures 3(c) and 3(d). As illustrated in
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FIGURE 3. Evolution of (a) gas mass density ρg, (b) gas velocity ug, (c) particle volume
fraction τv and (d) particle mean velocity vp for numerical simulations, at t = 300 μs, D = 1 μm
and τv,0 = 5.2 × 10−4, for different Mach numbers. Curves: Ms = 1.5 (blue-green); Ms = 2.0
(blue); Ms = 2.5 (red); and original gas–particle contact surface (black dashed).

figure 1(b) and (c), after the interaction of the shock with the gas–particle contact surface,
a compressed gas zone (2) is generated. From a modelling point of view, it is important
to derive relationships between the pure gas zone (1) and the compressed gas zone (2), as
follows:

pg,1 < pg,2, ρg,1 < ρg,2, ug,1 > ug,2. (4.1a–c)

Similarly, between the compressed gas zone (2) and the post-shock gas–particle mixture
(3), one has the following:

pg,2 = pg,3, ρg,2 > ρg,3 ug,2 = ug,3. (4.2a–c)

With regard to the gas density distribution, and as depicted in figure 4(a), the gas density
inside the post-shock gas–particle mixture ρg,3 might be higher than, lower than or equal
to the density of the pure gas zone ρg,1. One can use ρg,3l, ρg,3c and ρg,3r to denote the
three different cases. The numerical results show that, when one has ρg,1 < ρg,3l (for
weak Ms), the reflected pressure expansion tends to propagate towards the x− direction,
while if ρg,1 > ρg,3r (for strong Ms), the pressure expansion propagates inversely for most
numerical simulations.
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FIGURE 4. Sketch of gas properties after the shock–particle cloud interaction: (a) density and
(b) gas velocity evolutions.
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FIGURE 5. Velocity ratio ug,2/ug,1 over a wide range of incident shock Mach numbers, for
D = 1 μm and: τv,0 = 5.2 × 10−5 (green), τv,0 = 5.2 × 10−4 (blue) and τv,0 = 5.2 × 10−3

(blue-green).

The gas velocity evolution, described in figure 4(b), indicates that, during the
interaction, one always has ug,1 > ug,2, ug,2 = ug,3 and ug,3 > ug,4 = 0. It is interesting to
note that, for a wide range of particle volume fractions (τv,0 ≈ O(10−5–10−3)), the velocity
ratio in the pure and in the compressed gas regions is almost constant over a wide range of
Mach numbers (1 < Ms < 4) (see figure 5). We assume therefore that

ug,2

ug,1
≈ f (τv,0), (4.3)

where τv,0 is the initial particle volume fraction, which is considered to be the main factor
influencing the variation of ug,2/ug,1. Equations (4.1a–c) to (4.3) are considered as the
fundamental hypothesis of the reduced-order modelling.

5. Reduced-order modelling

For practical applications, the development of a reduced-order model that takes into
consideration the two-way shock–spray interaction is given in this section. The rationality
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of the above-mentioned hypotheses is discussed and the validation of the model is carried
out with the Navier–Stokes (NS) code.

Mass conservation through the interface between the pure gas (1) and the compressed
gas (2) gives ∫ x2

x1

(
∂ρg

∂t

)
dx = ρg,1ug,1 − ρg,2ug,2, (5.1)

where the integral expression on the left-hand side provides the direction of the pressure
expansion. The pressure wave propagates towards the x+ direction if the integral is
negative and vice versa. Thus the quantity (ρg,1ug,1 − ρg,2ug,2) can be used as a criterion
for the identification of the reflection regime of the pressure wave. This criterion is valid
for cases corresponding to the initial configuration given in figure 1(a).

The properties of the pure gas zone (1) can be obtained analytically (White 2011):

2
γ + 1

M2
s − 1
Ms

= ug,1

c0
, (5.2)

p1

p0
= F1(Ms, γ ),

T1

T0
= F1(Ms, γ )F2(Ms, γ )

M2
s

,
ρ1

ρ0
= p1

p0

T0

T1
, (5.3a–c)

where

F1(Ms, γ ) = 2
γ + 1

(
γ M2

s − γ − 1
2

)
, F2(Ms, γ ) = 2

γ + 1

(
1 + γ − 1

2
M2

s

)
.

(5.4a,b)

Note that the gas properties in the gas–particle mixture (4) are identical to those of the
pre-shock pure gas area (0). Meanwhile, the gas properties in zones (2) and (3) need to be
estimated properly.

5.1. Velocity of the compressed gas
It is noted from various numerical simulations that, for weak initial Mach numbers, the
reflected pressure expansion has the velocity of the sound speed in zone (1). Here we
consider the particular case where ρg,1 = ρg,3c, as illustrated in figure 4(a). In this case,
the interface between zone (1) and zone (2) remains stationary in the laboratory frame,
which can be characterized by ug,1 = c1 = √

γ p1/ρg,1, with c1 being the sound speed in
zone (1). Using the gas properties across the shock wave (White 2011), one can deduce
that

c0
2

γ + 1
M2

s − 1
Ms

=
√

γ p1

ρg,1
, (5.5)

which can be simplified to

(M2
s − 1)2 =

(
γ + 1

2

)2

F1(Ms, γ )F2(Ms, γ ). (5.6)

The Mach number that satisfies (5.6) is known as the critical Mach number, and is
Ms,cr = 2.0 for a monatomic ideal gas (γ = 7/5). The results of figure 3(a) show that
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ρg,3 = ρg,1 and ug,3 = ug,2 when Ms = Ms,cr. The conservation of kinetic energy before
and after the passage of the shock gives

ρg,1u2
g,1 = τv,0ρpu2

g,3 + (1 − τv,0)ρg,3u2
g,3, (5.7)

where ug,3 is the velocity of the shocked gas in the gas–particle mixture and ρp is the mass
density of the particles. By combining (4.3) and (5.7), the estimate of ug,2 can be obtained
for a given τv,0 as

ug,2

ug,1
≈

(
ug,2

ug,1

)
cr

=
√√√√√

1

1 − τv,0 + τv,0
ρp

ρg,1

. (5.8)

5.2. Density of the compressed gas
To estimate the density of the compressed gas ρg,2, one can assume that the pressure wave
reflection process obeys an isentropic expansion. The isentropic hypothesis is discussed in
appendix A. The conservation of momentum leads to

ρg,2u2
g,2 + p1

(
ρg,2

ρg,1

)γ

= ρg,1u2
g,1 + p1. (5.9)

For a given estimated ug,2, the solution of (5.9) can provide an estimate of ρg,2. A
Newton–Raphson method is used to solve (5.9).

The estimate of ρg,2 can also contribute to the evaluation of the intensity of the pressure
expansion. Moreover, knowing the two properties of the flow, ug,2 and ρg,2, one can easily
predict the propagation direction of the pressure expansion after the interaction of the
shock with the spray by using the criterion given by (5.1).

5.3. Spray dispersion
Equation (5.7) can also be applied to estimate the particle dispersion in the post-shock
gas–particle mixture (3). Figure 6 shows the configuration in the proximity of the
transmitted shock inside the gas–particle zone in the shock-attached frame, where the
properties across the transmitted shock wave are depicted in figure 6. One knows that

p3 = p2, ug,3 = ug,2, ug,4 = 0, (5.10a–c)

where ug,3 and ug,2 are estimated quantities. Thus, the conservation of mass across the
shock wave gives

ρg,3(Vs − ug,2) = ρg,4Vs. (5.11)

Taking into account the initial volume fraction τv,0 of particles, the conservation of
momentum gives

p2 + ρg,3(1 − τv)(Vs − ug,2)
2 + ρpτv(Vs − ug,2)

2 = p4 + ρg,4(1 − τv,0)V2
s + ρpτv,0V2

s ,
(5.12)

where τv is the volume fraction of the particles in the post-shock region (3). Before
the shock passage, the initial cloud length is Vst and becomes (Vs − ug,2)t afterwards.
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Tg,3

Vs – ug,3 Vs – ug,4

Pg,3

ρg,3

CG+P G+P

(3)

Tg,4

Pg,4

ρg,4(4)
x

Transmitted shock front

FIGURE 6. Sketch of the shock front transmitted into the gas–particle zone in the
shock-attached frame. Here CG = compressed gas, P = particles, and G = unshocked gas.

Therefore, the post-shock volume fraction of the particles τv can be linked to the pre-shock
volume fraction τv,0 through

τv = τv,0
Vs

Vs − ug,2
. (5.13)

By combining (5.11)–(5.13), one can deduce an analytical expression for the velocity of
the transmitted shock wave Vs:

Vs = p2 − p4

(ρg,4 + ρpτv,0)ug,2
. (5.14)

Knowing Vs, the volume fraction of the particles in region (3) can be calculated by (5.13).

5.4. Assessment of the reduced-order model
From the above discussion, the modelling is achieved for ug,2, ρg,2, p2 and τv, for a
given initial volume fraction τv,0 and incident Mach number Ms. The estimates of ρg,2
and τv rely especially on the accuracy of ug,2. However, the post-shock maximal particle
volume fraction has similar values for particles of different diameters. The maximal
volume fractions of small particles can provide guideline values for the larger ones. The
assessment of the proposed model, especially for the estimation of ug,2, ρg,2 and τv, is
achieved through a direct comparison with the results from the NS solver.

Taking an example of the initial particle volume fraction τv,0 = 5.2 × 10−4, in critical
conditions, in which ρg,3c = ρg,1, the velocity ratio calculated by the NS code is ug,2/ug,1 =
0.9, and (5.7) gives a ratio of 0.93. If the gas velocity ug,2 in the compressed zone is
correctly estimated, the model evaluations for ρg,2 and p2 are in good agreement with the
numerical simulations, as shown in figure 7(a–d). For τv,0 = 5.2 × 10−4 and Ms = 2.0, the
density estimated by (5.9) is ρg,2 = 3.4 kg m−3, and the value calculated by the NS code
is ρg,2 = 3.44 kg m−3.

For the ratio of the particle volume fraction τv/τv,0, using (5.13), one can have higher
relative differences compared to the numerical simulation, since the estimation of this ratio
is based on the modelling of both ug,2 and ρg,2. In the case where these two parameters
have a relative difference of 5 %, one may have a relative difference of 28 % for τv/τv,0 as
a result of the difference accumulation, as shown in figure 7(d).

The analytical model is assessed in this study by the NS solver for the interaction
between supersonic flows of Mach number Ms = 1.1–4 and a particle cloud of volume
fraction τv,0 = 10−5–10−3 and of particle diameters D = 1–10 μm. For shock waves of
Mach number higher than Ms = 5, the heat transfer induced by the hypersonic shock
should be considered. The present model can be applied to solid particles or liquid droplets
having relatively high surface tension values. For higher volume fraction τv,0 > 10−3 of
particle clouds, the interactions among the particles become important, such as particle
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FIGURE 7. Evolution of different flow properties as a function of Ms: (a) gas velocity, (b)
gas density, (c) gas pressure and (d) particle volume fraction. Simulation using NS code:
τv,0 = 5.2 × 10−3 (yellow dot-dashed); τv,0 = 5.2 × 10−4 (red dashed); and τv,0 = 5.2 × 10−5

(blue-green dotted). Current model: τv,0 = 5.2 × 10−3 (inverted triangles); τv,0 = 5.2 × 10−4

(circles); and τv,0 = 5.2 × 10−5 (triangles).

collision and coalescence of droplets, as noted by Elghobashi (1994). For water droplets
of diameter larger than D > 10 μm, the breakup of the droplets in high-velocity gas flow
becomes important. Particles of diameter O(10 μm) can be regarded as stable fragments
of larger droplets according to Pilch & Erdman (1987).

5.5. Influence of the particle response time τp

The particle response time scale τp is defined to describe the response ability of the
particles to the carrier flow movement, which can have a simple expression:

τp = ρpD2

18μg

1
Φ(Rep)

, Φ(Rep) = 1.0 + 0.15Re0.687
p . (5.15a,b)

Here ρp is the mass density of the particles, D is the diameter of the particles, μg is the
dynamic viscosity of air, and Rep is the particle Reynolds number.

Let us consider a shock wave of Ms = 1.1 interacting with a cloud of particles. The
influence of the particle response time on resulting flow evolution is shown in figure 8 at
t = 600 μs after the start of the interaction.

Figure 8(a) shows the evolution of the particle volume fractions for different particle
diameters varying from 1 μm to 10 μm, with particle response time varying from 2.3 ×
10−6 s to 1.1 × 10−4 s. For a given particle diameter, the particle volume fraction increases
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FIGURE 8. Evolution with distance of normalized (a) particle volume fraction, (b) gas
pressure, (c) gas velocity and (d) particle velocity, at t = 600 μs, Ms = 1.1, τv,0 = 5.2 × 10−4,
p0 = 1.013 bar and ug,0 = 55.19 m s−1, for different particle diameters. Curves: D = 1 μm,
τp = 2.3 μs (dark blue); D = 2 μm, τp = 7.7 μs (blue-green); D = 4 μm, τp = 25 μs (blue);
D = 6 μm, τp = 49 μs (green); D = 8 μm, τp = 78 μs (orange); D = 10 μm, τp = 0.1 ms (red);
and original gas–particle contact surface (black dashed).

after the passage of the shock. The smaller particles respond faster than the larger ones.
Thus, the gas–particle contact surface moves faster for the smaller particles.

Figure 8(b) shows the pressure evolution for different particle diameters. When the
shock reaches the gas–particle contact surface, the pressure increases, generating two
pressure waves in opposite directions: transmitted and reflected waves. The reflected wave
is slower than the transmitted one. The attenuation effect of the small particles on the shock
velocity is more evident. The velocity of the reflected pressure wave does not depend on
the particle diameter.

The gas velocity evolution for the passage of a shock wave through a cloud of particles
is depicted in figure 8(c). The small particles respond rapidly to the shock wave and the
gas velocity is reduced immediately after the shock passage. The larger particles are more
difficult to accelerate as a result of high inertia, as one can see in figure 8(d), showing the
evolution of the particles after the passage of a shock wave.

From figure 8, the general conclusion that can be drawn is that the particles of larger
diameter have a stronger attenuation effect on the transmitted shock wave as well as on
the reflected pressure wave profiles. The opposite is true for the transmitted shock-wave
velocity, i.e. the smaller the particles are, the slower the corresponding shock wave is.
The interesting fact is that the velocity of the reflected pressure wave does not depend on
the particle diameter. Moreover, analyses of the computed results show that the entropy
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FIGURE 9. Evolution with distance of normalized (a) pressure p and (b) gas velocity ug,
at t = 600 μs, Ms = 1.1, D = 10 μm, p0 = 1.013 bar and ug,0 = 55.19 m s−1, for different
particle volume fractions. Curves: τv,0 = 5 × 10−5 (dark blue); τv,0 = 1 × 10−4 (blue-green);
τv,0 = 2 × 10−4 (blue); τv,0 = 5 × 10−4 (green); τv,0 = 1 × 10−3 (orange); τv,0 = 2 × 10−3

(orange-red); τv,0 = 5 × 10−3 (red); and original gas–particle contact surface (black dashed).

measure, i.e. P/ργ , is nearly constant across the reflected wave. This property is used in
the reduced-order modelling.

5.6. Effects of the particle volume fraction
In this section, the effects of the initial particle volume fraction τv,0 are investigated.
Particles of diameter 10 μm are used with volume fractions varying from 5 × 10−5 to
5 × 10−3.

Figure 9(a) gives the pressure evolutions after the shock passage. The particles of
volume fraction τv,0 = 5 × 10−5 have a very small influence on the pressure evolution.
A high volume fraction τv,0 = 5 × 10−3 seems to totally attenuate the transmitted shock
at around x = 0.7 m. The reflected pressure wave can be noted for all particle volume
fractions. The comparison shows that a high particle volume fraction can increase the
reflected pressure magnitude and attenuate the transmitted shock wave. Moreover, the
reflected shock waves have similar velocities for different volume fractions. The gas
velocity evolutions for different particle volume fractions are presented in figure 9(b).
The reduction of the gas velocity is much reinforced by the increase of the particle volume
fraction.

6. Particle number-density peak

In this section, we discuss the formation mechanism of the compressed gas zone (2),
which leads to a particle number-density peak, when some necessary conditions are met.
This number-density peak can dramatically change the spray dispersion topology.

6.1. Formation of the compressed gas zone
As illustrated in figure 1(a), initially the gas–particle contact surface separates the pure
gas (1) from the gas–particle zone (4). After the passage of the shock, the pure gas zone
(1) interacts directly with the post-shock gas–particle zone (3), before the formation of the
compressed gas zone (2), where no reflected pressure expansion exists (see figure 10a).

In order to simplify the analysis, one can locate the origin of the coordinates at the
gas–particle contact surface as illustrated in figure 10(b). Denoting the velocity of the
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FIGURE 10. Sketch of the shock and gas–particle contact surface during the particle
acceleration period. (a) Global acceleration configuration. (b) Local acceleration configuration
in the proximity of the contact surface in the interface-attached frame. The red zone denotes the
creation of the compressed gas. Here SG = shocked gas, G = gas, and P = particles.

contact surface as Vi, the gas velocity of the upstream flow is (ug,1 − Vi). Similarly, the
post-shock gas velocity in zone (3) can be expressed as (ug,3 − Vi). Mass conservation
across the contact surface gives

ρg,1(ug,1 − Vi) = ρg,3(ug,3 − Vi). (6.1)

Assuming that the gas velocity before the first particle ug is constant, we have the
interface velocity Vi(t) = ug,1[1 − exp(−t/τp)], where τp is the particle response time.

The gas velocity in zone (3) can be estimated from the momentum conservation equation
at point x0:

du(x0, t)
dt

= − mp

ρgVg

dVi

dt
= −τv,0

ρp

ρg

dVi

dt
. (6.2)

For the simplicity of the analysis, we assume that the particle response time with nonlinear
correction term defined in (5.15a,b) remains constant during the particle acceleration
process. Thus, one has

dVi

dt
= 1

τp
(u(x0, t) − Vi(x0, t)). (6.3)

The gas velocity before the first particle is assumed to be constant, u(x0, t) = ug,1.
Considering that the gas properties around the contact particles are similar to those in
the upstream flow ρg = ρg,1, one has

du
dt

= −τv,0

τp

ρp

ρg,1
ug,1 exp

(
− t

τp

)
. (6.4)

Knowing that u = ug,1 at t = 0, the gas velocity of zone (3) can be obtained:

ug,3(t) = ug,1 + τv,0ρp

ρg,1
ug,1

[
exp

(
− t

τp

)
− 1

]
. (6.5)
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FIGURE 11. Amplification factor Aρ for two different incident Mach numbers: (a) Ms = 1.1,
τp = 0.1 ms with D = 10 μm and τv,0 = 5.2 × 10−4; and (b) Ms = 4.0, τp = 21 μs with D =
10 μm and τv,0 = 5.2 × 10−4.

By combining (6.5) and (6.1), one has

ρg,3(t)
ρg,1

= Aρ = 1

1 + τv,0ρp

ρg,1
− τv,0ρp

ρg,1
exp

(
t
τp

) . (6.6)

The right-hand side of (6.6) can be seen as an amplification factor Aρ of the gas density
due to the deceleration of the gas flow in the presence of particles. This factor is plotted as
a function of the normalized time in figure 11.

With the assumption that the upstream gas density ρg,1 and velocity ug,1 are constant
during the acceleration process and to ensure the conservation of mass across the
gas–particle contact surface, the density of the gas might diverge to a very high value,
as well as the gas pressure inside the gas–particle zone (3) (see figure 11). This is the
reason why a compressed gas in zone (2) is created aside from the gas–particle contact
surface in the pure gas region (1).

6.2. Necessary condition for the density peak
Before the formation of the compressed gas zone, the post-shock gas density can increase
up to a very high value at tc when

1 + τv,0ρp

ρg,1
− τv,0ρp

ρg,1
exp

(
tc

τp

)
= 0. (6.7)

One can see that the gas velocity in the gas–particle zone (3) decreases from ug,1 to a
lower value during the time interval [0, tc]. A negative gas velocity gradient leads to
a negative particle velocity gradient, which forms the number-density peak of particles
inside the gas–particle zone (3), if this negative gradient exists for a long enough time in
the gas–particle mixture.

However, if one has tc ≈ O(τp), the compressed gas zone is created immediately when
the shock reaches the gas–particle contact surface. In this case, the particle number-density
peak cannot be obtained. For example, when D = 10 μm, Ms = 1.1, no number-density
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FIGURE 12. Evolution of (a) particle volume fraction τv , (b) gas mass density ρg, (c) gas
velocity ug and (d) particle mean velocity vp, at t = 300 μs, D = 10 μm and τv,0 = 5.2 × 10−4,
for different Mach numbers. Curves: Ms = 1.1 (dark blue long dashed); Ms = 1.5 (blue-green
dashed); Ms = 2.0 (blue dot-dashed); Ms = 2.5 (green long/short dashed); Ms = 3.0 (yellow
dotted); Ms = 4.0 (red solid); and original gas–particle contact surface (black dashed).

peak can be seen in figure 11(a). The condition tc � τp seems to be necessary for the
appearance of the number-density peak, since only in this case can the negative velocity
gradient be obtained for a long enough period inside the gas–particle zone (3).

The amplitude of the number-density peak is related to two factors: the residence time
of the negative gas velocity gradient tc, and the amplitude of the density change, which can
be determined by both the particle cloud and the shock-wave intensity. In other words, this
phenomenon is associated with the deceleration capacity of the particles characterized by
τp and τv,0 as well as the incident Mach number Ms.

The prediction of the number-density peak is confirmed by the numerical simulations
and presented in figure 12(a). For a given volume fraction τv,0 = 5.2 × 10−4, particles
of diameter D = 10 μm give a number-density peak after the passage of a shock wave
of Mach number Ms = 4.0 (tc � τp). It is seen that the density peak increases with the
initial Mach number Ms. The particle number-density peak is depicted in figure 12(a); it
differs from the volume fraction ramp presented in Saito, Marumoto & Takayama (2003).
The number density is located inside the ramp and has a higher value for particle volume
fraction.
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The evolution of the gas density is shown in figure 12(b). One can note that the
gas density increases abruptly at the location of the particle number-density peak. The
decrease of the gas density downstream of the transmitted shock is due to the two-way
coupling. The evolutions of the gas and particle mean velocity are given in figure 12(c)
and (d), respectively.

7. Summary

In this paper, the problem of shock-wave propagation into a dispersed spray area
is investigated both numerically and analytically in a one-dimensional shock tube
configuration. Numerical results reveal the existence of two regimes of shock reflections,
depending on the initial shock Mach number, in which the reflected pressure expansion
can propagate either along or opposite to the incident-shock direction. The formation of
a compressed gas layer at the gas–spray interface is seen to be a trigger of the two shock
reflection regimes. The change of the post-shock spray dispersion is discussed, and it is
found that the evaluation of the spray dispersion, characterized by the volume fraction of
the particles, mainly depends on the correct estimation of post-shock gas properties.

Accordingly, a new analytical model is derived to evaluate the post-shock gas velocity
as well as the gas density in the compressed zone. A two-way approach is adopted in
this model to account for the mutual interaction between the shock and the spray. The
presence of a particle number-density peak is predicted for strong Mach numbers (Ms > 2)
and moderate particle diameter (D = 10 μm). A necessary condition for the formation
of a particle density peak is found, and the peak density amplitude is seen to increase
with increasing Ms. The predictions of the model show quite good agreement with the
numerical data, thereby demonstrating the predictive capabilities of the proposed model.
Further analysis can be achieved using the present approach with a possible extension to
large-scale applications to guide physical modelling and to validate the three-dimensional
numerical approach. Also, the presence of the particle number-density peak, which has
been explained for the first time, is of interest, especially when dealing with practical
problems such as explosion mitigation in safety engineering or two-phase reacting flows
in propulsive systems.

The interaction between the spray particles and oblique shock waves is an interesting
topic and will be a subject of our future work. The current one-dimensional analytical
model cannot be applied in a straightforward manner to the case of oblique reflection
of shock waves, as the underlying structure is more complex than the one-dimensional
interaction.
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Appendix A. Isentropic hypothesis of the reflected wave

It can be noticed that the reflected pressure waves experience a rather steep gradient
and, indeed, may look like shock waves, especially for particles of small diameter or large
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FIGURE 13. Illustration of the isentropic hypothesis for the reflected pressure wave. Evolution
with distance of the gas pressure p/p0 (blue; left axis) and p1−γ Tγ /p1−γ

0 Tγ

0 − 1 (red; right axis):
(a) Ms = 1.1, D = 1 μm, τv,0 = 5.2 × 10−4; (b) Ms = 4.0, D = 1 μm, τv,0 = 5.2 × 10−4;
(c) Ms = 1.1, D = 10 μm, τv,0 = 5.2 × 10−4; and (d) Ms = 1.1, D = 10 μm, τv,0 =
5.2 × 10−3.

volume fraction, as shown in figures 8 and 9. In order to verify the isentropic hypothesis
for the reflected pressure wave, we proceed with the assessment in the following steps.

First, using the numerical simulation results, one can calculate p1−γ Tγ , which is a
measure of entropy (S = Cv ln( p1−γ Tγ )), across the reflected waves. The results for
different combinations of particle diameter D, incident shock Mach number Ms and initial
particle volume fraction τv,0 are depicted in figure 13. One can see that the quantity p1−γ Tγ

is constant across reflected waves for all considered parameters. The small spike of p1−γ Tγ

across the reflected wave, shown in figure 13(a) and (c), can be attributed to a numerically
generated artefact.

Secondly, one can calculate the velocity of the reflected wave in order to see if it is sonic
or nearly sonic (compression wave or weak shock wave). For the incident shock of Ms =
1.1, as illustrated in figure 13(a), the velocity of the reflected wave is Vr = 355.19 m s−1,
which is approximatively equal to the sound velocity c = 357 m s−1. For the incident shock
of Ms = 4.0, as in figure 13(a), the velocity increases to Vr = 784.19 m s−1, which is 13 %
higher than the sound velocity c = 695 m s−1. This could indicate that the reflected wave
is a weak shock wave, since the isentropic hypothesis still holds according to numerical
results (figure 13b).
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Thirdly, one can estimate directly the entropy jump across the reflection wave, using the
expression for a weak shock wave in Landau & Lifshits (1959),

S2 − S1 = 1
12T1

(
∂2V
∂p2

1

)
s

( p2 − p1)
3, (A 1)

where the subscripts 1 and 2 denote the pre- and post-wave properties of the reflection
wave, and V = 1/ρ. Simplifying the above equation, one can obtain

S2 − S1 = 1
12T1

(
γ + 1

γ 2

)
( p2 − p1)

3

ρ1p2
1

. (A 2)

For the bounding case, i.e. when the incident Ms = 4.0, the above expression gives as
relative difference: (S2 − S1)/S1 = 0.0034 %. This small value can explain the constant
numerically computed entropy across the reflected waves even for relatively high incident
Mach numbers, and justify the usage of an isentropic condition in (5.9).
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