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SUMMARY
This paper emphasizes on Bacterial Foraging Optimization Algorithm for effective and efficient nav-
igation of humanoid NAO, which uses the foraging quality of bacteria Escherichia coli for getting
shortest path between two locations in minimum time. The Gaussian cost function assigned to both
attractant and repellent profile of bacterium performs a major role in obtaining the best path between
any two locations. Mathematical formulations have been performed to design the control architecture
for humanoid navigation using the proposed methodology. The developed approach has been tested
in a simulation platform, and the simulation results have been validated in an experimental platform.
Here, motion planning for both single and multiple humanoid robots on a common platform has
been performed by integrating a petri-net architecture for multiple humanoid navigation. Finally, the
results obtained from both the platforms are compared in terms of suitable navigational parameters,
and proper agreements have been observed with minimal amount of error limits.
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1. Introduction
Humanoid robots, since their evolution, have attracted many researchers because of their human-
like appearance. Although many researchers are working on humanoid robots, still path planning of
humanoid robots from any source point to target location with moving obstacles is yet a challenging
task. The main aspect in robots is proper navigation while moving from one point to other. There are
so many paths available between two locations, but the goal is to find optimal path with collision-free
environment. Generally, robots are used in industries to reduce human effort, so researchers have con-
centrated to develop humanoid robots which can look alike humans. In this regard, ALDEBARAN1

group of France developed a small humanoid NAO. This developed NAO has features like twenty-
five degrees of freedom and basic fundamental components such as ultrasonic and pressure sensors,
cameras, actuators, emitters, receivers, and inbuilt NAOqi software that attract researchers to carry
out their research to an enhanced stage. It has a height of 57 cm and weighing nearly 5 kg. Over the
last few years, several investigations regarding motion planning for humanoid and other dorms of
robots have been noticed and some of them can be highlighted over here.
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124 Improved Motion Planning of Humanoid Robots

Rath et al.2, 3 developed a fuzzy controller for navigation of a humanoid robot with avoiding obsta-
cles. In this research, they provided the obstacle distances from robot and bearing angle as input to
the controller and obtained respective velocity of robot to avoid obstacles. Patle et al.4 developed and
implemented firefly algorithm for path planning and avoidance of obstacles in mobile robots with
static and dynamic environments. They demonstrated that the brightness of the firefly plays a key
role while heading target, as variation in brightness attracts one firefly toward other. Rath et al.5 pro-
posed an artificial neural network controller for the effective path planning of a humanoid robot in
both simulation and experimental environments. They used the sensor information like obstacle dis-
tances and location of target as input to the controller and obtained streaming angle as output from the
controller. Rath et al.6 presented genetic algorithm-based controller for path planning of a humanoid
in complex environments with static and dynamic hurdles. They developed an objective function
for path optimization and performed in both simulation and experimental platform. Dewang et al.7

illustrated the adaptive particle swarm optimization for mobile robot navigation. In this research, the
objective function was created in accordance with the distance between robot to target and robot to
hurdle. Kumar et al.8 proposed a hybridized regression adaptive ant colony optimization technique
for the proper navigation of humanoid in less time. In this research, the obstacle distances sensed by
the sensor are fed to the regression controller and the output from the regression controller is served
to the ant colony controller to obtain the final output. Kumar et al.9, 10 presented regression and fuzzy
logic controller technique for the navigation of humanoid from one location to other. Kumar et al.11

proposed design and control of a manipulator arm for pick and place operations. Parhi et al.12 com-
bined adaptive swarm optimization method and adaptive ant colony optimization technique for better
enhancement of humanoid toward path length. The inputs to the hybrid controller are front obsta-
cle distance, left obstacle distance and right obstacle distance, and the corresponding output from
the controller is turning angle. Paolillo et al.13 presented a vision-based method for the humanoid
robots, where the robots can travel the corridors effectively having junctions and curves. For the
research analysis, they have used maze-like structure in corridors, T–junctions and curves. Abbas
and Ali14 developed enhanced bacteria foraging algorithm for path planning of autonomous mobile
robots to find the optimal path in a two-dimensional workspace. They used the foraging quality of
Escherichia coli (E. coli) bacteria to obtain the optimized path between two locations. Fakoor et al.15

proposed fuzzy Markov decision method for path planning of humanoid robots in an unknown envi-
ronment. Pandey and Parhi16 focused on a hybrid technique and developed a hybridized rule-based
fuzzy logic controller to avoid hurdles in complex environments during movement of humanoid.
For the analysis, they provided three inputs to the controller and obtained one output from the con-
troller. Parhi and Kumar17 designed a new intelligent controller for navigational analysis of humanoid
robots using a virtual target displacement strategy. Hornung et al.18 developed localization method
for navigation of humanoid robots in arbitrary complex platform with the help of onboard sensing.
They used Monte-Carlo localization method and analyzed the humanoids six-dimensional torso pose
in a three-dimensional model for staircase problem. Hossain and Ferdous19 explored the Bacterial
Foraging Optimization Algorithm (BFOA) for mobile robot navigation and obtained the shortest path
in between two positions with avoiding the obstacles present in the arena. Faragasso et al.20 presented
a vision-based control approach for humanoids to navigate in office-like environment with maze-like
corridors. Moharrei and Rad21 used an augmented reality method and combined with a vision-based
technique and developed the novel procedure for path planning of humanoid robots in complex envi-
ronments. Feng et al.22 applied the BFO algorithm to get the optimal path in between any source
and target location. They also proposed Evolution-Strategy-Adaptive BFO for more accurate path
while navigating between two locations. Zhao et al.23 developed a neural network-based multiscale
learning model to perform classification tasks.

Khatoon and Ibraheem24 developed a hybridized navigation technique which comprises of two
modules. In first step, they determined the rough optimal path toward target, and in the second
step, potential function-based local approach is used for effective navigation decision. Nurmaini and
Tutuko25 used a weightless neural network and developed a new pattern recognition algorithm which
takes proper control decision during mobile robot navigation. Khriji et al.26 presented Q-learning
technique for effective mobile robot navigation. This technique works with fuzzy analysis where
the design of individual behavior is done and prior knowledge is fed to the Q-learning method.
Parasuraman et al.27 implemented modified fuzzy associative memory for robot navigation. This
technique develops the rule base for robot path planning. Gueaieb et al.28 proposed an innovative
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radio-frequency identification technique for mobile robot navigation in a prior unknown environment
without using the vision-based method and creating a roadmap of the workspace. Abiyev et al.29 pre-
sented a new type-2 fuzzy system for mobile robot navigation cluttered with hurdles in uncertain
environment. The developed technique provides a relation between the inputs such as current angle
and distance signals with output robot turn angle. Khairunizam et al.30 carried out fuzzy membership
function controller with inputs as motion information from the movements of two-wheeled robots
and obtained the forward velocity of mobile robot as output while traversing from source to tar-
get. Kowalczyk31 proposed a navigation function controller which generates the motion direction of
mobile robot and determines the velocity of robot during movement or turning while heading toward
the target. Shayestegan and Marbaban32 developed a new Braitenberg strategy for smooth navigation
of mobile robot. They developed a switching command strategy for efficient and effective motion
path of mobile robot. Parhi and Chhotray33 developed a new novel DAYANI arc contour intelligent
technique for hurdle for optimal path navigation of two-wheeled mobile robot in complex environ-
ment. Juang et al.34 presented AF-CACPSO technique for path planning of mobile robot in unknown
terrain. This technique primarily works on the principles such as obstacle boundary following or
target seeking. Chou and Juang35 proposed an approach for navigational purpose which consists of
three segments such as hurdle avoidance behavior, target seeking behavior and a behavior super-
visor. They developed a pareto fuzzy controller with continuous ant colony optimization technique
for obstacle avoidance behavior and a hybrid Proportional Integral Derivative controller for seeking
target Armah et al.36 presented an effective navigation architecture for mobile robots which works
on the principles of go-to-goal, avoid obstacle and follow wall. Zolghadr and Cai37 used extended
Kalman filter with triangular, circular, elliptical and sinusoidal path to extract the correct data for
navigation of two-wheeled robot. Gutmann et al.38 presented A* algorithm for real-time navigation
of humanoid robot in static and dynamic environment. Kuffner et al.39 proposed a foot step planning
method for safe navigation of biped robots in moving obstacle prone environment. Koh and Cho40

presented a bang-bang control technique to obtain the driving velocity of mobile robot while heading
toward goal.

From the extensive survey of literature, it can be observed that bacterial foraging optimization
being an effective problem-solving approach has a very limited application toward navigational anal-
ysis of humanoid robots. Therefore, the current research is aimed at design and development of a
novel BFOA-based motion planning strategy for smooth and hassle-free navigation of single as well
as multiple humanoid robots in complex arenas. Here, a petri-net model has been combined with the
basic BFOA controller to negotiate dynamic obstacles in the arena.

2. General Overview of BFOA
BFOA is one of the nature-inspired methods to discover the best solution of any problem. This
optimization technique was proposed by Prof. K. M. Passino in 2002,41 which works on the social
foraging behavior of E. coli bacteria extant in human intestine. In this method, bacteria hunt for food
or nutrient-rich region in a way to obtain maximum energy per time. This activity provides more time
to bacteria for performing major deeds as well as gives nutrient-rich bases to work. Another aspect in
this approach is the communication between the bacteria by sending signals. During searching, the
real bacteria perform two simple actions with the help of tensile flagella. They are namely swim and
tumble.

2.1. Basic of BFOA
This algorithm works on the principle of calculated values of cost function. In this process, the bacte-
ria follow the steps where it finds low-cost function value or high fitness. When the steps continue, it
leads to better fitness with low-cost function. The location of the bacteria is optimized and fragmented
in the permissible range where each fragmented factor represents a point in the space coordinates.
At each location, the cost function is determined and with this value, the movement of bacteria takes
place according to the decreased direction of cost value. This finally keeps the bacteria to a location
with utmost fitness.

The algorithm comprises four steps; they are as follows.

(i) Chemotaxis; (ii) Swarming; (iii) Reproduction; (iv) Elimination and Dispersal
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2.1.1. Chemotaxis. This operation is accomplished by swimming and tumbling. Swim refers to a
unit length in the same direction, whereas tumble means a unit walk in the different direction as
compared to the previous direction. With the nutrient-rich and noxious-free environment which is
favorable for the bacterium, the bacteria will swim in the same path it is following. This can be
shown by Fig. 1.

The bacterium will change the swimming direction to tumble when an unfavorable condition
arises. It can be shown by Fig. 2.

Let α (i, j, k, l) represents the bacterium at jth chemotactic, kth reproduction and lth elimination-
dispersal step. RT(i) shows chemotactic step size during each run or tumble operation. The movement
of the ith bacterium can be expressed as:

α(i, j + 1, k, l) = α(i, j, k, l) + RT(i) × μ(i) (1)

μ (i) = � (i)√
�T (i)� (i)

where
μ (i) = Unit vector represents for the swimming direction after a tumble

Φ(i) = Randomly fashioned vector with same dimension

Suppose C (i, j, k, l) represents the cost at the location of the bacteria α (i, j, k, l). If at α (i, j+1,
k, l), the cost C (i, j+1, k, l) is smaller than the cost C (i, j, k, l) at α (i, j, k, l), then the bacterium
will move to a step size of RT(i) in the same direction. Otherwise, the bacterium will change its
direction by tumbling with step size of RT(i) in order to obtain better nutrient-rich and noxious-free
environment.

2.1.2. Swarming. E. coli bacterium has a decision-making tool, a quality of signaling other bacteria
to swarm in the same way by using attractant profile. This step is known as cell to cell mechanism
which also releases chemical repellent to inform other bacteria to retain safe distance from it. The
attraction and repulsion effect in BFOA can be expressed as:

Swim

Clockwise Direction

E.coli

Fig. 1. Swim operation in BFOA.

Tumble→ Run→ Tumble

Tumble

Anticlockwise Direction

Fig. 2. Tumble operation in BFOA.
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Start

Initialise S, P, V, Nc , Ns , Nre , Ned , Ped

Elimination dispersal event l = l+1

Is l < Ned?Stop

Reproduction event k = k+1

Is k < Nre?

Swim a step RT(i) in the µ(i)
direction and compute the

objective function (C)

Reproduction kill least-
fit bacteria, split best-fit

bacteria in the same
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dispersal bacteria with
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Chemotactic event j = j+1 

Is j <Nc?
No

Set i = i+1

Is i < P?
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Obtain time-varying
objective function Clast

Tumble in random direction
µ(i), with step size RT(i)

Obtain time-varying
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n = 0

Is n < Ns?

n = n+1

Is C < Clast?

Clast= C

n = Ns

Yes

Yes

No

No

No

Yes

No

Yes

Fig. 3. Flowchart of BFOA.
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(2)
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Where Ccc(α, R(j, k, l)) represents the time-varying objective function when added to actual objec-
tive function. P denotes the total number of bacteria present in search space. V represents the total
number of variables present in search space α = [α1, α2, .........αV]T . αn(i) signifies nth component
of ith bacterium location. Different coefficients used in the above equation are dattr, Wattr, hrepel and
Wrepel. Care should be taken properly while selecting the coefficients.

2.1.3. Reproduction. This is an important step of BFOA. If total number of bacteria decreases while
performing the algorithm, then it is not possible to achieve the desired goal. So in order to maintain
bacteria count constant, reproduction is much needed. In this stage, the population is arranged in
ascending order of fitness value of the bacteria. After arranging only 50% of best fit, bacteria con-
tinue to reproduce (split into two bacteria) so that the population remains constant and other least fit
bacteria dies.

2.1.4. Elimination and dispersal. There is an effect on the lives of bacteria takes place, when sudden
changes in the local condition changes. This may happen either by local rise in temperature or by
sudden water flow. In both the cases, the bacteria may die or a collection of bacteria may be dis-
persed into new position. With a probability of Ped, the elimination of bacteria takes place and fresh
additional bacteria are randomly placed in the search space.

2.2. Bacterial foraging optimization algorithm
In the very beginning, we have to initialize the parameters such as,

S = Dimension of search space
V = Total number of variables present in search space
P = Total number of bacteria in the population
Nc = Number of Chemotactic events
Ns = Swimming length
Nre = Number of reproduction events
Ned = Number of elimination-dispersal steps
Ped = Probability of elimination-dispersal
RT(i) = Step size in random direction specified by tumble

Figure 3 represents the flowchart of the BFOA used in the current work.

3. Navigation of Humanoid NAO using BFOA
The flowchart shown in Fig. 3 activates when NAO senses any obstacle while navigating from one
position to other. First sensor helps to collect the information of environment having hurdles, and
then humanoid performs its goal of reaching target effectively without colliding the obstacles.

3.1. Decision strategy for getting optimal bacterium
The humanoid’s objective is to move from source to target in less time with shortest path, and avoid-
ing obstacles present nearby. In this algorithm, if the NAO senses any hurdle in its path, then the
BFOA activates, which generates a group of bacterium randomly near to it. With radius same as step
size, the next location of bacterium can be expressed as:

�L (t + δt) = �L (t) + RT (i) ∗ μ (i) (3)

Where �L(t) = Location of each bacterium at time t.
When time increases such as from t to t + δt, the bacterium heads toward the target by searching

optimal path and avoiding the hurdles. Using Eq. (3), the bacterium which gets the best-fit path for
the upcoming location is selected and the NAO moves to the new location. This process continues
until the NAO reaches the target. Two factors are responsible while selecting the best bacterium in
order to get optimized path. They are (i) distance between NAO and hurdle and (ii) distance of the
nearest hurdle with NAO’s current location. When these two factors combine, an attractant–repellent
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outline is developed which attracts the NAO toward the target having global minima and repels the
NAO from the nearest hurdles.

The main objective of BFOA is to keep NAO away from hurdles or a safe distance from obstacles.
When the NAO senses any hurdle, then repulsive Gaussian cost function is assigned to Churdle which
can be expressed as

Churdle = hhurdle ∗
[

1

e(whurdle∗(‖�i(t)−Lhurdle(t)‖2))

]
(4)

where hhurdle = height coefficient of repellent

whurdle = width coefficient of repellent
Lhurdle = location of hurdle sensed by the NAO through sensors
‖�i (t) − Lhurdle (t)‖2 = distance between the NAO’s current location and the hurdle nearby

Eq. (4) has only value, when the NAO senses any hurdle in its sensing range. So, the cost functions
Churdle can be given by:

Churdle =

⎧⎪⎨
⎪⎩

hhurdle ∗
[

1

e(whurdle∗(|�i(t)−Lhurdle(t)|2))

]
when|�i (t) − Lhurdle (t) |2 ≤ νNAO

0 when|�i (t) − Lhurdle (t) |2 ≥ νNAO

(5)

Where νNAO is the sensing range of NAO. Likewise the repellent Gaussian cost function, an attractant
Gaussian cost function is assigned to the target location. The target cost function can be shown by:

Ctarget = htarget ∗
[

1

e
(

wtarget∗
(‖�i(t)−Ltarget‖2

))
]

(6)

Where

htarget = height coefficient of attractant
wtarget = width coefficient of attractant
Ltarget = predefined target location∥∥�i (t) − Ltarget

∥∥2
= Euclidean distance from NAO’s current position and predefined target loca-

tion

The general cost function which involves to keep the hurdles away from NAO and Target nearby
to NAO can be represented as:

Ctotal = Churdle + Ctarget (7)

Eq. (7) is used to find out the cost function of each bacterium. The bacterium is arranged in a
manner having low-cost function value and high fitness value. The NAO moves to the location of
bacterium which is having low-cost function value. By continuing above methods with reproduction,
and elimination-dispersal steps, the humanoid robot heads toward the target location in shortest path
and minimum time.

3.2. Decision strategy for minimizing distance error
A decision controller is developed to obtain the best bacterium among the randomly generated bac-
terium around the NAO within the small time δt. The distance error of bacterium to target location
dedist

i (t + δt) and the cost function error ceC
i (t + δt) help in obtaining best bacterium for the desired

goal. The distance error and cost function error can be expressed as:

dedist
i (t + δt) = di (t + δt) − di (t)

ceC
i (t + δt) = Ctotal (�i (t + δt)) − Ctotal (�i (t))

https://doi.org/10.1017/S0263574720000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000235


130 Improved Motion Planning of Humanoid Robots

Where

di (t + δt) = ∥∥�i (t) − Ltarget

∥∥2
= distance of bacterium B to the target location at time t + δt

di (t) = ∥∥�i (t) − Ltarget

∥∥2
= distance of bacterium B to the target location at time t

The distance error and cost function error of each bacterium are determined at time t + δt and
arranged in ascending manner such that the bacterium with high error is at last. The bacterium with
negative cost function error is selected in accordance with minimum distance error. If the cost func-
tion error of bacterium is greater than zero, then it signifies the hurdle prone region. So, the bacterium
with high negative distance error is chosen as best bacterium and NAO takes the location of best
bacterium in the consequent steps.

4. Performance Analysis of Developed BFOA Controller
To examine the efficiency of the developed controller in terms of path span and time spent, the
simulation and experimental platforms are created with dynamic obstacles using NAO H25 V4. The
motion planning of single and multiple humanoids is performed in both simulation and experimental
scenario.

4.1. Motion planning of a single humanoid
For the simulation work, V-REP software is considered as a navigational tool for its improved motion
planning approach with obstacle avoidance character. The coding is written in Python programming
language and fed to the V-REP software for navigational purpose. Multiple static obstacles with
different sizes are randomly placed at arbitrary points of simulation platform with definite source
and goal position. Fig. 4 represents the path followed by the NAO during the simulation.

The experimental platform is created as per the simulation scenario with obstacles to authenticate
the developed controller. In experimental motion planning execution, the developed controller acti-
vates during the path travel and feds the code written in MATLAB to NAO for progress toward the
goal. Fig. 5 represents the real-time path travelled by the humanoid in laboratory conditions. Tables I
and II show the comparison of results.

The results of simulation and experimental arena are compared in terms of navigational parameters
and are presented in Tables I and II.

Table I. Comparison of path span.

Sl. no. Path span in simulation (cm) Path span in experiment (cm) % Error

1 290.5 310.5 6.44
2 291.67 312.6 6.7
3 290.53 312.2 6.94
4 291.46 311.3 6.37
5 291.03 311.7 6.63
Average 291.04 311.66 6.62

Table II. Comparison of time spent.

Sl. no. Time spent in simulation (s) Time spent in real-time (s) % Error

1 40.46 43.32 6.6
2 40.72 43.56 6.52
3 40.35 43.03 6.23
4 40.83 43.45 6.03
5 40.11 43.52 7.84
Average 40.49 43.38 6.64
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Fig. 4. Simulation of a single NAO.

Fig. 5. Experiment of a Single NAO.
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It can be observed that the simulation and experimental results are in well agreement with each
other. The reason for observation of higher values of navigational parameters in experimental results
compared to simulation counterparts can be justified by the presence of factors like slippage effect,
data transmission loss and frictional losses in the experimental platform which are ideal in case of
the simulation platform.

4.2. Motion planning of multiple humanoids
Navigation of multiple humanoids is very much similar to that of the article represented in
Section 4.1, but some differences can be found in number of humanoid NAO and number of source
and target positions. Due to the presence of dynamic obstacles in the path, a petri-net control
scheme is associated with the developed BFOA controller to avoid conflicts that may arise during
the navigation.

4.2.1. Petri-net control scheme. In the motion planning of multiple NAOs in dynamic environment
with moving obstacles, there are some conflicts arise among the humanoids when they sense a
conjoint obstacle during navigation. The developed controller aims to detect obstacles and smooth
navigation toward reaching the target by single and multiple humanoids in a common scenario. When
two or more humanoid detects same obstacle in their path, then the developed controller fails to pro-
vide the priority of motion planning. To overcome the problem, a petri-net controller is integrated
with the developed scheme, which avoids the inter collision among the NAOs by providing the infor-
mation of navigational priority. Figure 6 shows a petri-net model with different stages used in the
current analysis.

There are six stages in the model, and each stage is described as follows:

Stage 1: In this stage, all the robots are placed randomly in the platform and are not having any prior
idea about the location of other humanoids. All the humanoids approach toward goal, when
the start command activates.

Stage 2: This stage is related to target seeking behavior, where all the NAOs move toward the goal
point and they may sense obstacles in their path.

Stage 3: This stage represents the obstacle detection stage.
Stage 4: In this stage, the priority of motion is given to the humanoid which is nearer to the goal

and moves forward, while the others act as an obstacle in their respective locations.
Stage 5: In this stage, the humanoids move toward goal after finding null conflicting conditions.
Stage 6: This stage represents the waiting stage where the humanoids having interaction with stage

3 NAOs behave as an obstacle and wait till the first set of humanoid travels ahead. After
this, the waited humanoids perform their motion planning approach from stage 2.

Fig. 6. Proposed petri-net model.
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Fig. 7. Simulation of multiple NAOs.

The developed controller activates whenever it finds any obstacle in its path by any humanoid.
Figs. 7 and 8 show the outcomes of simulation navigation and experimental motion planning.
Tables III and IV represent the comparison of navigational parameters.

The results obtained from the simulation and experimental analysis are found to be satisfactory
and are well within the acceptable limit.

5. Conclusions
In this paper, BFOA as a potential navigational approach for complex motion planning of humanoid
robots has been thoroughly discussed. The mathematical formulations regarding the navigational
approach have been analyzed. NAO humanoid robots have been used as the humanoid platform for
the navigational analysis. The developed BFOA methodology has been implemented in V-REP sim-
ulation platform, and the simulation results have been validated through an experimental platform.
Here, the navigational analysis has been performed on single as well as multiple humanoid models.
To navigate multiple humanoids on a common platform, a petri-net architecture has been combined
with the proposed navigational strategy. Finally, the results obtained from both the platforms have
been compared in terms of selected navigational parameters, and suitable agreements have been
observed.
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Fig. 8. Experiment of multiple NAOs.

Table III. Comparison of path span.

Simulation arena Real-time arena % Error

Path span (cm)

Sl. no. N1 N2 N1 N2 N1 N2

1 315.46 303.42 337.2 325.1 6.45 6.67
2 315.87 303.81 337.8 325.2 6.49 6.58
3 315.76 304.26 338.4 328.4 6.69 7.35
4 314.93 305.99 339.2 326.8 7.16 6.37
5 316.86 304.83 340 326.3 6.81 6.58
Average 315.78 304.46 338.52 326.36 6.72 6.71
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Table IV. Comparison of time spent.

Simulation arena Experimental arena % Error

Time spent (s)

Sl. no. N1 N2 N1 N2 N1 N2

1 43.21 41.36 46.24 44.4 6.55 6.85
2 43.23 41.47 46.47 44.55 6.97 6.91
3 43.15 41.58 46.33 44.67 6.86 6.92
4 43.76 41.73 46.18 44.86 5.24 6.98
5 43.55 41.54 46.92 44.64 7.18 6.94
Average 43.38 41.54 46.43 44.62 6.56 6.92
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