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ON SPATIAL MATCHINGS: THE FIRST-IN-FIRST-MATCH CASE

MAYANK MANJREKAR,∗ University of Texas at Austin

Abstract

We describe a process where two types of particles, marked red and blue, arrive in a
domain at a constant rate. When a new particle arrives into the domain, if there are par-
ticles of the opposite color present within a distance of 1 from the new particle, then,
among these particles, it matches to the one with the earliest arrival time, and both par-
ticles are removed. Otherwise, the particle is simply added to the system. Additionally,
particles may lose patience and depart at a constant rate. We study the existence of a sta-
tionary regime for this process, when the domain is either a compact space or a Euclidean
space. In the compact setting, we give a product-form characterization of the stationary
distribution, and then prove an FKG-type inequality that establishes certain clustering
properties of the particles in the steady state.
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1. Introduction

Let D be a metric space, with complete metric d, and let λ be a Radon measure defined over
it. Suppose for now that D is compact, so that λ(D)<∞. We study the time-evolution of a
continuous-time stochastic Markov jump process {ηt}t≥0 whose state is defined by an ordered
configuration of two types of points in D. The two types are assigned to be the colors red and
blue, and referred in short by the letters R and B respectively. A configuration here refers to
a locally finite collection of points. When D is compact, a configuration consists of a finite
number of points.

The process evolves over the space of ordered configurations on D× {R, B} as follows. New
particles of each type arrive according to an independent Poisson point process on D×R+
with intensity λ⊗ �, where � is the Lebesgue measure on R+. Suppose, for instance, that a red
particle arrives at time t> 0, at location x ∈D. In this case, we look for the first blue particle in
the ordered sequence ηt− whose distance to location x is less than 1. If there is such a particle,
p ∈ ηt−, the new state ηt is obtained by removing the particle p from ηt−, while keeping the
order of the remaining elements fixed. If there is no such particle, then the new state is obtained
by adding a particle, with location x and mark R, to ηt−. In this case, the order within the
elements of ηt− is preserved and the new particle is placed at the end of the sequence ηt−. The
arrival of a blue particle is handled similarly. Additionally, particles in the configuration are
removed at a constant rate μ> 0, while preserving the order of the remaining particles. Note
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FIGURE 1. An illustration of the FIFM spatial matching process. The vertical dimension represents the
set D. The rectangles represent the lifetimes of particles in the system—so, the vertical dimension of a
rectangle represents the spatial range of interaction of a particle, the solid disk at the left of the rectangle
represent its arrival, and the circle at the right represents its departure. The set of particles present in ηt

are marked by crosses; these are the particles whose rectangles intersect the ‘vertical line’ at time t.

that if η0 is the empty configuration, then the ordering of particles in ηt is simply the order
in which those particles have arrived in the system. We will call this the first-in-first-match
(FIFM) spatial matching process.

Figure 1 gives an illustration of the above dynamics.

1.1. Motivation and previous work

The motivation for studying this model comes from modern shared-economy markets,
where individuals engage in monetized exchange of goods that are privately owned in a peer-
to-peer marketplace. Examples of such marketplaces include ride-sharing networks, such as
Uber or Lyft, and renewable energy networks with distributed generation of power. Here, con-
sumers and producers can be viewed as individuals distributed in an abstract space, who engage
in transactions with others in close proximity. The abstract space could model, for example,
physical location, product preferences, price and willingness to pay, etc. In the example of a
ride-sharing network, the position of an individual would correspond to its physical location,
while in a renewable energy network, the position could model a combination of location and
price. In this study, our goal is to comment on the spatial distribution of individuals in the long
run, under a well-defined matching scheme such as the one described in the introduction.

The underlying dynamics in our model can be viewed from a queueing-theoretic perspec-
tive. Most queueing-theoretic models study systems where there is an inherent asymmetry
between customers and servers. Customers are usually transient agents that arrive with some
load, and depart on being processed. Servers meanwhile are present during the whole lifetime
of the stochastic process, and serve the customers according to a given policy. In the literature,
there are only a few examples of queueing systems where customers and servers are treated
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as symmetric agents that serve each other. The double-ended queueing model discussed in
Kashyap [15] is a model for a taxi stop where taxis and customers arrive independently accord-
ing to two Poisson arrivals. If a taxi (or a customer) arrives at the taxi stop and finds a customer
(taxi) waiting, then it matches instantly, using say a first-come-first-served (FCFS) policy, and
both agents depart. Otherwise, the taxi (customer) waits until it is matched with a customer
(taxi) that arrives later.

The FCFS bipartite matching model, which was introduced in Caldentey et al. [8] and later
studied in some generality in Adan et al. [1], is a generalization of Kashyap’s model. In this
model, the customers and servers belong to finite sets of types, denoted by C and S respectively,
which determine whom they can be matched to. The compatibility of matches between the
various types of customers and servers is expressed in terms of a bipartite graph G= (C, S, E),
where E ⊂C× S. The process, {ηt}t∈N, is the ordered list of unmatched customers and servers
arriving before time t ∈N. At each time t ∈N+, one customer, ct ∈ C, and one server, st ∈ S,
arrive in the system. Here, {ct}t∈N+ and {st}t∈N+ are independent sequences of independent
and identically distributed (i.i.d.) random elements of C and S, with distributions α and β,
respectively. The state ηt is obtained from ηt−1, ct, and st by instantaneously matching ct and
st from elements in ηt−1, if possible, using the FCFS policy, and removing the matched pairs.
This model is called the FCFS bipartite matching model. In the series of works [1,2,8], the
authors derive a product-form distribution for the steady state under the so-called complete
resource pooling condition,

α(A)<
∑

(x,y)∈A×S⊆E
β(y) ∀A � C,

or equivalently,

β(A)<
∑

(x,y)∈C×A⊆E
α(x) ∀A � S.

The authors also provide expressions for performance measures in the steady state, such as the
matching rates between certain types of pairs and the waiting times of agents. These expres-
sions are computationally hard to evaluate, owing to the hardness in computing the normalizing
constant in the product-form distribution.

We now briefly discuss variants of the FCFS bipartite matching model that have been con-
sidered in the literature. Bušić et al. [7] generalize the bipartite matching model by dropping
independence of arriving types and considering other matching policies. Büke and Chen [6]
study a model where the matching policy is probabilistic. In their model, when a customer (or
server) arrives in a system, it looks at the possible matches and, independently of everything
else, selects one using a probability distribution. There is also a positive probability of not find-
ing any suitable server (customer), in which case it waits for a compatible server (customer).
Büke and Chen [6] also consider models where the users are impatient and may depart if they
are not matched by a certain time. An exact analysis of these models becomes quite intractable;
Büke and Chen [6] study the fluid and diffusive scaling approximations of these systems.

The model we consider in this paper is essentially a continuous-time and continuous-space
version of the model studied by Adan et al. [1], with the added feature that particles may
also lose patience and depart on their own. This spatial matching model is related to the FCFS
bipartite matching model in the following sense. Just as that model has the classes of customers
and servers, our model has two classes, the red and blue particles; each particle has a location
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in D, which is akin to the type within a class; and two particles are considered compatible in the
sense of the FCFS bipartite matching model if they are within a distance of 1 from each other.
The added feature that particles depart on their own is necessary since otherwise the system
does not possess a stationary regime, even on compact domains. (Indeed, this can easily be
seen by observing that the difference between the total number of red and blue particles in the
system is a balanced random walk, which is an unstable process.) We refer to this property
using the term ‘reneging’, taking a cue from the queueing theory literature [3], where the term
refers to the departure of customers in a queue without receiving any service.

In this paper, in the case when D is compact, we derive a product-form characterization of
the steady-state distribution of the process we are considering. The analysis needed to obtain
this product-form distribution is an extension of the analysis in Adan et al. [1] to the continuum.
We guess the reversed process and the steady state, and then check the local balance conditions
to get the product-form distribution. This result is stated in Theorem 2.2.

Any exact analysis of the clustering of the steady configuration of the points in the steady
state from this product-form distribution is prohibitively hard, as there is no closed-form
expression for its normalizing constant. In fact, in discrete systems, it is a �P-complete prob-
lem to compute the normalizing constant. Instead, we resort to proving qualitative results
based on the product form, and show that the point process satisfies a Fortuin–Kasteleyn–
Ginibre (FKG) lattice property. The lattice structure is as follows: we say η̃ > η̃′ if and only

if η̃R ⊃ η̃′R and η̃B ⊂ η̃′B. The resulting positive association inequality can be used in con-
junction with the results in Błaszczyszyn and Yogeshwaran [5] to prove that the points of the
same type are weakly super-Poissonian. This property is the same as the one exhibited by the
Widom–Rowlinson two-particle model (see Section 2 of Chayes et al. [9] for a definition).

The two-particle Widom–Rowlinson model (introduced in Widom and Rowlinson [21]) is
intriguing as it is the first continuum Markov random process where a phase transition has
been rigorously established (see [9,13,19]). It was shown that as the total intensity of particles
is increased, symmetry-breaking occurs, i.e., with positive probability, there are more points of
one type. A key ingredient in the proof of this (as noticed in Chayes et al. [9]) is the existence
of an additional FKG inequality in this model with the usual lattice structure from the set
inclusion. In our FIFM matching model, we believe that there is a phase transition in our
steady state, but in contrast to the case of the two-particle Widom–Rowlinson model, we are
unable to prove it using a similar technique i.e., by establishing an FKG inequality for the
unordered collection of points.

In this paper, we also consider the same matching dynamics in the infinite Euclidean space
Rd . In this regime, using coupling-from-the-past-based arguments, we give a formal definition
and a construction of the process, and show that there exists a stationary regime for this process.
The existence of the stationary regime is obtained using certain coupling-from-the-past ideas
that were developed in Baccelli et al. [4].

In the following section, we will discuss the notation required to formally define our model.
Other notation will be required as we go along—see Appendix E for a table of notation. We
begin Section 2 with the formal definition of the model in a compact domain. In Section 2.1, we
give a coupling-based argument that the steady state exists and is unique, and in Section 2.2, we
present the product-form distribution for this steady state. Then, in Section 2.3, we introduce
and prove the FKG lattice property satisfied by the unordered-version product-form distribu-
tion. We then proceed to study the model in an infinite Euclidean space, in Section 3. For the
sake of clarity, in each of these sections, we only state the main result; the proofs and auxiliary
results are deferred to the appendices.
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1.2. Notation

Let D be any metric space, endowed with a Radon measure, λ( · ). We use M(D) to denote
the space of simple counting measures on D. There is a one-to-one correspondence between
M(D) and the space of locally finite collections of points in D. M(D) is equipped with the σ -
algebra F generated by the maps γ �→ γ (B), B ∈ B(D), where B(D) is the Borel σ -algebra on
D. In our presentation, we will frequently abuse notation and use the same variable to denote
both an element of M(D) and its support, which is a subset of D.

Every particle in our model also carries information about its patience. To encode this, we
need the notion of a marked counting measure. A marked simple counting measure on D, with
marks in a space K, is a locally finite simple counting measure γ on D× K such that its pro-
jection γ ( · ×K) is an element of M(D). We denote the space of all such measures by M(D, K).

We will also require the definition of the space O(D) of locally finite totally ordered col-
lections of points in the space D. For any ξ ∈O(D), the order within the elements of ξ will
be denoted by <ξ . The order will be used to indicate the priority of the particles when match-
ing with other particles. So, if the state of the system is ξ ∈O(D) and an incoming point x
can match with either y1 or y2, where y1 <ξ y2, then it prefers y1 over y2. O(D) has a natural
projection onto M(D), obtained by dropping the order within its elements—for any ξ ∈O(D),
the unordered collection is denoted by ξ̃ . For compact D, O(D) may be canonically identified
with �∞n=0{x ∈Dn : xi �= xj, ∀1≤ i< j≤ n}. Finally, the space of totally ordered marked locally
finite collections of points, with marks in K, will be denoted by O(D, K).

For any γ ∈M(D) (or O(D)), we will denote by |γ | the number of elements in γ ; i.e.,
|γ | = γ (D).

As mentioned in the introduction, the symbols R and B will be used to denote the types red
and blue respectively. Moreover, we will let C= {R, B}, and let a line over a color denote the
opposite color; i.e., R̄= B and B̄= R.

Finally, throughout the paper we will let 1 denote the indicator function.

2. First-in-first-match matching process on compact domains

In this section, we first give a formal definition of the process on a compact domain. Let
D be a compact metric space with a Radon measure λ. The state of the process will contain
information about the locations, colors, and order of arrival of the particles present in the
system. Thus, the state space will be the set of totally ordered collections of particles with
locations in D and with marks in the set C= {R, B}, namely O(D,C). The order represents
the order of arrival of particles into the system, and hence represents their priority when two
particles are in contention to be matched to the same particle.

We will require the following notation to describe the evolution of the process. For a point
x ∈D×C, we denote the projection onto D by px and the projection onto C by cx. For any point
x ∈D×C, we denote the set of incompatible points of opposite color by N(x) := B(px, 1)×
{c̄x}, where B(z, r) denotes the ball of radius r centered at z. For any subset A⊆D×C, we
set N(A) := ∪x∈A N(x). Let λ̄ := λ⊗mc, where mc is the counting measure on C. For any
γ ∈O(D,C) and x ∈ γ , let γ x be the element of O(D,C) formed by {y ∈ γ : y<γ x} ordered
as in γ . Further, if γ is represented as a list (x1, . . . , xn), then for any i, 1≤ i≤ n, we set
γ i−1

1 := γ xi = (x1, . . . , xi−1). The region of highest priority of a particle x in γ , denoted by
Wγ,x (or just Wx if the context is clear), is defined to be the set N(x)\N(γ x).

Let us recall the description of the dynamics in terms of the notation developed in the
previous section. We consider a Markov jump process {ηt}t∈R ⊂O(D,C). Suppose that a new
particle, y ∈D×C, arrives at time t. If the ordered collection ηt− ∩N(y) is non-empty, then the
particle y matches to the lowest-ranked particle in this set, and the matched particle is removed
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from ηt−. Equivalently, y matches to x ∈ ηt− if and only if y ∈Wηt−,x. Otherwise, y is added to
the ordered set ηt at the end, so that y> x for all x ∈ ηt, while the order among the elements
of ηt− in ηt is preserved. Additionally, independent of everything else, particles may depart on
their own when they lose patience, at rate μ> 0.

This description fixes the form of the generator of the process, which is given by

Lf (η) :=
∑
x∈η

(
μ+ λ̄(Wx)

)
[f (η\x)− f (η)]

+
∫

D×C
1(x /∈N(η))[f ((η, x))− f (η)]λ̄(dx),

(1)

where f is a measurable function defined over O(D,C), and (η, x) ∈O(D,C) represents the list
obtained by appending x to η. The form of the generator will be useful in characterizing the
stationary distribution. From a function-analytic perspective, to completely define the process
in question, we need to further specify the domain of the generator (see [17]). We instead give
an explicit construction of the process whose generator satisfies Equation (1). That is, if ηt

represents the constructed process, we claim that it is easy to verify that

lim
t→0+

1

t
E[f (ηt)− f (η0)|η0]= Lf (η0)

for any bounded continuous function f over O(D,C). This constructed process will serve as
the formal definition of the process we consider in this paper. As we will see in Section 3,
the construction on compact domains can be naturally extended to a construction of an FIFM
matching process on (unbounded) Euclidean spaces.

Let � be a Poisson point process on D×R+, with i.i.d. marks in C×R+. The intensity
of the point process is 2λ⊗ �, where � is the Lebesgue measure on R+. The two marks are
independent; the color is uniformly distributed, and the other mark is an exponential random
variable with parameter μ. Let η0 ∈O(D,C) be the initial state of the system at time 0. For any
x ∈D×R+ ×C×R+, let px, bx, cx, and wx denote the projections of x onto the corresponding
four spaces in the product D×R+ ×C×R+. Thus, for any x ∈�, px is the spatial position of
the point x, bx is the time of its arrival, cx is its color, and wx is its patience. For any subset T ⊂
R, let �T denote the points that arrive in the set T; i.e., �T = {x ∈� : bx ∈ T}. The following
display presents an algorithm for the construction of the process on compact domains.

• Data:

1. �: A realization of the arrivals.

2. η0: A realization of the initial condition.

3. t ∈R+: End time of simulation.

• Result: ηt: The final state of the system at time t.

1. Let told ← 0.

2. For each x ∈ η0, assign i.i.d. marks wx that are exponentially distributed
with parameter μ.

(continued)
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3. Let tnew←min ( inf{bx : x ∈�(told,∞)}, inf{wx : x ∈ ηtold}). If tnew > t, quit and
return ηtold .

4. If tnew is due to arrival of a new particle (first infimum):

• Let the particle be x.

• If there is a particle of opposite color in B(px, 1):

–Match to the first particle of opposite color in ηtold ∩ B(px, 1) and remove
that particle. This gives ηtnew .

• Else:

–Add the particle to the end of ηtold to give ηtnew

5. Else if tnew is due to a particle x ∈ ηtold losing patience (second infimum), then
remove this particle to yield ηtnew .

6. Let told ← tnew. Go to Step 3.

2.1. Existence and uniqueness of stationary regime

In this section, we begin analyzing the stationary regime of the process on a compact domain
D defined in Section 2. First, the existence and uniqueness of a stationary regime can be estab-
lished by a simple Lyapunov. For the sake of completeness we give an alternate proof, based
on a coupling-from-the-past argument.

Suppose we have a bi-infinite time-ergodic Poisson point process � on D×R, with marks
in C×R+, where the first coordinate is the color of the particle and the second coordinate
is the patience, as in the construction in Section 2. Briefly, in the coupling-from-the-past con-
struction, the steady-state realization is constructed as a limit of a sequence of processes started
at increasingly negative times using the same driving process �. We state the theorems here
and present the proofs later in Appendix A.

Theorem 2.1. For any T ∈N, let {ηT
t }t≥−T denote a process started at −T with empty initial

conditions and driven using the bi-infinite marked Poisson point process�. Then, for any t ∈R,
the limit ηt = limT→∞ ηT

t exists almost surely (a.s.). The process ηt is a steady-state version of
the FCFS matching process, and moreover, this process is unique in distribution.

In the next section, we present a product-form characterization of this steady-state distribu-
tion. For this, the key step is to construct the reversed process.

2.2. Product-form characterization of the steady state

In this section, we give a product-form characterization of the steady-state distribution, by
getting a handle on the time-reversal of the steady-state process η. Let � be as in Section 2.1.

Theorem 2.1 implies that there exists a unique bi-infinite spatial matching process that
is driven by �. We can thus define a (random) matching function, m :�→D×R×C,
such that

m(x)=
⎧⎨
⎩

(px, bx +wx, cx) if x exits on its own,

(py, by, cy) if x matches to y ∈�.
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Conversely, m stores all the information necessary to build the process {ηt}t∈R. Indeed, the
state of the spatial matching process we are interested in is given by

ηt = ((px, cx) : x ∈�, bx ≤ t< bm(x)),

where the list is ordered according to the birth times bx.
Taking inspiration from Adan et al. [1], we will include some additional data in the state

of the system that will simplify the description of the reversed process. We shall consider
a process that we call the backward detailed process generated by � and m. This process
contains unmatched and matched particles in its state, and we distinguish these types by using
the marks ‘u’ and ‘m’ respectively. For any particle x in the state, sx will refer to this mark.

For t ∈R, let
Tt := min{bx : x ∈�, bx ≤ t< bm(x)}

be the time of arrival of the earliest among the unmatched particles at time t. Let

�u,t := {(px, bx, cx, u) : x ∈�, bx ≤ t< bm(x)}
be the set of (locations, arrival times, and colors of) unmatched particles in [Tt, t]. Let

�m,t := {(px, bm(x), cx, m) : x ∈�, bx ≤ t, Tt ≤ bm(x) ≤ t}
= {(pm(x), bx, cm(x), m) : x ∈�, bm(x) ≤ t, Tt ≤ bx ≤ t, cx �= cm(x)}

∪ {(px, bm(x), cx, m) : x ∈�, bx ≤ t, Tt ≤ bm(x) ≤ t, cx = cm(x)}
be the set of so-called matched and exchanged particles that are present in [Tt, t]. In the last
expression, the first set of elements corresponds to particles that arrive in the relevant interval,
[Tt, t], and are matched by the time t; but instead of recording their positions and types, we
record those of their matches. The second set of elements in that expression corresponds to
particles that arrive before t and that depart on their own in the time interval [Tt, t]; we record
the time at which they depart.

Finally, define the backward detailed process, η̂t, by the list ((px, cx, sx) : x ∈�u,t ∪ �m,t),
ordered according to the values of b-projections of the points in �u,t ∪�m,t. Clearly, the orig-
inal process ηt can be obtained from η̂t by removing the particles with marks sx = m. Notice
that if |η̂t|> 0, the first element in η̂t, denoted by x1, always satisfies sx1 = u.

The backward detailed process, η̂t, is a stationary version of a Markov process. A valid state
of this Markov process is any finite list of elements (x1, . . . , xn) from the set D× C× {u, m}
that satisfies the following definition.

Definition 2.1. (Definition of a valid state of η̂t) We say that a finite list of elements
(x1, . . . , xn), with n ∈N and xi ∈D×C× {m, u}, is a valid state of η̂t if the following three
conditions are satisfied:

1. sx1 = u, if n≥ 1.

2. For all 1≤ i, j≤ n, sxi = sxj = u and d(pxi, pxj)≤ 1 implies that cxi = cxj .

3. For all 1≤ i< j≤ n, sxi = u, sxj = m and d(pxi, pxj)≤ 1 implies that cxi = cxj .

Condition 2 in the above definition essentially states that there cannot be a compatible
unmatched pair in a valid state. This is equivalent to the condition that

{y∈ x1, . . . , xn : sy = u} ∩N({y ∈ x1, . . . , xn : sy = u})=∅.
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Condition 3 cannot be violated, since otherwise the particle whose matched and exchanged
pair is xj could instead have matched to some xi that arrived earlier. This is equivalent to the
condition that for all 1≤ j≤ n,

sxj = m =⇒ xj /∈ N({y∈ x1, . . . , xj : sy = u}).
Any valid state can be achieved by the process η̂t in finite time with positive probability starting
from the empty state. Indeed, any valid state η̂ can result from the empty state if the arrivals
occur in the order listed in η̂, with appropriate patience so that the particles in η̂ marked u
survive until time t, and the particles in η̂ marked m exit on their own before the next arrival.

Transitions for η̂t occur at the time of arrival of a new particle or at the event of a voluntary
departure. At the time of a new arrival, we match and exchange the earliest compatible particle
in the list η̂t; if there is no possible match we add the arriving particle to the end of the list with
mark u. At the time of a voluntary departure, we put the departing particle at the end of the list
η̂t, while updating the mark to m. Below, we describe the transitions and transition rates of this
Markov process in detail.

The transitions and transition rates for η̂t are as follows. Let η̂= (x1, . . . , xn), n∈N, be a
valid state.

1. A particle xi ∈ η̂, with sxi = u, loses patience: This occurs at rate μ. In this case, the new
state is obtained by removing xi and inserting the point (pxi, cxi, m) at the end of the list
η̂. Additionally, we need to prune leading matched and exchanged particles from η̂ to
obtain the new state.

2. A new particle y= (py, cy) arrives and is matched to a particle xi ∈ η̂, with d(pxi, py)≤ 1
and cxi �= cy: This occurs at rate λ̄(dy)1(y∈Wxi). The new state is obtained by match-
ing and exchanging the appropriate pair, and then pruning the leading matched and
exchanged particles.

3. A new particle y arrives and there is no particle of opposite color within a distance of
1 from it: This occurs at rate λ̄(dy)1(y /∈N(η̂)). The new state is the one obtained by
adding this new particle to the end of the list as an unmatched particle.

We now guess the time-reversed version of the backward detailed process and obtain its
transition rates. The following construction will be useful in doing this. Consider a dual process
η̌t, which we call the forward detailed process. It is defined as follows: for t ∈R let

Yt := max{bm(x) : x ∈�, bx ≤ t< bm(x)}
be the latest time at which all unmatched particles at time t are matched or exit. Let

m,t := {(px, bm(x), cx, m) : x ∈�, bx ≤ t< bm(x)}
= {(pm(x), bx, cm(x), m) : x ∈�, bm(x) ≤ t< bx, cx �= cm(x)}

∪ {(px, bm(x), cx, m) : x ∈�, bx ≤ t< bm(x), cx = cm(x)}
be the matched and exchanged particles corresponding to the particles that were born before
time t, but have not been removed from the system by time t. Let

u,t := {(px, cx, bx, u) : x ∈�, t< bx < Yt, t< bm(x)}
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be the particles in the relevant interval (t, Yt), whose match arrives after time t. Now, let η̌t be
the list ((px, cx, sx) : x ∈u,t ∪m,t) ordered according to the values b(·). Thus, the last element
in the list, x|η̌|, always has sx|η̌| = m. For motivations for these definitions, see Adan et al. [1].

Under our construction, using the bi-infinite Poisson point process �, the process {η̌t}t∈R
is a stationary process. In fact, it is a stationary version of a Markov process, since all the
arrivals and deaths are Markovian. The transitions and transition rates are defined in detail in
Appendix C.

The underlying idea in obtaining the product-form distribution is stated in the following
lemma.

Lemma 2.1. For any list of elements γ in D×C× {u, m}, let revx(γ ) denote the list of ele-
ments in γ written in the reverse order, with the marks u and m flipped. Then we claim that
{revx(η̌t)}t∈R has the same distribution as the time-reversal of the backward detailed process.
That is,

{η̂−t}t∈R d= {revx(η̌t)}t∈R.

To obtain the product-form expression for the stationary distribution, we need to check
certain local balance conditions (see Appendix B.1 for the definition of the local balance con-
ditions). This is the main result of this section. However, before we state the result we need to
fix some notation.

For any list γ ∈O(D,C× {u, m}) and i ∈N, we define Qi
u(γ ) to be the number of

unmatched particles among the first i particles on γ , and define Qi
m(γ ) to be the number of

matched particles excluding the first i particles of γ . In this notation, we may drop the reference
to γ when the context is clear.

In the following result, we use the operator⊕ to denote the direct sum of two measures, and
the operator⊗ to denote the direct product.

Theorem 2.2. The density of the stationary measure of the backward detailed process {η̂t}t∈R,
with respect to the measure ⊕∞n=0(λ⊗mc ⊗mc)n on

O(D,C× {u, m})⊂�∞n=0(D×C× {u, m})n,

is given by

π̂(γ )=K1(γ isvalid)
|γ |∏
i=0

1

2λ(D)+Qi
u(γ )μ

=: K1(γ is valid)�̂(γ ), (2)

π̂(∅)=K, (3)

where

�̂(γ ) :=
|γ |∏
i=0

1

2λ(D)+Qi
u(γ )μ

,

and where K is the normalizing constant:

K−1 =
∞∑

n=0

∫
(D×C×{u,m})n

1(γ isvalid)
n∏

i=0

1

2λ(D)+Qi
u(γ )μ

(λ⊗mc ⊗mc)(n)(dγ ).

The form of the density in (2) is typical of a product-form distribution seen in the context of
queueing theory (see Asmussen et al. [3]). For instance, 2λ(D)+Q|γ |u (γ )μ is the total rate of
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change when the backward detailed process is in state γ , as 2λ(D) is the total rate of new
arrivals and Q|γ |u (γ )μ is the rate at which unmatched particles depart on their own.

For the stationary distribution π of the original process ηt, we compute the marginals of π̂ .
Firstly, a state γ = (x1, . . . , xn) ∈O(D,C) is a valid state of the process {ηt}t∈R if and only if
{x1, . . . , xn} ∩N(γ )=∅.

Corollary 2.1. The density of the stationary distribution π of the process ηt, with respect to
the measure ⊕∞n=0λ̄

n on �∞n=0(D×C)n, is given by

π(γ )=K1(γ is valid)
|γ |∏
i=1

1

λ̄(N(γ i
1))+ iμ

, (4)

π(∅)=K, (5)

where K is the same normalizing constant as in Theorem 2.2.

The proofs of Theorem 2.2 and Corollary 2.1 are given in Appendix C.

2.3. Clustering properties and the FKG property

In this section, we focus on the stochastic geometric properties of the steady-state arrange-
ment of the particles in the space D. Hence, we forget the reference to the order of the particles
in the steady state. Intuitively, the Janossy density of a point process (see Daley and Vere-Jones
[10]) is the relative probability of observing a given configuration of points with respect to a
given reference measure. The Janossy density of the steady-state distribution of our point pro-
cess model, with respect to the Poisson point process on D× C with intensity λ̄, is given by
dropping the order of particles in Equation (4). That is, the Janossy density is

π̃ (xn
1)=K1(xn

1 is valid)�̃(xn
1),

�̃(xn
1)=

∑
(Xn

1)∈P(xn
1)

n∏
i=1

1

λ̄(N(Xi
1))+ iμ

,
(6)

where P(xn
1) is the set of all permutations of x1, . . . , xn, and K is a normalizing constant.

Let us take a moment to interpret the term λ̄(N(xi
1)) that appears in the above expression.

This is the sum of the volumes of the union of balls around the red particles in x1, . . . , xi

and the union of balls around the blue particles in x1, . . . , xi. Since such terms appear in the
denominator in Equation (6), we expect that in the steady state the particles of the same color
are clumped together.

In a variety of point processes, such as the one-particle Widom–Rowlinson model, or cer-
tain Cox processes (Błaszczyszyn and Yogeshwaran [5]), the FKG lattice property is a useful
tool for proving stochastic dominance and clustering properties. In the case of the Widom–
Rowlinson model, the FKG inequality is also useful in showing the existence of a phase
transition (Chayes et al. [9]). The FKG lattice property defined on a measure ψ over a finite
distributive lattice � states that for every ξ, γ ∈�,

ψ(ξ ∨ γ )ψ(ξ ∧ γ )≥ψ(ξ )ψ(γ ). (7)

If ψ satisfies (7), it is said to be log-submodular. The FKG lattice property implies the positive
association inequality:

ψ(fg)≥ψ(f )ψ(g) (8)
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for all increasing functions f and g on �, where ψ(f ) represents the expectation of f with
respect to ψ .

This theorem can also be extended to point processes in the continuum as follows (see
[9,12] for details). Let P be a point process on a measurable space S, with Janossy density
ψ with respect to a Poisson point process with intensity λ; then the FKG lattice property
states that

ψ(ξ ∪ γ )ψ(ξ ∩ γ )≥ψ(ξ )ψ(γ ) for all ξ, γ ∈M(S). (9)

Under this hypothesis, one can conclude positive association inequalities such as (8), where f
and g are now increasing functions on M(S).

Remark 2.1. The FKG lattice property in the continuum point process case can also be stated
in terms of the Papangelou conditional intensities: if ϕ(x, ξ ) is the Papangelou conditional
intensity of a point process with Janossy density ψ , then (9) is equivalent to ϕ(x, ξ )≥ ϕ(x, ξ ′)
for all x ∈ S and ξ, ξ ′ ∈M(S) with ξ ⊇ ξ ′ (see Georgii and Küneth [12] for details).

In the following, we describe an FKG lattice property that holds for the steady-state version
of our model. The property holds under a specific lattice structure defined on M(D,C). Let
ξ = (ξR, ξB) and γ = (γ R, γ B) be two configurations in M(D,C), where ξR and γ R are the red
particles and ξB and γ B are the blue particles in the configurations. We say that ξ > γ if and
only if ξR ⊃ γ R and ξB ⊂ γ B.

Theorem 2.3. For any two finite subsets ξ = (ξR, ξB) and γ = (γ R, γ B) of D×C, we have

�̃(ξ ∨ γ )�̃(ξ ∧ γ )≥ �̃(ξ )�̃(γ ), (10)

where ξ ∨ γ = (ξR ∪ γ R, ξB ∩ γ B) and ξ ∧ γ = (ξR ∩ γ R, ξB ∪ γ B).

The proof of this theorem is deferred to Appendix D. We note that a similar FKG lat-
tice property is satisfied in the binary-particle Widom–Rowlinson model with the same lattice
structure.

From Theorem 2.3 and the FKG inequality (see Appendix in Chayes et al. [9]), we can con-
clude that the stationary measure is positively associated; i.e., for any two increasing functions
f and g,

Eη̃ f (η̃) g(η̃)≥Eη̃ f (η̃)Eη̃ g(η̃), (11)

where η̃ is a version of the unordered stationary process and has the density π̃ with respect
to the Poisson point process with intensity λ̄. The above positive association inequalities also
imply that the marginal point processes of the red points (or the blue points) are also posi-
tively associated. This can be seen by taking increasing functions f and g that depend only
on the red points (or the blue points). From this result and Corollary 3.1 of Błaszczyszyn and
Yogeshwaran [5], we can conclude that η̃R and η̃B are weakly super-Poissonian. Intuitively,
this means that the points are more clustered than the points in a Poisson point process of the
same intensity.

2.4. Boundary conditions and monotonicity

In this section, we assume that D is a compact subset of the Euclidean space Rd, for some
d≥ 1. We will use the FKG lattice property to prove monotonicity of measures under dif-
ferent boundary conditions. To state these results we will require the following notation. Let
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ζ ⊂Rd\D×C be a valid state, i.e., N(ζ )∩ ζ =∅. For any such boundary condition, we define
a measure on M(D,C) with Janossy density

π̃D,ζ (xn
1)=KD,ζ1(N(xn

1)∩ (ζ ∪ xn
1)=∅)�̃ζ (xn

1),

�̃ζ (xn
1)=

∑
(Xn

1 )∈P(xn
1)

n∏
i=1

1

λ̄(N(Xi
1)∩N(ζ )c)+ iμ

.
(12)

Three important boundary conditions are ζ = (Rd\D)× {R}, ζ =∅, and ζ = (Rd\D)× {B}.
These are respectively termed the red, the free and the blue boundary conditions. We use
special notation for the densities with these boundary conditions, namely, π̃S,R, π̃S, and π̃S,B.

The boundary conditions can also be partially ordered: let ζ1 ≥ ζ2 if and only if ζR1 ⊃ ζR2
and ζB1 ⊂ ζB2 . We are now in a position to state the first result of this section.

Theorem 2.4. Let D⊂Rd be a compact set. Let ζ1 ≥ ζ2 be two boundary conditions on D.
Then the measure with density π̃D,ζ1 stochastically dominates the measure with density π̃D,ζ2 .

Outline of the proof. By Holley’s inequality (see Holley [14]), it is enough to prove that for
two states η, γ ∈M(D,C), we have

π̃D,ζ1 (η ∨ γ )π̃D,ζ2(η ∧ γ )≥ π̃D,ζ1 (η)π̃D,ζ2(γ ). (13)

We first note that if N(η)∩ (ζ ∪ η)=∅ and N(γ )∩ (ζ2 ∪ γ )=∅, then

N(η ∨ γ )∩ (ζ1 ∪ (η∨ γ ))=N(η ∧ γ )∩ (ζ2 ∪ ((η∧ γ ))=∅.

Since the red and blue subsets do not interact by Corollary 8, we only need to show that if
ζ2 ⊂ ζ1 ⊂ (Rd\D)× {R} and η, γ ∈M(D, {R}), then

�̃ζ1 (η ∪ γ )�̃ζ2 (η ∩ γ )≥ �̃ζ1 (η)�̃ζ2 (γ ).

The proof of the last statement follows by a simple modification of the proof of Theorem D.1,
presented in Appendix D. Specifically, the inequality (53) in the appendix is modified to

E

n+m+2k∏
i=1

⎡
⎢⎣

λ̄(N(aSx(i)
1 )∩N(ζ1)c)+λ̄(N(b

Sy(i)
1 )∩N(ζ2)c)+iμ

λ̄(N(cSz(i)
1 )∩N(ζ1)c)−λ̄(N(aSx(i)

1 )∩N(cSz(i)
1 )∩N(ζ1)c)

+λ̄(N(c̄Sw(i)
1 )∩N(ζ2)c)−λ̄(N(b

Sy(i)
1 )∩N(cSz(i)

1 )∩N(ζ2)c)

⎤
⎥⎦
−1

≥E

n+m+2k∏
i=1

⎡
⎢⎣

λ̄(N(aSx(i)
1 )∩N(ζ1)c)+λ̄(N(b

Sy(i)
1 )∩N(ζ2)c)+iμ

λ̄(N(cSz(i)
1 )∩N(ζ1)c)−λ̄(N(aSx(i)

1 )∩N(cSz(i)
1 )∩N(ζ1)c)

+λ̄(N(c̄Sw(i)
1 )∩N(ζ2)c)−λ̄(N(b

Sy(i)
1 )∩N(c̄Sz(i)

1 )∩N(ζ2)c)

⎤
⎥⎦
−1

, (14)

where the expectation is over a uniformly random choice

(S, abcc̄) ∈ P(n,m, k, k)×P(η\γ )×P(γ \η)×P(η ∩ γ )×P(η ∩ γ ),

n= |η\γ |, m= |γ \η|, =̨|η ∩ γ |.
The rest of the proof follows similar steps to the proof in Appendix D.

Remark 2.2. The above proof can be modified to give the following interesting result. Let
D1 ⊂D2 be two compact subsets of Rd. With an abuse of notation, let π̃D2,R(η) denote the
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marginal Janossy density of observing η in D1, under the measure with density π̃D2,R. We sim-
ilarly overload the notation for π̃D2,B. With this notation, we may prove that π̃D1,R ≥ π̃D2,R and
π̃D1,B ≤ π̃D2,B. For the proof, we apply Holley’s inequality, which requires that the following
inequality hold:

π̃D1,R(η ∨ γ )π̃D2,R(η∧ γ )≥ π̃D1,R(η)π̃D2,R(γ ),

where η, γ ∈M(D1,C) are two valid configurations. This follows from the inequality

π̃D1,R(η ∨ γ )π̃D2,R(ξ ∪ (η∧ γ ))≥ π̃D1,R(η)π̃D2,R(ξ ∪ γ ),

where ξ ∈M(D1\D2,C) is any configuration such that ξ ∪ γ is a valid configuration. The
latter inequality can be proved using ideas similar to those in the proof of Theorem D.1 in
Appendix D. We skip the details of the cumbersome calculations here. We only remark that
such a monotonicity of measures allows us to consider the limiting extremal measures

lim
Dn↗Rd

π̃Dn,R, lim
Dn↗Rd

π̃Dn,B

on the infinite Euclidean space Rd. In the next few sections, we will consider the FIFM process
on infinite Euclidean spaces and prove the existence of a stationary regime. We leave the job
of exploring of the connection between the stationary measure so obtained and these limiting
measures to future work.

3. First-in-first-match matching process on Euclidean spaces

In the next few sections, we extend the definition of the process previously given on a com-
pact space to a non-compact space. We will specifically focus on the Euclidean space Rd, for
some d≥ 1. The following methodology can be extended to other non-compact spaces that
satisfy certain additional assumptions, but we refrain from presenting these results in complete
generality. When D=Rd, there are infinitely many arrival and departure events that are trig-
gered in any finite interval of time. So the process cannot be constructed as a jump Markov
process using the algorithm presented in Section 2.

The key to the definition and construction of the process on Rd is the following view-
point. Let us first understand this viewpoint in the compact setting and see its relation to the
algorithm given in Section 2. Let D be a compact space. Let � ∈M(D×R+,C×R+) and
η0 ∈O(D,C×R+) be the driving Poisson point process and the initial condition, respectively,
as defined in the Section 2. Here, each particle x ∈ η0 is of the form x= (px, cx,wx), where px,
cx, and wx are the position, color, and patience of the particle. Similarly, any point x ∈� is of
the form x= (px, bx, cx,wx), where additionally bx denotes the arrival time in �.

We will treat � as an element of O(D×R+,C×R+), where the points of � are ordered
according to their birth times, as in Section 2. We will also treat η0 as an element of O(D×
R+,C×R+), by setting bx = 0 for all x ∈ η0, while preserving the order in η0. Moreover, we
also consider �∪ η0 as an element of O(D×R+,C×R+), where all the elements of η0 are
ranked less than the elements of �, while preserving the order within each set.

We define a function κ :�∪ η0 →D×C×R+ � {♦}, which we call the killing function,
that is created as the process is built by the algorithm in Section 2. We define κ(x) according
to the following exhaustive set of rules:

1. If x arrives after y and matches with it, then κ(x)= y.
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2. If x is accepted into the system, then κ(x)=♦.

3. If x ∈ η0, then κ(x)=♦.

According to the description of the process, the function κ satisfies the following recursive
property. For any x ∈�,

κ(x)=min
{

y ∈ (�∪ η0) :
y<x, cy �=cx, d(py,px)<1, κ(y)=♦, by+wy>bx,

(∀z, y<z<x, d(py,pz)<1, cz=cx, κ(z)�=y)

}
, (15)

where the minimum above is set equal to ♦ if the above set is empty. In words, the conditions
in the definition of the above set select particles of opposite color that arrive before (or are
ranked lower), that are accepted when they arrive, whose patience does not run out before x
arrives, and that are not matched to any particle arriving before x.

The above recursive property can serve as a definition of the function κ , even in the non-
compact case, if we can show that the recursive definition terminates a.s. We note that we
could compute the value of κ(x) if we knew all values of κ on points in �∪ η0 that are within
a spatial distance of 2 from x and that arrive before it. It is also enough just to know all the
values of κ for points in � within a spatial distance of 4 that arrive before x. The following
lemma provides the tool needed to verify that the recursive definition terminates.

Lemma 3.1. Let � ∈O(Rd ×R+,C×R+) be a Poisson point process of intensity �⊗ �⊗
mc ⊗μe−μx�(dx), where � is the Lebesgue measure on the corresponding Euclidean spaces.
Then there is no infinite sequence {yn}n∈N ⊂� such that byi > byi+1 and d(pyi, pyi+1)≤ 4 for
all i> 0.

Proof. Let ε > 0 be fixed. Consider the event Tε := ∪b∈Q+ Tε,b, where Tε,b, b∈Q+, is
the event that the random geometric graph (see Meester and Roy [18]) obtained by joining
any two points in {y ∈� : b≤ by ≤ b+ ε} whose positions are within a distance of 4 from
each other does not percolate. From Theorem 3.2 of Meester and Roy [18], we know that
P(Tε,b)= 1 for every b∈Q+ if ε is small enough. Hence, P(Tε)= 1 for small enough ε. This
precludes the presence of an infinite sequence y1, y2 . . . ∈� such that, for all i ∈N, byi > byi+1

and d(pyi, pyi+1 )≤ 4. Indeed, if such a sequence exists, then the limit b= limi→∞ byi exists,
and by density of Q+ in R+, this event belongs to the set Tc

ε .
The above lemma ensures that we can obtain the value of κ(x) for any x ∈� by recursively

applying Equation (15). The process in turn can be defined by setting

ηt = {(py, cy) : y ∈�∪ η0, κ(y)=♦, by ≤ t< by +wy, and κ(z)= y =⇒ t< bz}
for all t> 0. On the unbounded domain Rd , this will serve as the definition of the FIFM spatial
matching process.

3.1. Construction of stationary regime on Euclidean spaces

The simple coupling-from-the-past argument presented in Section 2 does not hold in the
case where λ(D)=∞, since we cannot find a sequence of regeneration times going to ∞ in
this case. We show, however, that a coupling-from-the-past argument can still be performed
locally in space. This is done by first showing that, for a compact subset C of the domain Rd,
there exists a time TC beyond which two simulations agree for all times t beyond time TC (so,
TC is not a stopping time). A key ingredient in proving the existence of TC is an analysis of the
decay in first-order moment measures of the discrepancies between the two point patterns in
simulation. Using this analysis, we are also able to bound the moments of TC, which enables
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the application of ergodic theorems, as in the simple coupling-from-the-past construction in
Section 2. In the following sections, we present this coupling-from-the-past argument in detail.

3.2. A coupling of two processes

We will first obtain some results about a coupling of two different processes, {η1
t }t≥0 and

{η2
t }t≥0, starting from two different initial conditions, but driven by the same driving process

� ∈O(Rd ×R,C×R+). Let η1
0 and η2

0 be the two valid initial conditions (ηi
0 ∩N(ηi

0)=∅).
At any time t≥ 0, there are some particles that are present in both processes. These particles
will be called regular particles, and denoted by Rt. Particles that are present in η1

t and absent
in η2

t will be called zombies, and those that are absent in η1
t and present in η2

t will be called
antizombies. We denote zombies and antizombies by Zt and At, respectively. Further, particles
in Zt ∪ At will be called special particles and denoted by St.

We now prove that the density of the special particles decays exponentially to zero.

Lemma 3.2. There exists a constant c> 0, βSt <βS0e−ct, for all t> 0, where βSt is the intensity
of the special points, St.

Proof. Let K ⊂Rd be compact. Define K+ = {y ∈Rd : d(y,K)≤ 1} and K− =
{y ∈Rd : d(y,Kc)≤ 1}c, ∂K+ =K+ −K, and ∂K− =K −K−. Also, for the sake of
brevity, for any V ⊂Rd let VC denote the set V ×C. We will compute the difference
E[Zt+δ(KC)− Zt(KC)] for small δ > 0, by tracking the changes that may occur in the short
time interval (t, t+ δ). Recall that we use the notation Wi

x to denote the domain of influence
of the particle x ∈ ηi

t, i= 1, 2. Also, in the following we have λ̄ := �⊗mc on Rd ×C. The
following possibilities may occur:

• A zombie in K exits on its own by losing patience. The expected difference is

−μδEZt(KC)+ o(δ). (16)

• With probability o(δ), two or more particles arrive or depart in K+. The expected change
in Zt(K), given that this occurs, is o(δ).

• A zombie in K matches with a particle arriving in Kc, which is accepted in the process
η2

t . This results in a difference of

−δE
∑

x∈Zt∩KC

λ̄(W1
x ∩Kc

C ∩ (N(η2
t ))

c
)+ o(δ). (17)

• A zombie in K matches with a particle arriving in K, which is accepted in the process
η2

t . This new particle is an antizombie. The resulting change is

−δE
∑

x∈Zt∩KC

λ̄(W1
x ∩KC ∩ (N(η2

t ))
c
)+ o(δ). (18)

• A zombie in K matches with an arriving particle, which also matches with some particle
in Kc in the complementary process. This results in an expected change of

−δE
∑

x∈Zt∩KC

∑
y∈η2

t ∩Kc
C

λ̄(W1
x ∩W2

y )+ o(δ). (19)
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• A zombie in K matches with an arriving particle, which also matches with some
antizombie in K. This results in an expected change of

−δE
∑

x∈Zt∩KC

∑
y∈At∩KC

λ̄(W1
x ∩W2

y )+ o(δ). (20)

• An antizombie matches with a particle arriving in K that is accepted in the comple-
mentary process. This particle becomes a zombie. This results in an expected change of

δE
∑
x∈At

λ̄(W2
x ∩KC ∩ (N(η1

t ))
c
)+ o(δ). (21)

• An arriving particle matches with a zombie in Kc and a regular particle in η2
t ∩KC. The

regular particle turns into a zombie. This results in a change of

δE
∑

x∈Rt∩KC
y∈Zt∩Kc

C

λ̄(W2
x ∩W1

y )+ o(δ). (22)

Taking only the contributions from (16), (18), (21), and (22) in the above changes, dividing by
δ, and taking the limit as δ→ 0, we obtain

dEZt(KC)

dt
≤−μEZt(KC)+E

⎡
⎣− ∑

x∈Zt∩KC

λ̄(W1
x ∩KC ∩ (N(η2

t ))
c
)

+
∑
x∈At

λ̄(W2
x ∩KC ∩ (N(η1

t ))
c
)+

∑
x∈Rt∩TC
y∈Zt∩Tc

C

λ̄(W2
x ∩W1

y )

⎤
⎥⎥⎦ .

We have similar bounds for derivatives of EAt(KC). Adding these expressions, we obtain

d

dt
ESt(KC)≤−μESt(KC)+E

⎡
⎢⎢⎣ ∑

x∈Rt∩KC
y∈Zt∩Kc

C

λ̄(W2
x ∩W1

y )+
∑

x∈Rt∩KC
y∈At∩Kc

C

λ̄(W2
x ∩W1

y )

⎤
⎥⎥⎦

+ E

⎡
⎣ ∑

x∈At∩Kc
C

λ̄(W2
x ∩KC ∩N(η1

t )
c
)+

∑
x∈Zt∩Kc

C

λ̄(W1
x ∩KC ∩N(η2

t )
c
)

⎤
⎦

≤−μESt(KC)+ 4λ̄(∂K+C ∪ ∂K−C ).

Taking the limit K↗Rd, by spatial ergodicity of the process St, we obtain

d

dt
βSt ≤−μβSt, (23)

from which we can conclude that βSt ≤ βS0e−μt . �

3.3. The coupling-from-the-past construction

In this section, we present the coupling-from-the-past construction of the stationary regime.
Let � be a doubly infinite Poisson point process, as in Lemma A.1. That is, � is a Poisson
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point process defined on Rd ×R, with i.i.d. marks in C×R+, that is time-shift invariant. The
intensity of the point process is 2�⊗ �, and the marks are independent of each other, with the
color uniformly distributed in C and the patience an exponential random variable. Let {θt}t∈R
be a sequence of time-shift operators such that � ◦ θt(L× A)=�(L× (A− t)). Let {ηT

t }t≥−T ,
T ∈N, be a sequence of processes starting at time−T with empty initial conditions and driven
by arrivals from�. We have ηT

t = η0
t+T ◦ θ−T .

The processes η1
t and η0

t are driven by the same Poisson point process � beyond time
0. Treating the particles in η1

0 as the initial conditions, we have a coupling of {η1
t }t≥0 and

{η0
t }t≥0 as in Section 3.2. The discrepancies on any bounded set go to zero exponentially fast

by Lemma 3.2. In the next lemma, we prove that this exponential rate of convergence is enough
to show that the time after which discrepancies never appear in any compact region has finite
expectation. For any compact K ⊂D, define

τ 0(K) := inf{t> 0 : η1
s |K = η0

s |K, s≥ t}, (24)

and in the following, let St denote the set of discrepancies, η0
t η1

t . Note that τ 0(K) is not
a stopping time in our setting, since, first, St �= ∅ for all t≥ 0 a.s. by spatial ergodicity, and
second, once discrepancies vanish in K, they can reappear because of interactions with particles
from outside of K.

Lemma 3.3. For all compact K ⊂Rd, Eτ 0(K)<∞.

Proof. We view St(K), t≥ 0, as a birth–death process. Let St(K)= S0(K)+ S+(0, t]−
S−(0, t], where S+ and S− are simple counting processes. Since new special particles only
result from the interaction of arriving particles with existing special particles, the rate of
increase in S+ is bounded above by∑

x∈St∩K

�(B(x, 1))= �(B(0, 1))St(K).

Hence,

ES+[0,∞)≤ �(B(0, 1))
∫ ∞

0
ESt(K)dt<∞,

where we use Lemma 3.2 to obtain the last inequality. Since total departures are less than
total arrivals, ES−[0,∞)≤ES0(K)+ES+[0,∞). This in particular shows that S+[0,∞) and
S−[0,∞) exist and are finite a.s. Thus, limt→∞ St(K) also exists and is finite a.s. By the
dominated convergence theorem,

lim
t→∞ESt(K)=E lim

t→∞ St(K).

Thus, by Lemma 3.2, limt→∞ St(K)= 0 a.s. This shows that τ 0(K)<∞ a.s.
Since τ 0(K)<∞ a.s., there is a last exit and we may write τ 0(K)≤ ∫∞0 tS−(dt). We

therefore have

Eτ 0(K)≤E

∫ ∞

0
tS−(dt)

=E

∫ ∞

0
tS+(dt)−E

∫ ∞

0
t(S+ − S−)(dt)

=E

∫ ∞

0
tS+(dt)+ E

∫ ∞

0
(S+ − S−)(t)dt,
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where the last equality follows from a change-of-variables formula. Using the bound of
�(B(0, 1))St(K) on the rate of arrival in S+, the first expectation can be bounded above by
�(B(0, 1))+ ∫∞0 tESt(K)dt. We thus have

Eτ 0(K)≤ �(B(0, 1))
∫ ∞

0
tESt(K)dt+

∫ ∞

0
ESt(K)dt

<∞,
by Lemma 3.2.

We use the above lemma to prove the following existence result, using a coupling-from-the-
past argument.

Theorem 3.1. There exists a stationary version of the FIFM matching dynamics on Rd,
{ηt}t∈R, driven by �, such that ηt ◦ θs = ηt+s for all s ∈R.

Proof. Let τT (K) be defined as

τT (K) := inf{t>−T : ηT+1
s |K = ηT

s |K, s≥ t};

τT (K) denotes the time at which realizations of the processes {ηT
t } and {ηT+1

t } coincide inside
the set K. We have

τT (K)= τ 0(K) ◦ θ−T − T.

That is,

τT (K)+ T = τ 0(K) ◦ θ−T . (25)

Therefore, the sequence τT (K)+ T is a stationary and ergodic sequence. By Birkhoff’s
pointwise ergodic theorem and Lemma 3.3,

lim
T→∞

T∑
i=0

τ i(K)+ i

T
=Eτ 0(K)<∞ a.s.

Therefore the last term in the summation,

τT (K)+ T

T
,

goes to 0 as T →∞. From this we conclude that

lim
T→∞ τ

T (K)=−∞ a.s. (26)

This implies that for every realization of �, any compact set K, and t ∈R, there exists a k ∈N
such that for all T > k, τ 0(K) ◦ θ−T − T < t. That is, the executions of all processes {ηT

s }, T > k,
coincide at time t on the compact set K. Therefore, locally in the sense of total variation, the
following limit is well-defined a.s.:

ηt := lim
T→∞ η

T
t . (27)
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The process η is {θn}n∈Z-compatible, since

ηt ◦ θ1 = lim
T→∞ η

T
t ◦ θ1

= lim
T→∞ η

0
T+t ◦ θ−T+1

= lim
T→∞ η

0
t+1+T−1 ◦ θ−T+1

= ηt+1.

Further, the process can also be shown to be {θs}s∈R-compatible: for any s ∈R, by a similar
backward coupling argument, it can be shown that

lim
T→∞ η

T+s
t = lim

T→∞ η
T
t a.s.

Since ηT+s
t = ηT

t+s ◦ θ−s, we have ηt+s = ηt ◦ θs. This proves that {ηt}t∈R is the stationary
regime of the process.

4. Conclusion and future work

In this paper, we focused on a dynamic matching model with a natural policy, under the
added assumption that particles may depart without being matched. We were able to find a
characterization of the steady-state distribution of the particles. Then using this characteriza-
tion, we proved the FKG lattice property, which in turn enabled us to conclude that particles
of the same type are weakly super-Poissonian. We also proved that there is a stationary regime
for the dynamics in the infinite Euclidean space Rd.

The two-particle Widom–Rowlinson model is a simpler model that, like our model, satisfies
the FKG property. For this model, the FKG property is used to show the existence of Markov
random fields on the infinite Euclidean space Rd. In the future, we would like to see whether
this construction works in our setting, and how it relates to the stationary regime constructed
on the domain Rd .

The gray version of two-particle Widom–Rowlinson model, which is obtained by removing
the reference to the colors of the points, also satisfies an FKG inequality—a result we are
unable to prove in our setting. This is a fundamental step in the symmetry-breaking argument
of Chayes et al. [9], which we were not able to carry over to our setting. A symmetry-breaking
argument would show, for certain values of the parameter, that there are more red points than
blue points in the steady state, or vice versa. This also has implications for the relaxation times
of the Markov process on finite domains. In the future, we would like to explore these models.

Appendices

A. Proof of existence and uniqueness of stationary regime on compact domain

In this section, we provide a proof for Theorem 2.1. Let � be a bi-infinite marked Poisson
point process on D×R with marks in C×R+, as defined in Section 2.1. The proof depends
on the notion of regeneration times of �, which we now define.

Definition A.1. A time t ∈R is called a regeneration time of � if

∀x ∈�, bx ≤ t =⇒ bx +wx < t.
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If t is a regeneration time of �, there is no possibility that a particle arriving before time t
survives beyond time t. The following lemma provides a sequence of regeneration times that
diverge to −∞.

Lemma A.1. In the setting of this section, there are infinitely many regeneration times in the
sequence 0,−1,−2, . . ., a.s.

Proof. Let An be the event that −n is a regeneration time. Let us find the probability of the
event A0. We have

P(A0)= P(wx <−bx, ∀x ∈�, bx < 0)

=E
∏
x∈�

1(wx <−bx, bx < 0)

=E lim
s→∞ e−s

∫
1(wx≥−bx)�(dx)

≥ lim sup
s→∞

exp

(
2
∫

D

∫
R−×R+

(
e−s1(w≥−b) − 1

)
μe−μwdwdbλ(dp)

)

= lim sup
s→∞

exp

(
2λ(D)

∫
R+

(e−s − 1)e−μbdb

)

= lim sup
s→∞

exp
(
2λ(D)(e−s− 1)/μ)

)
= exp (−2λ(D)/μ)> 0,

where in the fourth equation we have used Fatou’s lemma and the Laplace transform formula
for Poisson point processes. Now, if θt is a time-shift operator, we have An = θ−nA0. By time-
ergodicity of�, An must occur infinitely often, a.s. Thus, there are infinitely many regeneration
times in the sequence {0,−1,−2, . . .}. �

Using this lemma, we are able to prove Theorem 2.1.
Proof of Theorem 2.1. For any process {ηT

s }s≥−T started with empty initial conditions at

time −T, and driven by the process �. We note that ηT
s = ηT ′

s for all s≥ t and all regeneration
times t≥−T and t≥−T ′.

By Lemma A.1, we know that there is a sequence of regeneration times {tn}n∈N such that
tn →−∞ as n→∞. Thus, we note that the limit ηt = limT→∞ ηT

t exists a.s. This is an
instance of a coupling-from-the-past algorithm (see Chapter 10 of Thorisson [20]).

The uniqueness of a stationary measure can also be shown using a coupling-based argument.
We only give an outline of this procedure here. Suppose we consider two stationary measures
of the process, P1 and P2. Let En be the event that {η0 ∈O(D) : |η0|> n}. Fix ε > 0. For some
large enough n, we must have that P1(En)< ε and P2(En)< ε. Let � be the set of probability
measures on O(D)×O(D) such that their first and second marginals are equal to P1 and P2.
Now, the total variation distance between the two measures P1 and P2 is

dTV
(
P1, P2)= inf

ψ∈� ψ(η(1) �= η(2)), (28)

where (η(1), η(2)) represent the two coordinates of the state space O(D)×O(D).
For ψ ∈� , let ψt denote the joint probability distribution of the FIFM matching processes

sampled at time t, starting at time 0 using a sample fromψ , and using the same driving process
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� described earlier. Note that ψt ∈� . Using a union bound, Pψ ({η(1)∈En}∪{η(2) ∈ En})< 2ε.
Thus,

dTV (P1, P2)≤ 2ε + inf
ψ∈� ψ(η(1) �= η(2)|η(1), η(2) /∈ En)

≤ 2ε + inf
ψ∈� ψt(η(1) �= η(2)|η(1), η(2) /∈ En).

(29)

For simplicity, we can now specialize to a specific starting distribution and letψ = P1 ⊗ P2:

dTV (P1, P2)≤ 2ε +ψt(η(1) �= η(2)|η(1), η(2) /∈ En). (30)

Let Pψ denote the probability measure of the coupling here, and let (η(1)
t , η

(2)
t ) denote the

coupled processes. Then as a result of the coupling mechanism we can conclude that the two
processes couple in a random time T, such that Eψ [T|η(1)

0 , η
(2)
0 /∈ En]<∞. Loosely speaking,

this is true because the T can be bounded from above by Tsum, the sum of the patience of all
points in η(1)

0 and η(2)
0 , plus the time to first regeneration of � beyond Tsum.

Now, using (30) and the coupling inequality, we obtain

dTV (P1, P2)≤ 2ε +E[T|η(1)
0 , η

(2)
0 /∈ En]/t.

Taking t→∞ and then n→∞, we may conclude that dTV (P1, P2)= 0. �

B. Characterizing stationary distribution: background discussion

B.1. Dynamic reversibility of Markov processes

In this section we give a brief discussion of a result needed to construct the product-form
distribution. This concept will be termed dynamic reversibility of a Markov process, follow-
ing the terminology in Kelly [16], where the concept was discussed for Markov processes on
countable state spaces. We thus define it first on countable state spaces, then on general state
spaces.

Let {X(t)}t∈R be a stationary, irreducible continuous-time Markov process with values in
a countable state space S. Let q(j, k) denote the transition rate from state j ∈ S to k ∈ S, and
let π be the stationary distribution of the process. In this case, the balance equations are∑

j∈S π(j)q(j, k)= 0.
The reversed process, X(− t), is also a stationary Markov process, with transition rates

q′(j, k)= π(k)q(k, j)

π(j)
.

The converse of this statement can be used as a characterization of the stationary distribution.
We state this result in the following theorem.

Theorem B.1. Let X(t) be a stationary irreducible Markov process with transition rates
q(j, k), j, k ∈ S. If there exists a collection of numbers q′(j, k), j, k ∈ S, and a probability
measure π on S such that

π(j)q(j, k)= π(k)q′(k, j), j, k ∈ S, (31)
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and ∑
k∈S

q′(j, k)= 0, j ∈ S, (32)

then π is the stationary distribution of the process, and q’ is the transition rate matrix for the
time-reversed process.

Thus, if we can guess the transition rates of the reversed process and a stationary measure, we
can verify them by checking a local balance condition of the form (31). See Theorem 1.13 of
Kelly [16] for a proof of this result. In practice, finding q’ is usually as intractable as finding the
stationary distribution directly. However, occasionally we may come across pairs of Markov
processes that are reversed versions of each other, perhaps after a transformation of the state
space. We state this phenomenon in the next theorem.

Theorem B.2. Let S and T be two countable spaces. Let X(t) and Y(t) be two stationary
irreducible Markov processes with values in S and T, and with transition matrices q and q’
respectively. Suppose there is an isomorphism φ : S→ T between the two spaces. Also suppose
that there is a probability measure π on S such that

π(j)q(j, k)= π(k)q′(φ(k), φ(j)), j, k ∈ S.

Then π is the stationary distribution of X(t) and π(φ−1( · )) is the stationary distribution of
Y(t).

Theorem B.2 can be extended to a more general setting, as follows.

Theorem B.3. Let S and T be two locally compact Hausdorff topological spaces. Let X(t) and
Y(t) be two stationary Markov jump processes with values in S and T. Suppose the probability
semigroup of the process X(t) (resp. Y(t)) is characterized by the generators LX (resp. LY),
defined over dom(LX) (resp. dom(LY)), where the domain is a subset of the Banach space of
continuous functions over S (resp. T) vanishing at infinity, equipped with the uniform norm
topology. Let φ : S→ T be a measure space isomorphism such that for all f ∈ dom(LX), we
have f ◦ φ−1 ∈ dom(LY). If π is a probability measure on S such that∫

S
f (x)LXg(x)π(dx)=

∫
T

LY (f ◦ φ−1)(y)g ◦ φ−1(y)φ∗π(dy),

then π is a stationary distribution for X(t).

Proof. Let g be any element in dom(LX). Taking a sequence fn ∈ dom(LY) such that fn
converges pointwise to the constant function 1 as n→∞, we have∫

S
LXg(x)π(dx)=

∫
T

LY (1)(y)g ◦ φ−1(y)φ∗π(dy)= 0.

By standard results from the theory of positive operator semigroups, it is known that for g ∈
dom(LX), the map x �→ E[g(X(t))|X(0)= x] belongs to dom(LX) (see Lemma 1.3 of Engel and
Nagel [11], for example). Thus, for g ∈ dom(LX), we have

d

dt

∫
S
E[g(X(t))|X(0)= x]π(dx)=

∫
S

L(E[g(Xt)| · ])(x)π(dx)= 0.
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It is also known that dom(LX) is dense on the space of continuous functions vanishing at infin-
ity (Theorem 1.4 of Engel and Nagel [11]). This implies that Eπg(X(t))=Eπg(X(0)) for all
bounded continuous functions and all t> 0, and so π must be a stationary measure of X(t). �

If two processes satisfy the hypotheses of the above theorem, we say that the processes are
dynamically reversible.

B.2 Additional global notation

In the following few sections we need some notation to define the transitions in the Markov
processes. We collect this notation in this section.

Let γ = (x1, . . . , xn), n∈N, and x respectively be a list of elements and a particular element
belonging to the same abstract space S. We define the following operators:

1. Let γ �i x, i= 0, . . . , n, denote the insertion of the element x after the ith element in γ ;
i.e.,

γ �i x= (x1, . . . , xi, x, xi+1, . . . , xn).

2. Let γ �i, i= 1, . . . , n, denote the removal of the ith element of γ ; i.e.,

γ �i = (x1, . . . , xi−1, xi+1, . . . , xn).

3. Let γ�ix denote the replacement of the ith element in γ with x; i.e.,

γ�i x= (x1, . . . , xi−1, x, xi+1, . . . , xn).

In the above notation, we may drop the subscript i if i= |γ |, i.e., when we are making changes
to the last element. Also, when composing these operators, unless clarified using parentheses,
the order of application of operations is from left to right.

B.3 Continuous-time first-come-first-served bipartite matching model with reneging

In this section, we illustrate how dynamic reversibility is used in the proof of Theorem 2.2,
by working on a countable state space Markov model. This allows us to organize and present
the main ideas without the complexity of dealing with measure-valued processes.

Specifically, in this section, we consider the following modified version of the FCFS
bipartite matching model considered in Adan et al. [1]. Consider two finite sets of types
C = {c1, . . . , cI} and S = {s1, . . . , sJ} and a bipartite compatibility graph G= (C, S, E) with
E ⊂ C × S. Let λ̄ be a measure on C ∪ S, and let μ> 0 be a parameter. We say that c and s can
be matched or are compatible if (c, s) ∈ E in the compatibility graph E. We define the FCFS
bipartite matching model with reneging as a Markov jump process with state space �, which is
the set of all finite ordered lists of elements from C ∪ S such that for every c ∈ C and s ∈ S in the
list, (c, s) /∈ E . Furthermore, given that the state of the process at any time t is γ = (x1, . . . , xn),
the state is updated with the following transition rates:

1. A new element x ∈C ∪ S arrives at rate λ(x). At the time of the arrival, if there are one
or more elements in γ that are compatible with x, then the first such element, xi, is
removed, and we say that x and xi are matched. If there is no such element, then x is
added to the end of the list γ .

2. Each element in the list is removed at rate μ> 0.
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The comments and results of Sections 2.1 and 2.2 can be mirrored in this setting. We briefly
review them here.

We can simulate the above process using arrivals from a Poisson point process � on (C ∪
S)×R, with i.i.d. exponential marks in R+, and with intensity λ⊗ �. The base of the Poisson
point process � encodes the arrivals of the agents, and the mark of a point encodes the time
each agent is willing to wait (its patience), if it is accepted. We will use the following notation:
for any point x ∈ (C ∪ S)×R×R+, cx will denote its projection onto C ∪ S, bx will denote the
second coordinate, and wx will denote the third coordinate.

Standard coupling- or Lyapunov-based arguments can be used to show that this Markov pro-
cess has a stationary regime. Moreover, a stationary version of the process can be constructed
via a coupling-from-the-past scheme that uses an ergodic arrival process, �, which is now a
Poisson point process on (C ∪ S)×R, with marks as above. To construct the stationary regime,
the notion of regeneration time of the system may be defined as follows. We say that t ∈R is
a regeneration time of � if for all x ∈� with bx < t, we have t− bx >wx. The forward-time
construction of the process starting from a regeneration time with empty initial conditions is
clear. Moreover, if t1 < t2 are two regeneration times and η1 and η2 are such processes starting
from t1 and t2 respectively, then for t> t2, η1

t = η2
t . Thus, we can construct a bi-infinite station-

ary version, {ηt}t∈R, of this process as a factor of �, if we can find a sequence of regeneration
times going to −∞. Indeed, if t1 > t2 > · · · is such a sequence (with t0 set to ∞), then the
ηt for t ∈ [ti, ti−1), for some i ∈N, is obtained by simulating the process, starting from empty
initial conditions, from time ti until time t. An argument similar to that of Lemma A.1 can be
used to show the existence of such a sequence of regeneration times.

This coupling-from-the-past scheme yields the definition of the matching function,

m :�→ (C ∪ S)×R,

similar to the one defined in Section 2.2. For x ∈�, let T ∈R− be a regeneration time before
bx. The value of m(x) can be set by simulating the process using �, starting from time T, with
empty initial conditions. If x is matched to an agent y ∈�, then m(x)= (cy, by). Otherwise, if
x reneges, then m(x)= (cx, bw +wx).

Given the function m, we can obtain the process ηt, since ηt = (x ∈� : bx ≤ t< bm(x)), where
the agents in the list are ordered according to their birth times b·. Let m and u be addi-
tional marks, respectively indicating whether an agent is matched or unmatched. Consider
the detailed stochastic process {η̂t}t∈R defined as follows, for t ∈R:

1. Let Tt =min{bx : x ∈�, bx ≤ t< bm(x)}.
2. Let

�u,t = {(cx, bx, u) : x ∈�, Tt ≤ bx ≤ t< bm(x)}
and

�m,t = {(cx, bm(x), m) ∈N : bx ≤ t, Tt ≤ bm(x) ≤ t}.
3. Define η̂t := ((cx, sx) : x ∈�u,t ∪ �m,t), where sy refers to the matched or unmatched

status of an agent y ∈�u,t ∪ �m,t, and the list is ordered according to the second
coordinate, b(·).

Clearly, ηt can be obtained from η̂t by removing the agents with marks m. We call the process
η̂t the backward detailed process, following the terminology in Adan et al. [1].

Since the backward detailed process at time t only depends on the points of � before time
t, it is a stationary process. Moreover, it is a stationary version of some Markov process, since
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for t< s, the state at time s can be constructed using the state at time t and the process � in
the interval (t, s]. We describe this Markov process in detail now. A valid state of this Markov
process is a finite list of elements (x1, . . . , xn) from the set (C ∪ S)× {u, m}, such that the
following hold:

1. sx1 = u if n≥ 1.

2. If sxi = sxj = u, then (cxi, cxj) /∈ E .

3. For all i< j, if si = u and sj = m, then (cxi, cxj) /∈ E .

Below, we utilize the definitions in Appendix B.2. Additionally, mirroring our notation in
the continuum setting, for any x ∈C ∪ S let

N({x})= {y ∈C ∪ S : (x, y) ∈ E or (y, x) ∈ E},
and for any A⊆C ∪ S let N(A)=∪x∈AN({x}). With an abuse of notation, we will let
N(x) :=N({x}) for x ∈C ∪ S. Also, for γ ∈O(C ∪ S, {u, m}) and any x ∈ γ , we will write

γ x = {y∈ γ : y<γ x};
γ u = {y∈ γ : sy = u}, γ m = {y∈ γ : sy = m};

Wx =
{

N(cx)\N(γ u,x) if sx = u,

∅ otherwise.

The transitions and transition rates for the backward detailed process are the following,
given that the state of system is η̂= (x1, . . . , xn):

1. Any agent xi ∈ η̂, with sxi = u, loses patience. In this case, the new state is η̂′ = η̂�i�
(cxi, m), except possibly when i= 1, where we need to prune all the leading matched
and exchanged elements from η̂′. We still denote the new state by η̂�i � (cxi, m), even
in this case, keeping in mind that all leading matched terms must be removed. Each such
transition occurs at rate μ.

2. A new agent x= (cx, u), cx ∈C ∪ S, arrives and is matched to the agent xi ∈ η̂, with
(cxi, cx) ∈ E and sxi = u. In this case, the new state is (a valid pruning of) η̂�i (cx, m)�
(cxi, m). This occurs at rate λ̄(cx)1

(
cx ∈Wxi

)
.

3. A new agent x= (cx, u), with cx ∈C ∪ S, arrives and is not matched to any agent. The
new state is η̂� x. This occurs at rate λ̄(cx)1(cx /∈N(η̂u)).

We now define the forward detailed process, which is the dual of the process {η̂t}t∈R, and
which we denote by {η̌t}t∈R. For t ∈R, define the following:

1. Let Yt =max{bm(x):x ∈�, bx ≤ t< bm(x)}.
2. Let

m,t = {(cx, bm(x), m) : x ∈�, bx ≤ t< bm(x)}
and

u,t = {(cx, bx, u) : t< bx < Yt, t< bm(x)}.
3. Let η̌t = ((cx, sx) : x ∈u,t ∪m,t), where the elements are ordered according to the

second coordinate b(·).
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The forward detailed process is also a stationary version of a Markov process. Any valid
state (x1, . . . , xn) of this Markov process of the system satisfies the following:

1. sxn = m when n≥ 1.

2. If sxi = sxj = m, then (cxi, cxj) /∈ E .

3. If i< j, sxi = u, sxj = m, then (cxi, cxj) /∈ E .

The transitions and the transition rates of the Markov process are as follows: given that the
state of the system is η̌, the next jump occurs at rate λ̄(C ∪ S)+Q0

m(η̌)μ, where Qi
m(η̌) is the

number of matched elements in η̌ after ith location. Intuitively, this is so because the total rate
of new arrivals is λ̄(C ∪ S) and the total death rate is Q0

mμ, since Q0
m is the number of matched

agents in the forward process. For the sake of brevity, let us denote λ̄(C ∪ S)+ nμ by ρ(n), for
all n ∈N. If η̌ is non-empty, at each jump, to obtain the new state, we need to process the first
element, x1, in η̌. This is done with the following probabilities:

1. If x1 is matched, then it is removed from η̌. The new state is η̌�1.

2. If x1 is unmatched, then for the next state, we sample a random variable τ ∈N with
distribution

P(τ = k)= μ

ρ(Qk
m + 1)

k−1∏
i=1

ρ(Qi
m)

ρ(Qi
m + 1)

,

and then sample xn+1, . . . xτ i.i.d. random unmatched elements in {C ∪ S} with distribu-
tion λ̄( · )/λ̄(C ∪ S).

(a) If there is an FCFS matching xi, 2≤ i≤ τ , then we set the new state to
(xmax (n,τ )

1 )�i (cx1, m) �1, with the understanding that all the ending unmatched
agents are discarded.

(b) If there is no FCFS matching, we set the new state to (xmax (n,τ )
1 ) �τ (cx1, m) �1.

If the state is η̌=∅, then the next jump occurs at rate λ̄(C ∪ S). When a jump occurs, a ran-
dom unmatched point x1 ∈C ∪ S is sampled with distribution λ̄( · )/λ̄(C ∪ S). The next state is
decided as in Step 2 above, with this new η̌= x1; we ignore the details here.

We have the following theorem.

Theorem B.4. The two processes η̂t and η̌t are dynamically reversible. The concerned isomor-
phism φ is the one that takes a valid state η̂, reverses the order of its elements, and flips the
marks u and m. The stationary distribution is

π(η̂)=K1(η̂ is valid)
n∏

i=1

λ(cxi)

ρ(Qi
u)
,

�(∅)=K,

where η̂= (x1, . . . , xn) and where K is a normalizing constant.

Outline of the proof. To prove this, we start by looking at the balance equations of the form
in Theorem B.2. Let η̂ be the state of the backward detailed process, and let η̂′ be a state after
a valid transition. In the following, we illustrate the local balance condition (31) for only one
type of transition; other types can be handled similarly. Let q and q’ be the transition rates of
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the backward and forward detailed processes, respectively. Also, let cj(γ ) denote the type of
the jth element in γ , for any γ ∈O(C ∪ S).

Suppose that η̂= (x1, . . . , xn), n> 0, and that η̂′ is obtained from η̂ when one of the ele-
ments xi, at some location i> 1, is matched and exchanged with a new arrival (cx, u). In this
case, η̂′ = η̂�i (cx, m) � (cxi, m), and

π(η̂)

π(η̂′)
q(η̂, η̂′)= λ(cx)

|η̂|∏
j=1

λ(cj(η̂))

ρ(Qj
u(η̂))

|η̂′|∏
j=1

ρ(Qj
u(η̂′))

λ(cj(η̂′))
. (33)

The first i− 1 elements in η̂′ are x1, . . . , xi−1, and |η̂′| = |η̂| + 1. Moreover, Qj
u(η̂)=Qj

u(η̂′)+
1 for i≤ j≤ |η̂|. Hence, Equation (33) simplifies to

π(η̂)

π(η̂′)
q(η̂, η̂′)=

|η̂|∏
j=i

ρ(Qj
u(η̂′))

ρ(Qj
u(η̂′)+ 1)

× ρ(Q|η̂
′|

u (η̂))

= P(τ
φ(η̂′) > |φ(η̂′)| − i)× ρ(Q0

m(φ(η̂′)))

= q′(φ(η̂′), φ(η̂)).

We claim that local balance equations for other valid transitions can be handled similarly. This
completes the proof of this theorem.

C. Characterization of invariant measure on compact domains: the proofs

In this section we present detailed calculations to show that the backward detailed pro-
cess {η̂t}t∈R and the forward detailed process {η̌t}t∈R, defined in Section 2.2, are dynamically
reversible as jump Markov processes. As a consequence we obtain the proof of Theorem 2.2.

We first define the valid states of the Markov process corresponding to the forward detailed
process, and we present the transitions and the transition rates, since these were skipped in the
discussion in Section 2.2.

A valid state of the forward detailed process is given by the following rules.

Definition C.1. (x1, . . . , xn)∈O(D× C× {u, m}) is a valid state of the forward detailed
process if the following hold:

1. sxn = m if n≥ 1.

2. For all i, j, if sxi = sxj = m and d(pxi, pxj)≤ 1, then cxi = cxj .

3. For all i< j, if sxi = u, sxj = m and d(pxi, pxj)≤ 1, then cxi = cxj .

Condition 2 in the above definition essentially states that there cannot be a compatible
matched pair in a valid state. This is equivalent to the condition that

{y ∈ x1, . . . xn : sy = m} ∩N({y ∈ x1, . . . xn : sy = m})=∅.

This is because, if there were a violating pair at time t, such a pair could potentially have
been matched to each other before time t, instead of being matched to their present matches.
Condition 3 is required since otherwise, for a violating pair xi and xj with i< j, the particle
xj could instead have been matched with the particle xi, which arrived before the particle to
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which xj is actually matched. This is equivalent to the condition that for all 1≤ j≤ n,

sxj = m =⇒ xj /∈ N({y∈ x1, . . . , xi : sy = u}).
The Markov process corresponding to {η̌t} evolves as follows. Let η̌= (x1, . . . , xn), n= |η̌|,

be the state of the system at some time t. The next jump occurs at rate ρ(Q0
m)= 2λ(D)+Q0

mμ,
where, for the sake of brevity, we use the notation ρ(n)= 2λ(D)+ nμ for any n∈N. If η̌ is
non-empty, the first element, x1, in the list η̌ is processed at the next jump according to the
following rules:

1. If x1 is matched, then it is removed from η̌. The new state is η̌�1.

2. If x1 is unmatched, then for the next state, we sample a random variable τ ∈N with
distribution

P(τ = k)= μ

ρ(Qk
m + 1)

k−1∏
i=1

ρ(Qi
m)

ρ(Qi
m + 1)

,

and then sample xn+1, . . . xτ i.i.d. random unmatched points in D× C with distribution
λ⊗mc/(2λ(D)).

(a) If there is an FIFM matching xi, 2≤ i≤ τ , for x1, then we set the new state
to (xmax (n,τ )

1 )�i (px1, cx1, m) �1, with the understanding that all the unmatched
particles at the end of the list are discarded.

(b) If there is no FIFM matching, then we set the new state to (xmax (n,τ )
1 ) �τ

(px1cx1, m) �1.

If the state is η̌=∅, then the next jump occurs at rate ρ(0)= 2λ(D). A random unmatched
particle x1 is sampled with distribution λ̄/2λ(D). The next state is decided as in Step 2 above
with η̌= (x1).

We are now ready to prove Theorem 2.2.
Proof of Lemma 2.1 and Theorem 2.2. To obtain the stationary distribution, we check

the conditions of Theorem 6.1. The space O(D,C× {u, m}) is viewed as a subset of
�∞n=0(D×C× {u, m})n, and we use the induced topology on O(D,C× {u, m}). With this
topology, O(D,C× {ttu, m}) is a locally compact Hausdorff space. Let D̂=D×C× {u, m},
and let λ̂ be the measure λ⊗mc ⊗mc on D̂. The probability semigroup of the processes η̂ acts
over the Banach space of continuous functions that vanish at infinity, where we use the uniform
norm topology. Moreover, the generator of η̂ can at least be defined on the space of compactly
supported continuous functions, and has the form

L1f (η̂)=
|η̂|∑
i=1

1(sxi = u)μ[f (η̂�i � (pxi, cxi, m))− f (η̂)]

+
∫

D̃

|η̂|∑
i=1

1(x ∈Wxi)[f (η̂�i (px, cx, m) � (pxi, cxi, m))− f (η̂)]λ̄(dx)

+
∫

D̃
1(x /∈ N(η̂u))[f (η̂� (px, cx, u))− f (η̂)]λ̄(dx).

(34)
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Similarly, it can be seen that the generator of η̌ can also be defined over the space of com-
pactly supported continuous functions, and the value of the generator L2g(η̌) is the sum of the
following terms (in the order of the transitions listed earlier):

• (1): ρ(Q0
m(η̌))1(sx1 = m)[g(η̌�1 )− g(η̌)].

• (2a):

ρ(Q0
m(η̌))1(sx1 = u)

×
⎛
⎝ |η̌|∑

k=2

P(τ (η̌)> k)1((px1, cx1 ) ∈Wxk )[g(η̂�k (px1, cx1, m)�1)− g(η̂)]

+
∞∑

k=|η̌|+1

P(τ (η̌)> k)
∫

D̃k−|η̌|

(
1((px1, cx1 )∈Wxk )

× [g((xk
1)�k (px1, cx1, m) �1)− g(η̂)]

)
λ̄(dxk

|η̌|+1)
)
,

where we have set sxj = u for all j> |η̌|.
• (2b):

ρ(Q0
m(η̌))1(sx1 = u)

×
⎛
⎝ |η̌|∑

k=1

P(τ = k)1((px1, cx1 ) /∈N(η̌k,u
1 ))[g(η̂ �k (px1, cx1 , m) �1)− g(η̂)]

+
∞∑

k=|η̌|+1

P(τ = k)
∫

D̃k−|η̌|
1((px1, cx1 ) /∈ N(xk,u

1 ))

× [g((xk
1) � (px1, cx1, m) �1 )− g(η̌)]λ̄(dxk

|η̌|+1)
)
,

where sxj = u for all j> |η̌|.
When η̌=∅, we have the following terms in L2g(∅):

• (2a.):

ρ(0)
∫

D̃

∞∑
k=2

P(τ (∅)> k− 1)
∫

D̃k−1

(
1((px1, cx1 ) ∈Wxk )

×[g((xk−1
2 )� (px1, cx1, m))− g(∅)]

)
λ̄(dxk

2)λ̄(dx1),

where sxj = u for all j> 0.

• (2b.):

ρ(0)
∫

D̃

∞∑
k=1

P(τ1 = k)
∫

D̃k−1
u

(
1((px1, cx1 ) /∈N(xk,u

1 ))

×[g((xk
2) � (px1, cx1, m))− g(∅)]

)
λ̄(dxk

2)λ̄(dx1),

where sxj = u for all j> 0.
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For the product-form distribution, we check the balance condition of Theorem 6.1, with an
appropriate measure space isomorphism φ. The isomorphism is given by the function revx,
defined in Section 2.2, which reverses the order of points and flips the marks u and m of a valid
state. In the following, let φ := revx denote this function.

Taking any two compactly supported continuous functions f , g, and taking each term of∫
gL1f + gf π̂(dη̂), we show that it corresponds to a few terms in

∫
L2(g ◦ φ−1)(φ(η̂))f (η̂)+

gf π̂(dη̂), so that the sum of these expressions is equal. In particular, the following steps suffice:

1. Take the first summation term of
∫

gL1f + gf dπ̂ when it is expanded using Equation
(34). Take the ith term, with i> 1. Set η̂′ = η̂�i� (pi, ci, m). Let n := |η̂|, and so n=
|η̂′|. Also, let η̂= (x1, . . . , xn) and η̂′ = (x1

′, . . . , xn
′). The corresponding term is

∫
μ1(sxi = u)g(η̂)f (η̂′)π̂(dη̂)

:=μ
∞∑

n=i

∫
D̂n
1(sxi = u)π̂(η̂)g(η̂)f (η̂′)λ̂(dη̂)

=
∞∑

n=i

∫
D̂n
π̂(η̂′)

μπ̂(η̂′ �i−1 (pxn
′ , cxn

′, u) �)

π̂(η̂′)

× g(η̂′ �i (pxn
′, cxn

′, u) �)f (η̂′)λ̂(dη̂′)

=
∫
1(n≥ i)P(τ

φ(η̂′) = n− i+ 1)

× ρ(Q0
m(φ(η̂′)))g(η̂′ �i (pxn

′, cxn, u) �)f (η̂′)π̂(dη̂′),

(35)

where in the second equality we use that η̂= η̂′ �i−1 (pxn
′ , cxn

′, u) �, and in the third
equality we use that

μπ(η̂′ �i−1 (pn
′, cn

′, u)�)

π(η̂′)
= μ

ρ(Ni
u(η̂))

n−1∏
j=i

ρ(Nj
u(η̂′))

ρ(Nj+1
u (η̂))

ρ(Nn
u(η̂′))

= P(τ
φ(η̂′) = n− i+ 1)ρ(N0

m(φ(η̂′))).

(36)

Similarly, in the first summation term of
∫

gL1f + gf , taking i= 1, and letting k(η̂) be
the maximum element such that x2, . . . , xk are all matched in η̂, we have

∫
μg(η̂)f (η̂′)π̂(η̂)

=μ
∞∑

n=2

∫
D̂n

n−1∑
j=1

1(k(η̂)= j)g(xn
1)f (xn

j+1 � (px1, cx1, m))π̂(η̂)λ̂(dη̂)

+μ
∞∑

n=1

∫
D̂n
1(k(η̂)= n)g(xn

1)f (∅)π̂(η̂)λ̂(η̂),
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where we have used the fact that if k(η̂)= |η̂|, then η̂′ = ∅. Consider the first term in the
above expression. Setting m= n− j+ 1 and x′m1 = (xn

j+1 � (px1, cx1, m)), we obtain

μ

∞∑
n=2

∫
D̂n

n−1∑
j=1

1(k(η̂)= j)g(xn
1)f (xn

j+1 � (px1, cx1, m))π̂(η̂)λ̂(dη̂)

=μ
∞∑

j=1

∞∑
m=2

∫
D̂m
1(sx′m = m)λ̄(D̃)

j−1
EXj

2

[
g((px′m, cx′m , u)Xj

2x′m−1
1 )

f (x′m1 )π̂((px′m, cx′m, u)Xj
2x′m−1

1 )
]
λ̂(dx′m1 ),

(37)

where Xj
2 are i.i.d. particles in D̃ with marks m, with distribution λ̄( · )/λ̄(D̃). Using a

computation similar to that of (36), it is easy to see that the right-hand side of (38) is
∞∑

m=2

∫
D̂m
1(sx′m = m)ρ(Q0

m(φ(x′m1 )))
∞∑

j=1

P(τ (φ(x′m1 ))=m+ j− 1)π̂(x′m1 )

×E
Xj

2

[
g((px′m, cx′m, u)Xj

2x′m−1
1 )f (x′m1 )

]
λ̂(dx′m1 ).

(38)

Similarly, the second term in (37) is

μ

∞∑
n=1

∫
D̂n
1(k(η̂)= n)g(xn

1)f (∅)π̂(η̂)λ̂(η̂)

= π̂(∅)ρ(0)
∞∑

j=1

P(τ (∅)= j)E
Xj

1
f (∅)g(Xj

1),

(39)

where the Xj
2 are as before, and X1 is an independent sample from D̃ with mark u.

2. Now take the second summation in
∫

gL1f + gf π̂ , and consider the ith term, i> 1, in
that summation. Using a computation similar to that of the previous item, we obtain∫ ∫

D̃
1(sxi = u)1

(
(p, c) ∈Wxi

)
f (η̂′)g(η̂)λ̄(dp, dc)π̂(dη̂)

=
∞∑

n=i

∫
D̂n

∫
D̃
1(sxi = u)1

(
(p, c) ∈Wxi

)
f (xn

1�i (p, c, m)� (pxi, cxi, m))g(xn
1)π̂(xn

1)λ̃(dp, dc)λ̂(dη̂).

Setting x′n+1
1 = xn

1�i (p, c, m) � (pxi, cxi, m) and m= n+ 1, we have that the right-hand
side of the above equation is equal to

∞∑
m=i+1

∫
D̂m
1(sx′i = m= sx′m)1((px′m, cx′m)∈Wx′i)

f (x′m1 )g(x′m−1
1 �i (px′m, cx′m, u))π̂(x′m−1

1 �i (px′m, cx′m, u))λ̂(dx′m1 )

=
∞∑

m=i+1

∫
D̂m
ρ(Q0

m(φ(x′m1 )))P(τ (φ(x′m1 )>m− i))1(sx′i = m= sx′m )

1((px′m, cx′m) ∈Wx′i )f (x′m1 )g(x′m−1
1 �i (px′m, cx′m, u))π̂(x′m1 )λ̂(dx′m1 ).

(40)
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Similarly, taking the first term in the second summation, and letting k(η̂) be as before,
we have∫ ∫

D̃
1((p, c)∈Wx1 )f (η̂′)g(η̂)λ̃(dp, dc)π̂(dη̂)

=
∞∑

n=2

∫
D̂n

∫
D̃

n−1∑
j=1

1(k(η̂)= j)1((p, c) ∈Wx1 )

f (xn
j+1 � (px1, cx1, m))g(xn

1)π̂(xn
1)λ̃(dp, dc)λ̂(dxn

1)

+
∞∑

n=1

∫
D̂n

∫
D̃
1(k(η̂)= n)1((p, c) ∈Wx1 )f (∅)g(xn

1)π̂(xn
1)λ̃(dp, dc)λ̂(dxn

1).

(41)

Computations similar to those in (38) and (39) show that the above is equal to

∞∑
m=2

∫
D̂m
1(sx′m = m)ρ(Q0

m(φ(x′m1 )))
∞∑

j=1

P(τ (φ(x′m1 ))>m+ j− 1)

× E
Xj+1

2
1((px1, cx1 ) ∈WXj+1 )

[
g((px′m, cx′m, u)Xj

2x′m−1
1 )f (x′m1 )

]
× π̂(x′m1 )λ̂(dx′m1 )

+ π̂(∅)ρ(0)
∞∑

j=1

P(τ (∅)> j)E
Xj+1

1
1((pX1, cX1 )∈WXj+1)f (∅)g(Xj

1),

(42)

where X1 and Xj+1 are i.i.d. with marks u, and the Xj
2 are i.i.d. with marks m.

3. Finally, ∫ ∫
D̃
1((p, c) /∈ N(η̂u))g(η̂)f (η̂′)λ̃(dp, dc)π̂(dη̂)

=
∞∑

n=0

∫
D̂n

∫
D̃
1((p, c) /∈N(x ∈ xn

1:sx = u))

g(xn
1)f (xn

1 � (p, c, u))π̂(xn
1)λ̄(dp, dc)λ̂(dxn

1).

Setting m= n+ 1, x′m1 = xn
1 � (p, c, u), we have

∞∑
m=1

∫
D̂m
1(sx′m = u)g(x′m−1

1 )f (x′m1 )π̂(x′m−1
1 )λ̂(dx′m1 )

=
∞∑

m=1

∫
D̃m
ρ(Q0

u(φ(x′m1 )))1(sx′m = u)g(x′m−1
1 )f (x′m1 )π̂(x′m−1

1 )λ̂(dx′m1 ).

(43)

Since summing over the right-hand sides of (35)–(43) for all i≥ 1 produces
∫

fL2g+
fgπ̂(dη), we conclude that the two Markov processes η̂t and η̌t are dynamically reversible
with respect to π̂ .

Proof of Corollary 2.1. We calculate the marginal distribution of the unmatched particles
from the distribution in Theorem 2.2. Given that η= (x1, . . . , xn) is in the steady state, let li,
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1≤ i≤ n, denote the number of matched particles present between xi and xi+1 in the detailed
version of the process. The only restriction that these particles must satisfy is that they must
be incompatible with x1, . . . , xi. Integrating over the positions of each of the li particles gives
a factor λ̄(D×C\N(x1, . . . , xi)). Thus, we have

π(x1, . . . , xn)=K1(xn
1 is valid)

n∏
i=1

∑
li∈N

(λ̄(D×C\N(x1, . . . , xi)))
li

(2λ(D)+ iμ)li+1

=K1(xn
1 is valid)

n∏
i=1

1

2λ(D)+ iμ− λ̄(D× C\N(x1, . . . , xi))

=K1(xn
1 is valid)

n∏
i=1

1

λ̄(N(ηi
1))+ iμ

.

D. Proof of the FKG inequality

To prove the FKG lattice property in our setting, we need the following auxiliary lemma.

Lemma D.1. Let (αi)n
i=1 and (βj)m

j=1 be two sets of positive numbers. Let P(n,m) be the set of all
increasing paths in the grid [n]× [m], so that for any σ ∈ P(n,m), we have that σ (0)= (0, 0),
σ (m+ n)= (n,m), and σ (i+ 1)− σ (i) is either (1, 0) or (0, 1), for all 0≤ i<m+ n. Then we
have

∑
σ∈P(n,m)

n+m∏
i=1

1

ασx(i) + βσy(i)
=

n∏
i=1

1

αi

m∏
i=1

1

βi
,

where σx and σy denote the x- and the y-coordinate, respectively.

Proof. The proof is by induction on m. For m= 1, we need to show that

∑
σ∈P(n,1)

n+1∏
i=1

1

ασx(i) + βσy(i)
= 1

β1

n∏
i=1

1

αi
. (44)

We use induction on n to prove (44). For n= 1, this is clear, since

1

(α1)(α1 + β1)
+ 1

(β1)(β1 + α1)
= 1

(α1)(β1)
.

Let the length of the sequence α be n. Assuming the inductive hypothesis for (44), we have

n+1∑
k=1

∑
σ∈P(n,1),

σ (k)−σ (k−1)=(0,1)

n+1∏
i=1

1

ασx(i)+ βσy(i)

=

⎛
⎜⎜⎝

n∑
k=1

∑
σ∈P(n,1),

σ (k)−σ (k−1)=(0,1)

n∏
i=1

1

ασx(i) + βσy(i)
+

n∏
i=1

1

αi

⎞
⎟⎟⎠ 1

αn + β1
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=
⎛
⎝ ∑
σ∈P(n−1,1)

n∏
i=1

1

ασx(i) + βσy(i)
+

n∏
i=1

1

αi

⎞
⎠ 1

αn + β1

=
(

n−1∏
i=1

1

αi

)
1

αn + β1

(
1

β1
+ 1

αn

)

= 1

β1

(
n∏

i=1

1

αi

)
,

where in the first step we have grouped the first n terms together. This finishes the proof of the
base case (Equation (44)) for the induction on m.

Now, suppose that the length of the sequence β is equal to m, m> 1. Let Pk(n,m− 1),
0≤ k≤ n, denote the set of paths in P(n,m− 1) where the first (0,1) jump is at location k. We
have the following decomposition of the summation:

∑
σ∈P(n,m)

n+m∏
i=1

1

ασx(i) + βσy(i)
=

n+1∑
k=1

∑
Pk(n,m−1)

k−1∑
r=0

n+m∏
i=1

1

ασ r
x (i) + βσ r

y (i)
,

where σ r denotes the path obtained by inserting a +(0, 1) jump in the rth location of σ . Thus,

∑
σ∈P(n,m)

n+m∏
i=1

1

ασx(i) + βσy(i)
=

∑
k=1,...,n+1;
σ∈Pk(n,m−1)

k−1∑
r=0

k∏
i=1

1

ασ r
x (i) + βσ r

y (i)

n+m∏
i=k+1

1

ασ r
x (i) + βσ r

y (i)

The innermost summation in the above expression is the (n, 1) case of this lemma, and
therefore, by the induction hypothesis, we get that

n+m∏
i=k+1

1

ασ k
x (i)+ βσ k

y (i)
× 1

β1

k−1∏
i=1

1

αi
= 1

β1

n+m−1∏
i=1

1

ασx(i) + β ′σy(i)
,

where β ′ is the sequence of length m− 1 with β ′i = βi+1, for 1≤ i≤m− 1. Therefore,

∑
σ∈P(n,m)

n+m∏
i=1

1

ασx(i) + βσy(i)
= 1

β1

n∑
k=0

∑
Pk(n,m−1)

n+m−1∏
i=1

1

ασx(i)+ β ′σy(i)

= 1

β1

∑
σ∈P(n,m−1)

n+m−1∏
i=1

1

ασx(i) + β ′σy(i)

=
n∏

i=1

1

αi

m∏
i=1

1

βi
,

by the induction hypothesis. This completes the proof the lemma. �
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We are now ready to prove a weak form of the FKG lattice property for the Janossy
density π̃ .

Lemma D.2. Let ξ and γ be disjoint finite subsets of D×C such that the set ξ ∪ γ is valid.
Then we have

π̃(ξ ∪ γ )π̃(∅)≥ π̃(ξ )π̃(γ ). (45)

Moreover, if ξ and γ are such that N(ξ ) ∩N(γ )=∅, then equality holds.

Proof. Let |ξ | = n and |γ | =m. There is a canonical bijection between P(ξ ∪ γ ) and
P(ξ )×P(γ )× P(n,m). For (a, b, σ ) ∈P(ξ )×P(γ )× P(n,m), we denote by (σ, ab) the
corresponding element in P(ξ ∪ γ ). Also, for any sets A,C⊂D×C, let NC(A)=N(A∩C).

We have

�̃(ξ ∪ γ )=
∑

a∈P(ξ ),b∈P(γ )
σ∈P(n,m)

n+m∏
l=1

1

λ̄(N((σ, ab)l
1))+ lμ

≥
∑

a∈P(ξ ),b∈P(γ )
σ∈P(n,m)

n+m∏
l=1

1

λ̄(Nξ ((σ, ab)l
1))+ λ̄(Nγ ((σ, ab)l

1))+ lμ

=
∑

a∈P(ξ ),b∈P(γ )
σ∈P(n,m)

n+m∏
l=1

1

λ̄(N(aσx(l)
1 ))+ λ̄(N(b

σy(l)
1 ))+ lμ

= �̃(ξ )�̃(γ ),

(46)

where in the second step we use that

λ̄(N((σ, ab)l
1))≤ λ̄(Nξ ((σ, ab)l

1))+ λ̄(Nγ ((σ, ab)l
1)),

and in the last step we use Lemma D.1 with αi = λ(N(Xi
1))+ iμ and βi = λ(N(Yi

1))+ iμ.
Also, σx(l) and σy(l) are the two coordinates of the point σ (l) ∈Z2 on the path σ . The
result now follows, since K = π̃ (∅). Note also that if N(ξ )∩N(γ )=∅, then equality holds
in (46). �

The above theorem is useful in the proof of Theorem 2.3 only through the following
corollary.

Corollary D.1. Suppose γ = γ R ∪ γ B is a valid configuration (i.e., γ ∩N(γ )=∅), where γ R

and γ B are the red and blue particles, respectively, in γ . Then π̃(γ )= 1
K π̃(γ R)π̃(γ B), or

equivalently, �̃(γ )= �̃(γ R)�̃(γ B).

We now state and prove an FKG lattice property for the usual subset ordering for the same
type of particles.

Theorem D.1. Let ξ and γ be finite subsets of D× {R}. Then

�̃(ξ ∪ γ )�̃(ξ ∩ γ )≥ �̃(ξ )�̃(γ ). (47)

A similar property holds when ξ and γ are finite subsets of D× {B}.
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Proof. Let A= ξ\γ , B= γ \ξ , and C= ξ ∩ γ . The statement of the theorem is equivalent to
showing that

�̃(A∪ B∪C)�̃(C)≥ �̃(A∪C)�̃(B∪C). (48)

Let C̄ denote another copy of C, where we add overlines to the particles to distinguish them
from particles of C. Also, for any E, γ ⊆D×C, let NE(γ )=N(γ ∩ E).

Using the auxiliary Lemma 8, the left-hand side of the inequality above can be expressed as

�̃(A∪ B∪C)�̃(C̄)

=
∑

e∈P(A∪B∪C)
d∈P(C̄)

n+m+k∏
i=1

1

λ̄(N(ei
1))+ iμ

k∏
j=1

1

λ̄(N(dj
1))+ jμ

=
∑

e∈P(A∪B∪C)
d∈P(C̄)

∑
σ∈P(n+m+k,k)

n+m+2k∏
i=1

1

λ̄(N(eσx(i)
1 ))+ λ̄(N(d

σy(i)
1 ))+ iμ

,

(49)

where we use σx(i), σy(i) to represent the first and second coordinates of σ (i).
Since

λ̄(NA∪B∪C(γ ))≤
(

λ̄(NA(γ ))+λ̄(NB(γ ))+λ̄(NC(γ ))

−λ̄(NA(γ )∩NC(γ ))−λ̄(NB(γ )∩NC(γ ))

)
, (50)

we claim that (49) is greater than

∑
e∈P(A∪B∪C)

d∈P(C̄)
σ∈P(n+m+k,k)

n+m+2k∏
i=1

(
λ̄(NA(eσx(i)

1 ))+λ̄(NB(eσx(i)
1 ))+λ̄(NC(eσx(i)

1 ))+λ̄(NC̄(d
σy(i)
1 ))

−λ̄(NA(eσx(i)
1 )∩NC(eσx(i)

1 ))−λ̄(NB(eσx(i)
1 )∩NC(eσx(i)

1 ))+iμ

)−1

. (51)

Note that in the last two expressions, and in expressions below, the terms within the parentheses
are stacked to suitably render the long expressions—these are not to be confused with other
notation used in combinatorics.

Let P(n, m, k, k) be the set of all increasing paths from vertex (0,0, 0,0) to vertex (n, m, k, k)
in Z4; σ (0)= (0, 0, 0, 0) and σ (n+m+ 2k)= (n, k, k, k), for all σ ∈ P(n,m, k, k). We denote
the coordinates of σ ∈ Z4 by (σx, σy, σz, σw). Using the canonical bijection between

P(A∪ B∪C ∪ C̄)× P(n+m+ k, k) and

P(A)×P(B)×P(C)×P(C̄)× P(n,m, k, k),

we see that (51) is equal to

∑
a∈P(A),b∈P(B)
c∈P(B),c̄∈P(C̄)
σ∈P(n,m,k,k)

n+m+2k∏
i=1

(
λ̄(N(aσx(i)

1 ))+λ̄(N(b
σy(i)
1 ))+λ̄(N(cσz(i)

1 ))+λ̄(N(c̄σw(i)
1 ))

−λ̄(N(aσx(i)
1 )∩N(cσz(i)

1 ))−λ̄(N(b
σy(i)
1 )∩N(cσz(i)

1 ))+iμ

)−1

. (52)
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Applying similar reductions to the right-hand side of Equation (48), we note that the result
follows if we prove

∑
a∈P(A),b∈P(B)
c∈P(B),c̄∈P(C̄)
σ∈P(n,m,k,k)

n+m+2k∏
i=1

(
λ̄(N(aσx(i)

1 ))+λ̄(N(b
σy(i)
1 ))+λ̄(N(cσz(i)

1 ))+λ̄(N(c̄σw(i)
1 ))

−λ̄(N(aσx(i)
1 )∩N(cσz(i)

1 ))−λ̄(N(b
σy(i)
1 )∩N(cσz(i)

1 ))+iμ

)−1

≥
∑

a∈P(A),b∈P(B)
c∈P(B),c̄∈P(C̄)
σ∈P(n,m,k,k)

n+m+2k∏
i=1

(
λ̄(N(aσx(i)

1 ))+λ̄(N(b
σy(i)
1 ))+λ̄(N(cσz(i)

1 ))+λ̄(N(c̄σw(i)
1 ))

−λ̄(N(aσx(i)
1 )∩N(cσz(i)

1 ))−λ̄(N(b
σy(i)
1 )∩N(c̄σw(i)

1 ))+iμ

)−1

.

(53)

Note that the left and the right side of the last inequality differ only in the terms

λ̄
(

N
(

b
σy(i)
1

)
∩N

(
c̄σz(i)

1

))
and λ̄

(
N
(

b
σy(i)
1

)
∩N

(
c̄σw(i)

1

))
.

The inequality 53 can be expressed in the following equivalent way:

ESabcc̄

n+m+2k∏
i=1

(
λ̄(N(aSx(i)

1 ))+λ̄(N(b
Sy(i)
1 ))+λ̄(N(cSz(i)

1 ))+λ̄(N(c̄Sw(i)
1 ))

−λ̄(N(aSx(i)
1 )∩N(cSz(i)

1 ))−λ̄(N(b
Sy(i)
1 )∩N(cSz(i)

1 ))+iμ

)−1

≥ESabcc̄

n+m+2k∏
i=1

(
λ̄(N(aSx(i)

1 ))+λ̄(N(b
Sy(i)
1 ))+λ̄(N(cSz(i)

1 ))+λ̄(N(c̄Sw(i)
1 ))

−λ̄(N(aSx(i)
1 )∩N(cSz(i)

1 ))−λ̄(N(b
Sy(i)
1 )∩N(c̄Sw(i)

1 ))+iμ

)−1

,

(54)

where the expectation is over a uniformly random element (a, b, c, c̄,S) of the set P(A)×
P(B)×P(C)×P(C̄)× P(n,m, k, k)=P(A∪ B∪C ∪ C̄). In the following, we will simply
write E in place of the symbol ESabcc̄.

To prove (54), we first prove it on a smaller σ -algebra. We say that two permutations
γ1, γ2 ∈P(A∪ B∪C ∪ C̄) are equivalent if by dropping the overline marks of the particles
in C in both γ1 and γ2, we obtain the same sequence of elements. Let F denote the σ -algebra
generated by this equivalence relation. We show that for any (σ, a, b, c, c̄) ∈P(A∪ B∪C ∪ C̄),

E

⎡
⎣n+m+2k∏

i=1

(
λ̄(N(aSx(i)

1 ))+λ̄(N(b
Sy(i)
1 ))+λ̄(N(cSz(i)

1 ))+λ̄(N(c̄Sw(i)
1 ))

−λ̄(N(aSx(i)
1 )∩N(cSz(i)

1 ))−λ̄(N(b
Sy(i)
1 )∩N(cSz(i)

1 ))+iμ

)−1∣∣∣∣F
⎤
⎦ (σ, a, b, c, c̄)

≥E

⎡
⎣n+m+2k∏

i=1

(
λ̄(N(aSx(i)

1 ))+λ̄(N(b
Sy(i)
1 ))+λ̄(N(cSz(i)

1 ))+λ̄(N(c̄Sw(i)
1 ))

−λ̄(N(aSx(i)
1 )∩N(cSz(i)

1 ))−λ̄(N(b
Sy(i)
1 )∩N(c̄Sw(i)

1 ))+iμ

)−1∣∣∣∣F
⎤
⎦ (σ, a, b, c, c̄).

(55)

Fix (σ, abcc̄) ∈P(A∪ B∪C ∪ C̄). We can express c̄ as the composition of a permutation τ ∈
P([k]) and c, so that c̄i = cτ (i). Since all permutations in the equivalence class of (σ, a, b, c, c̄)
are equally likely, each conditional expectation in (55) can be expressed as an expectation over
auxilliary i.i.d. Bernoulli(1/2) random variables {βi}ki=1. To make this precise, let

Si,j= 1(j≤ σz(i)),

Ti,j = 1(τ−1(j)≤ σw(i)),

pi = iμ+ λ̄(N(aσx(i)
1 ))+ λ̄(N(b

σy(i)
1 )),

β̄j = 1− βj

https://doi.org/10.1017/apr.2020.74 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.74


On spatial matchings: the first-in-first-match case 795

for all 1≤ i≤ n+m+ 2k and 1≤ j≤ k. Also, let

cβσ (i) = {cj ∈ C : Si,j = 1, βj = 1} ∪ {cj ∈C : Ti,j = 1, βj = 0}
and similarly

cβ̄σ (i) = {cj ∈C :Si,j= 1, β̄j = 1} ∪ {cj ∈ C : Ti,j = 1, β̄j = 0}.
We have

Eβ

⎡
⎣n+m+2k∏

i=1

(
pi+λ̄(N(cβσ (i)))+λ̄(N(cβ̄σ (i)))

−λ̄(N(cβσ (i))∩N(aσx(i)
1 ))−λ̄(N(cβσ (i))∩N(b

σy(i)
1 ))

)−1

−
n+m+2k∏

i=1

(
pi+λ̄(N(cβσ (i)))+λ̄(N(cβ̄σ (i)))

−λ̄(N(cβσ (i))∩N(aσx(i)
1 ))−λ̄(N(cβ̄σ (i))∩N(b

σy(i)
1 ))

)−1
⎤
⎦≥ 0.

(56)

Using the fact that
∫∞

0 e−cxdx= 1
c for any c> 0, we may write the above inequality as∫

R+n+m+2k
Eβ

[
exp

(
−

n+m+2k∑
i=1

xi

(
pi+λ̄(N(cβσ (i)))+λ̄(N(cβ̄σ (i)))

−λ̄(N(cβσ (i))∩N(aσx(i)
1 ))−λ̄(N(cβσ (i))∩N(b

σy(i)
1 ))

))

− exp

(
−

n+m+2k∑
i=1

xi

(
pi+λ̄(N(cβσ (i)))+λ̄(N(cβ̄σ (i)))

−λ̄(N(cβσ (i))∩N(aσx(i)
1 ))−λ̄(N(cβ̄σ (i))∩N(b

σy(i)
1 ))

))]
dxn+m+2k

1 ≥ 0. (57)

It is enough to prove that the integrand in positive for every xn+m+2k
1 . Symmetrizing the

expression by replacing βj with β̄j, we obtain the following equivalent expression:

0≤Eβ

[
exp

(
−

n+m+2k∑
i=1

xiλ̄(N(cβσ (i)))+ xiλ̄(N(cβ̄σ (i)))

)

×
(

exp
(∑

i xiλ̄(N(cβσ (i))∩N(aσx(i)
1 ))

)
−exp

(∑
i xiλ̄(N(cβ̄σ (i))∩N(aσx(i)

1 ))
))

×
(

exp
(∑

i xiλ̄(N(cβσ (i))∩N(b
σy(i)
1 ))

)
−exp

(∑
i xiλ̄(N(cβ̄σ (i))∩N(b

σy(i)
1 ))

))]
.

(58)

To prove this, we use the FKG inequality on the lattice {0, 1}n+m+2k with measure

ν(β)= exp

(
−

n+m+2k∑
i=1

xiλ̄(N(cβσ (i)))+ xiλ̄(N(cβ̄σ (i)))

)
.

Claim D.2. The measure ν is log-submodular.

Proof. Let β, γ ∈ {0, 1}n+m+2k. Then(
λ̄(N({cj : Si,j=1,βj∨γj=1}∪{cj : Ti,j=1,βj∨γj=0}))−λ̄(N({cj : Si,j=1,βj=1}∪{cj : Ti,j=1,βj=0}))
−λ̄(N({cj : Si,j=1,γj=1}∪{cj : Ti,j=1,γj=0}))+λ̄(N({cj : Si,j=1,βj∧γj=1}∪{cj : Ti,j=1,βj∧γj=0}))

)

=
(
λ̄[N({cj : Si,j=1,βj∨γj=1})]−λ̄[N({cj : Si,j=1,βj=1})]
−λ̄[N({cj : Si,j=1,γj=1})]+λ̄[N({cj : Si,j=1,βj∧γj=1})]

)

+
(
λ̄[N({cj : Ti,j=1,βj∨γj=0})]−λ̄[N({cj : Ti,j=1,βj=0})]
−λ̄[N({cj : Ti,j=1,γj=0})]+λ̄[N({cj : Ti,j=1,βj∧γj=0})]

)

−
⎛
⎜⎝

λ̄[N({cj : Si,j=1,βj∨γj=1})∩N({cj : Ti,j=1,βj∨γj=0})]
−λ̄[N({cj : Si,j=1,βj=1})∩N({cj : Ti,j=1,βj=0})]
−λ̄[N({cj : Si,j=1,γj=1})∩N({cj : Ti,j=1,γj=0})]

+λ̄[N({cj : Si,j=1,βj∧γj=1})∩N({cj : Ti,j=1,βj∧γj=0})]

⎞
⎟⎠ .

(59)
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Let us look at the first term in (59). We have(
λ̄[N({cj : Si,j=1,βj∨γj=1})]−λ̄[N({cj : Si,j=1,βj=1})]
−λ̄[N({cj : Si,j=1,γj=1})]+λ̄[N({cj : Si,j=1,βj∧γj=1})]

)

=
(

λ̄[N({cj : Si,j=1,βj∧γj=1})]
−λ̄[N({cj : Si,j=1,βj=1})∩N({cj : Si,j=1,γj=1})]

)
,

which is non-positive since N({cj : Si,j = 1, βj ∧ γj = 1}) is contained in both N({cj : Si,j =
1, βj = 1}) and N({cj : Si,j = 1, γj = 1}).

Similarly, we may prove that the second term in (59) is non-positive. For the third term in
that equation, we have

−

⎛
⎜⎜⎝

−λ̄[N({cj : Si,j=1,γj=1})∩N({cj : Ti,j=1,γj=0})]
−λ̄[N({cj : Si,j=1,βj=1})∩N({cj : Ti,j=1,βj=0})]

+λ̄[N({cj : Si,j=1,βj∨γj=1})∩N({cj : Ti,j=1,βj∨γj=0})]
+λ̄N({cj : Si,j=1,βj∧γj=1})∩N({cj : Ti,j=1,βj∧γj=0})

⎞
⎟⎟⎠

≤−

⎛
⎜⎜⎝

−λ̄[N({cj : Si,j=1,γj=1})∩N({cj : Ti,j=1,βj∨γj=0})]
−λ̄[N({cj : Si,j=1,βj∧γj=1})∩N({cj : Ti,j=1,βj=0})]
+λ̄[N({cj : Si,j=1,βj∨γj=1})∩N({cj : Ti,j=1,βj∨γj=0})]
+λ̄[N({cj : Si,j=1,βj∧γj=1})∩N({cj : Ti,j=1,βj∧γj=0})]

⎞
⎟⎟⎠

≤ 0.

By symmetry,(
λ̄N({cj : Si,j=1,βj∨γj=0}∪{cj : Ti,j=1,βj∨γj=1})−λ̄N({cj : Si,j=1,βj=0}∪{cj : Ti,j=1,βj=1})
−λ̄N({cj : Si,j=1,γj=0}∪{cj : Ti,j=1,γj=1})+λ̄N({cj : Si,j=1,βj∧γj=0}∪{cj : Ti,j=1,βj∧γj=1})

)
≤ 0.

Therefore,∑
i

−xiλ̄(N(cβ∨γ σ (i)))− xiλ̄(N(c
¯β∨γ σ (i)))−

∑
i

xiλ̄(N(cβ∧γ σ (i)))+ xiλ̄(N(c
¯β∧γσ (i)))

+
∑

i

xiλ̄(N(cβσ (i)))+ xiλ̄(N(cβ̄σ (i)))+
∑

i

xiλ̄(N(cγ σ (i)))+ xiλ̄(N(cγ̄ σ (i)))

≥ 0.

Consequently, ν(β ∨ γ )ν(β ∧ γ )≥ ν(β)ν(γ ). �
Now we show that the two relevant functions in (58) are increasing in β.

Claim D.3. The functions

f (β)= exp

(∑
i

xiλ̄(N(cβσ (i))∩N(aσx(i)
1 ))

)

− exp

(∑
i

xiλ̄(N(cβ̄σ (i))∩N(aσx(i)
1 ))

)
,

g(β)= exp

(∑
i

xiλ̄(N(cβσ (i))∩N(b
σy(i)
1 ))

)

− exp

(∑
i

xiλ̄(N(cβ̄σ (i))∩N(b
σy(i)
1 ))

)
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are increasing in β.

Proof. Let
h(β)=

∑
i

xiλ̄(N(cβσ (i))∩N(aσx(i)
1 )).

For any J ⊆ [k], let
qi,J = λ̄(∩j∈J N(cj)∩N(aσx(i)

1 )).

Using the inclusion–exclusion formula, we may write

h(β)=
∑

i

xi

∑
J⊆[k]

(− 1)|J|−1qi,J

∏
j∈J

(βjSi,j + β̄jTi,j).

Now, let β1, . . . , βk be given. Fix l ∈ [k]. Fixing all βj, j �= l, and taking the difference of
the values of h when βl = 1 and when βl = 0, we obtain

h(β, βl = 1)− h(β, βl = 0)

=
n+m+2k∑

i=1

xi(Si,l− Ti,l)
∑

J⊆[k−1]

(− 1)|J|qi,{Jl}
∏
j∈J

(βjSi,j + β̄jTi,j)

=
n+m+2k∑

i=1

xi(Si,l− Ti,l)λ̄[(N(cl)∩N(aσx(i)
1 ))\N(cσz(i)

1 \cl)]

≥ 0,

since we have assumed that Si,l ≥ Ti,l. Similarly, taking

h′(x)=
∑

i

xiλ̄(N(cβσ (i))∩N(aσx(i)
1 ))

=
∑

i

xi

∑
J⊆[k]

(− 1)|J|−1qi,J

∏
j∈J

(β̄jSi,j + βjTi,j),

we have

h′(β, βl = 1)− h′(β, βl = 0)

=
n+m+2k∑

i=1

xi(Ti,l − Si,l)λ̄[(N(cl)∩N(aσx(i)
1 ))\N(cσw(i)

1 \cl)]

≤ 0.

Thus, f (β, βl = 1)− f (β, βl = 0)≥ 0. By symmetry in the problem, this is also true for g. �
We are now in a position to apply the FKG theorem to the right-hand side of (58). Since

Eβ

[
e−
∑n+m+2k

i=1 xiλ̄(N(cβσ (i)))+xiλ̄(N(cβ̄σ (i)))

×
(

e
∑

i xiλ̄(N(cβσ (i))∩N(aσx(i)
1 )) − e

∑
i xiλ̄(N(cβ̄σ (i))∩N(aσx(i)

1 ))
)]

= 0,

this completes the proof of Theorem D.1.
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The statement of the previous theorem is combinatorial in nature. However, its proof is
interesting, since we were able to use probabilistic tools by introducing artificial randomness.

Having proved Corollary D.1 and Theorem D.1, we conclude with the proof of
Theorem 2.3.

Proof of Theorem 2.3. By Corollary 8 we have

�̃(ξ )�̃(γ )= �̃(ξR)�̃(ξB)�̃(γ R)�̃(γ B).

By Theorem 8, we have

�̃(ξR)�̃(γ R)�̃(ξB)�̃(γ B)≤ �̃(ξR ∪ γ R)�̃(ξB ∩ γ B)�̃(ξR ∩ γ R)�̃(ξR ∪ γ B).

Now, since ξ ∨ γ and ξ ∧ γ are valid configurations, the proof follows from using
Corollary D.1 again. �

E. Table of notation

Notation Definition

D Domain of interaction of particles (a metric space)
C := {R, B} The set of types of particles, reds and blues
R̄ := B, B̄ := R Opposite color
λ Radon measure on D
mC Counting measure on C
λ̄ λ̄ := λ⊗mC

μ The parameter of the exponential random variables describing
patience of particles

M(D, K) Space of simple Radon counting measures on D, with marks in K
O(D, K) Space of simple locally finite ordered subsets of D, with marks in K
|γ |, γ ∈O(D,K) Number of elements in γ
γ x The set {y∈ γ : y<γ x} ordered as in γ
px, bx, cx, wx,
x ∈D× C

Position, birth time, color, and patience of x; i.e., x= (px, cx)

N(A), A⊂D× C N(A) := ∪x∈A {y∈D×C : cy �= cx, d(py, px)< 1}
Wx Region of maximum priority of x ∈ γ : Wx =N(x)\N(γx)
ηt ∈O(D,C) Ordered collection of particles present in the system at time t
� Poisson arrival process used in the construction of the process—a

random element of M(D×R+,C×R+)
St Set of discrepancies η0

t η1
t in the coupling-from-the-past

construction
κ Killing function
m Matching function
u, m Marks to indicate whether a particle is matched or unmatched in

the detailed processes
η̂t Backward detailed process
η̌t Forward detailed process
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Notation Definition

Qi
u(γ ) For γ ∈O(D,C× {u, m}), the number of unmatched particles

among the first i particles of γ
Qi
m(γ ) For γ ∈O(D,C× {u, m}), the number of matched particles

excluding the first i particles of γ
π̂ Density of the stationary measure of the backward detailed process
π Density of the stationary measure of the process ηt

π̃ Janossy density of stationary version of the point process η0
P(C) The set of all permutations of the elements of a finite set C
P(m, n) The set of all paths in a square lattice from (0, 0) to (m, n)
(σ, Xn

1, Ym
1 ) A representation of the map that gives the canonical bijection

between P(n,m)×P(xn
1)×P(ym

1 ) and P(xn
1, ym

1 ).
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