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BOUNDS FOR THE INTEGRAL OF A NON-NEGATIVE FUNCTION
IN TERMS OF ITS FOURIER COEFFICIENTS

B Y M. S. LONGUET-HIGGINS
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ABSTRACT. The first 2N + 1 Fourier coefficients of an unknown, non-negative function f(8)

are given, and it is required to find bounds for I f(0) dd, where E is some given region of
1 r.

integration. We also wish to find the interval E for which the bounds are most strict, when the
width of E is specified. f(8) may represent a distribution of energy in the interval 0^0^2n;
the object is to determine where the energy is chiefly located.

In the present paper we show that if the energy is located mainly in the neighbourhood of not
more than M distinct points, significant lower bounds for I f(6) dd can be found in terms of the

3 E
first 2M + 1 Fourier coefficients. The effectiveness of the method is illustrated by applying the
inequalities to some known functions.

The results have application in determining the direction of propagation of ocean waves and
other forms of energy.

1. Introduction. The following problem arises in connexion with the analysis of
ocean waves (Barber (1)). Let/(#) be an unknown, non-negative function of 6, integrable
and periodic with period 2n. We are given the first 2N + 1 Fourier coefficients of

*n = - F"f{0)ooan8dd (n = 0 ,1 , ...,N),

Can we find upper and lower bounds for the function

F{E) = \ f(6)d6, (1-2)
J E

where E is some given region of integration ?
In practice /(#), or a related function, may represent the energy density of ocean

waves approaching a recording station from a direction specified by 6. Barber (l) has
shown that, if the waves are recorded at m different points, then a0, av 6l5..., aN, bN,
where N < \m{m — 1), can be determined from the correlation coefficients of the com-
ponents of wave motion at the m points; from this information it is required to find,
so far as possible, the angular distribution of the wave energy.

For convenience we shall refer to 6 as the 'direction' and to (1-2) as the 'energy'
contained in the interval E.

An approximation fN{6) to the required function f(6) might be given by summing
the first 2N + 1 terms of its Fourier series

(1-3)
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Bounds for the integral of a non-negative function 591

for, under certain conditions, fN(6) tends to f(6) as N->co. But this approximation
may be inadequate, for it often happens that most of the energy comes from a very
restricted range of directions; f(6) will then have one or more pronounced maxima
which can be only poorly approximated by the smooth function fN(6). In addition,
fN(6) may take negative values, while f{6) is non-negative. (The Cesaro sums Cl,
however, are non-negative; see, for example, Zygmund(i2), p. 46.)

In the present paper we make use of the fact that/(0) is non-negative, and it is when
the energy is concentrated in one or more narrow ranges of direction that our method
yields the most information.

2 -

£'

Fig. 1.

The argument is as follows. Let g(6; ava2, ...,aN) be a polynomial in cos# and
sin 0 of degree N a t most, with coefficients involving a1 ; . . . , ocN. Then the integral

1 C2n

(a1; ...,ccN) = - I f(0)g(6; <xx, a2, . . . , aN) dd (1-4)

is expressible in terms of a1; ...,aN and the first 2N +1 Fourier coefficients of f(0).
Suppose that g is always positive, except at 6 = a1;..., aN, where it vanishes (see
Fig. 1 for the case N = l).Then/isnevernegative,andissmallifandonlyiftheenergy
is nearly all concentrated in the neighbourhood of the points av ..., acN. For if E denotes
a set of N narrow intervals surrounding a1;..., aN, the contribution to the integral
from within E is small, since g is small there, and the contribution from the remaining
regions E' is also small, since the proportion of energy in E' is small. Conversely, if
/ is small, then the proportion of energy lying outside E is small, for otherwise there
would be an appreciable positive contribution to / from the regions E'.

More precisely, let p denote the proportion of energy lying outside E (that is, in E').
Then since the total energy equals na0, we have

F(E')=pna0, F(E) = (l-p)na0. (1-5)
38-2
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592 M. S. LONGTJET-HIGGINS

In E we shall have O^g^G, say, and in W, G' <g<G". Thus from (1-4)

fgdd]naoUE

— [GF(E) + G"F(E')] (1-7)

. (1-8)

When the intervals E are so narrow that G<41, and if at the same time ^J<^ 1, then it
follows that //ao<^ 1. Conversely, since

(1-9)
E- ™O

we have P^TT,— • (1-10)
Ga0

Thus if IfG'a0 is small then p is also small, and so nearly all the energy lies within E.
In general, a knowledge of //(?'a0 provides an upper bound for p and so a lower bound

The smaller the value of I\G'aQ, the greater the amount of energy known to be
contained in E. We therefore seek the values of av ...,aN which make I{alt ...,aN)
a minimum. (G' depends also on the subsequent choice of E.) The directions a1,...,aN

which make /(a1 ; . . . , ocN) a minimum will correspond to the predominant directions of
the energy, so far as these can be defined. The chief mathematical problem is then to
find the minimum of the integral (1-4) and to determine the corresponding directions
6 = a1,...,a.N.

The cases N = 1 and N > 1 will be considered in §§ 2 and 3 respectively. In § 4 we give
some practical examples, where the inequalities are applied to the Fourier coefficients
of known functions f{6). The tests are found to be reasonably effective.

2. JV= 1. Let e_0L

0(0;ai) = 2Bin«?-p (2-1)

= 1 — costfcosa — sin^sina^ (2*2)

g(6; ax) is positive everywhere except at 6 = av where it vanishes (see Fig. 1), and
hence it satisfies the conditions stated in § 1. Consider then the function

/(0)sin»^eft? (2-3)

= a0 — diCOsa,! — 61sina1, (2-4)

which is a function of ax with known coefficients a0, a1( bv For E we may take the
interval of width 28 having ax as mid-point. Everywhere outside E we have

g>2sm*\8=G', (2-5)

and so the inequality (1*10) becomes
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Bounds for the integral of a non-negative function 593

Now from (2-4) the minimum value of /(ai) is

and occurs when cosa1 :s inaa: 1 = — ax: — 6X: V(«i + &?). (248)

The best possible inequality (2-6) is therefore

( 9 )

The corresponding direction a1; given by (2-8), defines the 'predominant' direction of
the energy.

We may remark that the maximum and minimum values of i(ax) are the roots of

22-2a0/ + K - a ! - 6 ! ) = 0; (2-10)

also that a necessary and sufficient condition for the energy to be concentrated within
a single interval of infinitesimal width is

ojj-af-6i = 0. (2-11)

3. N>1. Generalizing equation (2-1) we take

gifi; «!,<*„,...,«*) = 2 ^ - W ^ s i n 2 ^ . . . s i n 2 ^ , (3-1)

which is positive everywhere except at the points 6 = alt aa,..., <xN, where it vanishes.

The integral " 2«w-i f2» ft-a. 6-a

I(a1,...,ccN) = ±. | f{e)w*°-^...Bin*O-£Zd0 (3-2)
77 J o Z Z

is expressible in terms of a1; ...,OLN and the first 2N + 1 Fourier coefficients

ao>al>*l> •••>aN>t>N>

we have to investigate the minimum values of 7(a1; ...,0^). We shall now show that
under certain conditions the maximum and minimum values of I(alt..., aN) are the
roots of the quadratic ^ p _ ̂ ^ + AN = 0> ( 3 . 3 )

where
A* A A

(3-4)=

= a

Ao
A*

A%

n-H>n

Ax

Ao ...

A*

1 f2*
njo

AN

AN-I

Ao

e-in6dd.1 C
and we have written An = an-ibn = -\ f(d) e~ind dd. (3-5)

71J o
(A% denotes the complex conjugate of An.) When N = 1 equation (3-3) reduces to
(2-10) provided we take conventionally A_x = 1.

Since ft

^ ^ * (3-6)
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( e« _ e f«,) . . . (Ci« _ e*«jf) (e- i e - e-< ai) . . . (erie -

where t = eid and xn = eia«. Thus

Z1...XlfI=

At a stationary value of / , •=— = — ie~ia« ̂ — = 0,

and so on differentiating both sides of (3-9) with respect to xn,

x1...xNT (
t-xn

•**>)M (3-7)

(3-8)

(3-9)

(3-10)

(3-11)

We shall make use of two lemmas:

LEMMA 1.

z...xN xxx™...xN ... x1x2...x']f

where * 2

= n (xn-xj.
n>m

(3-12)

(3-13)

For the value of the left-hand determinant is unaltered by dividing the first row
by x-^x^, ...,xN and multiplying the first column by xx, the second by x2 and so on.
If m = 0, the determinant is then identical with DN except for an interchange of rows.
If m = 1,2, ...,N—I, two rows of the determinant are identical.

LEMMA 2. When m

X?
i-xx

xf-2

<- 3

1

= 0,1,

X?

xf"2

1

. . . , ^ - 1 ,

t-xN
~N-2
xN

... xN

1

tmDN (3-14)

For on multiplying the top row of the left-hand determinant by

{t-xx)(t-x2) ,..{t-xN),
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the first term, for example, becomes

~.m(* ~ \ It i- \ srmrfMfN—1 ,Q(l)*iV—2 _i i / 1\N~l,Cf(Di f3>1'tl
•^l \^ — **'2' *'' \ — Nt — 1 L 0 — O j * T ~ . . . ~r ^ — I I 13 jVj) V*' /

where <Ŝ ' denotes the symmetric sum, of degree n, of the roots x2,...,xN, and 8$, by
convention, equals 1. 8% may be expressed in terms of the symmetric sums 8n of all
the roots xvx2, ...,xNbj successive substitution as follows:

= S3- Xl8$> = -8, - x , - xlSQ, (3-16)

all the powers of x1 on the right-hand side being of degree less than or equal to
(N — m— 1). For the remaining coefficients we start from the other end:

"N—3 ~~ Xl \^'N—2~^IN-2)~X1 "N-2~X1 "N—l ~^~ ^1 ^>N-2> (3-17)

On substitution in (3-15) we see that the first term of the top row of the determinant

isoftheform Prf-* + Prf-* +... + PN, • (3-18)

where the Pn are symmetrical expressions in xlt x2,..., xN and

Px = tm. (3-19)

Each of the terms Pnx^~m (m = 2,3,... , N — 1) can be eliminated by subtracting Pn

times the «th row from the first row of the determinant. Only the first term P^x^-1

remains. By (3-19) this proves the lemma.
Now let the nth. of equations (3-11) be multiplied by x™ times the cofactor of the nth

term of the first row of DN, and let the equations be added. For m = 0 this gives

-"(«-«!) . . . (t-xN)DNd6, (3-20)

and therefore, if DN =f= 0,

/ = - r
71Jo

= A0S0-A1S1 + A2S2-... + (-l)»ANSN. (3-21)

Similarly, for m = 1,2, ...,N— 1, we have

0 = A*80-AZ_181+... + (-iyAN^n8If. (3-22)

Finally, we add the equation for m = N, which is most conveniently obtained by
taking the conjugate of equation (3-21) and using S* = /SJV_n//SiV:

lf. (3-23)
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These equations may be written in matrix form:

A1

A*

: A*

(3-24)

The diagonal terms of the square matrix are all Ao except the first and last, which are
Ao — I. Since the symmetric sums Sn are not all zero (So = 1), it follows that

A _
J~JL. Q •<

A*
At

A,

A*

N

N_X

N_2

Ao-I

= 0, (3-25)

which on expansion is seen to be identical with (3-3), the result to be proved.
To find the corresponding angles an, we first choose the smaller root / of equation

(3-25) and then solve any N of equations (3-24) to obtain the JV ratios SQ-.S^. ...:SN.
The roots x1,x2,...,xN of

Sot
N-S1t

N-1+...+(-l)NSN = O (3-26)

then give the required angles, through the relations xn = eian.
It was assumed in the proof that DN =)= 0, i.e. that all the roots xn are distinct. Since

I{av ...,aN) is a bounded function of a1; ...,xN, it must always possess at least one
maximum and one minimum; but only if these correspond to unequal values of
a2, ...,ocN does the present theorem necessarily hold.

In one important case, however, the above analysis is certainly valid, namely when
the energy is concentrated in N infinitesimal intervals surrounding N distinct directions
6^02, ...,dN, say. For, when (a1; ...,aN) = (61,...,6N), I vanishes, from (3-2), and

" '

,6-
= 0. (3-27)

Therefore (a1; ...,ccN) — (6V ...,6N) is a solution of equation (3-11) and hence also of
equations (3-25) and (3-5), with 7 = 0. The determinant (3-25) is of rank N, as will be
shown in the appendix, and so the ratios SQ-.S^. ...:SN are uniquely determined.
Therefore t = ti6n satisfies (3-26). But (3-26) has not more than N roots, which must
therefore be identical with the N distinct quantities e>\ ews, ...,eies.

When the minimum value of/ is small, equation (3-3) shows that it is given by

1 = (3-28)

very nearly. Therefore by (1-10) all except a proportion p of the energy is contained
in E where
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" 2T*—<G'' (3'30)

^ A O A W-1

then nearly all the energy is contained in E.
Suppose that we take as E the set of N intervals of width 28 with mid-points

alt ...,ocN. If 8 is small compared with the distances between successive a's we have,
in the nth. interval,

g(6; ava2,...,aN) = 2 ^ - i S i n 2 ^ ^ n ' s i n 2 ^ p ? (3-31)

very nearly, where in the product m runs from 1 to N excluding n. Thus, outside E,

sin2 %8min fa 'sin2 am~aA = G'. (3-32)

A rough estimate of G' may be obtained by replacing sin \8 by \8 and each of the terms
sin2 \{am — an) by a mean value \. Thus

G'==2N-282, (3-33)

and (3-30) becomes * 48*. (3-34)
^ Ao Aiv-i

If one of the distances | am — ccn \ is only of order 8 or less, then G' will be an order of
magnitude less than (3-33). But in that case we may expect that a smaller number of
directions an would give a significant inequality, for the same value of 8. Therefore
a criterion for the energy to be grouped mainly in N separate intervals of width 8 is
that JV shall be the least integer for which (3-34) is true.

4. Applications. To illustrate the method we shall discuss some examples when the
energy distribution/(#) has certain simple forms; we shall find how much information

about f(6) dd can be obtained from a knowledge of the first five Fourier coefficients.
J E

Example 1. Suppose that

f— if 6»1-e<(9<6'1 + e |
1 1 + L (4-1)

that is, the energy is evenly distributed in a narrow interval of width 2e and mid-point
dx (see Fig. 2 a). Then we have

(4-2)

and so Ao = 1,

-1——I =4fi2

(4-3)
sin2e\

_j . _ | = _
e I

Since Ax/A§ is of order e2, we know at once that the energy is mainly grouped in a single
interval whose width is of order e.
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Let us apply the test when N = 1. From (2-8) we find that the 'predominant'
direction is given by ax = 0V and further from (2-9) that

e2

2X3^2 (4-4)

(sin££ has been replaced by %8). Thus, taking 8 = e, we could tell that not more than
one-third of the energy lies outside the original interval, or taking 8 = 2e, that not
more than one-twelfth lies outside an interval of twice this width.

f(0) f(0)

7l/2£

2S

2n

2e

i 1
2n

7i/2e

'/////////A^
0, 2n

(c)

Fig. 2.

To apply the test when N = 2 we have to solve

.„ sine „ „.„ sin2e ,
= 0.

w1
Sine

)
e

sin2e So- e^——b1-

On subtracting the first equation from the third we find
.9 _ pile, ao 2 — e ' O Q ,

(4-5

(4-6)

https://doi.org/10.1017/S030500410003067X Published online by Cambridge University Press

https://doi.org/10.1017/S030500410003067X


Bounds for the integral of a non-negative function

and so from the second „ „ sin e

Equation (3-26) then becomes

«2-2

599

»i = 0, (4-8)

(4-9)

(4-10)

The separation of ax and a2 is 2e/V3. If we take as E two separate intervals of width
28 surrounding ax and <x2, 8 being less than e/V3, we shall obtain a bound 0' of order
<J%2. Thus (3-29) will be of order e2/#2, and no advantage is obtained by taking 8 much
smaller than e (as, indeed, we should expect from the actual form oif(d)). If, on the
other hand, we take for E a single interval (61 — 8,61 + 8), where 8> e/V3, we have

of which the solution, to order e, is

The predominant directions a1; a2 are therefore given by

0. = (4-11)

approximately, and so from (3-29)

If 8 = e, we have p^. 1/5, showing that not more than one-fifth of the energy lies
outside the interval (compared with one-third in the previous test). If 8 = 2e, we have
p^ 1/180, showing that only about 0-5% of the energy lies outside the interval
(compared with one-twelfth previously).

Thus the test for N = 2 provides a stricter inequality than the test for N = 1, but
not by an order of magnitude.

Example 2. Let

« if et-

elsewhere,

(4-13)

where 2e<di — d1<2n — 2e, so that the energy is evenly distributed in two non-
overlapping intervals of width 2e (see Fig. 26). For simplicity we shall suppose also
that 62 — dx = \n, i.e. the average directions for the two intervals are at right angles.
Then we have

" ^ S ^ (n = 1,2, ...,N), (4-14)

where 60 = dx + 62), and Ao = 1,
lsine
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approximately. Since A2/2A0 Ax is of order e2, <̂  1, whereas AJAg is of order unity, we
can tell at once that the energy hes mainly within two separate intervals whose width
is of order e.

In the test for N = 1,7(ax) is a minimum when a1 = do = \(dl + d2). But since Ax/A§
is of order unity the test gives a barely significant result. If we take, for example,
8 = \TT, SO that E is the interval of width 77 and mid-point d0, we have from (2-9)

^ < 1 - V £ = 0-293, (4-16)

so that only about seven-tenths of the energy certainly hes in this semicircle.
Now let us apply the test for N = 2. We have

= 0 ,

eie<> s i n e ,

V2 e ° * ' V2
eie» sin e „

(4-17)

Proceeding as before, we find
a i = 0i + fc2> a2 = <92 - £e2. (4-18)

Thus the two' predominant' directions differ from the directions 0X and 62 by quantities
of order e2 only. If JE? is taken to be two small intervals of width 28 surrounding ax and
a2 we may take a —a

0' = 23 sin2 i<S sin2 2 x = 82 (4-19)
e2

approximately, and so from (3-29) ' p ^ — . (4-20)

Thus we could tell that at least two-thirds of the energy comes from within two
intervals of width 2e almost coinciding with the original intervals, or that eleven-
twelfths of the energy comes from within two intervals of twice this width.

As expected, there is a marked improvement in the inequalities obtained from the
test for N = 2 compared with those obtained from the test for N = 1, in this example.
However, from the experience of Example 1 we should expect that tests of higher
order would give only a smaller improvement.

Example 3. In the two previous examples we assumed that the energy was entirely
confined to one or two narrow intervals, that is to say there was no ' background' of
energy outside those intervals. To investigate the effect of such a background we may
add to the energy distribution of Example 1 a small constant term. Thus

fif)\ _ \hv + w~ ^ 61 — e<6<81 + e,

{\t] elsewhere,

where rj is a small quantity (see Fig. 2 c). The effect of this is to increase Ao by JJ but to
leave the other Fourier coefficients unaltered:

( » = 1,2, . . . ,# ) . (4-22)
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Equation (2-9) then gives

601

(4-23)

(higher powers of 8, e, rj being neglected).
In order that the background shall be negligible, therefore, we must have 7/<^e2, or

in other words the background must be an order of magnitude smaller than the square
of the width of the interval. It appears, therefore, that the effectiveness of the present
tests depends rather critically on the absence of such a background.

APPENDIX

Properties of AjV

We now prove the result used in § 3. This is part of a more general theorem (Theorem
A 9) which was first proved algebraically by Toeplitz (11); other proofs have been given
by Fischer (6), Schur (10) and Frobenius (7)f. The proof we now give is more direct than
any of those mentioned, and brings to light more clearly the significance of A^.

First we establish the identity

2n 6—6
Usin^-^-^d61...ddN+1, (Al)

Af+l) Civ f2n

) ITT ^ J o J o

where, in the double product, n runs from 1 to N + 1 and m from n + 1 to N + 1. From
(3-4) and (3-5) we have

n-
•JV+l

rrf{e1)dd1 P
Jo Jo

Jo Jo

j"ln ' Pin
f{61)e^d61 f

Jo Jo

... r
Jo... r
Jo

r2rr

... /
Jo N+l

1

eiei

eiNB,

dd1...

I r2n riv
= i^Jo-JoM)-

eiN6s+l

. dd
N+1.

(A 2)

\ Some equivalent geometrical conditions on the Fourier coefficients were given by Cara-
theodory(2, 3). The equivalence of the algebraic and geometrical conditions was established by
Caratheodory and Fej4r(4). See also Riesz(8, 9) for related results.
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Interchanging any two of the 6n does not affect the value of the left-hand side, but
interchanges two rows of the determinant on the right-hand side. The two rows can be
changed back if at the same time the sign of the right-hand side is changed. Hence,
adding all the (N + 1)! possible permutations we have

\ A J V = - L . r... r 2 /^) ...f(6N+1)
J 0 J 0

eiN0l ciN6, e-iN61

" J O JO
. . . dd

N+1.
m>n

(A3)
If equation (3-6) is now used, the identity (A 1) follows immediately.

Since f(6) is non-negative, the whole integrand on the right-hand side of equation
(A 1) is non-negative, from which it follows that

Aj^O. (A 4)

Suppose now that/(#) consists of N 'pulses' of energy, that is,f(d) is zero everywhere
re

except near JV points 6 = 6{m\ where it becomes infinite in such a way that f(6) dd

has a finite discontinuity Cm at this point. In Dirac's notation (5) we may write
iV

m = l
(A 5)

The function f{8^).. -f(8N+1) is zero everywhere except where each 8n equals some #(m).
But since there are only N 0(m), this implies that at least two of the 8n must be equal.
The part of the integrand under the product sign then vanishes, and the contribution
from the neighbourhood of this point is zero. Hence

Iff{8) is the sum of N pulses, then &N = 0. (A 6)

Conversely, if it is assumed that/(#) is continuous except possibly for a finite number
of pulses, we may show that

If hN = 0 and iff(8) ^ 0, then f (8) is the sum of at most N pulses. (A 7)

For, suppose that f (8) is continuous and positive, or has a positive pulse, at more than
N points, say 8 = #(1), ...,8^+1\ When 8X, •••,8N+1 are in the neighbourhood of these
points there will be a positive contribution to the integral (A1), and since the integrand
is never negative AN must be greater than zero, contrary to hypothesis. Therefore
f(8) cannot be different from zero at more than N distinct points.

The first part (A 6) of the theorem can also be quite simply proved algebraically.
For iff (8) is given by (A 5) then from (3-5)

1 N

An = -?:Cme-M>». (A 8)
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If these expressions for An are substituted in (3-4) it will be found that Ajy vanishes
identically. However, the converse (A 7) is necessarily more difficult to prove, since
it depends upon/(#) being non-negative.

From (A 7) we deduce that if/(#) is the sum of just N pulses, then AiV_1 > 0; for if
Aiv_1 vanished f{6) would consist of no more than (N — 1) pulses. Now AiV_1 is a minor
of Ajy, so that AJV must be of rank N (which is the result used in §3). Conversely, if
A^ = 0 but AiV_1 > 0, then/(#) consists of just N pulses. Hence

A necessary and sufficient set of conditions for a non-negative function f(d) to consist of
just N pulses is that

A0>0, A ^ O , ..., AN^>0, AjV = 0. (A9)
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