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In this paper, a vortex moment map (VMM) method is proposed to predict the
pitching moment on a body from the vorticity field. VMM is designed to identify the
moment contribution of each given vortex in the flow field. Implementing this VMM
approach in starting flows of a NACAOQOO12 airfoil, it is found that, due to the rolling
up of leading-edge vortices (LEVs) and trailing-edge vortices (TEVs), the unsteady
nose-down moment about the quarter chord is higher than the steady-state value. The
time variation of the unsteady moment is closely related to the LEVs and TEVs near
the body and the VMM gives an intuitive understanding of how each part of the
vorticity field contributes to the pitching moment on the body.
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1. Introduction

An understanding of the dynamic variation of pitching moment is key to analysing a
range of dynamic problems, including buffeting of long-span suspension bridges (Zhao
et al. 2016), the phenomenon of stall flutter on helicopters (Ham & Maurice 1966)
and wind turbines (Hansen 2007) as well as flapping flight (Krashanitsa et al. 2009),
particularly when the wings or lifting sections are very flexible in torsion. In these
cases, which involve either bluff bodies or leading-edge separation, the unsteady effect
of the pitching moment can play a very important role in the stability and dynamic
response of the body when coupled to the effects of structural compliance or rigid-
body dynamics (Ham & Maurice 1966). Therefore, there is a very practical interest
in calculating the unsteady pitching moment on a body, especially in separated flows.

Analytical methods are only possible in limited circumstance for some steady and
unsteady flows, viscosity being ignored, and are not possible for separated flows. A
detailed knowledge of the entire vorticity field is always required (Batchelor 1967).
There has been more success with analytical-numerical coupling methods adopting
unsteady thin airfoil theory corrected by additional vortices (Ramesh et al. 2014; Li &
Wu 2015, 2016; Fernandez-Feria & Alaminos-Quesada 2018) or an unsteady Blasius
equation (Xia & Mohseni 2017). Advances in experimental techniques have led to
accurate measurements on fluid dynamic loads on lifting surfaces (Devoria, Carr &

1 Email address for correspondence: Xiaowei.zhao@warwick.ac.uk


https://orcid.org/0000-0002-9296-9390
https://orcid.org/0000-0002-5647-5289
https://orcid.org/0000-0001-6270-145X
https://orcid.org/0000-0002-1182-4502
mailto:Xiaowei.zhao@warwick.ac.uk
https://doi.org/10.1017/jfm.2020.145

https://doi.org/10.1017/jfm.2020.145 Published online by Cambridge University Press

891 A13-2 J. Li, Y. Wang, M. Graham and X. Zhao

Ringuette 2014; Ramesh et al. 2014; Mancini et al. 2015). However, direct load
measurements are complicated by a number of issues. At low Reynolds numbers, the
fluid dynamic loads tend to be very small and are subject to significant measurement
errors (DeVoria et al. 2014). Moreover, in unsteady cases the measurement can be
significantly contaminated by resonance of the test piece with structural compliance
in the force balance, due to the need to measure the strain induced by the small
fluid loads. Meanwhile, the velocity field data from unsteady flow experiments are
readily available due to the development of particle image velocimetry (PIV) as a
non-intrusive flow field measurement technique. Attempts to circumvent the direct
measurement of loads gave rise to force and moment methods from the velocity field,
including a vortical impulse integration (Wu 1981; Graham, Pitt Ford & Babinsky
2017) and an auxiliary potential-based method (Howe 1995; Li & Wu 2018). But the
typical method in computational fluid dynamics (CFD) to obtain fluid dynamic loads
from an integration of computed surface pressures and skin friction is very difficult
to apply to unsteady PIV data due to the difficulty of simultaneously resolving the
entire boundary layer to a sufficient resolution near the solid surface (DeVoria et al.
2014).

Methods relating flow structures to fluid dynamic loads have seen many develop-
ments since the pioneering work of Polhamus (1966), who attributed the high lift
production in a delta wing to the stabilized leading-edge vortex (LEV) by the
axial flow effect. Qualitatively, the unsteady LEV has been shown to be primarily
responsible for the large transient lift generation in flapping flight (Ellington et al
1996; Pitt Ford & Babinsky 2013), whereas the roll-up of a trailing-edge vortex
(TEV) has been shown to reduce the lift production (Dickinson & Gotz 1993). More
recently, Eldredge & Jones (2019) and Chiereghin, Cleaver & Gursul (2019) explored
the relevance between generation of unsteady forces and flow structures. Other works
quantitatively derived formulae relating fluid dynamic forces to either the velocity
field and its spatial/temporal derivatives (Lin & Rockwell 1996; Noca 1996; Noca,
Shiels & Jeon 1997; Zhu, Bearman & Graham 2002; Wu, Lu & Zhuang 2007) or the
velocity and vorticity fields (Howe 1995). Furthermore, vortex force maps (VFMs)
were constructed (Li & Wu 2018) to identify the contributions of force from each
given vortex in the flow field. However, the relationship between pitching moment
and flow structures has not been as fully explored as the lift or drag forces.

This work derives the VMM method with the help of the hypothetical potential
suggested by Howe (1995) as an extension of the VFM method. The VMMs, which
ensure vortices far away from the body have negligible effect on the body moment,
are built to identify the moment contribution of each given vortex. To demonstrate
its applications, the proposed vortex moment method is used to study impulsively
started flows around a NACAOQO12 airfoil, where the added mass effect is zero at all
times except the initial moment. CFD is used here to provide the flow field data as
input to the VMM method and provides moment results as validation of the proposed
method. The time-averaged solutions of the moment obtained by CFD are compared
with experimental results by Ohtake, Nakae & Motohashi (2007) and Rainbird (2016).
The VMMs are used to provide a better understanding of the relationship between the
unsteady moment oscillation and the vortical structure in the flow field.

In §2, the derivation of the VMM approach is presented. Then, in §3, we will
demonstrate the analyses of VMM for a NACAO0012 airfoil. Section 4 is devoted to
the application of the VMM approach to unsteady starting flows around a NACA0012
airfoil at different Reynolds numbers and angles of attack (AoAs). The theoretical
results of force variation with time are verified against CFD results. Lastly, concluding
remarks are given in § 5.
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2. Vortex moment expression for incompressible viscous flows

Consider two-dimensional unsteady viscous flows of constant density p and
viscosity p around a solid body (e.g. a general airfoil) of volume £23, bounded
by a closed curve /3. The control volume §2 is bounded by I/, at infinity. In the
body-fixed frame (x, y), the free-stream velocity is V., incident at an angle « to
the body axis. At any instant, the velocity field of the resulting flow is U = (u, v),
and the vorticity w, = (dv/dx) — (du/dy). In a previous work, the two-dimensional
VFM method was derived for general airfoils (Li & Wu 2018). It was shown that
the instantaneous force F;, on a two-dimensional body in the kth-direction can be

expressed as
Fk:p// A -Uw,dS2, (2.1)
o)

where the vortex force vector Ay = (d¢y/dy, —d¢;/dx) is a function of a hypothetical
potential ¢, defined as the velocity potential induced by unit incident velocity of ideal
flow in the kth-direction. The vortex force vector is normalized by the free-stream
velocity according to its definition and it is a non-dimensional vector coefficient
introduced here to calculate the aerodynamic force when the real flow velocity and
vorticity are given. It is dependent only on the geometry of the body and not the
flow field, which allows for the construction of a flow-independent VFM for a given
body.

For the pitching moment M, acting on the body at point x,, we can assume a
similar form of expression

M, = pt // F,-Uv.dg. 2.2)
2

Here, ¢ is the characteristic length of the body and the moment is counterclockwise
positive (a positive value means a nose-down pitching moment for flow coming from
the left). Obtaining the VMM vector F, will allow a similar map to be constructed
for the moment M, on the body. Although there is no simple analogue between the
vortex force vector A, and the VMM vector F,, luckily, we can derive the expression
for F, from the integral moment theory of Howe (1995), where the moment of a rigid
body due to free vortices in the body-fixed frame is

Mp:,o// Vi, (@x U)dS. 2.3)
2

Here, the hypothetical potential x, is defined as the velocity potential for
hypothetical fluid motion induced by the rotation of the body 2z at unit angular
velocity about an axis that passes through the reference point x, and is perpendicular
to the coordinate plane. Since we consider the application of the starting flow problem,
the added mass force is zero at any instant after the starting process. The skin friction
is also neglected here since the CFD results in the next section show its contribution
is very small, even at low Reynolds numbers. By comparing (2.3) with (2.2), the
VMM vector F, can be obtained as

1 /dx, Xy
== =, —— . 2.4
Fi e <8y ox 24)

The VMM vector F, is normalized by a unit angular velocity multiplied by the
characteristic length. It is independent of the flow field and only dependent on the
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geometry of the body. According to the definition of hypothetical potential yx,, it
satisfies the following Laplace equation and boundary conditions:

Vix, =0,
%

Sr=(x—x) xpen (63 > b, 2.5)

VX])ZO (x, y)_) o0,

where n is the normal vector pointing inward from the body surface, and the unit
vector along the moment axis is denoted as p. The hypothetical potential y, vanishes
at infinity and is made unique by requiring no circulation about any irreducible path.
Thus, a closed-form expression for the VMM method around a body is obtained.

The VMM vector F, facilitates the construction of a flow-independent VMM which
can be used to analyse the moment contribution of each given vortex in the flow field,
as will be shown in § 3. On the other hand, with the real flow velocity and vorticity
identified from the velocity field either from the mesh grids on CFD or PIV, the pre-
computed VMM vector can be used to calculate the total pitching moment acting on
the body. An example of extracting pitching moment from CFD field will be given in
§4.

3. Vortex moment map analysis for a NACAO0012 airfoil

In this section, a NACAOO012 airfoil is used to demonstrate how VMMs are built
and to identify the moment contribution effect of each given vortex according to its
position, strength and local velocity.

For the NACAOO12 airfoil with a chord length of ¢ aligned with the x-axis (x/c €
[0, 1]), the reference points x, = (x,,0) (p=1, 2,3 and 4) are chosen as the leading
edge (LE, x;/c=0), the quarter chord (x,/c=1/4, which is the aerodynamic centre for
a variety of airfoils including NACAQO12 airfoil), the half-chord (x3/c=1/2) and the
trailing edge (TE, x;/c =1), respectively. To obtain the hypothetical potential x, (p =
1,2, 3 and 4), the Laplace equations (2.5) with four different p are solved numerically
by using a vortex panel method as suggested by Katz & Plotkin (2001) in solving
the steady-state potential flow. This vortex panel method solves the Laplace equation
via a superposition of singularity elements on the body surface and enforces the non-
penetration boundary condition on the surface. For rotating bodies, the requirement
of no circulation about any irreducible path should also be imposed and a uniformly
distributed vorticity with strength —2 must be deployed to describe the solid-body
motion (Koumoutsakos, Leonard & Pepin 1994), so that the correct potential solution
may be reached. The method has been validated against the analytical solution for a
circular cylinder. The VMM vectors F, (p=1,2,3 and 4) are then computed by (2.4).

With the VMM vectors precomputed, the VMMs here are plotted in the two-
dimensional plane (x, y) and contain vortex moment lines that are locally parallel to
the VMM vector F,. Vortex moment lines, independent of specific flow conditions
(including Reynolds number), can be obtained through a streamline procedure, with
the velocity replaced by the vortex force factors. The moment contribution of any
individual vortex can be identified according to its circulation (sign and magnitude),
position and direction (the angle between the vortex force line and streamline at
the position of the vortex). Meanwhile, the norm of the VMM vector |F,| is also
presented in the map as contour lines to analyse the magnitude of the effect on the
moment.
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(b)

X X

FIGURE 1. Vortex moment maps for NACAQO12 airfoil with different reference points:
(@) moment map about the LE; () moment map about c¢/4; (¢) moment map about c/2;
(d) moment map about the TE. The lines with arrows are vortex moment lines locally
parallel to the vector F,, and the lines without arrows are contours of magnitude of F,.

Figure 1 shows the VMMs of a NACAQ0012 airfoil about different reference points,
located at LE, c¢/4, ¢/2 and TE along the chordline. On the maps, a negative strength
vortex provides a nose-up pitching moment if it moves so as to have a component of
motion in the direction of the vortex moment lines, and the reverse is true for positive
strength ones.

From the resulting VMMs, the following observations can be made:

(I) The magnitude of the VMM vectors (|F,|) decreases with the distance from the
body and vanishes at infinity, which means the fact that the vorticity far away
from the body should have a negligible effect on the pitching moment is satisfied
automatically.

(IT) The vortex moment lines point towards the reference points, which means a
vortex with negative strength moving away from the reference point contributes
to a nose-down pitching moment, and vice versa.

(III) For any reference points on the airfoil except for the LE and TE, the vortex
moment lines diverge from both the LE and TE, which means a vortex with
negative strength moving away from the LE/TE contributes to a nose-up pitching
moment, and vice versa.

4. Vortex moment for viscous flows around an impulsively started NACAO0012
airfoil
In this section, the VMM method is applied to an impulsively started flow around
the NACAOO12 airfoil. Using the velocity field provided by CFD and hence obtaining
the vorticity numerically, and with the VMM vector F, precomputed in § 3, the vortex
moments are given by (2.2). Here, all of the flow field is assumed to be laminar in the
CFD simulation. The theoretical moment results for pressure component M, will be
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compared to the moment obtained by the integration of the body surface pressure in
the CFD code. The skin friction moment results obtained from the CFD code will also
be presented to show its negligible effect. Here, the moment results will be represented
in the form of non-dimensional coefficients defined as

M
apVALY

For the NACAOO012 airfoil used here, the characteristic length ¢ = c¢. The time-
dependent moment will be displayed as a function of the non-dimensional time
T =1tVy/c.

In the CFD used in this work, the Navier—Stokes (N-S) equations in unsteady
laminar flow are solved numerically, with the options of a second-order upwind
SIMPLE (semi-implicit method for pressure-linked equations) pressure—velocity
coupling method. The flow is impulsively started at a constant speed from an initially
uniform flow. Note that laminar N-S solver is adopted for all of the Reynolds
numbers considered here, including the high Reynolds numbers (e.g. Re =1 x 10°),
where a laminar solver is used purely for the purpose of numerical comparison. The
computational domain is 31 x ¢ in the horizontal direction and 20 x ¢ in the vertical
direction. Three different mesh sizes (101 845, 180470 and 253 300 in total; 205, 430
and 550 on the body surface) are chosen for three different Reynolds numbers (50,
1000 and 1 x 10°). A minimum of 30 layers in the laminar boundary are used so that
there is enough resolution in the grid size normal to the wall and in the boundary
layer.

In order to validate the numerical method used here, selected numerical results for
time-averaged moment for NACA 0012 and NACA 0015 airfoils at a series of AoAs
from 0° up to 60° and for Re = 1-8 x 10* are compared with those from experiments
(Ohtake et al. 2007; Rainbird 2016) in figure 2. It is shown that the CFD results for
the NACAO0012 airfoil at o < 20° compare well with data from Ohtake et al. (2007).
The CFD results and experimental results (Rainbird 2016) for NACAO0015 at o > 20°
are also in good agreement. Moreover, the time-averaged moments for the NACA0012
airfoil at o > 20° given by CFD are slightly larger than those from experiments for
the NACAOQO15 airfoil.

In order to validate the numerical method used here, numerical results for the time-
averaged moment for NACA airfoils at Re = 1-8 x 10* are compared with those
from experiments. The experimental data are collected from Ohtake et al. (2007) for
0° <a < 20° and Rainbird (2016) for 20° < o < 60°. The former uses the NACA0012
airfoil while the latter uses the NACAOQ015 airfoil. We could not find the experimental
data for the NACAOO012 airfoil with o > 20° at such low Reynolds numbers, thus
experimental data for the NACAOQO15 airfoil are used instead for the region of o > 20°
since both airfoils have similar aerodynamic characteristics. Good agreement between
numerical and experimental results are observed in figure 2. We would like to point
out that the time-averaged moments for the NACAO0012 airfoil given by CFD are
slightly larger than those for the NACAQO015 airfoil (from both CFD and experiments)
as shown in figure 2 (i.e. when o > 20°). This is due to the slight decrease in the
thickness of the airfoil.

“.1)

M

4.1. Vortex moment about different reference points

Applying the VMM method to the NACAOO12 airfoil, we find good comparison
between the time-dependent moment obtained by the VMM method and CFD about
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Ohtake et al. (2007) NACA0012 Re = 1 x 10*
----------- Ohtake et al. (2007) NACA0012 Re = 5 x 10*
X CFD NACA0012 Re = 1 x 10*
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FIGURE 2. Comparison of numerical results for time-averaged moments of NACA airfoils
at different angles of attack with Ohtake et al.’s (2007) experimental data for NACA0012
at 0° <« < 20°, and with Rainbird’s (2016) experimental results for the NACAQO15 airfoil
at 20° <« < 60°.

Re=1x 10° a =60° — CFD

Moment coefficient

FIGURE 3. Comparison between the vortex moment method and CFD for time-dependent
moment coefficients for the NACAO0012 airfoil about different reference points (LE, c/4,
c/2 and TE) at Re=1 x 10°.

different reference points: LE, c¢/4, ¢/2 and TE at Re =1 x 10%, as shown in figure 3.
For the CFD results, the moment around any reference point (x,, 0) can be obtained
by

Cum, = Ci,s + Cp (x,/c — 1/4) cosa + Cp(x,/c — 1/4) sina. (4.2)

Here, C;, Cp and o are the lift coefficient, the drag coefficient and the AoA,
respectively. As mentioned above, there is no direct analogy between the VMM and
the VFM, but according to (4.2), VMMs about different reference points are related
by a superposition with the appropriate VFMs.

It is seen from figure 3 that the pitching moments at the LE and at c¢/4 are
positive (nose-down) for the whole time period herein examined (0 < t < 15), while
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FIGURE 4. Comparison between vortex moment method and CFD for time-dependent
moment coefficients for NACAQO12 at different angles of attack and for different Reynolds
numbers at Re =1 x 10°.

the pitching moment at the TE is always negative (nose-up). The average value of the
pitching moment at ¢/4 is higher than its steady-state value (0.39) shown in figure 2.
This increment in the nose-down moment, as well as the oscillation of the unsteady
pitching moment, is closely related to the alternate shedding of the LEVs and TEVs,
which will be discussed in detail in §4.3.

4.2. Vortex moment at different AoAs and for different Reynolds numbers

Figure 4 shows a good comparison between the VMM and CFD moment about ¢/4 of
a NACAO0012 airfoil for o« =20° and o =60° at different Reynolds numbers (Re = 50,
1000 and 1 x 10%). The friction-induced moments are shown to be very small for all
Reynolds numbers presented here.

Figure 4(a,b) shows the effect of Reynolds number on the pitching moment. For
a low Reynolds number (Re = 50), a positive (nose-down) moment decreases from
infinity to a relative stable value (0.5). For a large Reynolds number (Re =1 x 10°),
after the initial drop, the moment oscillates substantially with non-dimensional time
and its average value is significantly larger than 0.5. This is because the LEV and
TEV in a low Reynolds number case (see figure 4a for the vorticity distribution) are
much weaker than those in a high Reynolds number case (see figure 4b) and, are
constrained to relatively fixed regions above the airfoil.

The time-dependent pitching moments show a clear periodicity for Re=1000 due to
vortex shedding (see figure 4c,d). For this specific Reynolds number, with increasing
AoA, the average value and the oscillating amplitude of the moment increase while
the oscillating frequency deceases. This is consistent with the well-known result that
the Strouhal number decreases as the AoA increases due to the wake becoming
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200
120
40
—40
B 120
—200

FIGURE 5. Contours of the vortex moment coefficient per unit area (left) and the vorticity
(right) at typical instants: (a) Tt =0.5, (b) t=1.0, (¢) T =2.0, (d) T=3.5, with streamlines
drawn.

wider. In general, the AoA has a substantial impact on the pitching moment through
changing the vortex shedding pattern, which will be further explored in the next
subsection.

4.3. Moment contribution related to the vortex evolution

To illustrate how a quantitative understanding of the moment contribution and the
evolution of the vortical field can be gained from a VMM, the moment distribution
about the quarter chord is plotted in figure S(left-hand column) for three typical
instants (t = 0.5, 1, 2 and 3.5) in the first period of the starting flow of the
NACAO0012 airfoil at ¢ = 60° and Re = 1000, together with contour plots of the
vorticity (right-hand column). The streamlines are also shown in this figure. The
vorticity contours apparently show that the vorticity is concentrated in the boundary
layer vortex sheet as well as the LEVs and TEVs being shed from the body. The
boundary layer vortex sheet in the rear part of the airfoil (x/c > 1/4) contributes
significantly to the body moment, which can be attributed to the suction effect of the
vortex sheet producing a positive (nose-down) pitching moment on the upper surface
and a negative (nose-up) moment on the lower surface. For most snapshot instants,
these positive and negative moments offset each other. It is clear that both LEVs
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and TEVs consist of a positive moment contributing area (red) and a negative one
(blue). As the LEV grows and convects away from the body surface, the positive area
reduces and the negative area increases, resulting in a reduction on the net moment
contribution. This is likely due to the concentrated LEV (with a negative strength)
moving away from the LE, which has been shown to contribute a nose-up moment
in figure 1. Conversely, the TEV always contributes a net nose-down moment and it
can be seen that the positive contributing area is always far more significant than the
negative area.

It can thus be concluded that, in the case of starting flow on a NACAO0012 airfoil
presented here, the increase of the moment is determined by the roll up of the TEV,
whereas the decrease is caused by the LEV and TEV moving away from the body.

5. Conclusion

The VMM method for viscous flow around an arbitrary two-dimensional body
has been generalized. The proposed VMM approach expresses the vortex moment
as a function of the vector product of a VMM vector and the local velocity. The
VMM vector can be easily obtained by solving a Laplace equation by a vortex panel
method. The VMM vector, a function of the position, is independent of the flow and
only dependent on the geometry of the body. Thus a VMM can be designed and
precomputed to help analyse the moment contribution effect of each given vortex
and, extract the moment from a flow field given by CFD or experimental data.

VMM analysis based on NACAQ0012 airfoil shows that a LEV moving away from
the reference point or a TEV moving towards the reference point contributes to a nose-
down pitching moment, and vice versa. Moreover, for any reference points located on
the airfoil except for the LE and TE, a LEV moving away from the edges or a TEV
moving towards the edges contributes to a nose-up pitching moment, and vice versa.

The proposed VMM method is insensitive to vortices far away from the body,
and reflects the fact that pressure loads on the airfoil are mainly due to near-body
vortices, in accordance with the Biot-Savart law. As a test case, the precomputed
VMM, together with the vortices obtained by CFD, has been used to predict the vortex
moment on an impulsively started NACAOO12 airfoil. The moments given by CFD
itself are used as validations. The time-averaged moments about the quarter chord of
the airfoil for a range of AoAs have been compared with experimental results given
by Ohtake et al. (2007) and Rainbird (2016). CFD has shown, as expected, that the
contribution from viscous forces to the pitching moment is negligible for a large range
of Reynolds numbers (Re > 50), which means the compact vortex moment expression
derived here for inviscid flows is eligible to deal with viscous flow problems and
the corresponding VMM can accurately reflect the total force contribution of the
vortices in the viscous flow field. It has been found that the unsteady nose-down
moment about the quarter chord is higher than the steady-state value. The increment
is mainly contributed by the roll up of LEVs and TEVs. By identifying the moment
contributions from LEVs and TEVs in starting flows around a NACAQO012 airfoil, we
have shown that a moment map could lead to an intuitive understanding of how each
part of the vorticity field contributes to the pitching moment on the body. It has been
found that both LEVs and TEVs consist of a positive moment contributing area and
a negative one. As a LEV grows and moves away from the body, its net contribution
of moment changes from positive to negative, while a TEV always contributes a net
positive moment. The time variation of the total moment is the overall effect of both
LEVs and TEVs.
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