
J. Fluid Mech. (2011), vol. 672, pp. 570–605. c© Cambridge University Press 2011

doi:10.1017/S0022112010006312

Lock-exchange gravity currents with a high
volume of release propagating over

a periodic array of obstacles

TALIA TOKYAY1, GEORGE CONSTANTINESCU1†
AND ECKART MEIBURG2

1Department of Civil and Environmental Engineering, IIHR–Hydroscience and Engineering,
The University of Iowa, Iowa City, IA 52242, USA

2Department of Mechanical Engineering, University of California at Santa Barbara,
Santa Barbara, CA 93106-5070, USA

(Received 15 March 2010; revised 11 October 2010; accepted 5 December 2010;

first published online 24 February 2011)

Large eddy simulations are employed to investigate the structure and evolution
of a bottom-propagating compositional gravity current in a rectangular horizontal
plane channel containing a series of identical large-scale obstacles (dunes and
square ribs) at the channel bottom. Simulation results show that below a certain
value of the additional drag force per unit streamwise length induced by the
bottom obstacles (low drag cases), the gravity current propagating over an array
of obstacles transitions to a regime where the average front velocity is close to
constant. Past its initial stages, the total kinetic energy, Ek , increases in time
proportional to t1/3, where t is the time since release. This behaviour is similar
to the slumping phase observed for currents propagating over a flat bed, with the
exception that in the latter case the temporal increase of Ek during the later stages
of the slumping phase is much faster (Ek ∼ t). Simulation results also show that
above certain value of the drag force per unit streamwise length induced by the
obstacles (high drag cases), the slumping phase can be very short. In this case,
similar to currents propagating in a porous medium, the current transitions to a
drag-dominated regime in which the front velocity decays proportionally to tβ , with
β = −0.28, once the discharge of lock fluid at the position of the lock gate becomes
close to constant in time.
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1. Introduction
Gravity currents occur widely in nature. The presence of density differences of only

a few per cent can be enough to induce a gravity current that travels over very long
distances. Predicting the evolution of turbulent gravity currents is of great interest
in many areas of geophysics and engineering, in particular due to their impact on
the environment (Fannelǿp 1994; Simpson 1997). For example, erosion by gravity
currents is one of the main causes for formation of submarine canyons on continental
slopes and plays a determinant role in transporting sediments from shallower to
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Lock-exchange gravity currents with a high volume of release 571

deeper regions in water environments (Meiburg & Kneller 2010). The propagation
of gravity currents is often accompanied by disastrous damage (e.g. powder-snow
avalanches in mountainous terrains).

The surface over which gravity currents propagate in the environment is often not
smooth. The presence of bedforms (e.g. dunes, ripples at the bottom of rivers and
oceans) and topographic bumps, of a vegetation layer, or of an array of obstacles leads
to an additional net drag force which slows down the gravity current with respect
to the case when it propagates over a smooth surface (Hatcher, Hogg & Woods
2000). For example, arrays of obstacles are often used as protective measures on hilly
terrains and on the skirts of mountains to stop or slow down gravity currents in the
form of powder-snow avalanches (Hopfinger 1983). Even if they do not arrest the
flow, the retarding obstacles reduce the impact of the avalanche on buildings situated
downstream of the obstacles. The presence of an array of obstacles that play the role
of roughness elements can slow down the gravity current and substantially modify its
capacity to entrain sediment with respect to the case of a current propagating over a
flat surface.

The effects of obstacles on the flow within a turbulent bottom-propagating gravity
current are, in many regards, similar to those observed for turbulent constant-density
flows propagating over rough surfaces (Jimenez 2004). In both cases, the presence
of large-scale bedforms or obstacles at the channel bottom provides an additional
mechanism for energy dissipation. In the case of constant density flows, the effects
of the presence of arrays of obstacles of various shapes or bedforms at the bottom
of a channel are fairly well understood (e.g. Djenidi, Elavaransan & Antonia 1999;
Ikeda & Durbin 2002; Leonardi et al. 2003; de Angelis, Lombardy & Banerjee 1997).
Some of these numerical and experimental studies provide a detailed discussion of
the effects of the spacing, shape and size of the roughness elements on the mean flow
and turbulence structure in straight horizontal channels.

The case of a gravity current propagating into a straight channel with a flat
horizontal bed has also received a significant amount of attention, especially
for gravity currents in lock-exchange configurations. Numerous experimental (e.g.
Huppert & Simpson 1980; Hallworth et al. 1996; Kneller, Bennett & McCaffrey
1999; Shin, Dalziel & Linden 2004) and numerical (e.g. Härtel, Meiburg & Necker
2000; Necker et al. 2005; Cantero et al. 2007; Hallez & Magnaudet 2008, 2009; Ooi,
Constantinescu & Weber 2009) studies were conducted to understand the structure of
the current and to measure the time variation of the front velocity during the different
phases of the propagation of the current and other quantities that characterize the
evolution of the current.

Another category of relevant studies deals with the interaction between gravity
currents and isolated surface-mounted obstacles or ridges. Armi (1986) proposed a
comprehensive theoretical framework for the study of two-layer flows interacting
with an isolated bottom-mounted obstacle characterized by a long lee side and a
smooth variation in the surface slope. By parametrizing the flows in terms of the
internal Froude number for each layer, Armi (1986) investigated the conditions for
which the subcritical two-layer flow ahead of the obstacle becomes supercritical past
the crest of the obstacle inside the bottom layer in which the higher density flow is
strongly accelerated. His study also discussed the physics of the transition of the flow
inside the bottom layer to subcritical conditions at larger distances from the obstacle.
Experiments (e.g. Pawlak & Armi 2000) have shown that the increased shear between
the two layers induces the generation of large Kelvin–Helmholtz (KH) interfacial
vortices on the leeward side of the obstacle. This results in the formation of an
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intermediate layer of mixed fluid downstream of the crest of the obstacle. Pawlak &
Armi (2000) provided a detailed description of the structure and development of the
mixing layer that eventually leads to the formation of a steady downslope current of
mixed fluid. Analytical models, based on the shallow flow equations that take into
account the turbulent mixing between the layers, have been proposed to predict the
streamwise variation of the flow and depth of the intermediate mixing layer region
(e.g. Liapidevskii 2004).

The case considered in the present study is in many regards different. The main
difference is that, as the front reaches the next obstacle in the series, a backward-
propagating hydraulic jump is generated. The quasi-steady structure of the three-layer
flow observed at large distances behind the front is, to a large degree, determined
by the passage of the backward-propagating jumps. As the rib and dune obstacles
considered in the present study do not have a long lee side that smoothly connects
the top/crest with the lower part of the bottom, the development of the mixing layer
is expected to be different. Also, for the higher-rank obstacles, the flow within the
bottom layer is far from homogeneous. Still, as the present results will show, some of
the fundamental physics observed in the aforementioned studies of flow past isolated
obstacles is also present in the case of a current propagating past an array of ribs or
dunes. The most important aspect is that if the incoming flow conditions and obstacle
dimensions are such that the bottom current transitions to the supercritical regime
past the crest of the obstacle, an intermediate region of strongly mixed fluid develops
downstream of the crest/top of the obstacle that was overtaken by the front of the
current. The mixing in this region is driven by the strong acceleration of the fluid
within the bottom higher-density layer, which results in the formation of KH vortices
at the bottom interface of the layer of mixed fluid. In the classification proposed by
Liapidevskii (2004), this case corresponds to the scenario where the flow within the
bottom layer resembles a surface-jet flow developing on the lee side of the obstacle.
Results of our study will show that a strong jet-like flow develops past the top of the
obstacles.

Several studies (e.g. Rottman et al. 1985; Lane-Serff, Beal & Hadfield 1995)
proposed analytical models based on shallow water theory to determine the fraction
of the gravity current flow that is convected over an isolated obstacle, the speed of
the reflected jump and the depth of the reflected flow. A similar model that also
estimates the height and the speed of the current downstream of the surface-mounted
obstacle was proposed by Gonzalez-Juez & Meiburg (2009). Gonzalez-Juez, Meiburg
& Constantinescu (2009) and Gonzalez-Juez et al. (2010) used results from highly
resolved large eddy simulation (LES) to study changes in the structure of the gravity
current as it interacts with isolated obstacles mounted on a flat bed surface or
situated at a small distance from the flat bed (e.g. pipelines). These studies provided
quantitative insight into the physical mechanisms generating the drag forces on the
obstacle during the different stages of the interaction between the current and the
obstacle.

The case of a gravity current propagating over a bed containing an array of
large-scale roughness elements has received much less attention. Hopfinger (1983)
and Johanneson et al. (1996) provided a discussion of dilute powder-snow avalanches
and their interaction with an array of retarding mounds. However, to our knowledge,
no experimental studies have been conducted to date that aim at unraveling the
fundamental physics of bottom-propagating gravity currents over arrays of large-scale
obstacles in an unstratified environment. Some indirect knowledge is available from
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experimental studies of lock-exchange gravity currents propagating in a porous
medium in a horizontal bed channel (e.g. Hatcher et al. 2000; Tanino, Nepf & Kulis
2005). All these experimental studies were conducted with arrays of bed-mounted
vertical cylinders occupying the whole depth of the channel.

Hatcher et al. (2000) developed a theoretical model for gravity currents propagating
into a porous medium of uniform porosity in which the presence of the obstacles
is modelled by a uniform drag force proportional to the square of the velocity and
inversely proportional to the mean length scale of the obstacle. The model is based on
depth-averaged single-layer shallow-water theory and considers the case of a gravity
current propagating into an extensive region containing obstacles. The similarity
solutions obtained by Hatcher et al. (2000) described the motions of gravity currents
following finite volume and continuous releases of heavier lock fluid. In particular,
they found that for finite (constant) volume instantaneous releases, an intermediate
buoyancy-turbulent drag flow regime may be present in between the buoyancy–inertia
and viscous–buoyancy self-similar regimes. In this intermediate flow regime, the main
forces that drive the evolution of the current are the turbulent drag and the buoyancy
forces. Hatcher et al. (2000) found that during the turbulent drag-dominated regime,
the front velocity, Uf , is proportional to t−1/2 rather than t−1/3, as is the case for the
buoyancy–inertia regime. In the case of a continuous release with a total volume of
lock fluid that increases linearly with time, the model predicts that Uf ∼ t−1/4 over
the drag-dominated regime.

Tanino et al. (2005) performed an experimental study of gravity currents in lock
exchange configurations with a large volume of release. The currents propagated
through a random array of rigid bottom-mounted vertical cylinders. They found
that the current transitions from the constant velocity slumping phase to a turbulent
drag-dominated regime in which the front velocity decreases with time. A theoretical
model was developed to predict the temporal variation of the front velocity during
the drag-dominated regime in which the shape of the interface is triangular.

In the above cases, the drag force induced by the cylinders acts over the whole
height of the gravity current. In contrast, in the case considered in the present
study, in which the gravity currents propagate over roughness elements with a
maximum height that is significantly lower than that of the current, the additional
drag force induced by the obstacles acts only over the lower part of the bottom-
propagating current. This may result in important differences between the two
cases in terms of the flow and turbulence structure within the body of the gravity
current, the shape of the interface, the temporal evolution of the front velocity,
etc.

The numerical study of Ozgokmen et al. (2004) was the first to consider the
propagation of a gravity current over a rough bottom. They employed non-hydrostatic
simulations to explore the influence of sloping, rough seafloor topographies on the
entrainment rates of overflow currents propagating in an unstratified environment.
Their focus was on potentially self-similar seafloor features with length scales
O(1 m–100 km), which are modelled by sinusoidal perturbations. The simulations were
conducted at field scale conditions with constant but unequal viscosities/diffusivities in
the horizontal and vertical directions. This line of investigation was further extended
by Ozgomen & Fisher (2008) for the case of a saline current propagating into a
temperature-stratified ambient fluid. The study focused on the temporal changes in
the structure, entrainment and the front propagation speed of the current as a function
of the bottom roughness once the nose starts lifting from the bottom and the current
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Top – no slip Initial gate position

Bottom – no slip
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Figure 1. (Colour online available at journals.cambridge.org/flm) Sketch of a full-depth
lock-exchange flow. The gate is positioned far from the extremities of the channel (x0/H � 1).
The top and bottom no-slip walls are horizontal. Also shown is the shape of the bed surface
used in the simulations with dunes.

propagates at the level of neutral buoyancy. The authors presented results on the
front velocity for different levels of stratification of the ambient fluid and amplitudes
of the seafloor sinusoidal bumps. Furthermore, the authors evaluated the drag exerted
on the overflow current by the bottom roughness, drawing attention to the role of
separation and the resulting form drag. In contrast, the present investigation addresses
the dynamics of gravity currents flowing over a non-sloping, smooth boundary with
a series of localized obstacles during the slumping and drag-dominated regimes.

In the present numerical study, we consider the case of compositional Boussinesq
currents. The case of lock-exchange currents with a full-depth of release is considered,
in which the height of the lock-gate opening, h, is equal to the channel height, H
(figure 1). The initial volume of release is large enough (R = h/x0 � 1) such that no
interactions occur between the forward- and backward-propagating currents and the
channel endwalls during the simulations. LES are conducted at Reynolds numbers
defined with the front velocity and the head height that are sufficiently high (>104)
for the flow behind the front to be strongly turbulent, at least during the slumping
phase (Ooi et al. 2009).

The bottom-propagating current advances over a flat horizontal bed or over an
array of identical two-dimensional (2-D) obstacles in the form of square ribs or dunes.
The 2-D dunes are representative of bedforms present at the bottom of rivers and
oceans while the 2-D ribs resemble the retarding devices used to slow down snow
avalanches. At a more fundamental level, the main difference between the two types of
obstacles is the degree of bluntness of the obstacle, given by the degree of inclination
of its upslope face with the bed. In the case of ribs, the upslope face is perpendicular
to the channel bed. This increases the form drag as compared with cases when the
change in elevation between the lowest and highest levels of the obstacle is gradual
(e.g. dunes). In all the simulations, the mean (background) slope of the bottom surface
is equal to zero and the height of the obstacles (D = 0.15H ) is less than the height of
the gravity current, but sufficiently high for the form drag to be much larger than the
friction drag. The goal of the present investigation is to study the effects of the shape
and spacing of the large-scale roughness elements on the evolution and structure
of a lock-exchange compositional current propagating over a horizontal bed and to
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compare with the widely studied case of a current propagating over a flat smooth
bed.

Results from three-dimensional (3-D) LES capable of capturing the large-scale
flow instabilities and dynamics of the turbulent structures are used to clarify the flow
physics and answer several important questions related to the propagation of gravity
currents over a rough bed. The first question is whether, similar to the case of a
current propagating over a smooth flat surface, a slumping phase is present in which
the front velocity is constant. If so, how does the front velocity vary with the shape of
the obstacle and with the Reynolds number? How do the obstacles affect the structure
of the flow in the head and tail regions during the slumping phase? How is the energy
balance affected as compared with the case of a current propagating over a smooth
surface? Are scale effects important between the Reynolds numbers at which most
laboratory experiments are conducted and Reynolds numbers that are closer to field
conditions? What is the effect of the obstacles on the total drag force acting on the
current and how is the degree of bluntness of the obstacles affecting the total drag
force? How does the presence of the obstacles modify mixing and entrainment with
respect to the case of a horizontal smooth bed?

The main effect of the bottom-mounted obstacles on the flow is to increase the drag
force acting on the current. On the basis of studies of gravity currents propagating
in a porous medium, we know that if the drag force is large enough, the gravity
current will transition from the slumping phase to a turbulent drag-dominated regime
in which the front velocity decays with time. Supposing that the spatial distribution
of the drag force acting on the current is of secondary importance, one expects that
currents propagating over bottom-mounted obstacles will reach a similar regime. The
transition to the drag-dominated regime is expected to depend primarily on the total
drag force per unit streamwise length. If such a regime is reached for gravity currents
propagating over bottom-mounted obstacles, one important question is how do the
front velocity and kinetic energy vary with time? Do the theoretical models developed
for gravity currents propagating in a porous medium still apply? Is the structure of
a gravity current propagating over a rough bed different during the slumping phase
and the drag-dominated regime?

The numerical method, boundary conditions and the matrix of the LES are
discussed in § 2. Section 3 analyses the temporal variation of the front velocity and the
different regimes observed in the evolution of currents propagating over a rough bed
as a function of the shape and wavelength of the obstacles and the Reynolds number.
Section 4 focuses on analysing the flow structure of gravity currents propagating
over obstacles for cases where the total drag force per unit streamwise length is
relatively low, such that the current propagates with constant mean front velocity for
a relatively long time period. These cases allow a direct comparison with the case of
a gravity current propagating over a smooth flat surface during the slumping phase.
The section also discusses the flow structure of a gravity current propagating over
densely spaced ribs, after the transition to the drag-dominated regime has ended.
Section 5 discusses the energy budget and reveals different regimes for the variation
of the total kinetic energy with time or with the front position for gravity currents
propagating over obstacles. Section 6 discusses how the presence of obstacles in the
form of ribs and dunes changes the spatial distribution of the local dissipation rate
with respect to the flat-bed case for lock-exchange flows, in which the slumping phase
lasts for a relatively large time. Section 7 discusses the temporal evolution of the drag
forces. Mixing and entrainment are analysed in § 8. Section 9 summarizes the main
findings and conclusions.
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2. Description of numerical model and simulations
The filtered Navier–Stokes equations and the advection–diffusion equation for the

concentration C̄ are made dimensionless using the channel depth, H , and the buoyancy
velocity, ub =

√
g′H , (g′ = g(ρmax − ρmin)/ρmax , where ρmax and ρmin are, respectively,

the maximum and minimum initial densities in the domain, and g is the gravitational
acceleration):

∂ui

∂xi

= 0, (2.1)

∂ui

∂t
+

∂(uiuk)

∂xk

= − ∂p

∂xi

+
∂

∂xk

[(
1

Re
+ νSGS

)(
∂ui

∂xk

+
∂uk

∂xi

)]
− Cδi2, (2.2)

∂C

∂t
+

∂(Cuk)

∂xk

=
∂

∂xk

((
1

ReSc
+ αSGS

)
∂C

∂xk

)
, (2.3)

where p and ui are respectively the dimensionless pressure and the Cartesian velocity
component in the i-direction. The dimensionless concentration is defined as C = (C̄ −
C̄min)/(C̄max − C̄min), where C̄max and C̄min are the maximum and minimum initial
concentrations in the domain. Here C is linearly related to the density ρ. The
coordinates in the three directions are denoted either (x1, x2, x3) in index notation,
or (x, y, z). The vertical direction is y (i = 2, in index notation). The time scale is
t0 = H/ub.

The non-dimensional equations contain two flow parameters. The Reynolds
number, Re = ubH/ν, is the ratio between inertial and viscous forces. The Schmidt
number, Sc, is the ratio of the molecular viscosity, ν, to the molecular diffusivity, κ .
The SGS viscosity (νSGS) and SGS diffusivity (αSGS) in (2.2) and (2.3) are calculated
using a dynamic procedure (Pierce & Moin 2001). No assumptions are needed for the
value of the turbulent Schmidt number, as the dynamic procedure directly estimates
the value of the SGS diffusivity based on the resolved velocity and concentration
fields. The governing equations are integrated through the viscous sublayer.

The finite-volume LES solver (Pierce & Moin 2001) solves the conservative form
of the Navier–Stokes equations on non-uniform Cartesian meshes. A semi-implicit
iterative method that employs a staggered conservative space–time discretization is
used to advance the equations in time, while ensuring second-order accuracy in both
space and time. To ensure that the continuity (2.1) is satisfied, a Poisson equation
is solved for the pressure using a multigrid approach. The algorithm discretely
conserves energy (Mahesh, Constantinescu & Moin 2004), which ensures robustness
at high Reynolds numbers without using dissipative schemes to discretize the Navier–
Stokes equations. All operators are discretized using central discretizations, except
the convective term in the advection–diffusion equation solved for the dimensionless
concentration, for which the quadratic upwind interpolation for convective kinematics
(QUICK) scheme is used.

Validation of the incompressible flow solver for constant density turbulent flows
and for stratified flows (e.g. intrusive gravity currents and gravity currents propagating
over a flat smooth bed) has been discussed by Pierce & Moin (2001, 2004), Chang,
Constantinescu & Park (2006, 2007), Ooi, Constantinescu & Weber (2007a,b) and
Ooi et al. (2009). Gonzalez-Juez et al. (2009) successfully reproduced the measured
(Ermanyuk & Gavrilov 2005a,b) time-varying drag and lift coefficients of gravity
current flows over circular and square cylinders separated by a gap from the bottom
wall.
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Case Re Obstacle D/H λ/H Position of the obstacles

LR-F 47 800 – – – –
LR-D15 47 800 Dune 0.15 3 x/H = 5, 8, 11, 14, 17
LR-R15 47 800 Rib 0.15 3 x/H = 5, 8, 11, 14, 17
HR-F 1 000 000 – – – –
HR-D15 1 000 000 Dune 0.15 3 x/H = 5, 8, 11, 14, 17
HR-R15 1 000 000 Rib 0.15 3 x/H = 5, 8, 11, 14, 17
LR-R15-HD 47 800 Rib 0.15 1 x/H = 5, 6, . . . , 26, 27

Table 1. Main parameters of the simulations.

The matrix of the simulation parameters is presented in table 1. The LES conducted
at Re =47 800 are denoted LR. The LES conducted at Re =106 are denoted HR.
The presence of a flat bed, 2-D dunes or 2-D ribs is indicated by letter F, D or
R in the notation, respectively. The non-dimensional height of the ribs or dunes,
D/H × 100, is indicated by a number. For example, LR-R15 refers to the simulation
of the flow past an array of 2-D ribs of height 0.15H conducted at Re = 47 800. With
the exception of case LR-R15-HD, the wavelength λ between successive obstacles is
equal to 3H in all the simulations.

The initial lock-gate position is at x/H = 0. The obstacles are positioned on the
bottom surface in the region with x/H > 0 and on the top surface in the region
with x/H < 0. The centre of each rib is situated at the location of the crest of the
corresponding dune. Their streamwise positions along the top and bottom walls are
given in table 1. The channel geometry and boundary conditions are such that the
propagation of the heavier and lighter Boussinesq currents is close to anti-symmetrical.
Though the initial random perturbations induce differences in the eddies developing
on the two sides of the lock gate (see also discussion in Bonometti, Balachandar
& Magnaudet 2008), the large-scale features observed in the distributions of the
relevant variables (e.g. velocity and dissipation rate) at a given time are sufficiently
close to allow focusing the discussion of the results on the evolution of the heavier
(forward-propagating in figure 1) current.

The effect of the shape of the obstacles is studied by considering obstacles in the
form of square ribs and dunes, respectively (figure 1). In the base case, their height is
D = 0.15H and the wavelength is λ= 3H (λ/D =20). This spacing corresponds to the
k-type roughness regime (e.g. see Jimenez 2004) in which the equivalent sand roughness
is proportional to the dimension (height) of the roughness elements (obstacles). In the
case of k-type roughness, the heavier fluid flows past the crest of each obstacle and then
reattaches to the lower part of the bed before starting to interact with the next obstacle
in the series. This is the relevant regime for most practical applications in geosciences.
The shape of the dunes is taken from the experiment of Mierlo & de Ruiter (1988),
which focused on typical dunes observed in small- and medium-size rivers.

Scale effects are discussed based on comparisons of simulations with flat bed,
dunes and ribs conducted at Re = 47 800 and Re = 106. In the latter case, the
Reynolds number is sufficiently high for the current to approach the inviscid state.
The Reynolds number in the HR simulations is within the lower part of the range of
Reynolds numbers observed in the field (e.g. gravity currents in small rivers). A
comparison of simulations LR-R15 (λ= 3H ) and LR-R15-HD (λ= H ) allows one to
study the effect of increasing, by a factor of three, the drag force per unit streamwise
length on the evolution of the gravity current.
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The number of grid points was 4232 × 48 × 152 in the streamwise (domain length
L1 = 41H ), spanwise (domain width L3 = H ) and vertical (domain height L2 = H )
directions, respectively. Away from the walls, the grid spacing in the three directions
was 0.01H–0.02H . To resolve the viscous sublayer, the grid spacing in the vertical
direction was reduced to 0.002H near the top and bottom boundaries in the
simulations conducted at Re =47 800. The grid spacing was also reduced close to
the lateral and top surfaces of the ribs. A grid spacing of 0.002H in the wall-normal
direction corresponds to about one wall unit. This is sufficient to resolve the viscous
sublayer if the flow behind the front is assumed to be fully developed and, thus,
to avoid the use of wall functions. In the simulations conducted at Re = 106, the
grid spacing at the top and bottom boundaries was around 0.0007H in the wall-
normal direction. The grid spacing away from the walls was of the order of 100
non-dimensional wall units. This is similar to the one used in an LES of a gravity
current with a small volume of release conducted at Re = 106, which is part of the
study conducted by Ooi et al. (2009) using the same code. The 3-D LES of Ooi et al.
(2009) correctly predicted the change in the front speed with the Reynolds number
during the slumping phase and a front speed decrease proportional to tβ over the
buoyancy–inertia phase, with the constant β approaching the theoretical value of
−1/3 as the current gets close to the inviscid limit (Re ∼= 106).

No-slip boundary conditions were used for the velocity at the top and bottom
boundaries. Härtel et al. (2000), Necker et al. (2002, 2005), Cantero et al. (2007)
and Ooi et al. (2009) did not find a significant effect of the Schmidt number on the
solution if 1 <Sc < 1000. Simulations in the present study assumed Sc =600, which
corresponds to the saline diffusion in water. A zero normal gradient was imposed for
the concentration at the top, bottom and endwall boundaries. The flow was assumed
to be periodic in the spanwise direction. Thus, the present study considers only
gravity currents of large relative width, which are particularly relevant for geoscience
applications. The effect of the sidewalls was studied by Hallez & Magnaudet (2008).
The flow field was initialized with fluid at rest. A random disturbance was applied
on the concentration field in the lock-gate region to accelerate the growth of 3-D
instabilities. The time step was 0.001t0.

3. Front velocity
Previous experimental and numerical investigations (e.g. see Rottman & Simpson

1983; Shin et al. 2004; Ooi et al. 2009) showed that, after a short initial acceleration
phase, lock-exchange gravity currents propagating over a flat smooth surface reach a
regime in which the front velocity, Uf , is close to constant (slumping phase).

Figure 2 shows the temporal evolution of the front position xf /H for the heavier
current in the simulations conducted with a flat bed and with an array of obstacles
(D = 0.15H , λ= 3H ), at Re = 47 800 and Re = 106. The front position corresponds
to the nose of the current inferred from the spanwise-averaged concentration field
(C = 0.05).

As expected, in the flat-bed cases, after the end of the initial acceleration phase
(t/t0 = 3.5), the front trajectory can be well approximated by a line of constant slope,
until the end of the simulations. The non-dimensional front velocity, Ūf = Uf /ub,
during the slumping phase is 0.45 and 0.49 for cases LR-F and HR-F, respectively.
These values are in very good agreement with those inferred from experiments of
high-Reynolds-number currents propagating over a flat smooth bed (e.g. Keulegan
1957; Shin et al. 2004). For example, Keulegan (1957) found Ūf = 0.48 for currents
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Figure 2. Time variation of the non-dimensional position of the front, xf /H , as a function of
the non-dimensional time t/t0 in the low- (LR) and high- (HR) Reynolds-number simulations
with a flat bed and with obstacles (D = 0.15H and λ= 3H ). The front trajectories show that
a regime in which the mean front velocity is constant in time is reached in all simulations.
The solid grey line with squares shows the front trajectory for case LR-R15-HD in which xf

increases proportionally to tα (α = 0.72) in the later stages of the evolution of the current (see
also figure 3a).

with front Reynolds numbers (Ref =Uf (H/2)/ν) around 150 000. The front velocity
in the HR-F simulation, in which Ref = 248 000, is very close to the theoretical value
of 0.5 (half-depth solution) obtained by Benjamin (1968) for an energy-conserving
inviscid current.

The presence of ribs or dunes slows down the advancement of the front compared
with the flat-bed case. In figure 2, the front trajectories are very close until the front
approaches the first obstacle at x = 5H . The trajectories start diverging for t/t0 > 10.
Still, for t/t0 > 16, the mean slope of the trajectory can be considered, to a good
approximation, constant in the LR-R15 and LR-D15 simulations. This indicates that
under certain conditions (e.g. depending on the values of D/H and λ/H , the shape of
the obstacles) a slumping phase in which the front velocity is approximately constant
is also present for gravity currents propagating over a rough bed.

In the simulations with a rough bed, the slope of the front trajectory is subject to
larger temporal variations as compared with those observed in the simulations with a
smooth bed. This is because the front is decelerating as it approaches the crest of each
dune or the upstream face of each rib, due to the adverse pressure gradients induced
by the inclined upstream surface of the obstacle. The potential energy increases during
the time the head rises above the top of the obstacle, at the expense of the head
losing some of its kinetic energy. In the case of ribs, there is an additional increase
in the potential energy due to the splash of higher density fluid forming as a result
of the impact between the head of the current and a bluff obstacle. This is why
the slope of the front trajectory is subject to larger amplitude temporal variations
in the simulations involving obstacles with a high degree of bluntness (ribs). The
front velocity increases above the mean value during the time the head is projected
downwards, as it passes the crest of the dune or the top of the rib.

The mean values of Ūf estimated based on the mean slope of the front trajectory
(t/t0 > 20) in figure 2 are 0.34 and 0.4 for cases LR-R15 and LR-D15, respectively.
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An analysis of the simulation results shows that the mean value obtained from the
front trajectory is in very good agreement with estimates of the mean front velocity
based on the time it takes the front to advance between two successive obstacles. In
the latter case, present results show that, past the second obstacle, the mean front
velocity in between two successive obstacles is close to independent of the rank of the
obstacle in the series, and oscillates around the mean value inferred from the front
trajectory (the difference is less than 3 %). The mean front velocity in the LR-
D15 and LR-R15 simulations is, respectively, 12 % and 24 %, lower than the value
(Ūf = 0.45) computed for the flat-bed case. The additional form drag induced by
the presence of the obstacles is the main cause for the reduction of the mean value
of the front velocity during the slumping phase in cases LR-R15 and LR-D15 as
compared with case LR-F. For obstacles of identical heights, the form drag is larger
for obstacles with a higher degree of bluntness. The presence of a slumping phase is
dependent on the total drag per unit streamwise length acting on the current. Similar
simulations performed in our group with obstacles of height comparable or larger
than that of the incoming current (D > 0.3H , λ= 3H ) showed that the mean front
velocity in between two successive obstacles starts decaying with the rank of the
obstacles.

As opposed to the flat-bed simulations in which there is an increase of about
10 % in the front velocity between Re = 47 800 and Re =106, the mean front velocity
is much less sensitive to the Reynolds number in the simulations with obstacles
of height D = 0.15H and wavelength λ= 3H , regardless of the degree of bluntness
of the obstacles. The mean front velocity (Ūf = 0.4 for Re = 106 and Ūf =0.4 for
Re = 47 800) is nearly independent of the Reynolds number in the simulations with
dunes. In the simulations with ribs, a small increase in the front velocity is observed
between the LR-R15 (Ūf =0.34) and HR-R15 (Ūf =0.36) cases. Scale effects are
relatively minor in terms of the temporal evolution of the front position for gravity
currents propagating over a series of dunes or ribs. Thus, as opposed to the flat-bed
case, experiments conducted with Ref = Uf (H/2)/ν ∼= 10 000 (Re ∼= 50 000) should
be fairly representative of field conditions, at least as far as the front velocity is
concerned.

Next, the temporal variation of the front velocity in a case with more densely
spaced ribs with λ= H (LR-R15-HD) is analysed. The smaller spacing means that
the effect of the drag force on the current will be proportionally larger over the same
streamwise distance. The number of ribs on each side of the lock is equal to 22,
compared with only 5 in the LR-R15 case, and the channel is longer. The number of
mesh point in the streamwise direction was also increased to maintain the same flow
resolution as in the other simulations.

In the case of constant density flows, a d-type roughness regime (Jimenez 2004) is
expected to be observed for roughness elements with D/λ= 0.15 (case LR-R15-HD).
The d -type roughness regime is present when the shear layer forming at the top/crest
of an obstacle or bedform does not reattach to the lower part of the channel bottom
in between that obstacle and the next obstacle in the series. Present results show that
in the case of a gravity current flow, the head reattaches to the bottom of the channel
before reaching the next rib (e.g. at about 3D or 0.5λ upstream of the next rib in
case LR-R15-HD). Thus, in the case of gravity currents, the conditions considered
in case LR-R15-HD correspond to a k -type roughness regime (Jimenez 2004). The
larger drag force per unit length is expected to slow down the current with respect
to the LR-R15 simulation. However, two important questions are whether or not
the slumping phase will be present as the current propagates over the obstacles,
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Figure 3. (a) Time variation of the non-dimensional position of the front, xf /H , as a function
of the non-dimensional time, t/t0, in the LR-R15-HD simulation (D = 0.15H and λ= H )
plotted in the log–log scale. The dashed line shows a best fit of the form xf = ctα . Also shown

in (b) is the time variation of the flux of the lock fluid, Q/(ubH
2), at the position of the gate

(x/H = 0). The figure shows that a regime in which xf increases proportionally to tα (α =0.72)
is reached in case LR-R15-HD after Q becomes close to constant.

and whether for a gravity current with a large volume of release (R = h/x0 � 1) this
slumping phase will be followed by a turbulent-drag-dominated regime in which the
front velocity decays in time.

In case LR-R15-HD, the current transitions to the slumping phase (Ūf = 0.45 over
the region where α = 1 in figure 3a) before it starts interacting with the first rib in
the series (t ∼ 10t0). After the current overtakes the first few ribs, the front velocity
is close to 0.28ub, which is significantly smaller than the front velocity (Uf = 0.34ub)
computed during the slumping phase in case LR-R15. However, while propagating
over the ribs, the front velocity never reaches a regime where it is constant over
time. Rather, the time interval it takes the current to travel to the next rib in the
series starts increasing and the associated front velocity starts decaying with the
rank of the rib for t > 10t0. For example, at t = 50t0, Uf ∼ 0.22ub, while at t = 90t0,
Uf =0.19ub.

The log–log plot in figure 3(a) shows that, after the current overtakes the first
couple of ribs in the series (t > 20t0), xf (t) ∼ tα with α = 0.72. This value is close to
the value (α =0.75) given by the analytical model of Hatcher et al. (2000) for the
case of gravity currents with a volume of lock fluid that increases linearly with time.
This comparison is justified, as the discharge of the lock fluid at the gate position is
close to constant for t > 35t0 (figure 3b). This means that the increase of the volume
of lock fluid in the region with x/H > 0 is close to linear. The presence of a regime
in which xf (t) ∼ tα with α < 1 means that a drag-dominated (nonlinear) regime is
present in case LR-R15-HD. In contrast to the experiments of Tanino et al. (2005),
the shape of the interface away from the front is not linear. This is expected, as
the linear shape of the interface in the experiments of Tanino et al. (2005) is due to
the presence of uniformly distributed obstacles over the whole height of the channel,
which is not the case in our simulations. Assuming that the shape of the interface is
linear, the analytical model of Tanino et al. (2005) predicts α =0.67 for currents with
a high volume of release. However, as the shape of the interface is not linear in our
simulation, the comparison with the model of Tanino et al. (2005) is not appropriate.
We mention in passing that unpublished simulations conducted in our group of
lock-exchange currents, with a small volume of release propagating over a rough bed,
predicted the presence of a drag-dominated regime past the buoyancy–inertia phase
in which, as expected, Uf ∼ t−1/3. During the drag-dominated regime, the simulations

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

63
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010006312


582 T. Tokyay, G. Constantinescu and E. Meiburg

predicted Uf ∼ t−1/2, which agrees with the analytical model of Hatcher et al. (2000)
for the case of high-Reynolds-number currents forming due to a finite instantaneous
release of lock fluid.

4. Structure of the gravity current

4.1. Interaction between the head and the obstacles

The changes in the structure of the head and the dissipative wake regions as the
front propagates over the fourth rib are illustrated in figure 4(b–e) by means of
the concentration fields for the simulations in which the gravity current reaches a
slumping phase as it propagates over the obstacles. Several mechanisms are responsible
for the significant decay of the concentration in the head region in the simulation
with ribs with respect to the flat-bed case (e.g. compare figures 4a and 4b when
xf is close to 14H ). These mechanisms are related to the changes in the flow
structure behind the front induced by the interaction between the head and the
obstacles.

The height of the head before the current starts interacting with the ribs (figure 4b)
is about 2.5 times that of the obstacle. As the front impacts the upstream face of a
rib (figure 4c), the head is projected upwards and a backward-propagating hydraulic
jump forms. The position of the jump is visualized in figure (4c–e). The maximum
height reached by the splashed fluid is about 4 times the height of the obstacle. The
sudden change in the flow direction as a result of the impact creates strong turbulent
eddies. This is the first important mechanism that increases the mixing with the
surrounding lower-density ambient fluid at the front of the current. The fluid inside
the splash loses most of its streamwise momentum and, after it is convected over the
top of the rib, starts plunging downwards, at a low angle with the vertical. Part of this
plunging fluid is diverted in the upstream direction. As the heavier fluid originating
in the initial splash reattaches to the bed (figure 4d ), a patch of low-density ambient
fluid is trapped in between the downstream face of the rib and the higher-density
fluid moving towards the bed surface. The trapped lower-density fluid is pushed
upwards by the plunging fluid moving in the upstream direction and starts mixing
with it (figure 4d ). This is the second important mechanism that increases mixing and
reduces the mean concentration of the fluid in the head region. Both mechanisms are
similar to those observed for isolated ribs (e.g. see Gonzalez-Juez et al. 2009).

The heavier fluid convected over the obstacle changes direction gradually and
orients itself parallel to the flat part of the bed surface. During this time, a region
of highly accelerated and relatively high-density fluid (figure 4e) develops past the
downstream face of the rib. For the conditions considered in case LR-R15, the flow
in this region becomes supercritical for all the five ribs. This region, which we refer
to as the jet-like flow, has the form of a wall-attached jet after the current attaches to
the bed surface. The angle of the jet-like flow with the vertical diminishes gradually
as the jet-like flow strengthens and the size of the recirculation region downstream of
the rib increases. A hydraulic jump forms as the flow transitions from supercritical
in the upstream part of the jet-like flow to subcritical in the head region. Besides
increasing the mixing at the back of the head (figure 4e), the interaction of the jet-like
flow with the back of the head induces the formation of a strong intensified mixing
vortex (IMV). Such vortices were observed experimentally by Alexander & Morris
(1994) in the flow past an isolated ridge. These vortices are very dissipative due to the
small-scale turbulence induced by the hydraulic jump and entrained into their cores.
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Figure 4. Visualization of the temporal changes in the concentration field in a z = constant
plane as the gravity current overtakes the fourth rib in the LR-R15 simulation (b–e). Frame
(a) shows the concentration field in the flat-bed (LR-F) simulation when the front is close
to x/H = 14. Also shown in (f and g) are the distributions of the concentration and velocity
magnitude in the LR-D15 simulation, when the front is situated at the same position as in (e).
Frames (b–e) show the formation of the initial splash of the denser fluid as the front reaches
the upstream face of the rib, of the high-velocity jet-like flow and the intensified mixing vortex
after the front passes the obstacle. The grey arrows in (e–g) show the direction of the jet-like
flow. The dashed-line arrows in (c–e) show the position of the backward-propagating hydraulic
jump (HJ) originating at the fourth rib. Frame (g) visualizes the jet-like flow region in the
simulation with dunes.
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The axis of the IMV is initially situated at about 0.5H from the rib (figure 4e). The
vortex is pushed slowly away from the rib that induced its formation (from 0.5H to
about 1.0H ) until the front reaches the next rib. Thereafter, the position of the vortex
does not change in time.

The dynamics of the flow in the head region in the simulation with dunes has many
qualitative similarities with those observed in case LR-R15. As can be seen from the
comparison of the concentration distributions in figures 4(e) and 4(f ), the presence of
the jet-like flow (the velocity amplification within the jet-like flow is visualized figure 4g
for case LR-D15) and the formation of the IMV are common features of both cases.
The main difference is the absence of the splash of higher-density fluid during the
time the front propagates over the upslope face of the dune. A second reason for the
fact that the mixing at the head of the current is weaker in the simulation with dunes
is that the flow remains attached after the front overtakes the crest of the dune. Still,
as the nose plunges downwards, lower-density fluid situated in the vicinity of the lee
face is trapped beneath the nose and mixes with the higher-density fluid inside the
head.

The physics of the interaction between the head of the current and the obstacles
does not change much in case LR-R15-HD during the propagation of the current
in the drag-dominated regime, and hence we do not show an additional figure. Even
though the ribs are much more closely spaced, the distance between them is sufficient
for the heavier fluid to reattach well in front of the next rib and for the front to
recover its usual shape before it starts interacting with the next rib in the series.
The main difference is that the flow does not become supercritical within the jet-like
flow even for the ribs situated immediately behind the front (see also discussion of
figure 7).

4.2. Tail structure

The structure of the tail in the low-Reynolds-number simulations with a flat bed
and with obstacles (D = 0.15H , λ= 3H ) is compared in figure 5 at the time when
xf

∼= 19H in all the three simulations. Closely related with this, figure 6 compares
the streamwise distributions of the local height and Froude number of the current.
Consistent with the findings of Shin et al. (2004), Necker et al. (2005) and Cantero
et al. (2007), we estimate the height h̄ and mean streamwise velocity ū used to calculate

the Froude number (Fr = ū/
√

h̄) at a certain streamwise location inside the gravity

current as h̄ = (1/H )
∫ H

0
C dy and ū= (1/ub)

∫ H

0
uC dy/

∫ H

0
C dy.

Consistent with the findings of Ooi et al. (2009) for strongly turbulent currents
(Ref > 104) with R =h/x0 � 1, the concentration distribution in figure 5(a) shows
that in the flat-bed case a stably stratified diffuse interface, depleted of large-scale
eddies, develops between the heavier current and the lighter ambient fluid, starting at
the position of the lock gate. In the later stages of the slumping phase (xf /H > 10),
this diffuse interface ends at about 5H behind the front. The KH billows forming at
the back of the head lose their coherence over a distance of about 4.5H . The stably
stratified interface is slightly tilted with respect to the horizontal. The height of the
dense fluid layer reaches a minimum at the end of the interface region. It remains
fairly constant in the dissipative wake region, before increasing again in the head
region. As shown in figure 5(c), the streamwise velocity inside the heavier current
peaks at the end of the tilted interface and over the upstream part of the dissipative
wake region where u ∼= 0.7ub. The velocity decreases gradually as the front region,
where Uf

∼= 0.45ub, is approached. The velocity magnitude is close to zero within
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Figure 5. (Colour online) Visualization of the structure of the lock-exchange flow in a z =
constant plane in the LR simulations with a flat bed and with obstacles (D = 0.15H , λ=3H )
at the time when xf /H ∼= 19. (a) Concentration, C; (b) out-of-plane vorticity, ωzH/ub; (c)
streamwise velocity, u/ub. The figures show the formation of a strong jet-like flow region past
the crest/top of the obstacles within the bottom-propagating current and allow comparison
of the shapes of the layers of lighter (ambient), mixed and denser fluid over the tail of the
current. Note that the vertical axis has been stretched by a factor of two in all frames. The
dashed lines in (b) show the upstream parts of the shear layers induced by the formation of
the jet-like flow at rib 2, in the region between rib 1 and rib 2, and at rib 4, in the region
between rib 3 and rib 4. The two arrows in (b) show that two distinct shear layers are present
over rib 3.

the tilted interface layer containing mixed fluid. The thickness of the region of small
velocity magnitude increases slightly in the dissipative wake region due to the presence
of large-scale interfacial billows.
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The structure of the current is very different when dunes or ribs are present.
A layer of varying height containing mixed fluid develops between the regions
containing heavier (C > 0.9) fluid and light ambient fluid (C =0). The top of this
layer is close to horizontal in the LR-R15 and LR-D15 simulations. The bottom of
this layer undergoes quasi-regular deformations with the same wavelength at that of
the obstacles (λ= 3H ). The velocity inside this layer is very small. The regions of high
velocity in figure 5(c) correspond to the jet-like flow discussed above. Once they form,
the jet-like flow and the shear layer on its outer side (towards the ambient fluid) are
permanent features of the flow around the obstacles. The distributions of the spanwise
vorticity in figure 5(b) show that the downstream extent of the shear layer past the
crest or downstream face of the obstacle is larger in case LR-R15 (2.25H ) compared
with case LR-D15 (1.5H ). The main temporal change in the region associated with
the jet-like flow is that, after the front gets sufficiently far from the obstacle, the flow
remains subcritical. In the present simulations, this happens starting with the second
or third obstacle behind the front.

Next, the effects of the temporal evolution of the backward-propagating jumps (e.g.
see figure 4d,e) on the structure of the tail region are discussed (see also supplementary
movie 1 available at journals.cambridge.org/flm). Some of these effects can be inferred
from analysing the structural changes of the flow between consecutive obstacles with
increasing distance between the obstacles and the front, at a given time instance (see
figure 5). The formation of the backward-propagating hydraulic jump amplifies the
strength of the upstream part of the shear layer on the upper side of the jet-like
flow. As the jump propagates, the shear layer extends further upstream and becomes
more horizontal (e.g. compare the position of the shear layer in between the first
two obstacles and in between the third and fourth obstacles in figure 5b). As the
hydraulic jump reaches the obstacle situated behind the one where it originated, and
propagates over this obstacle, the shear layer continues to expand upstream. At those
locations (e.g. around rib 3 in figure 5b), two shear layers containing vorticity of the
same (positive) sign can be observed. As time passes, these shear layers merge and
the interface between the layer of mixed fluid and the top layer of ambient fluid
becomes close to horizontal (e.g. similar to that observed in between the first two
obstacles in figure 5b). Thus, the structure of the layer of variable height containing
low-velocity mixed fluid (see figures 5a and 5c) is determined by the interactions
of the backward-propagating hydraulic jumps with the obstacles situated upstream
of the one at which the jumps originated and with the jet-like flow over these
obstacles.

A strong shear layer containing vorticity of opposite (negative) sign to that in the
shear layer on the upper side of the jet-like flow is present at the boundary between
the jet-like flow and the recirculation region forming past the rib. This region is
not present in the simulation with dunes, for which the flow past the crest of the
dunes remains for the most part attached. However, because the core of high-velocity
fluid within the jet-like flow is slightly diverted away from the dune surface past the
dune trough, a near-bed region of small velocity magnitude is present at about the
middle of the leeside of each dune (e.g. around x/H =10, 13 and 16 in figure 5).
The flow does not separate but a strongly dissipative shear layer forms (see discussion
of figure 12c).

A comparison of the streamwise distributions of h̄ and Fr in cases LR-F and
LR-R15 (figure 6) allows characterizing in an integral sense the differences in the
structure of a gravity current propagating over a flat bed and over a bed with surface-
mounted ribs. In the flat-bed case, the height of the current decays linearly from the
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Figure 6. Streamwise variation of (a) height of the gravity current, h̄, and (b) Froude number,
Fr , in the LR-F (solid line) and LR-R15 (dashed line) simulations at the time when xf /H ∼= 19.

position of the lock gate where h̄ =0.5 (the flow is effectively antisymmetric with
respect to x/H = 0) until the end of the region where the stratified interfacial tilted
layer is present (e.g. x ∼= 15H when xf /H = 18.8). It then remains approximately
constant until the head region (17H <x < 18.8H ) is reached. The presence of a raised
head explains the increase of h̄ around x = 18.2H . The increase of Fr with the
streamwise distance in the region where the tilted interface is present (x < 15H ) can
also be considered linear, to a good approximation. The Froude number remains
fairly constant (Fr ∼= 0.8 for 15H <x < 18H ) until close to the nose of the current.
As expected, the values of the Froude number remain less than 1 over the whole
length of the current propagating over the flat horizontal surface. For the flow to
become supercritical, a sloped flat surface with a sufficiently high negative slope is
required.

In case LR-R15, the variations of h̄ and Fr in between the first and second ribs
and in between the second and third ribs are close to identical (figure 6). This means
that when xf /H = 18.8, the flow has reached a quasi-steady state up to the position of
the third rib. The average value of h̄ in the quasi-steady state region is close to 0.5H ,
while that of Fr is close to 0.35. The mean level of h̄ in between two consecutive ribs
starts decaying as the front is approached (e.g. past the third rib in figure 6). This is
caused by the high level of mixing induced over the downstream part of the current by
the interaction between the head of the current and the obstacles. The variation of Fr

with x in this region is opposite to that of h̄. The Froude number peaks at a distance
of approximately 0.5H from the ribs in the downstream part of the current. The peak
value of Fr in between two consecutive ribs decreases with the distance between the
ribs and the front. In particular, for the set-up considered in case LR-R15, the flow
behind the most recent rib overtaken by the front becomes supercritical (Fr = 1.2) in
the region where the jet-like flow reaches the horizontal bed surface. This is consistent
with the analytical model of Armi (1986) for isolated bottom-mounted obstacles with
slowly varying height and the shallow-water analysis of Gonzalez-Juez & Meiburg
(2009), who found that the flow can be supercritical immediately downstream of the
crest/top of a single obstacle, but transitions to subcritical further downstream. In
the present case of a periodic array of ribs, by the time the front passes the next rib,
the jet-like flow is already subcritical.
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Figure 7. Visualization of the structure of the lock exchange flow in the LR-R15-HD
simulation at t = 108t0, when xf /H ∼ 25.5. (a) Concentration, C; (b) height of the gravity

current, h̄. Note that the vertical axis has been stretched by a factor of two in (a).

The overall trends in the variations of h̄ and Fr are similar in the simulations with
ribs and dunes (not shown). The main difference is that the peak values of Fr in
between two consecutive obstacles situated in the downstream part of the current are
larger in the simulation with dunes. For example, the peak values of Fr downstream
of the fourth and fifth dunes are 1.1 and 2.2, respectively. The corresponding values
of Fr are 0.9 and 1.2 in the simulation with ribs (figure 6). In case LR-D15, the
peak values of Fr are reached immediately downstream of the location of the crest
of the dunes and are primarily due to the strong decay of h̄ over the upslope face
of the dunes. An analysis of the distributions of the same variables over the tail of
the current in the simulations conducted at Re =106 shows that scale effects are
insignificant for 47 800<Re < 106.

Figure 7(a) shows the structure of the current in the LR-R15-HD simulation at
t = 108t0, after the front has overtaken the 21st (xf /H ∼= 25.5) rib in the series. At this
time instant, the current is well into the drag-dominated regime. The concentration
distribution in figure 7(a) is qualitatively similar to that predicted in case LR-R15
when xf /H ∼= 19 (figure 5a). For example, the interface between the layer of mixed
fluid and the layer of ambient fluid is very close to horizontal between the lock
gate and x/H = 10. For the same position of the front, the average value of the
concentration in the head region is smaller in the LR-R15-HD simulation compared
with the LR-R15 simulation (e.g. when xf /H ∼= 19, C ∼= 0.55 in the LR-R15
simulation and C ∼= 0.45 in the LR-R15-HD simulation). This is because of the larger
number of obstacles per unit streamwise length which increases mixing compared with
case LR-R15. The distance between the front and the region containing fluid with a
concentration (C > 0.9) close to that of the lock fluid increases monotonically with
time (e.g. from about 7H at t = 77t0 to 10H at t = 108t0).

Similar to case LR-R15 (figure 6), the mean value of h̄ in between two consecutive
ribs is close to constant over the upstream part of the current (x/H < 14 in figure 7b).
With the exception of the regions situated on top of the ribs, the values of h̄ are close
to 0.5H . A comparison of the distributions of the velocity magnitude at different
times during the drag-dominated regime shows that the velocity field decays relatively
uniform with time over the whole length of the bottom-propagating current. This
means that the mean value of Fr in the upstream part of the tail will decay with time,
rather than being constant as in case LR-R15. The downstream part of the current
(e.g. x/H > 14 at t = 108t0) is characterized by a nonlinear increase of the average
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value of h̄ in between two consecutive ribs with the distance between the front and
the ribs. During the drag-dominated regime, the flow remains subcritical over the
whole length of the current in the LR-R15-HD simulation. For example, at t = 108t0
the maximum value of Fr is smaller than 0.5 everywhere, including over the top of
the rib situated immediately behind the front.

5. Energy budget
Following the approaches used by Necker et al. (2005) and Ooi et al. (2009), in

the case of compositional gravity currents a differential equation relating the rates of
change of the potential and kinetic energy can be obtained if the velocity components
are assumed to be equal to zero on all the non-periodic boundaries and the effects of
diffusion in the transport equation solved for the concentration field are neglected:

dEk

dt
= −ε −

∫
Ω

Cu2 dV = −ε − dEp

dt
, (5.1)

where Ek =
∫

Ω
0.5uiui dV is the total kinetic energy over the flow domain Ω = L1L2L3,

Ep =
∫

Ω
Cx2 dV is the total potential energy, and ε is the total dissipation rate. Its

expression is

ε =

∫ L1
∫ L2

∫ L3

εr (x1, x2, x3, t) dV

=

∫
Ω

εr dV =

∫
Ω

ui

∂

∂xk

[(
1

Re
+ νSGS

)(
∂ui

∂xk

+
∂uk

∂xi

)]
dV, (5.2)

where εr is the local dissipation rate. An integral balance equation for the mechanical
energy can be obtained by integrating (5.1) with time:

Ek + Ep + Ed = Ek0 + Ep0, (5.3)

where Ek0 and Ep0 are the total initial kinetic energy and potential energy. As the

present simulations are started from rest, Ek0 = 0. The term Ed =
∫ t

0
ε(τ ) dτ is the

time integral of the total dissipation rate.
The variation of the terms in (5.3) with the front position is plotted in figure 8(a) for

the simulations conducted at Re = 47 800 with flat bed and with obstacles (D = 0.15H ,
λ= 3H ). Figure 9 shows the effect of increasing the Reynolds number on the energy
budget in the simulations with a flat bed and with ribs. All the terms are non-
dimensionalized by Ep0.

A first regime characterized by the conversion of potential energy into kinetic energy
is present at the start of all the simulations. This regime corresponds approximately
to the duration of the acceleration phase (t < 3.5t0). The process is essentially inviscid,
as not much dissipation takes place during this regime (Ed(t =3.5t0)/Ep0

∼= 0).
In the LR-F simulation, the growth of Ek and Ed with time is linear for t > 18t0.

This can be inferred from the log–log plot in figure 8(b), where the variations of these
two variables can be approximated by a straight line with a slope of 1 and from the
plots of dEk/dt and ε in figure 10. Figure 10 shows that the linear regime is observed
until the end of the simulation (t ∼= 40t0). During the linear regime, the ratio of ε

to −dEp/dt is 0.32 and that of dEk/dt to −dEp/dt is 0.68. The time variations of
Ek , Ep and Ed are qualitatively similar in the two simulations with a flat bed. As
Re increases from 47 800 to 106, the temporal rate of growth of Ek during the linear
regime increases from 0.07u3

bh
2 to 0.085u3

bh
2 (figure 9a). This increase is mainly due
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Figure 8. (Colour online) Variation of the potential energy, Ep , kinetic energy, Ek , and
integral of the total dissipation, Ed , in the LR simulations with a flat bed and with obstacles
(D = 0.15H , λ= 3H ). In (a) plotted versus the front position in linear–linear scale; (b) plotted
versus time in log–log scale. All the terms are non-dimensionalized by the initial potential
energy Ep0. The arrows in (a) indicate the position of the ribs in the LR-R15 simulation. The
dashed lines in (b) indicate a best fit of the form γ tα (γ is a constant) for Ek and Ed .
The values of α are given in the plot. The figure shows that in the simulations with obstacles,
the current reaches a regime where Ek ∼ t1/3, while in the flat-bed simulation the current
reaches a regime where Ek ∼ t .
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Figure 9. Effect of the Reynolds number on the time variation of the potential energy, Ep ,
kinetic energy, Ek , and integral of the total dissipation, Ed . (a) Simulations with a flat bed;
(b) simulations with ribs. All the terms are non-dimensionalized by the initial potential energy
Ep0.

to a reduction of ε from 0.035u3
bh

2 to 0.022u3
bh

2. During the linear regime, the ratio of
ε to −dEp/dt is 0.22 and that of dEk/dt to −dEp/dt is 0.73 in the HR-F simulation.
The increase in the Reynolds number causes a reduction in ε over the linear regime
of about 33 %.

As will be analysed below in greater detail, the combined effect of the smaller decay
rate of Ep and higher dissipation rate within the body of the gravity current observed
in the simulations with obstacles causes a smaller increase of Ek with xf for x > 5H
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Figure 10. (Colour online) Time variation of the terms (dEk/dt , dEp/dt and ε) in the
differential equation of the mechanical energy in the LR simulations with a flat bed and with
obstacles (D = 0.15H , λ= 3H ). All the terms are non-dimensionalized by u3

bH
2.

compared with the flat-bed case. This partially explains the observed decrease of the
front velocity in the simulations with obstacles compared with that with a flat bed.

The most important qualitative change with respect to the flat-bed case is observed
in the variation of Ek . After the current passes the first obstacle, the rate of increase
of Ek is reduced substantially and, after it overtakes the second obstacle (xf > 9H ),
a regime in which Ek increases proportionally to t1/3 (dEk/dt ∼ t−2/3) is maintained
until the end of the simulation for both types of obstacles (see figures 8b and 10). The
large-scale oscillations in the variation of Ek and dEk/dt in figures 8(b) and 10 are
induced by the successive acceleration and deceleration of the flow in the head of the
current due to its interaction with the obstacles. The fact that the temporal variations
of dEk/dt and dEp/dt are out of phase and that such oscillations are absent in the
variation of ε in figure 10 shows that the large-scale oscillations in the variation of
dEk/dt are a direct consequence of the vertical movement of the heavier fluid within
the head of the current as it propagates over the deformed bed surface.

The rate of decay of Ep is smaller than that computed for the flat-bed case after
the front passes the first obstacle. When plotted versus the front position, the smallest
rate of decay is observed in the simulation with dunes (figure 8a). A short time after
the front overtakes the second obstacle, the curves showing the variation of Ed with
xf start diverging. The increase of Ed with time in the simulations with obstacles is
faster (∼t1.63) than the linear increase observed in the simulation with a flat bed. For
xf > 9H , figure 8(a) shows that Ed increases faster with xf in the simulation with
ribs, as compared with the simulation with dunes. This is because the presence of
the ribs increases dissipation, especially within the shear layers forming on the two
sides of the jet-like flow, compared with the case of obstacles with a lower degree of
bluntness (dunes). Meanwhile, the variation of Ek with xf remains independent of
the shape of the obstacle for xf > 9H .

In contrast to the results for the flat-bed case, when obstacles are present at the
channel bottom, the temporal evolution of the terms in the energy budget is very
similar not only qualitatively but also quantitatively in the simulations conducted at
Re =47 800 and Re = 106. For example, the comparison of the energy budgets in the
LR-R15 and HR-R15 simulations (figure 9b) shows that the increase of Ed with time
is slightly slower in case HR-R15, while the decay of Ep with time is independent
of the Reynolds number. This is consistent with the slightly larger front velocity
predicted in case HR-R15 (Uf = 0.36ub) compared with case LR-R15 (Uf = 0.34ub).
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Figure 11. (Colour online) Variation of the potential energy, Ep , kinetic energy, Ek , and
integral of the total dissipation, Ed , with the front position in the LR-R15-HD simulation. All
the terms are non-dimensionalized by the initial potential energy Ep0. The vertical line marks
the start of the regime where the variation of the three quantities with xf is linear.

Scale effects on the energy budget are even less significant in the simulations with
dunes for which the front velocity is the same (Uf = 0.4ub).

Figure 11 shows the variations of Ek , Ep and Ed with xf in the LR-R15-HD
simulation with densely spaced ribs. Compared with case LR-R15 (figure 8a), the
variation of Ep in case LR-R15-HD is qualitatively similar. After the current overtakes
the first couple of ribs in the series (xf /H > 10), the decay of Ep with xf is close to
linear and has a constant slope until the end of the simulation. The decay rate of
Ep is significantly smaller than that observed in the flat-bed case. Also, at about the
same front position (xf /H = 10), the increase of Ed with xf becomes close to linear.
The rate of increase of Ed is significantly higher compared with the flat-bed case due
to the additional dissipation generated by the interaction of the current with the ribs
situated behind the front.

The most important difference in the energy budgets for cases LR-R15 and LR-
R15-HD is observed for Ek . The current reaches the slumping phase around t = 22t0
(xf /H > 9) for case LR-R15. Its front velocity remains approximately constant until
the end of the simulation (t/t0 ∼= 50). As time passes, a larger volume of fluid is set
into motion. As the front velocity is constant, Ek should continue to increase with
time. Indeed, the results in figure 8(b) show that Ek ∼ t1/3. This increase is smaller than
that observed in the flat-bed case where Ek ∼ t . In contrast to these two simulations
in which the current does not leave the slumping phase, Ek starts decaying with time
for case LR-R15-HD during the transition to the drag-dominated regime (xf /H ∼ 7).

To a good approximation, the decay of Ek with both xf and time for t > 22t0 is
close to linear until the end of the simulation (t ∼= 110t0). The decay of Ek with time
is consistent with the fact that the front velocity does not reach a regime where Uf

is constant during the later stages of its propagation (figure 3a), corresponding to
a slumping phase of the current propagating over the ribs. For that to happen, Ek

should start increasing with time. The trends observed in figure 11 for the three terms
of the energy budget do not suggest this will be the case. The results in figures 3
and 11 show that a drag-dominated regime characterized by the decay of the front
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Figure 12. Spatial distributions of the non-dimensional spanwise-averaged local dissipation
rate ε̃/(u3

b/H ). (a) LR-F (t/t0 = 40), (b) LR-R15 (t/t0 = 48) and (c) LR-D15 (t/t0 = 48). The
figure shows that while in the flat-bed case most of the dissipation occurs in the head and
dissipative wake regions, in the simulations with obstacles, most of the dissipation occurs in
the tail of the current. The inset in (a) visualizes the thin bottom layer of high ε̃ in case LR-F.

velocity and total kinetic energy with time and the front position is present in case
LR-R15-HD. The distributions of the dissipation rate discussed in the next section
will provide more detailed information on how the presence of the obstacles modifies
the flow structure and increases the total dissipation over the tail region with respect
to the flat-bed case.

6. Dissipation rate
An analysis of the distribution of the spanwise-averaged local dissipation rate

ε̃(x1, x2, t) allows to better understand the changes in the structure of a gravity
current as a result of the presence of the obstacles at the bed. To study the
distribution of the dissipative losses along the channel, the local dissipation rate
εr is integrated over the spanwise and vertical directions. This leads to a new variable

ε23(x1, t) =
∫ L3

∫ L2 εr (x1, x2, x3, t) dx3 dx2.

6.1. Effects due to the presence of obstacles

After the head passes the first rib, the distributions of ε̃ in the three simulations start
showing important qualitative and quantitative differences. Figure 12 shows ε̃ during
the later stages of the slumping phase, when the front is situated between 17H and
20H in the three simulations.

Beyond the initial stages (t/t0 > 15) of the slumping phase, most of the dissipation
in case LR-F (e.g. see figure 12a) takes place in the thin bottom boundary layer
and in the billows present in the interfacial region. Consistent with the results of
Bonometti et al. (2008) obtained for lower-Reynolds-number Boussinesq currents, the
dissipation inside the bottom boundary layer is smaller but comparable with that
inside the interfacial region. For example, at t =40t0, the bottom boundary layer
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accounts for 40 % of the total dissipation, while the interfacial region accounts for
60 %.

In the LR-R15 simulation (figure 12b), the regions of strong dissipation correspond
to the shear layers forming in between the jet-like flow and the separated region
downstream of the rib and to the shear layers on the upper side of the jet-like flow.
The dissipation levels are also relatively high in the core of the intensified mixing
vortex situated closest to the front. As the head propagates away from the vortex, the
dissipation inside its core decreases quite fast.

Compared with the flat-bed case, the dissipation level inside the interfacial billows
shed behind the head is smaller. In the simulations with obstacles, the length of the
interfacial region behind the head in which the local dissipation rate is relatively
high (ε̃ > 0.005u3

b/h) decreases with time (e.g. its length is about H at t/t0 = 16 and
0.5H at t/t0 = 32). Similar to case LR-R15 (figure 12b), the distributions of ε̃ in
case LR-D15 (figure 12c) show that in the later stages of the propagation of the
current (t > 20t0), most of the dissipation takes place behind the dissipative wake.
However, because the dense fluid layer does not separate as it is convected past the
crest of each dune (this is different from the case of a constant density flow over the
same dunes), there is no shear layer in between the core of high-velocity and high-
density fluid and the bed. Thus, immediately past the crest of the dune, most of the
dissipation takes place in the shear layer forming on the upper side of the jet-like flow.
Compared with case LR-R15, the average levels of ε̃ inside this shear layer are lower.
The upstream propagation of the heavier fluid with the successive hydraulic jumps
forming at the crest of the obstacles strengthens the vorticity and dissipation inside this
shear layer. The hydraulic jumps are sharper in the case of bluff-body obstacles like
ribs.

The presence of dunes induces another qualitative modification in the flow structure
past the crest of the dune. Before dissipating, the IMV is strong enough to induce a
change in the orientation of the core of high-speed fluid within the jet-like flow. The
core is diverted slightly away from the bed in the region situated beneath this vortex.
This explains the presence of a region of high dissipation close to the bed, starting a
short distance from the trough of the first couple of dunes situated behind the front
(e.g. around x = 12.5H and x = 15.5 in figure 12c).

The distribution of ε23 is plotted in figure 13 at several non-dimensional times
which are representative of the evolution of the current past the initial stages of the
slumping phase in cases LR-F, LR-R15 and LR-D15. The total dissipation in between
two successive ribs decreases with the distance between the front and these ribs. For
example, at t = 48t0 the ratios between the total dissipation in these regions, starting
with that situated the closest to the front, and the total dissipation in the region with
x/H > 0 are 31 %, 24 %, 20 % and 13 %, respectively. At the same time, the head and
dissipative wake regions account for only 9 % of the total dissipation in the region
with x/H > 0 in case LR-R15. The total dissipation in the head and dissipative wake
regions is about three times lower than the total dissipation in between the first two
ribs situated behind the front. In contrast, in the flat-bed case, the total dissipation
in the head and dissipative wake at t =40t0 is more than two times larger than that
in the tail. A comparison of the distributions of ε23 in the simulation with dunes
(t = 40t0) and ribs (t =48t0) shows that, for a given front position, the total dissipation
in the region between two successive dunes or ribs situated at the same distance from
the front is comparable. The average levels are slightly higher in the simulation with
ribs, consistent with the fact that the magnitude of the total dissipation rate is slightly
higher for ribs when ε is plotted as a function of the front position.
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Figure 13. (Colour online) Streamwise distributions of ε23(x1)/(u3
bH ) in the LR-F

(t/t0 = 40), LR-R15 (t/t0 = 48) and LR-D15 (t/t0 = 40) simulations.
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Figure 14. (Colour online) Effect of the Reynolds number on the streamwise distributions
of ε23(x1)/(u3

bH ). (a) Simulations with a flat bed, t/t0 = 40 (LR-F) and t/t0 = 38 (HR-F), and
(b) simulations with dunes, t/t0 = 40 (LR-D15 and HR-D15). The square ribs indicate the
position of the crest of the dunes.

6.2. Scale effects

The effect of the Reynolds number is discussed next, based on the comparison of the
distributions of ε23 in the simulations conducted at Re =47 800 and Re = 106. In the
case of a flat bed, the main effect of increasing Re is the decay of the dissipation
in the tail region (figure 14a). Most of the dissipation in the tail takes place in the
bottom boundary layer and is due to bottom friction. The results in figure 14(a) show
that the relative contribution of the bottom boundary layer to the total dissipation
inside the current decreases with the increase in the Reynolds number. In the LR-
F simulation, the values of ε23 in the tail region are 50 %–100 % larger at most
streamwise locations, as compared with the HR-F case. The total dissipation over the
whole length of the current (x/H > 0) is close to 30 % larger in the LR-F simulation,
once the regime where ε becomes close to constant is reached (xf /H > 10).

Scale effects are much less significant in the simulations with obstacles. The
distributions of ε23 are qualitatively and quantitatively similar over the whole length
of the current (e.g. see figure 14b for the simulations with dunes). The difference in
the values of ε between the low- and high-Reynolds-number simulations is less than
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Figure 15. (Colour online) Temporal variation of the total drag coefficient over the region
occupied by the first obstacle (2.5 < x/H < 5.5, solid line with symbols) and the third obstacle
(8.5 <x/H < 11.5, dashed line) in the LR-F, LR-D15 and LR-R15 simulations. To facilitate
the comparison of the total drag forces in the two regions, the curves were translated in time
such that t/t0 = 0 corresponds to the time the front of the current reaches x/H = 2.5 and
x/H = 8.5, respectively.

5% beyond the initial stages of the slumping phase. This means that for Re > 50 000
the flow is, to a large degree, controlled by the turbulent form drag induced by the
obstacles, rather than by viscosity.

7. Drag forces
Figure 15 compares the total drag coefficient, CD , induced by the passage of

the bottom-propagating current over the streamwise region associated with the first
(2.5 <x/H < 5.5) and third (8.5 < x/H < 11.5) obstacles for the LR-F, LR-R15 and
LR-D15 simulations (λ= 3H , L3 = H ):

CD =
Fp + Ff

0.5ρu2
bL3λ

, (7.1)

where Fp and Ff are the streamwise components of the pressure force acting on the
front and back surfaces of the obstacle and the friction force, respectively. Both forces
are calculated over a streamwise region of length λ, corresponding to the distance
between one obstacle and the next.

The pressure drag is equal to zero in the LR-F simulation. The time variation of
the drag coefficient is fairly independent of the position of the streamwise region
of length λ= 3H over which the friction drag is calculated. Here Ff increases until
the front reaches the end of this streamwise region. It then remains approximately
constant (CD ∼ 0.0015) for about 15t0, during which the head and dissipative wake
regions propagate over the streamwise region. Then, Ff starts decreasing slowly.

The average levels of the friction drag in the LR-R15 and LR-D15 simulations
(not shown) are comparable but lower than those in the LR-F simulation. Thus, in
the simulations with obstacles of wavelength λ= 3H conducted at Re = 47 800, the
pressure drag is about one order of magnitude higher than the friction drag. This
confirms the important role played by the obstacles in the evolution of the current in
cases LR-R15 and LR-D15.

The temporal variation of CD over the streamwise region associated with rib 1 in
the LR-R15 simulation is in many respects qualitatively similar to that observed by
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Gonzalez-Juez et al. (2009) in a study of currents impinging on isolated obstacles.
Here CD increases exponentially during the impact stage, which lasts about 6t0 in
case LR-R15. The increase in CD is due to the interaction of the front with the
bluff obstacle, which results in a strong pressure increase on the upstream face of
the rib. The transient phase is characterized by large-scale temporal variations in the
values of CD . Similar to the 3-D simulation results of Gonzalez-Juez et al. (2009),
CD reaches a second maximum (t ∼ 12t0 in figure 15) during the transient phase. This
second peak is induced by the decrease in the pressure on the downstream face of
the rib, due to the increase in the strength of the recirculating vortex forming in
between the heavier fluid from the splash that reaches the channel bottom and the
downstream face of the rib. While in the case of an isolated obstacle CD reaches
fairly quickly a quasi-steady regime, in the present case the transient lasts for a much
longer time. This is because of the passage of the backward-propagating jumps that
form each time the front reaches a higher-rank obstacle. For example, the secondary
dip of CD around t = 24t0 in figure 15 is associated with the passage of the backward
jump forming at rib 2. The strength of the transient induced by the passage of the
backward jumps decreases with the rank of the obstacle at which the jump originated.
In a good approximation, the quasi-steady regime around rib 1 is reached by the time
the backward jump originating at rib 3 passes rib 1. The temporal variation of CD is
fairly similar for the streamwise region associated with rib 3. The main difference is
that the peak value of CD at the end of the impact stage is smaller. This is because,
by the time the front approaches rib 3, the front velocity is smaller and the mixing in
the head region is larger as a result of the impact of the head of the current with the
first two ribs.

The temporal history of CD in the simulations with dunes and ribs of equal height
is qualitatively similar during all the three phases. The largest quantitative difference
occurs during the impact stage. As a result of the lower degree of bluntness of the
dunes, the front deceleration is smaller and the pressure forces on the upslope face of
the dune are weaker than those induced on the upstream face of the corresponding
rib in case LR-R15. This explains the decrease observed in the peak value of CD at
the end of the impact stage by about 70 % with respect to case LR-R15. Moreover,
the peak value of CD in the simulation with dunes is not reached at the end of the
impact stage, but rather during the transient stage. For a given obstacle rank, the
maximum values of CD during the transient phase in the simulation with dunes are
only 30 % –50 % lower than the overall maximum value of CD in the simulation with
ribs. The values reached by CD during the quasi-steady regime in the two simulations
are close.

8. Mixing and entrainment
The mixing of a compositional current with the ambient flow can be quantified

by computing the variation of the subvolume of the flow domain where the
density/concentration exceeds a given threshold value that is larger than that of
the ambient fluid, or it ranges between given bounds (see also Necker et al. 2005).
The variation in the front position of the subvolume of the flow domain where
C >Cθ can be used to quantitatively compare mixing among different simulations.
For example, after non-dimensionalization with the initial volume of lock fluid, V0,
the subvolume containing non-ambient fluid can be calculated as

Vθ (xf /H ) =
1

V0

∫
Ω

α dV, (8.1)
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Figure 16. (Colour online) Mixing of the lock fluid and ambient fluid in the LR-F, LR-D15
and LR-R15 simulations. (a) The mixing is quantified by the normalized volume of mixed
fluid Vθ (xf /H ) function of a threshold value of the concentration Cθ when the front is situated
at xf /H =5.5, 11.5 and 17.5. (b) The mixing is quantified by the normalized volume of mixed
fluid V ′ (0.02 <C < 0.98) as a function of the front position.

where α = 1 if C >Cθ , α = 0 if C < Cθ and C is the concentration field for a given
value of the front position.

Figure 16(a) compares the variations of Vθ in the LR-F, LR-D15 and LR-R15
simulations for 0.01 <Cθ < 0.2. At t =0, Vθ = 1 for any value of Cθ (0 <Cθ < 1). The
higher degree of bluntness of the ribs induces the formation of a splash of heavier
fluid and the trapping of a substantial amount of lock fluid downstream of the face
of each rib overtaken by the current. This explains why, at a given front position,
Vθ is the largest in the simulation with ribs. As expected, the smallest values of
Vθ are observed for the flat-bed case in which most of the mixing occurs in the
dissipative wake region. A comparison of the values of Vθ in the three simulations
for relatively small (e.g. Cθ =0.02) and large (e.g. Cθ = 0.2) threshold values of the
concentration shows that the growth rate of the amount of mixed fluid within the
bottom-propagating current depends strongly on the threshold value Cθ . In the three
simulations, the degree of non-uniformity of the local concentration fields increases
with time/front position, especially for xf /H > 11.5. For small Cθ values, the values
of Vθ in the simulation with dunes are closer to those in the simulation with a flat
bed, while for large Cθ values, the values of Vθ in case LR-D15 are closer to those
in the simulation with ribs. The cases with large-scale obstacles are more effective in
increasing mixing over the whole depth of the bottom-propagating current compared
with the case where the bottom surface is smooth. The larger values of Vθ observed in
cases LR-R15 and LR-D15 compared with case LR-F for Cθ > 0.1 are mainly due to
the layer of mixed fluid that develops gradually in between two consecutive obstacles,
as the backward-propagating jumps propagate over the tail of the current.

Figure 16(b) shows the variation of the (non-dimensional) volume of mixed fluid
(0.02 <C < 0.98) in the channel V ′(xf /H ) = (

∫
Ω

α dV )/V0 with the front position,
where α = 1 if 0.02 <C < 0.98 and α = 0 if C < 0.02 or C > 0.98. As the lock and
ambient fluids are separated at t = 0, V ′ = 0. Results show that past the initial stages
of the slumping phase (xf /H > 5), the variation of V ′ with time is close to linear in
the simulations with dunes and ribs. The localized mixing associated with the splash
of heavier fluid forming each time the front reaches a new rib accounts to a large
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Figure 17. (Colour online) Total transport in the streamwise direction, T (x)/(ubH ), in the
LR-F, LR-D15 and LR-R15 simulations. The front is situated at xf /H = 17.5. The straight
dashed line approximates the slope of T (x) over most of the tail region in case LR-F.

degree for the larger slope of V ′ in the LR-R15 case compared with the LR-D15 case.
The trapping of ambient fluid, once the head propagates past the crest of a dune, is the
main reason why the values of V ′ at a given front position are slightly larger in the
LR-D15 case compared with the flat-bed case. Meanwhile, the rate of increase of V ′

in the two simulations is comparable.
Information on the entrainment along the current can be obtained from the

streamwise variation of the total transport (volume flux) of fluid with density larger
than that of the ambient fluid. Following Turner (1986) and Legg, Hallberg & Girton
(2006), the non-dimensional total transport in the streamwise direction per unit width
at a given time/front position is defined as

T (x) =
1

Li

∫
A

u dy dz, (8.2)

where A is the part of the cross-section at x = constant, where C is larger than a
threshold value, Cθ , and Li

∼= L3 is the length of the interface (C = Cθ ) in the x =
constant plane. A value of 0.1 was used for Cθ in figure 17 to calculate T (x) when
xf /H = 17.5 in the LR-F, LR-R15 and LR-D15 cases. The entrainment coefficient is
defined as

αE(x) =
1

ū

dT (x)

dx
, (8.3)

where the mean streamwise velocity is ū(x) = (1/A)
∫

A
u dy dz. Simulation results show

that in the flat-bed case, T (x) is nearly constant close to the lock gate during the
later stages of the slumping phase (e.g. for x/H < 4 in figure 17 for case LR-F),
which indicates negligible entrainment. Then, the decay of T with x is close to
linear over most of the tail region (e.g. 4 <x/H < 14 in figure 17). On average, the
total transport increases with x over the dissipative wake region. This is because the
shedding of interfacial billows increases entrainment. On the basis of the experimental
data of Ellison & Turner (1959), Turner (1986) proposed an empirical expression for
the mean entrainment coefficient ᾱE function of an overall Richardson number
Ri = g′h̃ cos θ/Ū 2 = (h̃/H ) cos θ/(Ū/ub)

2:

ᾱE =
0.08 − 0.1Ri

1 + 5Ri
. (8.4)

For the flat-bed simulation (cos θ = 1), one can estimate the mean height of the
current (h̃) and the mean streamwise velocity (Ū ) over the tail region where T decays
linearly with x as h̃ ∼= 0.5H and Ū ∼= 0.33ub, respectively, for xf /H = 17.5. The
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average slope of T (x) over the same region inferred from figure 17(a) is −0.006ub.
The corresponding value of the mean entrainment coefficient estimated using (8.3) is
ᾱE = −0.018. The empirical formula (8.4) predicts ᾱE = −0.016 (Ri ∼= 5). Despite the
good agreement between the two values of ᾱE , one should interpret this result with
care, as the experimental data of Ellison & Turner (1969) are limited to Ri < 0.5 and
slopes larger than 10◦. Turner’s theory was developed for currents propagating over
down slopes, where entrainment in the tail is more important. In fact, Turner (1986)
made an important point that for currents propagating over horizontal bottoms,
entrainment at the front is usually more important than that in the tail. Present
results for the flat-bed case show that the volume flux of mixed fluid decreases in the
streamwise direction over most of the tail region in the later stages of the slumping
phase, which results in a negative entrainment coefficient. Also, Turner’s theory is for
flows in infinite domains, whereas in the present study we consider the case in which
the channel height is only twice that of the gravity current. A direct comparison is
even less relevant with the cases in which large-scale roughness elements are present
at the bed, as his theory does not account for large-scale bottom roughness effects.

The cases with obstacles do not show a clear trend in the variation of T (x) over
the length of the current (figure 17). During the later stages of the slumping phase,
the entrainment is negligible over the upstream part of the tail where the quasi-steady
state was reached and the interface is close to horizontal. The large-scale variations
of T (x) are correlated with the regions where the head interacts with the crest of the
obstacles (strong entrainment). Entrainment is also intensified close to the backward-
propagating jumps, especially during the time when a jump interacts with the crest
of an obstacle. In the simulations with ribs, T (x) increases sharply over the head
region in between the time when the front reaches the upstream face of the rib and
when the splashed heavier fluid reaches the channel bottom and the head of the
current regains its usual shape. This confirms that the formation of the splash for
obstacles with high degree of bluntness induces strong mixing and entrainment at the
head.

9. Summary and conclusions
The study investigated the physics of high-Reynolds-number (Ref > 104)

compositional Boussinesq gravity currents with a large volume of release in lock-
exchange configurations, and their dynamic effects on 2-D obstacles (e.g. natural
bedforms in alluvial channels in the form of dunes and flow retarding obstacles in
the form of rectangular ribs used to slow down gravity currents) based on results
of highly resolved LES. In the simulations with obstacles, the form drag was much
larger than the friction drag. The study allowed quantifying the effect of the obstacle
shape on the front velocity, the structure of the current, the energy balance, and
qualitative and quantitative differences compared with the simpler, but much more
widely studied, case of a gravity current propagating over a flat smooth surface.
Additionally, LES conducted at Re = 106 helped to better understand the physics
of finite-volume lock-release currents and their interactions with obstacles for flow
conditions that are closer to the inviscid state that is often assumed in theoretical
models, and to conditions encountered in practical applications in rivers, lakes and
oceans.

Simulation results showed that currents propagating over an array of 2-D identical
obstacles reach, under certain conditions, a slumping phase in which the front velocity
is approximately constant. The front velocity is smaller than that reached by the same
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gravity current propagating over a flat surface (no obstacles) and is a function of
the relative degree of bluntness of the obstacles in the series (e.g. compared with the
flat-bed case, the front velocity is smaller by 12 % for dunes and by 24 % for ribs of
height D = 0.15H and wavelength λ= 3H , and the current height is close to H/2).
During this regime, the total kinetic energy increases with time proportional to t1/3.
This is different from the case of a gravity current with a high volume of release
propagating over a flat bed, in which the kinetic energy increases linearly with time
past the initial stages of the slumping phase. The conditions for a slumping phase to
be present for an extended time, during which the front propagates over a large
number of obstacles, depend on the magnitude of the drag force per unit streamwise
length induced by the obstacles.

If the drag force per unit length increases due to an increase in the size of the
obstacles or to a decrease in their spacing, then the slumping phase can be very short,
or it may not be present at all. In contrast to the case of a current propagating
over a flat surface for which the front velocity remains constant until the reflected
disturbance reaches the front, the front velocity can start to decay with time due to
the added drag force induced by the obstacles. A simulation conducted with densely
spaced ribs in a long channel showed that after a short acceleration phase, the current
transitioned directly to a turbulent drag-dominated regime in which the front velocity
decays proportionally to tβ , with β ∼ −0.28. Such a regime was previously shown to
exist for gravity currents with a large volume of release propagating into a porous
medium of uniform porosity occupying the whole channel, but not for the case in
which the drag force acts only over the lower part of the bottom-propagating current.
The present study showed that, as a result of the spatial differences in the distribution
of the drag force acting on the gravity current, the shape of the current propagating
over bottom-mounted obstacles (relatively horizontal interface until close to the
head) is very different from the shape (interface with the ambient fluid is straight
and inclined with respect to the horizontal) observed for currents propagating into a
porous medium. In the latter case, the drag force is relatively uniformly distributed
over the whole height of the current. Because of these differences, one does not
expect β to be the same for the two types of gravity currents. However, the LES
showed that after a certain time from the release of the lock gate, the flux of heavier
fluid past the position of the gate becomes close to constant. This means that the
theoretical model proposed by Hatcher et al. (2000) to estimate the decay of the front
velocity for high-Reynolds-number gravity currents propagating in a porous medium
in which the total volume of lock fluid increases linearly with time may apply. Indeed,
the value of β predicted by LES (β = −0.28) was close to that predicted by the
theoretical model (β = −0.25). Simulation results also showed that, after the flux
becomes constant and the front starts decelerating, the kinetic energy starts decaying
linearly with time and with the front position. This is consistent with the current
reaching a drag-dominated regime in which the front velocity decays continuously in
time.

For gravity currents with a large volume of release for which the slumping phase
lasts a relatively long time, the structure of the flow in the head and dissipative
wake was found to change dramatically as a result of the presence of the obstacles
compared with the flat case. A strong jet-like flow formed downstream of the top
or crest of each obstacle, shortly after the front started moving away from the
obstacle. For the obstacles considered in the simulations (D =0.15H , λ= 3H ), the flow
became supercritical in the region of strong flow acceleration, in which the higher-
density fluid inside the jet-like flow plunges towards the lower regions of the bed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

63
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010006312


602 T. Tokyay, G. Constantinescu and E. Meiburg

surface, at least for the obstacles situated close to the front. Significant changes
were also observed over the tail region. The stably stratified tilted interface, depleted
of large-scale eddies, which develops behind the dissipative wake in the flat-bed
simulations, was absent in the simulations with obstacles. Rather, at sufficiently large
times after the passage of the backward-propagating hydraulic jumps forming at
the crest of each obstacle when the front reaches that obstacle, a layer of varying
height containing mixed fluid developed between the regions containing heavier and
lighter fluid. The top of the mixed fluid layer was close to horizontal at large
distances behind the front. The passage of the hydraulic jumps also affected the time
variation of the total drag force induced over the region associated with a certain
obstacle in the series. Results showed that the transient phase lasts for a significantly
longer time compared with the case of an isolated obstacle. For the simulations
with obstacles of height of 0.15H , the quasi-steady regime around obstacle i in
the series started when the backward jump originating at obstacle i + 2 reached
obstacle i.

As expected, for a given position of the front, the amount of mixed fluid was larger
in the simulations with obstacles and was a function of the degree of bluntness of
the obstacles. Result showed that, past the initial stages of the slumping phase, the
variation of the volume of mixed fluid with time is close to linear in the simulations
with obstacles. The simulation conducted with a flat horizontal bed showed that the
average volume flux of mixed fluid decreases in the streamwise direction over most of
the tail region of the current. In contrast, the simulations with obstacles showed that
though the volume flux of mixed fluid is subject to larger-scale oscillations over most
of the tail region, the average level of the volume flux does not vary significantly in
the streamwise direction.

The case of gravity currents with a small volume of release propagating over an
array of obstacles is expected to introduce a new level of complexity compared with
that of a flat horizontal bottom (e.g. see numerical studies of Hallez & Magnaudet
2009 and Ooi et al. 2009 for the latter case). In the case obstacles are present at the
channel bottom, the current is expected to transition first to the buoyancy–inertia
phase and then to the drag-dominated regime. Not much is known about the changes
in the structure of the current and the variations of the main parameters characterizing
its evolution during these two regimes for gravity currents propagating over obstacles.
The present model is being applied to investigate this case, which is very relevant
for applications in river and ocean engineering, in which gravity currents generally
propagate over a rough bed containing large-scale roughness elements, as well as for
applications related to snow avalanches whose propagation may be accompanied by
disastrous damage. Furthermore, in the presence of rotation, novel mechanisms can
arise for gravity currents propagating over arrays of obstacles. For example, Darelius
& Wahlin (2007) and Darelius (2008) investigated geostrophic plumes encountering
a ridge on a continental slope. They developed a simplified model and performed
laboratory experiments to show that the interaction of the plume with the ridge can
lead to enhanced downslope transport of dense fluid, via a process termed ‘topographic
steering’.
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Härtel, C., Meiburg, E. & Necker, F. 2000 Analysis and direct numerical simulation of the flow at
a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries.
J. Fluid Mech. 418, 189–212.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

63
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010006312


604 T. Tokyay, G. Constantinescu and E. Meiburg

Hatcher, L., Hogg, A. J. & Woods, A. W. 2000 The effects of drag on turbulent gravity currents.
J. Fluid Mech. 416, 297–314.

Hopfinger, E. J. 1983 Snow avalanche motion and related phenomena. Annu. Rev. Fluid Mech. 15,
47–76.

Huppert, H. & Simpson, J. E. 1980 The slumping of gravity currents. J. Fluid. Mech. 99,
785–799.

Ikeda, T. & Durbin, P. A. 2002 Direct numerical simulation of a rough wall channel flow. Report
No. TF-81. Flow Physics and Computation Division, Department of Mechanical Engineering,
Stanford University, Stanford, California, USA.

Jimenez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173–196.

Johannesson, T., Lied, K., Margreth, S. & Sanderson, F. 1996 An overview of the need for
avalanche protection measures in Iceland. Report Prepared for the Icelandic Ministry for the
Environment and Local Authorities in Towns Threatened by Avalanches. Reykjavik, Iceland.

Keulegan, G. H. 1957 An experimental study of the motion of saline water from locks into fresh
water channels. U.S. Natl Bur. Stand. Rep. 5168.

Kneller, B., Bennett, S. J. & McCaffrey, W. D. 1999 Velocity structure, turbulence and fluid
stresses in experimental gravity currents. J. Geophys. Res. Oceans 104 (C3), 5381–5391.

Lane-Serff, G. F., Beal, L. M. & Hadfield, T. D. 1995 Gravity current flow over obstacles.
J. Fluid Mech. 292, 39–53.

Legg, S., Hallberg, R. W. & Girton, J. B. 2006 Comparison of entrainment in overflows simulated
by z-coordinate, isopycnal and non-hydrostatic models. Ocean Model. 11, 69–97.

Leonardi, S., Orlandi, P., Djenidi, L. & Antonia, R. A. 2003 Direct numerical simulations
of turbulent channel flow with transverse square bars on one wall. J. Fluid. Mech. 491,
229–238.

Liapidevskii, V. Y. 2004 Mixing layer on the lee side of an obstacle. J. Appl. Mech. Tech. Phys. 45
(2), 199–203.

Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large eddy simulation
in complex geometries. J. Comput. Phys. 197, 215–240.

Meiburg, E. & Kneller, B. 2010 Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42,
135–156.

Mierlo, M. C. & de Ruiter, J. C. 1988 Turbulence measurements over artificial dunes. Rep. Q789.
Delft Hydraulics Laboratory, Delft, The Netherlands.
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