
The Bulletin of Symbolic Logic

Volume 23, Number 2, June 2017

FORCINGWITH BUSHY TREES

MUSHFEQ KHANAND JOSEPH S. MILLER

Abstract. We present several results that rely on arguments involving the combinatorics
of “bushy trees”. These include the fact that there are arbitrarily slow-growing diagonally
noncomputable (DNC) functions that compute noKurtz random real, as well as an extension
of a result of Kumabe in which we establish that there are DNC functions relative to arbitrary
oracles that are of minimal Turing degree. Along the way, we survey some of the existing
instances of bushy tree arguments in the literature.

§1. Introduction. In 1985, Sacks [16] asked if there exist diagonally
noncomputable (or DNC) functions of minimal Turing degree. Kumabe
answered the question in 1993, constructing such a function and pioneering
the application of bushy tree arguments in computability theory. A draft
of the proof [13] was in private circulation by 1996, but has remained
unpublished.
Arguments involving bushy trees and their combinatorics have since been
applied to several questions concerning DNC functions. In 2000, Simpson
and Giusto [8] asked if the reverse mathematics axiom system DNC is
stronger than the system WWKL0. In 2004, Ambos-Spies, Kjos-Hanssen,
Lempp, and Slaman [1] used ideas from Kumabe’s proof to provide an
affirmative answer.
In 2009, motivated by questions around Yates’s long-standing open prob-
lem about whether every minimal degree has a strong minimal cover, Lewis
collaborated with Kumabe to produce a simplified version [14] of Kumabe’s
proof, the publication of which introduced the technique of “bushy tree
forcing” to the wider community.
A simpler variation on the technique appeared in Greenberg and Miller’s
2011 result [9] that there are arbitrarily slow-growing DNC functions that
compute no Martin-Löf random real.
More recently, Beros [2] has applied arguments involving bushy trees to
show that there exist DNC functions that compute no effectively bi-immune
set, answering a question of Jockusch and Lewis [11]. Dorais, Hirst, and
Shafer [5], building on the aforementioned work of Ambos-Spies et al. [1],
have shown that the reversemathematics principle “there exists a k such that

Received October 28, 2016.
2010Mathematics Subject Classification. 03D32, 03D55.
Key words and phrases. Diagonally noncomputable functions, bushy tree forcing, minimal

degrees, algorithmic randomness.

c© 2017, Association for Symbolic Logic
1079-8986/17/2302-0002
DOI:10.1017/bsl.2017.12

160

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

FORCINGWITH BUSHY TREES 161

for every function f there is a k-bounded function that is DNC relative f”
does not imply the existence of a {0, 1}-valuedDNC function in the absence
of Σ02 induction, answering a question of Simpson. Bienvenu and Patey [3],
by combining bushy tree arguments with probabilistic ones, have shown that
there is a computable function h such that every 2-random real computes
an h-bounded DNC function that computes no Martin-Löf random real.
Of the new results we present here, there are two main ones. Theorem 4.2
is a variation on the Greenberg-Miller result mentioned above, stronger in
one aspect, but (necessarily) weaker in another: There are arbitrarily slow-
growing DNC functions that compute no Kurtz random real, although this
fact cannot be partially relativized to yield a DNC function relative to an
arbitrary oracle. It is a consequence of this theorem that there are sequences
of effective Hausdorff dimension 1 that compute no Kurtz random real.
Theorem 5.1, due to the first author, is a partial relativization of Kumabe’s
theorem. It asserts the existence of DNC functions relative to arbitrary
oracles that are of minimal Turing degree.
One of the goals of the current paper is to study the diverse applications of
bushy tree arguments in computability theory with a view to understanding
what the similarities and differences between them are. In the case of forcing
arguments, we are particularly interested in how properties of the partial
order determine properties of the generic object (typically a DNC function).
The definitions and combinatorial lemmas in Section 2 underly all of the
arguments we present, and encapsulate some of the similarities.
The differences can be seen to occur primarily along three “axes”. The
first of these relates to the nature of the approximation to the generic
object. In some arguments, the approximations are finite strings (what we
term “basic bushy forcing”), while others involve maintaining infinite trees.
A secondmajor difference is in the complexity of whatwe label the “bad set”.
These are sets of strings that are declared to be off limits in a construction.
Some arguments (Theorem 4.2, for example) require that the bad sets be
computably enumerable, and these are not automatically amenable to partial
relativization. In others, dropping the assumption of any form of effectiv-
ity on the bad set allows partial relativization (as in Theorem 5.1), but may
require more complicated combinatorics, or a different assumption on the
effectivity of the approximation. The third major difference is in whether the
resulting DNC function can be constructed pointwise below a preimposed
order function.This is possible, for example, inTheorem4.2, but thequestion
of whether it is possible in Theorem 5.1 is an important open one.

§2. Definitions and combinatorial lemmas. Let ϕ0, ϕ1, ϕ2, . . . be an
effective enumeration of the partial computable functions. The partial
computable function e �→ ϕe(e) is called the diagonal partial computable
function.
Definition 2.1. A function f ∈ �� is diagonally noncomputable, or
DNC, if for all e such that ϕe(e) converges, f(e) �= ϕe(e).
Of particular interest to us are the DNC functions that are bounded by
some computable function h ∈ �� .

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

162 MUSHFEQKHAN AND JOSEPH S. MILLER

Definition 2.2. Let h ∈ �� be computable and such that for all n ∈ �,
h(n) ≥ 2. Then DNCh denotes the class of DNC functions f such that for
all n ∈ �, f(n) < h(n). The class of DNC functions in k�, where k ≥ 2, is
denoted by DNCk .

In several of the theorems, h will in addition be nondecreasing and
unbounded:

Definition 2.3. An order function is a computable, nondecreasing, and
unbounded h ∈ �� such that for all n ∈ �, h(n) ≥ 2.
Definition 2.4. Given � ∈ �<�, we say that a tree T ⊆ �<� is n-bushy
above � if every element of T is comparable with �, and for every � ∈ T that
extends � and is not a leaf of T , � has at least n immediate extensions in T .
We will refer to � as the stem of T .

Note that under this definition, the set of initial segments of � is actually
n-bushy above �.
Suppose � ∈ �<� can be extended to aDNC function. In other words, for
all e < |�|, the eth entry of� does not equalϕe(e)when it is defined.Thebasic
motivation behind Definition 2.4 is that any tree that is 2-bushy above �,
by always containing at least two immediate extensions of any nonleaf string,
allows one to avoid the values of the diagonal partial computable function,
and therefore has a path in it that extends � and (if finite) can itself be
extended to a DNC function.

Definition 2.5. Given � ∈ �<� , we say that a setB ⊆ �<� is n-big above
� if there is a finite n-bushy tree T above � such that all its leaves are in B .
If B is not n-big above � then we say that B is n-small above �.

Let BDNC ⊆ �<� denote the set of strings that cannot be extended to
a DNC function. Using the terminology established in Definition 2.5, the
observation immediately preceding it can be rephrased as follows: BDNC is
2-small above any � /∈ BDNC.
We begin by establishing some of the basic combinatorial properties of
bushy trees. The first is that we can extend the leaves of an n-bushy tree with
n-bushy trees to obtain another n-bushy tree (the proof is immediate, hence
omitted):

Lemma 2.6 (Concatenation property). Suppose that A ⊆ �<� is n-big
above �. If A� ⊆ �<� is n-big above � for every � ∈ A, then

⋃
�∈T A� is n-big

above �.

The second property that we use frequently is known as the smallness
preservation property. This is the second sparse subset property of Kumabe
and Lewis [14], and Lemma 5.4 of Greenberg and Miller [9].

Lemma 2.7 (Smallness preservation property). Suppose that B and C are
subsets of �<�, thatm, n ∈ � and that � ∈ �<�. If B and C are respectively
m-small and n-small above � then B ∪ C is (n +m − 1)-small above �.
Proof. Let T be an (m+ n− 1)-bushy tree above � with leaves in B ∪C .
We show that either B is m-big above or C is n-big above �. Label a leaf �

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

FORCINGWITH BUSHY TREES 163

of T “B” if it is in B , “C” otherwise. Now if � is the immediate predecessor
of �, then � has at least (m + n − 1) immediate extensions on T , each of
which are labeled either “B” or “C”. Then eitherm of these are labeled “B”,
in which case we label � “B”, or n are labeled “C”, in which case we label
� “C”. Continuing this process leads to � eventually getting a label. It is
clear that if � is labeled “B” then B is m-big above �. Otherwise C is n-big
above �. 	
The third property is known as the small set closure property:

Lemma 2.8 (Small set closure property). Suppose that B ⊂ �<� is k-
small above �. Let C = {� ∈ �<� : B is k-big above �}. Then C is k-small
above �. Moreover C is k-closed, meaning that if C is k-big above a string �,
then � ∈ C .
Proof. Suppose that C is k-big above a string �. Then, since B is k-big
above every � ∈ C , by the concatenation property, B is k-big above �,
so � ∈ C . The lemma follows immediately. 	
The small set closure property is quite useful in the context of a forcing
construction. Typically, � is an approximation to a function that we are
building and B is a set of strings that must be avoided in order to ensure
that requirements remain met. We refer to it as the “bad set”. Throughout
the construction, we may wish to maintain the property that the bad set B
is k-small above � for some k ∈ �. Now, if B is k-big above some string �,
then � is off-limits as well. Lemma 2.8 allows us to assume that all such
strings are already in the bad set, while preserving its smallness. From now
on, whenever we deal with a bad set that is k-small, we also assume that it
is k-closed. Note that the k-closure of a c.e. set of strings is also c.e.

§3. Basic bushy forcing. As a first illustration of the convenience afforded
us by these lemmas, we present a proof of a well-known result. Any bounded
DNC function (i.e., a function in DNCk for some k ≥ 2) computes
a function in DNC2. However, Jockusch showed in [10] that this is not
uniform.

Theorem 3.1 (Jockusch [10]). For each n ≥ 2, there is no single functional
Γ such that for all f ∈ DNCn+1, Γf ∈ DNCn.
Proof. Let us assume that such a Γ exists, i.e., for all f ∈ DNCn+1,
Γf ∈ DNCn. The set of sequences in DNCn+1 is a Π01 subset of (n + 1)� .
It is well known that a functional that is total on a Π01 subset of k

� can be
modified to obtain one that agrees with it on the Π01 subset and which is
total on k�. Let Ξ be so obtained from Γ.We may also assume that Ξf ∈ n�
for all f ∈ (n + 1)� .
For each m ∈ � and for each i < n, let Λi,m = {� ∈ (n + 1)<� :
Ξ�(m) = i}. By the compactness of (n + 1)� , there exists a finite level k
such that for every string � ∈ (n+1)k , Ξ�(m) converges. Therefore,

⋃
i<n Λi,m

is (n + 1)-big above the empty string 〈〉. It is now easy to see, by repeatedly
applying the smallness preservation property, that for some i < n, Λi,m must
be 2-bushy above 〈〉.

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

164 MUSHFEQKHAN AND JOSEPH S. MILLER

We specify a partial computable function ϕ. On input m, ϕ searches for a
2-bushy tree T above 〈〉 such that for every leaf � of T , Ξ�(m) converges to
the same value i , which it then outputs. By the argument above, such a tree
must exist, and so ϕ(m) is defined for eachm. Let e be the index for ϕ, and
let Te be the 2-bushy tree that ϕ finds on input e.
As we have observed, BDNC is 2-small above 〈〉, and so there is a leaf �
of Te that can be extended to an f ∈ (n + 1)� that is DNCn+1. But then
Ξf(e) = Ξ�(e) = ϕe(e), which is a contradiction. 	
Finitely iterating this strategy yields the following stronger result:

Theorem 3.2. For each n ≥ 2, there is no finite set of functionals
Γ0,Γ1, . . . ,Γk such that for all f ∈ DNCn+1, there exists a j ≤ k such
that Γfj ∈ DNCn.
Proof. Let us assume that such a set of functionals exists.We define a new
functional Ξ as follows: on input e, Ξ simulates Γ0 through Γk on input e and
outputs the result of whichever one converges first. We may again assume,
without loss of generality, that Ξ is total on (n+1)� .We then proceed exactly
as in the proof of Theorem 3.1, obtaining a string �0 that is DNCn+1 and
an e ∈ � such that Ξ�0(e) = ϕe(e). Then Ξ�0(e) = Γ�0j (e) for some j ≤ k.
It follows that Γj fails to compute a DNCn function on any f ∈ DNCn+1
extending �0. We now repeat the same process above �0 with the reduced list
of functionals {Γ1, . . . ,Γk}\{Γj}, obtaining a DNCn+1 string �1 extending
�0 that diagonalizes against one of the remaining functionals. After k + 1
iterations, we will have obtained a contradiction. 	
The previous proof points the way towards more sophisticated construc-
tions involving bushy trees where we satisfy countably many requirements.
The next result is our first example of such a construction. It features a sim-
pler variant of bushy tree forcing, which we term basic bushy forcing. In this
type of forcing, the approximation to the generic object is a finite string.

Theorem 3.3 (Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman [1]).
There is a DNC function that computes no computably bounded DNC
function.

Proof. The forcing conditions are pairs (�, B), where � ∈ �<�,B ⊂ �<�
and:

• for some k ∈ �, B is k-small above � (and without loss of generality,
k-closed)

• B is upward closed (i.e., if � is in B , then all extensions of � are in B).
The string � is an approximation to f and the set B is a “bad set”, i.e.,
a set of strings that must be avoided in order to ensure that requirements
remain satisfied.
A condition (�, B) extends another condition (�, C) if � � � and C ⊆ B .
Let P denote this partial order. Now if G is a filter on P, then for any two
elements (�, B) and (�, C) of G, �, and � are comparable. Hence, fG =⋃
{� : (�, B) ∈ G} ∈ �≤� . In fact, we can ensure that fG is total:
Claim 3.4. If G is sufficiently generic with respect to P, then fG is total.

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

FORCINGWITH BUSHY TREES 165

Proof. We show that the collection Tm = {(�, B) ∈ P : |�| ≥ m} is dense
in P. Suppose (�, B) ∈ P, where |�| < m. Then B is k-small above � for
some k ∈ �. The set C = {� ∈ �<� : |�| ≥ m} is k-big above �, so let � be
any string in C \ B . Then (�, B) ∈ P. 	
Claim 3.5. If G is any filter on P, then for all (�, B) ∈ G, fG has no initial
segment in B .
Proof. Suppose that fG has an initial segment � in B . Then there is a
(�′, C ′) ∈ G such that �′ extends �. Let (�,C) be a common extension of
(�′, C ′) and (�, B). Since B is upward closed, � ∈ B . But B ⊆ C , so � ∈ C .
This is a contradiction, since it follows thatC isk-big above � for all k ∈ �.	
If Γ is a functional and h a computable function such that Γ is h-valued
(in other words, whenever Γ converges with any oracle on input e, its output
is less than h(e)), let DΓ,h denote the set of (�, B) ∈ P such that for all
g ∈ [�] \ [B]≺, Γg is not a DNCh function.
Claim 3.6. For each computable function h, and h-valued functional Γ,

DΓ,h is dense in P.
Proof. Suppose (�, B) ∈ P and that B is k-small above �. As in the proof
of Theorem 3.1, we specify a partial computable function ϕ. On input m, ϕ
searches for a k-bushy tree T above � such that for every leaf � of T , Γ�(m)
converges to the same value i < h(m). Upon finding such a tree, ϕ outputs i .
Let e be the index of ϕ.
There are now two cases. If the set A = {� : Γ�(e) ↓} is (h(e) · k)-small
above �, then A∪B is (h(e) ·k +k− 1)-small above �. Then (�,A∪B) ∈ P

and extends (�, B). Note that we have forced Γ to be partial on any g ∈
[�] \ [A ∪ B]≺. Hence, (�,A ∪ B) ∈ DΓ,h .
On the other hand, if A is (h(e) · k)-big above �, then for some i < h(e),

{� : Γ�(e) ↓= i} is k-big above �. So ϕ(e) is defined. In this case, we extend
� to any � not in B such that Γ�(e) ↓= ϕ(e). This forces Γg to fail to be
DNC on any g extending �. Hence, (�, B) ∈ DΓ,h . 	
Finally, BDNC, the set of finite strings that cannot be extended to a DNC
function, is 2-small above 〈〉, so (〈〉, BDNC) ∈ P. LetG be a filter onP contain-
ing (〈〉, BDNC) that meets Tm for everym ∈ � andDΓ,h for every computable
function h and h-valued functional Γ (note that this is a countable collection
of dense sets).
ByClaim3.4,fG is total. ByClaim3.5 and the fact that (〈〉, BDNC) ∈ G,fG
is aDNCfunction. IffG computes a function inDNCh for some computable
function h, then it does so via an h-valued functional Γ. Claim 3.6 shows
that this is not the case. This concludes the proof of Theorem 3.3. 	
We note that while the bad sets in the previous proof are c.e., we do not
make use of this fact. Given an oracle X , let BXDNC denote the set of finite
strings that are not DNC relative to X . Note that BXDNC is not necessarily
c.e., but is nevertheless 2-small above 〈〉. This suggests that we could use the
same sort of techniques to construct a function that is DNC relative to X .
As an example, we prove a theorem that implies the main result in [1], and
is slightly stronger.

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

166 MUSHFEQKHAN AND JOSEPH S. MILLER

Theorem 3.7. Fix a computable function h. SupposeX computes noDNCh
function. Then there is an f that is DNC relative to X such that f ⊕ X
computes noDNCh function.

Proof. The forcing partial order is the same as before. If Γ is an h-valued
functional, letDΓ denote the set of (�, B) ∈ P such that for allf ∈ [�]\[B]≺,
Γf⊕X is not aDNCh function. We show thatDΓ is dense in the partial order.
Suppose (�, B) is a condition where B is k-small above �.
First, if there are x, l ∈ � such that

Cx = {� ∈ �<� : Γ�⊕X (x) ↓}
is l -small above �, then the condition (�, B ∪ Cx) extends (�, B) and forces
the divergence of ΓfG⊕X (x). Therefore, let us assume that for each x, l ∈ �,
Cx is l -big above �.
Next, if there exists an x ∈ � such that ϕx(x) converges and

Nx = {� ∈ �<� : Γ�⊕X (x) ↓= ϕx(x)}
is k-big above �, then there is a � extending � not inB such that Γ�⊕X (x) ↓=
ϕx(x), and so the condition (�, B) extends (�, B) and forces that fG is not
DNC. Therefore, let us assume that for each x ∈ �, either ϕx(x) diverges
or Nx is k-small above �.
We now describe how to compute a DNCh function from X , which yields
a contradiction. On input x, search for a k-bushy tree T above � such that
for every leaf � of T , Γ�⊕X (x) converges to the same value j < h(x), then
output j. Since for each x, Cx is (h(x) · k)-big above �, such a tree T exists.
So theX -computable function just described is total. Moreover, it disagrees
with ϕx(x) whenever it is defined, since Nx is k-small above �.
Therefore, DΓ is dense. Let G be a generic filter including the condition
(〈〉, BXDNC). Then fG has the required properties. 	
With a stronger assumption, the technique in the proof of Theorem 3.7
yields a stronger conclusion: If X computes no computably bounded DNC
function, then there is an f that is DNC relative to X such that f ⊕ X
computes no computably bounded DNC function. We omit the proof.
An analysis of the amount of bushiness we require above � in the
diagonalization argument of Claim 3.6 yields the following:

Theorem 3.8 (Ambos-Spies et al. [1]). For each order function h there is
an order function j and a function f ∈ DNCj that computes no function in
DNCh .

Proof. If j is an order function, let jn denote the space
∏

m<n

{0, 1, . . . , j(m) − 1}

and let j<� and j� be defined in the obvious way.
We now fix a computable function h and let (Γi)i∈� be an effective enu-
meration of all h-valued Turing functionals. We define an order function
j by recursion. In order to define j, we will also define an auxiliary com-
putable function q : �<�×�2, the definition of which will refer to the index

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

FORCINGWITH BUSHY TREES 167

of the function j. This is possible because we can assume, by the recursion
theorem, that we have access to the index of j in advance.
On input x, ϕq(�,i) searches for a |�|-bushy tree T above � contained
in j<� such that for every leaf � of T , Γ�i (x) converges to the same
value k < h(x), and upon finding such a tree, itself outputs k. Now let
q̄ = maxi<n,�∈jn q(�, i). We define j(n) to be the larger of maxi<n j(i) and
((h(q̄(n)) + 1) · n) + 2.
The forcing conditions are now pairs (�, B), where B ⊆ j<� and � ∈
j<� \B . We require that B be upward-closed and |�|-small above �. By the
small set closure property, we may assume that B is |�|-closed. For � ∈ j<� ,
let [�]j denote {X ∈ j� : � ≺ X}.
Claim 3.9. Let Di denote the set of (�, B) ∈ P such that for all g ∈
[�]j \ [B]≺, Γgi is not aDNCh function. Then for each i ∈ �,Di is dense in P.
Proof. Suppose that (�, B) ∈ P. By suitably extending �, we can assume
that |�| > i . Let n = |�| and

A = {� ∈ j<� : Γ�i (q(�, i)) ↓}.
As in the proof of Claim 3.6, there are two cases.
IfA is (h(q(�, i))·n)-small above �, then letting c = (h(q(�, i))·n+n−1),
A ∪ B is c-small above �. Let C be the c-closure of A ∪ B . Since j(n) ≥
(h(q(�, i)) + 1) · n > c and j is nondecreasing, jc is c-big above �. Let � be
any string extending � in jc \ C . Then (�, C) is a condition. Further, Γfi is
partial on any f ∈ [�]j \ [C]≺, so (�, C) ∈ Di .
On the other hand, if A is (h(q(�, i)) · n)-big above �, then for some
k < h(q(�, i)), the set {� ∈ j<� : Γ�i (q(�, i)) ↓= k} is n-big above �. It
follows that ϕq(�,i)(q(�, i)) is defined. So there is a � ∈ j<� \ B extending �
such that Γ�i (q(�, i)) = ϕq(�,i)(q(�, i)). Then (�, B) ∈ P ∩ Di . 	
This concludes the proof of Theorem 3.8. 	
Theorem 3.10. Given any order function g, there is an order function h and
an f ∈ DNCg such that f computes no DNCh function.
Proof. We define h inductively. Let n0 = 0 and let h(0) = 2. At the i th

stage of the construction, suppose we have defined it up to ni . Let k ≥ ni+1
be the least such that g(k) ≥ (h(ni)+1) ·g(ni). Let q(�) be the computable
function such that if � ∈ gk, then q(�) ≥ k, and ϕq(�)(n) searches for a
g(ni)-bushy tree T above � contained in g<� such that for every leaf � of
T , Φ�i−1 converges to the same value l < h(ni). Let m = max�∈gk q(�). Let
h(n) = h(ni) for all n such that ni < n ≤ m and let h(m + 1) = h(m) + 1.
Finally, let ni+1 = m + 1, ensuring that h is unbounded. The fact that
k ≥ ni + 1 ensures that h is total.
It remains to construct f. LetB0 = BDNC and let �0 ∈ g1\BDNC. Assume
inductively that �i ∈ gni \ Bi and that Bi is g(ni)-small above �i . Let k and
q be defined as above and extend � to a string � ∈ gk \Bi . For j < h(q(�)),
let

Aj = {� ∈ g<� : Φ�i (q(�)) ↓= j}.
If Aj is g(ni)-big above � for some j, then ϕq(�)(q(�)) is defined.
If ϕq(�)(q(�)) = j

′ then there is a � ∈ Aj′ \ Bi extending � such

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

168 MUSHFEQKHAN AND JOSEPH S. MILLER

that Φ�i−1(q(�)) = ϕq(�)(q(�)). Otherwise, C = (
⋃
j<h(q(�))Aj) ∪ Bi is

(h(q(�)) + 1) · g(ni)-small above �. Since g(k) ≥ (h(ni) + 1) · g(ni) =
(h(q(�)) + 1) · g(ni), C is g(k)-small above �. So let Bi+1 = C and let �i+1
be any string in gni+1 \ Bi+1 extending �. Finally, let f =

⋃
i∈� �i . 	

By alternating the strategies of Theorems 3.8 and 3.10, one can also show:

Theorem 3.11. Given any order function g0, there is another order function
g1 and functions f0 ∈ DNCg0 and f1 ∈ DNCg1 such that f0 computes no
DNCg1 function and f1 computes noDNCg0 function.

§4. Bushy tree forcing. Bounded DNC functions, being of PA degree,
computeMartin-Löf random reals.Kučera [12] showed that there is an order
function h such that everyMartin-Löf random real computes a DNCh func-
tion. Theorem 3.3 then implies that there are unbounded DNC functions
that compute noMartin-Löf random real. Greenberg andMiller established
a stronger version of this fact:

Theorem 4.1 (Greenberg andMiller [9]). For each order function h, there
is an f ∈ DNCh that computes no Martin-Löf random real.
The proof uses basic bushy forcing, and does not require that the bad sets
be c.e. In fact, the same technique could be used to show that for each order
function h and each oracle X , there is an f ∈ DNCXh that computes no
Martin-Löf random real. Our main result in this section cannot be partially
relativized in this manner (it strongly depends on the fact that the bad sets
are c.e.) but improves upon theGreenberg–Miller theorem in a different way.
Recall that a real is Kurtz random (sometimes also called weakly random) if
it is not contained in any measure 0 Π01 class.

Theorem 4.2. For each order function h, there is an f ∈ DNCh that
computes no Kurtz random real.

Theorem 4.2 is our first example of bushy tree forcing, where the conditions
consist of trees, not just finite strings. The atomic step in the forcing is based
on the following result of Downey, Greenberg, Jockusch, Milans [6], which
we prove here for convenience.

Theorem 4.3 (Downey et al. [6]). There is no single functional Γ such that
Γf is Kurtz random for all f ∈ DNC3.
Proof. Suppose that such a functional Γ exists. As before, wemay assume
that Γ is total. It will be convenient to assume that Γ satisfies the following
additional property:

• If � ∈ 3<� and Γ�(n) converges, then Γ�(n) converges within |�| steps
and for all n′ < n, Γ�(n′) also converges.

It is not difficult to see that this assumption can be made without any loss
of generality and that if Γ satisfies this property, then Γ� = � is a computable
relation for � ∈ 3<� and � ∈ 2<�.
We build a computable 2-bushy subtree S of 3� with no leaves such that
the image of Γ on S (denoted by Γ(S)) has measure 0. The tree S will

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

FORCINGWITH BUSHY TREES 169

be obtained as the union of a sequence {〈〉} = S0 ⊂ S1 ⊂ S2 . . . of finite
regular1 binary subtrees of 3<�. Let Γ(Si) denote the set of reals

⋃
{[Γ�] : � is a leaf of Si}.

In constructing Si+1, wewant to ensure that �(Γ(Si+1)) ≤ (3/4)�(Γ(Si)).
LetL = {�0, �1, . . . , �|L|−1} be the set of leaves of Si and letm = max{|Γ� | :
� ∈ L}. Our assumption on Γ above allows us to find m computably. Let
l be large enough so that for all � ∈ 3l , |Γ�| ≥ m + (2|L| + 1). In other
words, l is large enough so that we obtain at least 2|L| + 1 additional bits
of convergence by extending a leaf of Si to any ternary string of length l .
Note that such an l exists by the compactness of 3� and that we can find it
computably. Let Tj = {� ∈ 3l : � � �j}.
Suppose that k is a position corresponding to one of the additional bits
of convergence, i.e.,m ≤ k < m + 2|L| + 1. Since each Tj is 3-big above �j ,
by the smallness preservation property, either {� ∈ Tj : Γ�(k) = 1} is 2-big
above �j (in which case, we say that we can force the kth bit to be 1 above �j)
or {� ∈ Tj : Γ�(k) = 0} is 2-big above �j (we say that we can force the
kth bit to be 0 above �j). This allows us to obtain a binary sequence �k of
length |L|, where �k(j) = 1 if we can force the kth bit to be 1 above �j , and 0
otherwise. Moreover, we can computably find 2-big sets above �j that force
the kth bit one way or another, so we can compute �k , given k.
By the pigeonhole principle, there exist r and s such that m ≤ r, s <
m + 2|L| + 1 and �r = �s . Note that for each j < |L|, even though we can
force the rth and s th bits in the same way above �j , we may not be able to
do so simultaneously. We adopt the following strategy above each �j : If we
can force the rth bit to be 1 above �j , we do so, by extending �j to a finite
2-bushy tree Bj with leaves in 3l such that for every leaf � of Bj , Γ�(r) = 1.
Otherwise, �r(j) = �s(j) = 0, so we force the s th bit to be 0 above �j . The
regular binary tree of height l that results is Si+1.
For any leaf � of Si+1, it is not the case that the rth bit of Γ� is 0 and the
s th bit is 1: Say � extends �j . By our choice of strategy, if the rth bit is 0, then
it must be the case that we could not have forced it to be 1 above �j , and so
we would have forced the s th bit to be 0 above �j .
Let P = {X ∈ Γ(Si) : X (r) = 0 and X (s) = 1}. Then �(P) =
(1/4)�(Γ(Si)), since r, s ≥ m. Now, Γ(Si+1) ⊆ Γ(Si) \ P, so �(Γ(Si+1)) ≤
(3/4)�(Γ(Si)), as desired.
Let S =

⋃
i∈� Si . Then �(Γ(S)) = �(

⋂
i∈� Γ(Si)) = 0. Let f be any

path through S that is DNC3. Then Γf ∈ Γ(S). But Γ(S) is a null Π01
class, which implies that Γf is not Kurtz random, contradicting our initial
assumption. 	
Note that the construction in Theorem 4.3 starts with a 3-bushy tree and
produces a 2-bushy subtree with no leaves.

Definition 4.4. Let j be an order function. We say that a tree T ⊆ �<�
is j-bushy above a string � ∈ �<� if every element of T is comparable with
1All the leaves are of the same length.

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

170 MUSHFEQKHAN AND JOSEPH S. MILLER

� and for each � extending � that is not a leaf of T , there are at least j(|�|)
many immediate extensions of �. We say T is exactly j-bushy above � if for
each nonleaf �, there are exactly j(|�|) immediate extensions of � in T .

Proof of Theorem 4.2. The forcing conditions have the form (�, T, B),
where � ∈ �<�, T is a computable subtree of �<�, B ⊂ T and:
• T is exactly j-bushy above � for some order function j,
• B is c.e. and upward-closed in T (i.e., if � ∈ B then � extending � on T
is also in B),

• B is j(|�|)-small above� (and,without loss of generality, j(|�|)-closed).
A condition (�, T, B) extends another condition (�, S, C) if � � �, T ⊆ S
and B ∩T ⊇ C ∩T . Let P denote this partial order. As before, if G is a filter
on P, then fG =

⋃
{� : (�, T, B) ∈ G} ∈ �≤� . It is not difficult to verify

that if G is sufficiently generic, then fG is total and if (�, T, B) ∈ G, then fG
contains no initial segment in B .
If Γ is any functional, let DΓ denote the set of (�, T, B) ∈ P such that
either

• g ∈ [T]� [B]≺ implies that Γg is total, or
• there is an n ∈ � such that g ∈ [T]� [B]≺ implies that Γg(n) ↑.
Claim 4.5. DΓ is dense in P.
Proof. Suppose (�, T, B) ∈ P, where T is exactly j-bushy above �. Let
Cx = {� ∈ T : Γ�(x) ↓}. Note that Cx is c.e. and upward closed in T . As
usual, there are two cases.
Case 1: For every � ∈ T extending � and every x ∈ �,Cx ∪B is j(|�|)-big
above �. In this case, we build a computable tree S ⊆ T in stages that is
exactly j′-bushy above � for an order function j′. Let S0 consist of just �
and its initial segments. Suppose inductively that we have li ∈ � and Si ⊂ T
such that:

• For each x < li , j′(x) has already been defined and j′(x) ≤ j(x).
• Si is a finite, regular j′-bushy tree of height li above �.
• For every leaf � of Si , either Γ�(x) ↓ for every x < i or � ∈ B .
Let � be a leaf of Si . By assumption, Ci ∪ B is j(|�|)-big above �, so we
extend � to a finite tree with leaves in Ci ∪ B that is j(|�|)-bushy above �.
Note that since Ci ∪ B is c.e., we can find such a tree computably. The tree
S ′
i+1 that results from carrying out this operation above each leaf of Si may
not be regular, but since both Ci and B are upward closed in T and T is
j-bushy above the leaves of S ′

i+1, we can extend them j(li)-bushily to some
common level li+1, retaining the property that every leaf is in Ci or in B ,
and producing the tree Si+1. We now let j′(x) = j(li) for li ≤ x < li+1.
Note that j′ is nondecreasing because of our assumption that j′(x) ≤ j(x)
for x < li .
Let S = ∪i∈�Si and note that since j′(|�|) = j(|�|), B is already
j′(|�|)-closed. So the condition (�, S, B ∩ S) extends (�, T, B). Finally, if
g ∈ [S]� [B]≺, then for every i , g � li ∈ Ci , so Γg is total.

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

FORCINGWITH BUSHY TREES 171

Case 2: Let � and x be counterexamples to the assumption in Case 1 and
let S be the full subtree of T above �. Let B ′ = (Cx ∪ B) ∩ S. Then B ′ is
j(|�|)-small above �, so (�, S, B ′) ∈ P and if g ∈ [S] � [B ′]≺, then Γg(x)
diverges. 	

Let HΓ be the set of all conditions (�, T, B) such that if g ∈ [T] � [B]≺,
then Γg is not Kurtz random.

Claim 4.6. HΓ is dense in P.

Proof. Let (�, T, B) ∈ P and Γ be a {0, 1}-valued functional. Claim 4.5
allows us to assume that Γ is total on [T]� [B]≺, and since B is c.e., we can
assume further that Γ is total on [T]. Let j be the order function such that
T is exactly j-bushy above �.
The remainder of the proof is a straightforward modification of
Theorem 4.3. We build an order function j′ and an exactly j′-bushy tree
S ⊆ T above � in stages. Let S0 consist of � and its initial segments. Next,
suppose inductively that we have li ∈ � and Si ⊂ T such that

• for each x < li , j′(x) has already been defined and j′(x) ≤ j(x), and
• Si is a finite, regular j′-bushy tree of height li above �.

Let Γ(Si) denote {Γg : g ∈ [T] ∩ [Si]≺}.
We first extend Si j(li)-bushily within T to a height q > li such that
j(q) ≥ 2j(li), obtaining the tree S ′

i+1. This ensures that every level of T
above q is 2j(li)-big above each leaf of S ′

i+1. Now, �(Γ(S
′
i+1)) ≤ �(Γ(Si)).

Let L be the set of leaves of S ′
i+1 and letm = max{|Γ�| : � ∈ L}. We choose

li+1 large enough so that for every � ∈ T of length li+1, |Γ� | ≥ m+ 2|L|+ 1.
Note that the fact that T is exactly j-bushy ensures that we can find li+1
computably.
For any leaf � of S ′

i+1, let T� be the set of strings of length li+1 in T
extending �. If k is a position corresponding to one of the additional bits of
convergence (i.e., m ≤ k < m + 2|L| + 1), we say we can force the kth bit to
be c ∈ {0, 1} above � if {� ∈ T� : Γ�(k) = c} is j(li)-big above �. Since T�
is 2j(li)-big above �, if we cannot force the kth bit to be 0 above �, we can
force it to be 1.
As in the proof of Theorem 4.3, we obtain positions r and s such that
above each leaf of S ′

i+1, the r
th and s th bits can be forced in the same

way. We adopt the same strategy as before for extending S ′
i+1 to Si+1 and

ensuring that �(Γ(Si+1)) ≤ (3/4)�(Γ(Si)). Finally, we let j′(x) = j(li) for
li ≤ x < li+1.
Let S =

⋃
i∈� Si . Since j

′(|�|) = j(|�|), B ∩ S is j′(|�|)-small
above �. So (�, S, B ∩ S) ∈ P and since �(Γ(S)) = �(

⋂
i∈� Γ(Si)) = 0,

(�, S, B ∩ S) ∈ HΓ. 	

To conclude the proof of Theorem 4.2, let G be any filter containing
(〈〉, h<�, BDNC) that meets HΓ for each functional Γ as well as the families
of conditions that ensure totality. Then fG ∈ DNCh and does not compute
a Kurtz random. 	

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

172 MUSHFEQKHAN AND JOSEPH S. MILLER

Every hyperimmune degree contains a Kurtz random [15], so the function
we have constructed is hyperimmune-free. This is, in fact, a feature of the
partial order:

Claim 4.7. If G is sufficiently generic, then fG has hyperimmune-free
degree.

Proof. Suppose ΓfG is a total function. Then if (�, T, B) ∈ G∩DΓ, it must
be the case that Γ is total on [T] � [B]≺. Let Ξ be the functional that on
input x and oracle � ∈ T , computes Γ�(x) until the computation converges
or � enters B . If the latter occurs first, then let Ξ�(x) = 0. Now Ξ is total on
[T] and agrees with Γ on [T]� [B]≺.
Let j be the order function such that T is exactly j-bushy above �. We
define a computable functionm thatmajorizesΓfG . To computem(i), search
for a finite tree Si ⊂ T that is j-bushy above � such that for every leaf � of
Si , Ξ�(i) ↓. Note that such a finite tree must exist by the compactness of [T]
and we can find it computably since T is computable. Now let m(i) be the
maximum of the values Ξ�(i) as � ranges over the leaves of Si .
Since T is exactly j-bushy above � and Si is a subtree of T that is j-bushy
above �, [T] ⊆ [Si]≺. So fG ∈ [Si]≺ and ΓfG (i) = ΞfG (i) ≤ m(i). 	
Theorem 4.2 yields an interesting corollary when combined with the
following result:

Theorem 4.8 (Greenberg and Miller [9]). There is an order function
h such that every DNCh function computes a real of effective Hausdorff
dimension 1.

There is a DNCh function that computes no Kurtz random real, and so
we have:

Corollary 4.9. There is a real of effective Hausdorff dimension 1 that
computes no Kurtz random real.

§5. A DNCX function of minimal degree. In this section, we strengthen
Kumabe’s result that there is a DNC function of minimal degree.

Theorem 5.1 (Khan). Given any oracle X , there is a function that isDNC
relative to X and of minimal degree.

Kumabe and Lewis [14] provided a simplified version of Kumabe’s origi-
nal arguments [13]. Our proof reuses much of the combinatorial machinery
developed in their proof, but differs in several key aspects.Kumabe andLewis
use partial trees with computable domains, hence the function they produce
is hyperimmune-free. We use partial trees with noncomputable domains, out
of necessity: by Theorem 6.1, any DNC function relative to 0′ is hyperim-
mune. Further, it suffices in the Kumabe–Lewis construction to work with
bad sets of constant bushiness. This is not the case here; our bad sets are
h-small for some order function h. In our approach to bad sets of varying
bushiness, we use ideas from Cai and Greenberg’s result in [4] that there
exist degrees a and b such that a is minimal and DNC and b is DNC relative
to a and a strong minimal cover of a.

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

FORCINGWITH BUSHY TREES 173

5.1. Definitions and notation.

Definition 5.2. Let h be an order function. Given � ∈ �<�, we say that
a set B ⊆ �<� is h-big above � if there is a finite h-bushy tree T above �
such that all its leaves are in B . If B is not h-big above � then we say that B
is h-small above �.

It is easy to see that the smallness preservation property, concatenation
property and small set closure property all continue to hold when one
replaces the constants governing bushiness with order functions.
For an order function g and l ∈ �, let wg(l) denote

∏
i<l g(i) and let

r(g, l) denote 23+3wg(l).
In order to simplify our calculations, throughout this proof we restrict
ourselves to order functions that only take values that are powers of two.

Definition 5.3. Suppose h(n) = 2h
′(n) and g(n) = 2g

′(n) are order func-
tions, where h′, g ′ : � → �. The middle of h and g is the order function
M(h, g) defined by

M(h, g)(n) = 2�
h′(n)+g′(n)

2 	.

Definition 5.4. Suppose h and g are order functions. We say the pair
(h, g) allows splitting above N ∈ � if
(1) h(N) ≥ g(N),
(2) for n ≥ N , h(n)/g(n) is nondecreasing, and
(3) there is an increasing sequence 〈li〉i∈� of natural numbers with l0 ≥ N
such that h(li)/g(li) ≥ (r(h, li))i .

We say (h, g) allows splitting if it allows splitting above some N ∈ �. We
call the sequence 〈li〉 the splitting levels for (h, g).
Lemma 5.5. Let h and g be order functions such that (h, g) allows splitting.
Let m =M(h, g). Then (m, g) and (h,m) allow splitting.
Proof. We provide the argument for (m, g). Suppose (h, g) allows split-
ting above N and 〈li〉 is the sequence of splitting levels for (h, g). Note
that conditions (1) and (2) in the definition above are satisfied by (m, g)
above N .
We verify condition (3). Suppose that h(n) = 2h

′(n) and g(n) = 2g
′(n).

Note first that for each n ≥ N ,

m(n)
g(n)

= 2�
h′(n)+g′(n)

2 	−g′(n) = 2�
h′(n)−g′(n)

2 	 ≥ 2
h′(n)−g′(n)

2

2
.

It follows that for each i ∈ �,

m(l2i+2)
g(l2i+2)

≥ 2
h′(l2i+2)−g′(l2i+2)

2

2
≥ (r(h, l2i+2))

2i+2
2

2
=
(r(h, l2i+2))i+1

2
≥ (r(m, l2i+2))i ,

so 〈l2i+2〉i∈� is a sequence of splitting levels for (m, g).
A similar calculation shows that (h,m) allows splitting. 	
It is not hard to verify that if (h, g) allows splitting then for any c ∈ �, so
do (h, 2cg) and (max(h/2c , 2), g).

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

174 MUSHFEQKHAN AND JOSEPH S. MILLER

5.2. The partial order. The forcing conditions are of the form
(�, T, B, hT , hB), where
• the tree T is partial computable (some nodes may be terminal) and
exactly hT -bushy above �,

• B includes the terminal nodes in T , is upward closed and is hB -small
above �, and

• (hT , hB) allows splitting above |�|.
Only �, T and B contribute to the ordering. Let hM denoteM(hT , hB).
By extending � appropriately, we can assume that hM (n)/16 ≥ hB(n) for all
n ≥ |�|.
Note that we have no access to the set B (it is not c.e.). Since the terminal
nodes of T are contained in the bad set B , the conditions that force fG to
be total are dense in this partial order.
As before, we can assume that the bad set is hB -closed. In other words, if
� is any string in T \ B then B is hB -small above �.
5.3. Forcing ΓfG to be partial. Let Cn = {� ∈ T : Γ�(n) ↓}. Given a
condition (�, T, B, hT , hB) and a functional Γ we say we can force ΓfG to be
partial if there is a � on T extending � and an n such that the set Cn ∪ B is
hM -small above �. If this is the case, then we let T ′ be the full subtree of T
above �. The condition (�, T ′, Cn∪B, hT , hM) extends (�, T, B, hT , hB), while
forcing ΓfG(n) ↑. From now on we assume that we cannot force ΓfG to be
partial. It follows that for every n, and every � ∈ T \ B , Cn \ B is hM/2-big
above �. Applying this fact iteratively we obtain the following claim:
Claim 5.6. For any � ∈ T \B extending � and any n, there is anA ⊂ T \B ,
hM/2-big above �, such that for every � ∈ A, Γ� � n is defined.
5.4. Forcing ΓfG to be computable. It is worth pointing out here how our
argument for this case of the forcing differs from the one in Kumabe–Lewis.
As we have mentioned, the bad sets in their argument are c.e., and they
make strong use of this fact in an effective simultaneous construction of a
refined subtree and a real Y that it is the image of Γ on every path on this
subtree (and hence computable). We do not have access to the bad set, since
we ultimately want it to include the set of strings that are non-DNC relative
to X . So we construct a sufficiently bushy subtree noneffectively, and let Y
be the image under Γ of this tree. Under the assumptions we make in this
case of the forcing, Y turns out to be computable.

Definition 5.7. Let g be an order function. A g-big splitting above � ∈ T
is a pair of sets A0 ⊂ T and A1 ⊂ T , both g-big above �, such that for any
�0 ∈ A0 and �1 ∈ A1, Γ�0 | Γ�1 . We say that A0 and A1 are Γ-splitting.
Suppose that there is a � ∈ T \ B extending � such that we cannot find
any hM/16-big splitting above �. Under this assumption, we construct a
real Y with the property that for each n ∈ �, the set of � on T such that
Γ� � n = Y � n is hM/4-big above �. It follows immediately that Y is
computable. To compute it up to n bits, we search for an hM/4-bushy tree
A ⊂ T above � every leaf of which gives the same n bits of convergence via Γ.

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

FORCINGWITH BUSHY TREES 175

These bits must agree withY , otherwise we will have obtained an hM/16-big
splitting above �. Further, if we letD = {� ∈ T : Γ� | Y}, thenD is hM/16-
small above �. It follows that B ∪D is hM -small above �, so letting T ′ be the
full tree above �, the condition (�, T ′, B∪D, hT , hM) extends (�, T, B, hT , hB)
while forcing ΓfG to be computable.
We construct Y bit by bit, letting Y0 = Γ� . We also assume inductively
that there is a set Si ⊂ T \B that is hM/4-big above � and for every � ∈ Si ,
Γ� � i + |Y0| = Yi . Let S0 consist of just �.
Given Yi and Si , we proceed as follows. Above each leaf � of Si , there is
an hM/2-big set of strings A� such that for each 	 ∈ A�, Γ	(|Yi |) is defined.
A� can then be thinned out to a set A′

� that is hM/4-big above � and such
that for each 	 ∈ A′

�, Γ
	(|Yi |) converges to the same value c�. Next, since

Si is hM/4-big above �, there is a V ⊂ Si , hM/8-big above �, such that
for each � ∈ V , c� is the same value, say j. Let Yi+1 = Yij. Note that
V ′ = ∪{A′

� : � ∈ V } is hM/8-big above � and for each 	 ∈ V ′, Γ	 � Yi+1.
Let Si+1 = {	 ∈ C : Γ	 � Yi+1}. The set C \ Si+1 must be hM/16-small
above �, otherwise C \ Si+1 and V ′ form an hM/16-big splitting above �. It
follows that Si+1 is hM/4-big above �.

5.5. Forcing ΓfG ≥T fG . We work now under the additional assumption
that for each � ∈ T \ B extending � there is a hM/16-big splitting above �.
We refine T to a subtree S that has the delayed splitting property: above
each � ∈ S \B , there are levels l ′ > l > |�| such that if �0 and �1 are any two
extensions of � on S of length l , and �′0 � �0 and �′1 � �1 are extensions on
S of length l ′, then Γ�

′
0 | Γ�′1 .

The statement of the following lemma has been slightly modified from the
original in order to apply to trees of varying bushiness:

Lemma 5.8 (Kumabe, Lewis [14]). Let Γ be a functional. Let A be 4g-big
above α and B be 4h-big above � , where g and h are order functions. Suppose
that above every � ∈ A, there exist Δ�,0 and Δ�,1, such that they are both 4g-big
above � and are Γ-splitting. LetA′ = ∪�,iΔ�,i and let v = max{|Γ�| : � ∈ A′}.
If for every leaf � of B , |Γ� | > v, then there is an A′′ ⊆ A′ and a B ′ ⊆ B ,
g-big above α and h-big above � respectively, that are Γ-splitting.

Proof. Let �0 = 〈〉 and B0 = B .
Assume inductively that we have �s of length s and Bs , h-big above � ,
such that for all � ∈ Bs , Γ� � �s .
If {� ∈ A′ : Γ� | �s} is g-big aboveα thenwe are done. If not, then either
(1) A1 = {� ∈ A′ : Γ� � �s} is g-big above α or
(2) A2 = {� ∈ A′ : Γ� properly extends �s} is g-big above α.
If (1) holds then let V be the set of leaves of A that have an extension in A1.
For each � ∈ V , the set of strings in A1 extending � must lie entirely in one
of the Δ�,i . Let Δ′� denote the other member of the splitting above �. Then
∪{Δ′� : � ∈ V } is g-big above α and splits with Bs .
Next, assume (2) holds, which implies that |�s | < v. If {� ∈ B : Γ� | �s}
is h-big above � , then we are done. If not, then it must be the case that
D = {� ∈ B : Γ� � �s} is 2h-big above � .D can be partitioned into the sets

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

176 MUSHFEQKHAN AND JOSEPH S. MILLER

Di = {� ∈ D : Γ�(|�s |) = i}, one of which must be h-big above � , say Dj .
Let Bs+1 = Dj and let �s+1 = �sj and continue the construction. Since this
process cannot continue indefinitely, we will obtain the required splitting via
one of the other alternatives. 	
Claim 5.9. Suppose �0, . . . , �k are nodes of length l in T \ B , k < whM (l)
and that hM (l)/hB (l) ≥ r(hM, l). Then there is a sequence of setsA0, . . . , Ak ,
where Aj is (hM/23+3k)-big above �j and which are pairwise Γ-splitting.

Proof. The proof is by induction on k. Suppose we already have
A0, . . . , Ak , where each Aj is (hM/23+3k)-big above �j and the collection
is pairwise Γ-splitting. Let �k+1 be an additional node of length l that is not
in B and let q = hM/23.
Note that since whM (l) > k + 1, hB(l) < q(l)/2

3k+1. So we first refine
each Aj to a Πj where Πj is (q/23k+1)-big above �j and Πj ∩ B = ∅. If � is
a leaf of Πj , then it is not in B and since q/23k+1 ≤ hM/16, we can find a
q/23k+1-bushy splitting, say D�,0 and D�,1, above �. We let Π′

j = ∪i,�D�,i .
Letm be the longest length of the image of Γ on any string in any of theΠ′

j .
Appealing to Claim5.6,we let Δ0 be a q-big set above �k+1 such that each leaf
of Δ0 gives at leastm+1 bits of convergence via Γ.We now apply Lemma 5.8
on Π′

0 and Δ0, obtaining A
′
0 ⊂ Π′

0 and Δ1 ⊂ Δ0, which are Γ-splitting and
where the former is q/23(k+1)-big above �0 and the latter is q/4-big above
�k+1. Next, we apply Lemma 5.8 to the pair Π′

1 and Δ1, obtaining A
′
1 ⊂ Π′

1
and Δ2 ⊂ Δ1, which are Γ-splitting and where A′

1 is q/2
3(k+1)-big above �1

and Δ2 is q/42-big above �k+1. After k + 1 applications of Lemma 5.8, we
will have obtained A′

0 through A
′
k and Δk+1, which are pairwise Γ-splitting.

Moreover, Δk+1 is q/22(k+1)-big above �k+1, so we can let A′
k+1 = Δk+1. 	

Our argument here differs once again in a crucial way from Kumabe and
Lewis’s. Suppose we have defined the delayed splitting tree S up to a certain
level and let � be one of the leaves of this finite tree. In order to continue
the construction above �, we must find a sufficiently bushy splitting above �.
In the Kumabe–Lewis argument, such a splitting will be found, or � will be
seen to enter the bad set. In either case, the construction of the tree S is in
no danger of “stalling”. Here, however, we have no access to the bad set,
so we may end up searching in vain for a splitting. In order to get around
this, we will only ask for splittings above sufficiently bushy many leaves of
the current approximation to S, a situation that we can guarantee, and add
the remaining leaves to the bad set. Thus, we will be adding lots of strings
to the bad set at each level of the construction. The following lemma is
critical to preserving its smallness when we do so:

Lemma 5.10. Let g be an order function. Suppose A ⊂ �<� is g-small
above � ∈ �<� , and suppose � ∈ �<� extends � and A contains no extension
of �. If B is a set of strings extending � that is g-small above �, then A ∪ B is
g-small above �.

Proof. Suppose otherwise, i.e., there is a g-bushy tree T above � with
leaves in A ∪ B . It must be the case that some leaves of T are in B . Since
every string in B extends �, � ∈ T . This means that there is a tree T ′ that

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

FORCINGWITH BUSHY TREES 177

is g-bushy above � whose leaves are in B , namely, the tree consisting of all
strings in T that are comparable with �. This is a contradiction. 	
Let 〈li〉 be the sequence of splitting levels for the pair (hM , hB).Webegin by
defining hS . Let ji = li+1. For n < j0, let hS(n) = hM (n). For ji+1 > n ≥ ji ,
let hS(n) = hM (ji)/r(hS, ji). Then for each i ,

hS(ji)
hB(ji)

=
hM (ji)

hB(ji)r(hS, ji)
≥ (r(hM , ji))

i+1

r(hS, ji)
≥ (r(hS, ji))i .

Hence the pair (hS, hB) allows splitting above |�|.
We now describe how we build the partial computable tree S. We start by
letting S0 be an hS -bushy subtree of T above � with leaves of length l1 or
less such that ifD0 is the set of leaves of S0 of length strictly smaller than l1,
then D0 is hB -small above �. Since the terminal nodes of T are contained
in B , such a tree must exist. We declare the nodes in D0 terminal and the
leaves of S0 that are of length l1 to be the children of �. Throughout the
construction we will maintain the property that if � ∈ S has children in S,
then they are all of the same length and that length is a splitting level for the
pair (hM , hB).
At a stage s of the construction, we will have built a finite approximation
Ss of S, and accumulated a set Ds of nodes on Ss that we have declared
terminal. Ds will always be hB -small above �.
Suppose that � ∈ Ss has a set C� of children of length li and that they are
leaves of Ss . If we have not already done so, we initiate a search for a subset
C ′
� of C� such that C� \ C ′

� is hB -small above �, and for each � ∈ C ′
� , there

is a A�, hS -bushy above � such that the collection {A� : � ∈ C ′
�} is pairwise

Γ-splitting.
If � /∈ B then this search must terminate. To see why this is the case note
first that B is hB -small above �. Let �0, . . . , �k be the strings in C� \ B .
Since li is a splitting level for (hM , hB), hM (li)/hB(li) ≥ r(hM, li). More-
over, whM (li) ≥ whS (li) > k. By Claim 5.9, there are A0, . . . , Ak , with Aj
hM/23+3k-big above �j , that are pairwise Γ-splitting. Now

hM (n)
23+3k

≥ hM (n)

23+3whS (li)
=
hM (n)
r(hS, li)

≥ hS(n)

for n ≥ li , so we can refine the Aj to subtrees that are hS -bushy.
If C ′

� is found, then we extend each � ∈ C ′
� by A�. Note that by

Lemma 5.10, Ds ∪ (C� \ C ′
�) is hB -small above �, since Ds initially con-

tains no extension of � and C� \ C ′
� is hB -small above �. So we can add

C� \ C ′
� to Ds .

Next, for each � ∈ C ′
� we wish to extend the leaves of A� hS -bushily to

the next splitting level for (hM , hB). Let L� be the set of leaves of A�, and
let m = max{|	| : 	 ∈ L�}. Let l be least splitting level for (hM , hB) greater
equal to m. We begin a search for an L′

� ⊆ L� such that L� \L′
� is hB -small

above � and above each 	 ∈ L′
� there is an hS -bushy tree with leaves of

length l . Note that if � /∈ B , this search must terminate. When we find such
an L′

�, we extend all its elements hS -bushily to level l , declaring the new

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

178 MUSHFEQKHAN AND JOSEPH S. MILLER

leaves to be the children of � and add L� \L′
� toDs . The same argument as

before shows that Ds remains hB -small above �.
The resulting tree S is hS -bushy and if we let D = ∪sDs , then the new
bad set D ∪ B is 2hB -small above �. It is clear that the construction halts
above a node � ∈ S if it is either in B or we have declared it to be terminal
by adding it to D, and so B ∪ D contains all the terminal nodes of S. By
extending �, we can ensure that (hS, 2hB) allows splitting above |�|. For
such a �, the condition (�, S,D ∪ B, hS, 2hB) extends (�, T, B, hT , hB) and
forces ΓfG ≥T fG .
This completes the proof of the theorem.

5.6. A question. The DNC function yielded by Theorem 5.1 is com-
putably bounded, but we do not know if the construction can be carried
out below a given order function. This difficulty is also present in Kumabe
and Lewis’s argument, and arises from the fact that applying the splitting
method of Lemma 5.8 repeatedly for each pair of leaves above which we
need to find a splitting, as we do in Claim 5.9, is rather costly in terms of
bushiness and this cost grows exponentially in the number of leaves. Thus it
is not simply a matter of delaying the task of splitting until we have reached
a level where the bushiness of the surrounding tree is sufficiently high: By
extending the leaves of our subtree bushily, we generate exponentially more
leaves, and the bushiness required of the surrounding tree for splitting above
these leaves grows at a rate that is at least doubly exponential.
Whether this difficulty can be surmounted is a question of considerable
interest. If we were able to carry out the construction below the order func-
tion given by Theorem 4.8, then by its relativized version, we could conclude
that for every oracle X , there is a real of effective Hausdorff dimension 1
relative to X that is of minimal degree. This would imply that the classical
Hausdorff dimension of the set of reals of minimal degree, which is as yet
unknown, is 1.

Question 5.11. For every oracle X , and for every order function h, is there
an h-bounded function that isDNC relative to X and of minimal degree?

§6. Appendix.
Theorem 6.1 (Miller). Every function that is DNC relative to 0′ is of
hyperimmune degree.

Proof. The argument is a modification of the proof by D. A. Martin
of the fact that almost every real is of hyperimmune degree, as presented
in Downey and Hirschfeldt [7]. We construct a reduction Ψ on �� such
that whenever Ψg is total for a g ∈ �� , Ψg is not computably dominated.
Moreover, any function that is DNC relative to 0′ can compute such a g.

Construction of Ψ. The construction is comprised of subconstructions
that operate simultaneously and independently above each string. If � ∈ �<�
is of length n, then the subconstruction above � attempts to do the following
for each extension �i of � in succession:

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

FORCINGWITH BUSHY TREES 179

(1) Reserve a number m for �i such that Ψ�i(m) has not already been
defined and m has not already been reserved for any initial segment
or extension of �i .

(2) If ϕn(m) converges, set Ψ�i(m) = ϕn(m)+1 and move on to �(i +1).
If ϕn(m) never converges, then we say that the subconstruction above
� halts at �i .

In addition, at each stage s of the construction, let Ts be the (finite) set
of strings for which s has been reserved. For each f ∈ �� \ [Ts]≺, set
Ψf(s) = 0.

Verification. Note that if g is such that no subconstruction halts at one
of its initial segments, then Ψg is total: If m was reserved for an initial
segment of g, then Ψg(m) converges. Otherwise, at stage m we would have
set Ψg(m) = 0.

Claim 6.2. If Ψg is total, then it is not computably dominated.

Proof. If � ≺ �i ≺ g where � is of length n, then the subconstruction
above � did not halt at �i . If it halted at �j for some j < i , then ϕn never
converged on the number reserved for �j. If it proceeded beyond �i , then
Ψg(m) = ϕn(m) + 1, where m is the number reserved for �i . In either case,
ϕn does not dominate Ψg . 	
Claim 6.3. If f is DNC relative to 0′ then it computes a function g such
that no subconstruction halts at an initial segment of g, and therefore, Ψg is
total.

Proof. We construct g by initial segments 〈�s〉s∈�. Given �s , let n be such
that ϕ0

′
n (n) converges to i if and only if the subconstruction above �s halts

at �sj. Then let �s+1 = �sf(n). Finally, let g =
⋃
s �s . 	

This concludes the proof of the theorem. 	

REFERENCES

[1]K. Ambos-Spies, B. Kjos-Hanssen, S. Lempp, and T. A. Slaman, Comparing DNR and
WWKL. The Journal of Symbolic Logic, vol. 69 (2004), no. 4, pp. 1089–1104.
[2] A. A. Beros, A DNC function that computes no effectively bi-immune set. Archive for

Mathematical Logic, vol. 54 (2015), no. 5–6, pp. 521–530.
[3] L. Bienvenu and L. Patey, Diagonally non-computable functions and fireworks, arXiv

e-prints, 2014.
[4] M. Cai, Elements of classical recursion theory: Degree-theoretic properties and

combinatorial properties, Ph.D. thesis, Cornell University, 2011.
[5] F. G. Dorais, J. L. Hirst, and P. Shafer, Comparing the strength of diagonally nonre-

cursive functions in the absence of Σ02 induction. The Journal of Symbolic Logic, vol. 80 (2015),
no. 4, pp. 1211–1235.
[6] R.G.Downey,N.Greenberg, C.G. Jockusch, Jr., andK.G.Milans,Binary subtrees

with few labeled paths. Combinatorica, vol. 31 (2011), no. 3, pp. 285–303.
[7] R. G. Downey and D. R. Hirschfeldt, Algorithmic Randomness and Complexity,

Theory and Applications of Computability, Springer, New York, 2010.
[8] M. Giusto and S. G. Simpson, Located sets and reverse mathematics. The Journal of

Symbolic Logic, vol. 65 (2000), no. 3, pp. 1451–1480.

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

180 MUSHFEQKHAN AND JOSEPH S. MILLER

[9] N. Greenberg and J. S. Miller, Diagonally non-recursive functions and effective
Hausdorff dimension. Bulletin of the London Mathematical Society, vol. 43 (2011), no. 4,
pp. 636–654.
[10] C. G. Jockusch, Jr., Degrees of functions with no fixed points, Logic, Methodology

and Philosophy of Science, VIII (Moscow, 1987), Studies in Logic and the Foundations of
Mathematics, vol. 126, North-Holland, Amsterdam, 1989, pp. 191–201.
[11] C. G. Jockusch, Jr. and A. E. M. Lewis, Diagonally non-computable functions and

bi-immunity. The Journal of Symbolic Logic, vol. 78, (2013), no. 3, pp. 977–988.
[12] A. Kučera, Measure, Π01-classes and complete extensions of PA, Recursion Theory

Week (Oberwolfach, 1984), Lecture Notes in Mathematics, vol. 1141, Springer, Berlin, 1985,
pp. 245–259.
[13] M. Kumabe, A fixed point free minimal degree, unpublished, 1996.
[14] M. Kumabe and A. E. M. Lewis, A fixed-point-free minimal degree. Journal of the

London Mathematical Society (2), vol. 80 (2009), no. 3, pp. 785–797.
[15] S. A. Kurtz, Randomness and genericity in the degrees of unsolvability, Ph.D. thesis,

University of Illinois at Urbana-Champaign; ProQuest LLC, Ann Arbor, MI, 1981.
[16] G. E. Sacks, Some open questions in recursion theory, Recursion Theory Week

(H.-D. Ebbinghaus, G. H. Müller, and G. E. Sacks, editors), Lecture Notes in Mathematics,
vol. 1141, Springer, Berlin, Heidelberg, 1985, pp. 333–342.

DEPARTMENT OFMATHEMATICS
UNIVERSITY OF HAWAI‘I AT MĀNOA
HONOLULU, HI 96822, USA

E-mail: khan@math.hawaii.edu

DEPARTMENT OFMATHEMATICS
UNIVERSITY OFWISCONSIN
MADISON, WI 53706-1388, USA

E-mail: jmiller@math.wisc.edu

https://doi.org/10.1017/bsl.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.12

