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Evaluation of the human sperm nucleus:
ambiguity and risk of confusion with
chromomycin staining
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It is now common knowledge that classical sperm parameters: number, mobility and morphology
give only partial information on their developmental capacity. With the advent of intracytoplasmic
sperm injection (ICSI), the evaluation of nuclear integrity is now an unavoidable parameter in
studying human infertility, irrespective of whether fertilization and blastocyst formation are
obtained/observed after ART procedures. Increased DNA fragmentation (SDF/DFI, DNA frag-
mentation index) and an increase in the decondensation index (SDI), also called high DNA
stainability (HDS), in the sperm chromatin structure assay, SCSA, are the two major negative
parameters of sperm developmental capacity. These two markers do not affect fertilization but
decrease the developmental capacity of the embryo obtained leading to a dramatic increase to
the time to pregnancy (Buck Louis et al., 2014).

The negative effect of spermDNA fragmentation is obvious: as the SDF is more or less linked
to oxidative damages; this leads to DNA strand breaks (Ménézo et al., 2014a) or adduct products
(Badouard et al. 2008), oxidized bases and abasic sites formation. All these insults have to be
repaired at the time and immediately after fertilization and the problem is equally shared
between the male and the female genomes (Lopes et al., 1998), not specifically protected during
the quiescent time before maturation. The DNA repair process is mandatory to avoid transmis-
sion of mutations to the next generation. The oocyte’s capacity to repair decay is important,
redundant, but finite and decreases with maternal age (Ménézo et al., 2010); overwhelming this
defence leads normally to embryo apoptosis. SDF affects IVF outcomes (Evenson et al., 1999)
and increases with age (Belloc et al., 2009; Deenadayal Mettler et al., 2019) in relation to a
decreased capacity to combat oxidative stress.

Three main processes are important in nucleus condensation, i.e. nucleus tertiary structure,
measured by SDI/HDS. The replacement of histones by protamines, their padlocking and the
final biochemical modification: deacetylation, methylation etc., lead to a spatial and biochemical
nucleus conformation required for rapid access to the paternal genome after nucleus swelling
(Ward et al., 2001; Ward, 2010). This is mandatory for quick activation of the S-phase and the
major methylation/epigenetic modifications affecting the male genome, which will be rapidly
demethylated and then quickly remethylated (Park et al., 2007). This aspect has been well doc-
umented in the bovine, in which fertility of one bull can be estimated from several thousands of
inseminations (Eid et al., 1994; Rahman et al., 2018; Kutchy et al., 2019). HDS/SDI elevated
values are related to reduced protamination or a failed padlocking of them, leading to nucleus
structural loosening. Tertiary structure anomalies finally reduce the size of both pronuclei
(Rahman et al., 2018). Sperm decondensation is highly significantly directly related to defective
protamination in low fertility bulls (Kutchy et al., 2019). The oocyte is poorly equipped to repair
and manage a defective tertiary structure (Ménézo et al., 2007, 2014a, 2014b).

In human, poor sperm morphology is linked to high HDS/SDI (Zini et al., 2009).
Pronuclear formation can be impaired, leading to a syndrome called ‘no fertilization post
ICSI’, an unfortunate concept (Junca et al., 2012). It may induce poor embryo development
and lead to recurrent miscarriages (Booze et al., 2019; Jerre et al., 2019). The tertiary struc-
ture is of major importance to allow the correct timing in preimplantation embryo develop-
ment. A three-phase first step, involving peroxidation of lipids by NADPH oxidase, followed
by a reaction with oxidized glutathione, followed by glutathione peroxidase activity, is man-
datory for this protamine padlocking (Ménézo et al., 2014a). This is probably why sperm
nucleus condensation increases with age and so HDS/DFI decrease: HDS/SDI and SDF/
DFI are independent parameters.

Different evaluations of SDF/DFI and the effect of age

Current analyses: SCSA® and flow cytometry–terminal deoxynucleotide transferase-mediated
dUTP nick-end labelling (TUNEL), modified or not, are the twomajor ways to test sperm nuclei
and are perfectly linked, with high coefficients of correlation; on this issue there is no ambiguity
in the scientific literature. The Comet assay has also a certain value, but it is less easy to use and
not easy to automate.
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Since 1956 and the Denham Harman free radical theory of
ageing (Aging: A Theory Based on Free Radical and Radiation
Chemistry) sustained by Fenton’s discovery of free radicals in
1894, it is now of common knowledge that age decreases defences
against oxidative stress and that this is independent of sex. This
leads naturally to an increase in sperm DNA oxidation and frag-
mentation with age. Whatever the testing technique used, TUNEL,
DFI/SDF by SCSA, or cytology (Belloc et al., 2009; Deenadayal
Mettler et al., 2019; Paoli et al., 2019) SDF is strongly correlated
with 8-oxodeoxyguanosine (8-OHdG), the main oxidation prod-
uct of DNA (De Iuliis et al., 2009; Aitken et al., 2010) with signifi-
cance over 10–3, to confirm that oxidative stress is a major effector
of sperm fragmentation. However, the dosage of 8-OHdG is deli-
cate, as spontaneous oxidation of DNAmay occur during process-
ing (Badouard et al., 2008; Aitken et al., 2010) and this may lead to
uncertain conclusions.

HDS/SDI evaluation: the problem of chromomycin (CMA3)

HDS/SDI is determined in SCSA using the green fluorescence of
acridine orange. It corresponds to increased access of the dye to
DNA, due to loosening and weakening of compaction. The results
obtained with SCSA (HDS) and aniline blue (Hamidi et al., 2015)
were not statistically different (Welch two-sample t-test confidence
95%, P= 0.24) or slightly lower (Wilcoxon Z-test).

HDS (determined by SCSA) shows a slight, but significant,
decrease with age. When measured by aniline blue, the slight
decrease observed was not found to be significant (Belloc et al.,
2009; Ménézo et al., 2014b; Evenson et al., 2020), coherent with
a better padlocking of the brotamines. HDS and AB give coherent
similar data.

Chromomycin

Chromomycin (CMA3) is presented here as a standard for nucleus
decondensation testing and protamination quality. Chromomycin
is a fluorescent dye specific for DNA G–C bonds, as is oligomycin.
It is first of all a marker of DNA, but also binds to protamines. If
co-incubation is performed with soluble salmon protamines, CMA3
binding decreases (Manicardi et al., 1995). However, if CMA3
staining is performed prior to TUNEL, the sensitivity to nick trans-
lation is ‘drastically reduced’ (Manicardi et al., 1995). Moreover,
De Iuliis et al. (2009) found first a strong overlap/correlation
(r= 0.956, P< 0.001) between TUNEL and CMA3. This con-
firmed the strong affinity between DNA and CMA3. Finally, a very
high correlation was observed by De Iuliis et al. (2009) between
8-OHdG, the major product of DNA oxidation, and CMA3
(r= 0.610, P< 0.001) that was similar to the correlation observed,
in the same laboratory, between DNA fragmentation (TUNEL)
and 8-OHdG (r= 0.671, P< 0.001; Aitken et al. 2010) (Table 1).

Therefore, CMA3 did not allow a dichotomy between conden-
sation and DNA fragmentation, due to oxidative stress insults.
Confirming this fact, the paternal age effect measured by CMA3
showed an increase in decondensation with age (Belloc et al.,
2009), which could be coherent with a decrease in protamination,
but did not fit with the increase in sperm DNA fragmentation
related to paternal age. CMA3 cannot be considered as the stan-
dard test for sperm decondensation. Manicardi et al. (1995)
showed that the real measurement of condensation with CMA3
was the difference in staining between CMA3 staining minus
TUNEL staining, if reduced by two-thirds. The real evaluation
of condensation included protamination, padlocking and the final

biochemical modifications of nuclear structure (methylation,
phosphorylation, acetylation and their combinations).

Conclusion

CMA3 testing leads to some confusion when not handled with
care: if used as a reference for decondensation, it may lead to wrong
interpretations (Mohammadi et al., 2020). Stating that chromomy-
cin reflects the degree of protamination is incorrect and not justi-
fied. Data dispersion and the absence of correlation observed by
authors between CMA3 and the ‘blue dyes’ and between HDS
and CMA3 is the image of a normal situation. The same processes
are not measured and cannot be strictly correlated, contrary to that
observed between CMA3 and TUNEL, or 8-OHdG for example
(De Iuliis et al. 2009; Aitken et al. 2010), which have a rather good
correlation. The difference Δ = CMA3 − TUNEL from the same
sample seems a much more rationale evaluation of tertiary struc-
ture and should be compared with HDS. An important part of the
binding/fluorescence of CMA3 corresponds to its interaction with
DNA. HDS does correlate with decondensation and quality of the
tertiary structure. Recent interesting observations (Dattilo et al.,
2016; Gallo et al., 2018; Jacquesson-Fournols et al., 2019) have
clearly highlighted the importance of final methylation rearrange-
ments in condensation measured by HDS; folate intake per os
decreases HDS in some infertile patients and restores fertility.
Sperm DNA fragmentation and nucleus decondensation are two
independent major effectors of fertility; it is important to share
correctly the contributions of these two parameters, to define
therapeutic protocols and to remember that the spermatozoon
not only provides the paternal genome, it also is key to a rapid, har-
monious embryonic development to term (Ward 2010).
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