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Background. Identifying youth who may engage in future substance use could facilitate early identification of substance
use disorder vulnerability. We aimed to identify biomarkers that predicted future substance use in psychiatrically un-
well youth.

Method. LASSO regression for variable selection was used to predict substance use 24.3 months after neuroimaging
assessment in 73 behaviorally and emotionally dysregulated youth aged 13.9 (S.D. = 2.0) years, 30 female, from three clin-
ical sites in the Longitudinal Assessment of Manic Symptoms (LAMS) study. Predictor variables included neural activity
during a reward task, cortical thickness, and clinical and demographic variables.

Results. Future substance use was associated with higher left middle prefrontal cortex activity, lower left ventral anter-
ior insula activity, thicker caudal anterior cingulate cortex, higher depression and lower mania scores, not using anti-
psychotic medication, more parental stress, older age. This combination of variables explained 60.4% of the variance
in future substance use, and accurately classified 83.6%.

Conclusions. These variables explained a large proportion of the variance, were useful classifiers of future substance
use, and showed the value of combining multiple domains to provide a comprehensive understanding of substance
use development. This may be a step toward identifying neural measures that can identify future substance use disorder
risk, and act as targets for therapeutic interventions.
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Introduction

Sensation seeking increases during adolescence
(Kandel & Logan, 1984; Steinberg et al. 2008), often at
the expense of safer choices. Some risk taking, for
example, practising difficult sporting maneuvers or
applying to highly ranked schools or jobs, is beneficial
to growth and survival. Other risks taken by youth,
however, are associated with deleterious behaviors,

such as substance use and substance use disorders.
The propensity for risky behaviors, such as substance
use, in youth may be related to reward circuitry devel-
opment, specifically, reduced ventral striatal function
and volume (Schneider et al. 2012), and a delay in the
development of prefrontal cortical regions implicated
in cognitive control alongside the emergence of
increased dopaminergic activity in subcortical regions
during puberty (Steinberg et al. 2008). Reward circuitry
comprises a widespread neural network, including the
ventral striatum (VS), amygdala and insula, and
specific prefrontal cortical regions: the ventrolateral
prefrontal cortex [VLPFC; Brodmann area (BA) 47],
the dorsal anterior cingulate cortex (dACC; BA24/32),
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and the medial and middle prefrontal cortex (mPFC;
BA10). Reward circuitry-related activity, along with
sensation-seeking personality traits and risk-taking
behaviors, characterized early-onset drinking (Nees
et al. 2012). In addition, on a naturalistic risk-taking
task, activity in the bilateral insula, parietal, orbitofron-
tal, and motor cortices, as well as the left anterior cin-
gulate cortex, together were able to discriminate
between making a risky or safe choice on the next
trial with 67% accuracy (Helfinstein et al. 2014).
Additionally, in adolescence, cortical maturation
often corresponds with substance use onset (Shaw
et al. 2008). Animal studies reported differential
changes in cortical thickness in adolescent animals
exposed to substances (Vetreno et al. 2016), while ado-
lescent marijuana users showed reduced cortical thick-
nesses relative to non-users (Lopez-Larson et al. 2011).
The extent to which measures of reward circuitry func-
tion and structure in youth predict future substance
use, however, remains to be determined. Identifying
in youth such predictors, alongside clinical and demo-
graphic predictors, would not only provide objective
neural markers to identify risk of future substance
use disorders, but would also provide targets to ultim-
ately guide early intervention, treatment choice, and
novel treatment developments.

Predicting clinical outcome from neuroimaging mea-
sures is a burgeoning field of research (Berkman &
Falk, 2013). Measures of neural structure and function
predicted response to psychotherapy, cognitive–behav-
ioral therapy, and psychotropic medications in adults
and children with major depressive disorder (MDD)
and anxiety disorder (AnxD) (McClure et al. 2007;
Forbes et al. 2010; Pizzagalli, 2010; Masten et al. 2011;
Fu et al. 2013; Hum et al. 2013; Morgan et al. 2013;
Shin et al. 2013). Additionally, in youth, future positive
mood and energy dysregulation was predicted by a
combination of reward circuitry functional connectiv-
ity, white matter structure and clinical scores, together
explaining 28% of the variance in clinical outcome
(Bertocci et al. 2016). The latter study in particular
points to the feasibility of using a multimodal neuroi-
maging approach to identify markers of neural
function that, in combination with clinical and demo-
graphic measures, can predict future behavioral out-
comes in youth with psychiatric disorders. Large
sample sizes, multimodal neuroimaging techniques,
and statistical analyses that can evaluate large numbers
of potential predictor variables are needed to fully
examine the extent to which combinations of measures
predict future outcomes in youth. LASSO (Least
Absolute Shrinkage and Selection Operator) regression
is one such statistical technique that has been adopted
for use in genetic studies (Kohannim et al. 2012a, b, Luo
et al. 2015; Wang et al. 2015; Zemmour et al. 2015),

and is gaining favor in clinical research (Christensen
et al. 2014; Yan et al. 2015; Bertocci et al. 2016). This
technique evaluates a large number of potential
predictor variables, relative to the number of study
participants, while minimizing model error and
minimizing the risk of overfitting through cross-
validation (CV).

The goal of the present study was to identify
measures of reward circuitry function and cortical
structural thickness that predicted future substance
use in a large group of youth in the Longitudinal
Assessment of Manic Symptoms (LAMS) study.
LAMS is an ongoing multi-site study examining longi-
tudinal relationships among the course of symptoms,
outcomes, and neural mechanisms associated with dif-
ferent clinical trajectories in youth with symptoms
characterized by behavioral and emotional dysregula-
tion (Findling et al. 2010; Horwitz et al. 2010). We
hypothesized that in LAMS youth, future substance
use would be predicted by increased prefrontal–
cortical–striatal reward circuitry activity and reduced
whole-brain cortical thickness. We also aimed to deter-
mine the proportion of future substance use predicted
by neuroimaging measures, and to test the discrimin-
atory power of identified predictors.

Method

Participants

A total of 130 youth, recruited from the LAMS1 cohort
of 707 youth for whom parents were seeking psychi-
atric assessment and treatment, participated in the
neuroimaging component of LAMS2. All 130 youth
from LAMS1 entered LAMS2 with a variety of symp-
toms and diagnoses. Inclusion criteria for the LAMS1
cohort were: no out-patient treatment at a LAMS clinic
in the last 12 months; 6–12 years of age; and without a
sibling who was screened for LAMS1 (Findling et al.
2010). Families of eligible children completed the
Parental General Behavior Inventory 10-Item Mania
scale (PGBI-10M). Children who scored 512 on this
scale, and an age–sex-matched group of those who
scored <12, were invited to participate in LAMS1.
The 130 youth in the LAMS2 neuroimaging component
were selected to include approximately equal numbers
of youth: (1) with high (512) v. low (<12) PGBI-10M
scores; (2) who were older (513 years) v. younger
(412 years); (3) who were male v. female (each site
was age- and sex-matched for each PGBI-10M
subgroup).

Exclusion criteria for participating in the LAMS2
neuroimaging component included systemic medical
illnesses, neurological disorders, history of trauma
with loss of consciousness, use of non-psychotropic

1358 M. A. Bertocci et al.

https://doi.org/10.1017/S0033291716003147 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291716003147


central nervous system-affecting medications, intelli-
gence quotient (IQ) < 70 assessed by the Wechsler
Abbreviated Scale of Intelligence, positive drug and/
or alcohol screen on scan day, significant visual dis-
turbance, inability to communicate in English, autistic
spectrum disorders/developmental delays, pregnancy,
claustrophobia and metal in the body.

Parents/guardians and youth provided written
informed consent and assent, respectively, after receiv-
ing a complete study description.

The final sample included 73 LAMS youth (age:
mean = 13.91, S.D. = 2.00, range = 9.89–17.71 years; 30
females; Table 1). A total of 57 LAMS youth were
excluded for behavioral data loss (n = 5), excessive
movement during neuroimaging acquisition (n = 33),
or cortical thickness processing problems (n = 19;
inability to read the pixelated data, mislabeled parcel-
lations, non-symmetric colors, or missing cortical
regions). Included youth were older, had higher IQ,
and higher socio-economic status (SES) relative to
excluded youth (Table 1).

Reward task

Reward-related neural activity measures were
acquired using a well-validated card-guessing task
with a reward component (Forbes et al. 2009; Bebko
et al. 2014; see online Supplementary material).

Neuroimaging data analysis

Functional magnetic resonance imaging (fMRI) data
were collected on: (1) a 3 T Siemens Verio MRI scanner
at Case Western Reserve University, (2) a 3 T Philips
Achieva X-series MRI scanner at Cincinnati
Children’s Hospital, and (3) a 3 T Siemens Trio MRI
scanner at the University of Pittsburgh. We prepro-
cessed and analysed fMRI data using Statistical
Parametric Mapping software (SPM8; http://www.fil.
ion.ucl.ac.uk/spm). An axial three-dimensional mag-
netization prepared rapid gradient echo (MPRAGE)
sequence [192 axial slices 1 mm thick; flip angle = 9°;
field of view = 256 × 192 mm; repetition time (TR) =
2300 ms; echo time (TE) = 3.93 ms; matrix = 256 × 192]
acquired T1-weighted volumetric anatomical images
covering the whole brain. A reverse interleaved gradi-
ent echo planar imaging (EPI) sequence (38 axial slices
3.1 mm thick; flip angle = 90°; field of view = 205 mm;
TR = 2000 ms; TE = 28 ms; matrix = 64 × 64) acquired
T2-weighted blood oxygen level-dependent (BOLD)
images covering the whole cerebrum and most of the
cerebellum. Preprocessing involved realignment, co-
registration, segmentation, normalization into a stand-
ard stereotactic space [Montreal Neurological Institute
(MNI); http://www.bic.mni.mcgill.ca] and spatial
smoothing using a Gaussian kernel (full width at half

maximum: 8 mm). A two-level random-effects proced-
ure was used to conduct region-of-interest (ROI) ana-
lyses. At the first level we constructed whole-brain
statistical maps to evaluate the win > control and loss
> control contrasts. Movement parameters obtained
from the realignment stage of preprocessing served
as covariates of no interest.

A single anatomically defined, bilateral ROI mask
containing reward-related regions (Nusslock et al.
2012; Caseras et al. 2013) from the WFU PickAtlas
(Maldjian et al. 2003) was used to avoid conducting
multiple statistical tests over individual ROIs: dACC
(BA24/32), mPFC (BA10), orbitofrontal cortex (BA11),
VLPFC (BA47), amygdala, insula and VS [bilateral
spheres centered on ±9, 9, −8; radius = 8 mm based
on meta-analyses (Postuma & Dagher, 2006; Di
Martino et al. 2008)]. Using a one-sample t test, we
extracted significant activity to win > control and loss
> control (voxelwise p < 0.001), corrected with a three-
dimensional cluster forming threshold of p < 0.05
(http://afni.nimh.nih.gov/pub/dist/doc/program_help/
3d ClustSim.html) over the entire ROI. Means of sign-
ificant clusters were extracted using the MarsBaR (Brett
et al. 2002) toolbox in SPM.

Additionally, we examined gray matter structure
across the whole brain as in other neuroimaging stud-
ies examining relationships between cortical thickness
and risky behavior (Lopez-Larson et al. 2011; see online
Supplementary material). Structural thicknesses were
calculated using the freely available Freesurfer
(Fischl, 2012) software. An unbiased within-subject
template space and image were created. Next, skull
stripping, Talairach transformation and atlas registra-
tion were completed. Finally, generation of spherical
surface maps and parcellations with common informa-
tion from the within-subject template was performed.
The quality of surface reconstruction and segmentation
was visually assessed. Each structure was extracted
and adjusted for individual mean whole-brain
thickness.

Clinical assessments

On or near scan day, parents/guardians completed the
PGBI-10M to assess their child’s behavioral and emo-
tional dysregulation severity (Youngstrom et al. 2005,
2008), and the Children’s Affect Lability Scale (CALS)
to assess their child’s affective regulation (Gerson
et al. 1996). On scan day, parents and LAMS youth
completed the Kiddie Schedule for Affective
Disorders and Schizophrenia for School-Age Children
Mania Rating Scale (KMRS) (Axelson et al. 2003) and
Depression Rating Scale (KDRS) (Kaufman et al.
1997) to assess hypo/mania and depressive symptom
severity, respectively. LAMS youth also completed
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the Screen for Child Anxiety Related Emotional
Disorders (SCARED) on scan day to assess anxiety
symptoms over the last 6 months (Birmaher et al.
1997).

Substance use measure

To assess substance use at scan day and post-fMRI
scan (mean follow-up time: 741, S.D. = 181.41 days),
questions concerning substance use from the
Schedule for Affective Disorders and Schizophrenia
for School-Age Children (KSADS) (Kaufman et al.
1997), the Child and Adolescent Symptom Inventory
(Lavigne et al. 2009), and age-appropriate versions of
the Centers for Disease Control and Prevention’s
Youth Risk Behavior Survey (middle school: 10–12
years of age; 2005 version; high school: 13–17 years

of age; 2003 version; adult: 18–22 years of age; 2010
version) (www.cdc.gov/yrbs) were used. A report of
substance use (more than a few sips of alcohol and/
or any illicit drug use) on any of these measures put
the participant into the substance user group.

Data analytic plan

The outcome measure used in this analysis was yes/no
lifetime substance use. Of the 73 youth, 36 reported
substance use 24 months post-scan. Clinical predictor
variables on or near scan day included positive
mood and energy dysregulation (PGBI-10M score),
depressive symptoms, manic symptoms, anxious
symptoms, and affective lability, diagnoses [atten-
tion-deficit/hyperactivity disorder (ADHD), bipolar
spectrum disorder, MDD, disruptive behavior disorder

Table 1. Demographic information, clinical variables, and current medication usage describing the total LAMS sample and comparing LAMS
participants included v. excluded from neuroimaging

Total LAMS imaging
sample (n = 130): mean
(S.D./range) or proportion

Included participants
(n = 73): mean (S.D.)
or proportion

Excluded participants
(n = 57): mean (S.D./
range) or proportion

Comparing included v.
excluded participants

Test statistic p

Demographic information
Age, years 13.54 (2.04/9.89–17.71) 13.92 (2.0) 13.06 (2.0) t128 =−2.4 0.018*
IQ 100.56 (16.35/70–140) 105.44 (17.3) 94.32 (12.7) t127.6 =−4.23 <0.001*

SES: maternal education χ2 = 12.86 <0.001*
No/some HS 8/130 0/73 8/57
GED or HS diploma 35/130 15/73 20/57
Some post-HS 29/130 19/73 10/57
Associate’s degree 34/130 21/73 13/57
Bachelor’s degree or
higher

24/130 18/73 6/57

Sex: females 48/130 30/73 18/57 χ2 = 0.87 0.351
Clinical measures
CALS 18.09 (13.77/0–62) 17.30 (13.0) 19.15 (14.8) t126 = 0.75 0.456
PGBI-10M 6.15 (6.17/ 0–24) 5.96 (6.0) 6.39 (6.4) t127 = 0.39 0.695
KDRS 3.85 (4.68/0–24) 4.16 (4.9) 3.44 (4.4) t126 =−0.87 0.385
KMRS 4.41 (6.77/0–31) 4.44 (6.9) 4.38 (6.7) t126 = 0.05 0.963
SCARED 11.64 (11.47/0–53) 10.93 (10.8) 12.59 (12.4) t125 = 0.81 0.422

Current medication use
Antidepressant 20/130 11/73 9/57 χ2 = 0.00 1.0
Antipsychotic 27/130 20/73 7/57 χ2 = 3.57 0.059
Mood stabilizer 11/130 8/73 3/57 χ2 = 0.71 0.401
Non-stimulant 11/130 6/73 5/57 χ2 = 0.00 1.0
Stimulant 49/130 29/73 20/57 χ2 = 0.13 0.720

LAMS, Longitudinal Assessment of Manic Symptoms; S.D., standard deviation; IQ, intelligence quotient (Wechsler intelli-
gence test); SES, socio-economic status; HS, high school; GED, general education development test; CALS, Child Affect
Lability Scale (parent rating); PGBI-10M, Parent General Behavior Inventory 10-Item Mania Scale; KDRS, Kiddie Schedule for
Affective Disorders and Schizophrenia for School-Age Children Present Episode Depression Rating Scale; KMRS, Kiddie
Schedule for Affective Disorders and Schizophrenia for School-Age Children Mania Rating Scale; SCARED, Screen for Child
Anxiety Related Emotional Disorders (child rating).
* Significant (p < 0.05); statistical comparison between included and excluded participants.
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and AnxD], medication status (taking v. not taking
each psychotropic medication class: stimulant, non-
stimulant ADHD, mood stabilizer, antipsychotic, and
antidepressant medications). Demographic variables
included age, IQ and sex. Baseline measures of mater-
nal education, parental life-stress (number of stressful
events related to child’s illness), and parental living
arrangement (living with a new partner or alone)
were also included as predictors (Kokkevi et al.
2007a, b). Neuroimaging predictor variables included
the above BOLD measures to win > control and loss >
control and the above whole-brain gray matter cortical
thickness variables. We additionally included scan site,
and days between scan and follow-up as predictor
variables.

Given that our outcome variable was dichotomous
and there were more predictor variables than observa-
tions, we used LASSO regression analysis with bino-
mial family (logistic LASSO regression) for variable
selection and reduction using the freely available
GLMNET package in R (Friedman et al. 2014).
LASSO is a modified form of least squares regression
that penalizes complex models with a regularization
parameter (λ) (Tibshirani, 1996). This penalization
method shrinks coefficients toward zero, and elimi-
nates unimportant terms entirely (Tibshirani, 1996;
Friedman et al. 2010, 2014), thus minimizing prediction
error, reducing the chances of overfitting through CV,
and enforcing sparsity (Tibshirani, 1996).

GLMNET approximates the log-likelihood and then
uses a coordinate descent algorithm (Wu & Lange,
2008; Ricket, 2013) computed along a regularization
path (an inner weighted least squares loop) to optimize
the penalized log-likelihood. Coefficients are stabilized
by coordinate descent (optimization of each parameter
separately, holding all others fixed). Regularization
adds constraints to a problem to avoid over-fitting.
Regularization in GLMNET for a binomial regression
is performed by producing the path of tuning param-
eter (λ) along the range of included variables, thus
identifying the optimal λ (http://web.stanford.edu/
∼hastie/glmnet/glmnet_alpha.html). GLMNET then
uses CV to compute the mean CV error for each pen-
alty term to guard against type III errors (testing
hypotheses suggested by the data). We used a k = 10-
fold CV approach.

A test statistic or p value for LASSO that has a sim-
ple and exact asymptotic null distribution is still under
development (Lockhart et al. 2014). We thus provide
three other measures that are meaningful for data
inference: (1) rate ratio (exponentiated coefficients) of
the non-zero coefficients identified in the LASSO
model; (2) Cox & Snell R2 for variance in future sub-
stance use explained by the model; (3) classification
table results (cut-off = 0.1) from a hierarchical logistic

regression analysis in SPSS, using the eight predictor
variables identified from the LASSO model.

Post-hoc sensitivity analysis

Of the 36 LAMS youth who at 24 months post-scan
reported substance use, 15 also reported using
substances at or prior to the scan. To test the import-
ance of the combination of predictor variables derived
from the LASSO, we examined the classification
table from the logistic regression analysis after re-
moving the 15 youth with substance use at scan.
Additionally, to identify the non-zero variables related
to future substance use only, we performed a new
LASSO analysis, removing these 15 youth and includ-
ing all of the original p = 108 predictor variables.

Scan site signal variability reduction

We reduced signal variability between scan sites in
two ways. First, we monitored the signal:noise ratio
monthly to ensure scanner stability over time with a
Biomedical Informatics Research Network (fBIRN)
phantom at each scan site (http://www.birncommu
nity.org). Second, we used scan site as a covariate in
the LASSO models.

Results

Neuroimaging results

LAMS youth showed significant activation to the win
> control contrast in the bilateral dACC (BA32) (MNI:
−3, 20, 46 and 3, 20, 46), left mPFC (BA10) (MNI:
−39, 47, 1 and −39, 50, 16) and the bilateral ventral
anterior insula MNI: 33, 23, −5 and −48, 17, 1); and
to the loss > control contrast, in the bilateral dACC
(BA32) (MNI: −9, 8, 52; 3, 20, 46; and 9, 29, 31) and
the ventral anterior insula (MNI: 30, 20, −8 and −33,
20, 7) (voxelwise p < 0.001, clusterwise corrected p <
0.05, Table 2).

LASSO results

Eight predictors together minimized mean squared
error, enforced sparsity (Friedman et al. 2014) and opti-
mized model fit (see Fig. 1 and online Supplementary
material). These eight predictors and the direction of
the relationships were as follows.

Substance use 24 months post-scan was predicted by
greater left middle prefrontal cortical activity to win,
lower left ventral anterior insula activity to loss, and
thicker caudal anterior cingulate cortex. In addition,
older youth, higher depression scores, lower mania
(KMRS) scores, more parental stressful events and
not being on an antipsychotic medication at scan pre-
dicted future substance use (Table 3).
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The full model explained 60.4% of the variance in
future substance use. Hierarchical logistic regression
showed that left middle prefrontal cortical and left
ventral anterior insula activity, together with left cau-
dal anterior cingulate cortical thickness, explained
14.4% of future substance use variance over and
above the clinical and demographic variables (45.7%;

depression and mania scores, parental stress, age,
and antipsychotic medication use). Additionally, a
cut-off 40.1 from the logistic regression classification
table correctly predicted 36/36 of future substance
users and misidentified 12/37 of non-users as future
substance users, correctly identifying 61/73 partici-
pants (83.6%).

Table 2. Reward-related activity in 73 LAMS youtha

MNI coordinates Statistics

Contrast and region BA Side k, voxels x y z Test statistic and df p

Win > control activity
dACC 32 Left 17 −3 20 46 t72 = 6.49 0.001
dACC 32 Right 40 3 20 46 t72 = 6.31 0.001
Insula Right 105 33 23 −5 t72 = 5.61 0.001
Insula Left 80 −48 17 1 t72 = 4.70 0.001
mPFC 10 Left 25 −39 47 1 t72 = 5.60 0.001
mPFC 10 Left 11 −39 50 16 t72 = 5.34 0.001

Loss > control activity
dACC 32 Left 27 −9 8 52 t72 = 5.53 0.001
dACC 32 Right 25 3 20 46 t72 = 5.42 0.001
dACC 32 Right 11 9 29 31 t72 = 4.64 0.001
Insula Right 39 30 20 −8 t72 = 4.54 0.001
Insula Left 40 −33 20 7 t72 = 4.06 0.001

LAMS, Longitudinal Assessment of Manic Symptoms; MNI, Montreal Neurological Institute; BA, Brodmann area; k, cluster
size; df, degrees of freedom; p, uncorrected voxelwise probability value; dACC, dorsal anterior cingulate cortex; t, t test statis-
tical value; mPFC, middle prefrontal cortex.

a Region-of-interest analyses using voxelwise p < 0.001 and cluster-corrected p < 0.05. Table rows represent the peak voxel
within the specified region.

Fig. 1. LASSO (Least Absolute Shrinkage and Selection Operator) plots generated in GLMNET. (a) Plot of variable fit. Each
curve corresponds to an independent variable in the full model prior to optimization. Curves indicate the path of each
variable coefficient as lambda (λ) varies. (b) Plot of non-zero variable fit after cross-validation. Representation of the 10-fold
cross-validation performed in GLMNET using LASSO which evaluates the error associated with each lambda. Lambda.min
corresponds to the λ which minimizes mean squared error. Lambda.1se corresponds to the λ that is 1 S.E. from the Lambda.
min. The solid black line corresponds to the optimal lambda selected due to significantly improved model fit over the
Lambda.min and Lamba.1se based on χ2 residual deviance comparisons (see online Supplementary material). Values are
cross-validated means, with standard errors represented by vertical bars.
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Post-hoc sensitivity analysis

After removing the 15 youth who reported substance
use at scan, the model remained significant and the
Cox & Snell R2 effect size increased from 0.6 to 0.63.
The classification table using the eight non-zero pre-
dictor variables identified above (cut-off 40.1) cor-
rectly predicted 21/21 future substance users and
misidentified 6/37 non-users as future substance
users (Cox & Snell = 0.631).

Additionally, in a new LASSO regression analysis
including only the 58 youth who were not using sub-
stances at scan time, non-zero predictors of substance
use were similar to the main analysis. Non-zero predic-
tors were depression score, antipsychotic medication,
parental stress at baseline, left middle prefrontal cor-
tical activity to win, and right insula thickness.
Notably absent variables in this post-hoc LASSO ana-
lysis that may be driven by substance use prior to
scan but were predictive of eventual use (see post-hoc
classification results above) included left caudal anter-
ior cingulate thickness, left ventral anterior insula
activity to loss, and mania scores.

Discussion

Our goal was to assess the ability of neuroimaging
measures of reward circuitry activity and cortical thick-
ness to predict future substance use in psychiatrically
unwell youth. We used LASSO regression, along
with CV, an approach that penalizes complex models
with a regularization parameter and identifies the par-
ameter that minimizes error, rendering unimportant

coefficients as zero. Our LASSO analysis showed that
engaging in substance use 24.3 months post-scan was
predicted by a combination of neural activity to win
and loss, cortical structure, and clinical and demo-
graphic characteristics. These findings explained
60.4% of the variance in substance use 24.3 months
after neuroimaging assessment. Furthermore, neuro-
imaging measures incrementally predicted 14.7% of
the variance, i.e. approximately a quarter of the
explained variance, in this outcome measure. All
eight predictor measures correctly classified 100% of
youth who would use substances 24 months later,
while misidentifying only 32% of non-users as future
users. Including all identified non-zero variables in a
logistic regression analysis, both with and without
the 15 current users, successfully identified all future
substance users 24 months post-scan.

In humans, the mPFC has been shown to be acti-
vated both by cognitively demanding tasks, e.g. work-
ing memory, and reward, and may subserve the higher
cognitive aspects of reward value processing and
related, goal-directed behaviors (Pochon et al. 2002).
Our present finding of elevated left middle prefrontal
cortical activity to reward in youth may thus reflect
undue attention to, and higher-order processing of,
reward obtained during the task, which, in turn, may
predispose to risk-taking behaviors, such as substance
use. The left lateralization of our finding may reflect
the role of the left hemisphere in approach-related
behaviors (Davidson et al. 1990; Davidson, 1992)
(Fig. 2).

We showed that lower ventral anterior left insula
activity to loss > control predicted more substance use
in the future, although this was no longer the case
after excluding the 15 youth who were using sub-
stances at scan. Subdivisions of the insula have been
shown to have distinct patterns of functional connect-
ivity (Deen et al. 2011). The ventral anterior insula is
functionally connected to the anterior cingulate cortex
and may have role in the processing of emotion (Deen
et al. 2011). Our finding that lower left ventral anterior
insula activity to loss predicted future substance use
may thus suggest that reduced perception of emotion
during loss may have a role in the development of
risky behavior in youth. In support of this, in abstinent
drug users, insula activity was reported during deci-
sion-making (Stewart et al. 2014a, b), while attenuation
of bilateral insula activity was shown to predict relapse
after 1 year among abstinent methamphetamine-
dependent youth (Gowin et al. 2014). Furthermore,
individuals with insula lesions placed higher bets
and showed less sensitivity to odds compared with
controls (Clark et al. 2008). In healthy individuals, how-
ever, greater insula activity was associated with the
safer choice during performance of a risky stock

Table 3. Non-zero coefficients generated from GLMNET using a
LASSO regression with a binomial family model

Variable
LASSO-derived
exponentiated coefficienta

Antipsychotic medication 0.35
Age 1.20
Depression scale 1.07
Left middle prefrontal cortex to
win > control

1.75

Parental stress at baseline 1.05
Mania scale 0.98
Left ventral anterior insula
activity to loss > control

0.83

Left caudal anterior cingulate
thickness

1.39

LASSO, Least Absolute Shrinkage and Selection Operator.
a The exponentiated coefficient is the rate ratio change in

the dependent variable (future substance use) corresponding
to a one-unit change in the predictor variable.
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market decision-making paradigm (Kuhnen &
Knutson, 2005). The above findings, taken together
with our finding that lower left ventral anterior insula
activity to loss may have been associated with sub-
stance use at scan, may thus suggest that LAMS
youth who engaged in substance use may have per-
ceived less emotion and, as a result, may have been
less sensitive to the risks involved, and consequent
losses sustained, when making decisions during the
card number guessing task.

We also showed that greater right insula thickness
predicted future substance use in the 58 youth who
were not using substances at scan. Animal studies
suggest normative thinning of subcortical and
cingulate regions with age (Vetreno et al. 2016).
Furthermore, the right insula is implicated in conscious
awareness of interoception (Naqvi & Bechara, 2009).
Our finding regarding right insula thickness may

thus suggest that abnormal neurodevelopment of this
region (i.e. reduced pruning) may predispose to abnor-
mally heightened awareness of interoceptive processes
that, in turn, may have a deleterious impact on deci-
sion-making, but this needs further study.

Other studies have shown that neuroimaging mea-
sures may predict future substance use (Becker et al.
2015), although, in contrast to our findings, a previous
report indicated that measures of neural activity may
be less important predictors of risky behaviors than
other factors in youth. This study reported that a factor
consisting of insula, putamen, caudate nucleus, amyg-
dala, cerebellar vermis and prefrontal cortex activity,
when combined with a personality factor and a genetic
factor, was the least important factor in predicting
drinking in adolescence (Heinrich et al. 2016). The
fact that a significant proportion of the variance in
future substance use was predicted by neuroimaging

Fig. 2. Comparisons of neural measures of substance users and non-users 24.3 months post-scan and representation of the
region on an average brain image. (a) Reward-related left middle prefrontal cortex (mPFC) and left ventral anterior insula
activity. (b) Left caudal anterior cingulate thickness between the two groups (representative image). Thickness variables were
adjusted for individual mean cortical thickness. Values are means, with standard errors represented by vertical bars. BOLD,
Blood oxygen level-dependent.
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measures in our study, however, highlights a need for
future studies to further examine the role of neuroima-
ging measures as predictors of risky behaviors in
youth.

We additionally showed that greater cortical
thickness in the caudal anterior cingulate cortex pre-
dicted future substance use, but not after excluding
the 15 youth who used substances at scan. In young
adults, the left caudal anterior cingulate cortex was
thicker in binge drinkers relative to light drinkers
(Mashhoon et al. 2014). Additionally, normative cingu-
late cortical thinning was not observed in animals
exposed to ethanol (Vetreno et al. 2016). Thus, similar
to the left insula activity to loss finding above, greater
anterior cingulate cortical thickness may be a marker of
current substance use. More studies are needed to bet-
ter understand this structural finding.

Non-neuroimaging variables also predicted future
substance use. Consistent with the literature, older par-
ticipants (Kandel & Logan, 1984; Grant & Dawson,
1997) and youth with higher depression scores
(Deykin et al. 1987; Grigsby et al. 2016) more often
reported future substance use. Youth not prescribed
an antipsychotic medication at time of the neuro-
imaging assessment were also more likely to use
substances in the future, probably reflecting the mod-
erating effect of these medications on psychotic and
risk-taking behaviors. Intriguingly, youth with lower
mania scores were also more likely to report future
substance use. This may reflect the fact that youth
with lower mania scores were less likely to be taking
antipsychotic medication (p = 0.006), and thus did not
benefit from the moderating effect of antipsychotic
medications behaviors. While we do not suggest that
youth be prescribed antipsychotic medication as a
measure to reduce risk of future substance use, our
findings do suggest that common patterns of neural
activity may be associated with psychotic symptoms
and substance use. This warrants further study.
Finally, increased parental stress due to a child’s illness
predicted future substance use in youth. This accords
with research showing that parental psychological dis-
tress is associated with emotional and conduct pro-
blems in children (Amrock & Weitzman, 2014; Reeb
et al. 2015). Our findings thus add to present under-
standing of the role that parental stress and related
behaviors may have on child behavior long term, and
suggest that these factors may be used to identify
those high-risk families most in need of intervention.

Limitations of the present study included the inabil-
ity to assess the contribution of pubertal development
and other psychosocial factors that show associations
with substance use, such as sibling and peer substance
use and parental monitoring (Kokkevi et al. 2007a, b),
as they were not measured at scan time. Although

the age of greatest risk for substance use was not yet
reached by some youth in our sample, a larger propor-
tion of the LAMS sample report substance use than is
expected from the general population (Substance
Abuse and Mental Health Services Administration,
2013). As the children in the LAMS sample are, and
have been, behaviorally and emotionally dysregulated
for at least 5 years and for as many as 10 years, and are
at risk for a myriad of psychiatric disorders, it is, per-
haps not unexpected that they engage in substance use
at a higher rate than we see in healthy children. Finally,
this analysis was designed post-hoc and we therefore
were not able to control for substance use at the initial
scan visit. Additionally we suspect that some of the
misidentification as a substance user may, in fact, be
due to the subjective account of substance use by par-
ticipants. Although the statistical methods utilized
here (LASSO with CV) do well at identifying predic-
tors, the estimates may shrink, and error rates for clas-
sification of users may be higher, in new, independent
samples.

We believe this is the first study to use functional
and structural neuroimaging measures to predict
future substance use in youth. Specifically, we show
that approximately a quarter of the explained variance
in future substance use was predicted by neuro-
imaging measures, especially measures of reward cir-
cuitry function. Furthermore, the high discriminative
ability to identify future substance use in youth high-
lights the utility of using a combination of neuro-
imaging, clinical and demographic measures to help
identify those youth most at risk of future substance
use. This is an important step toward identifying
neurobiological measures characterizing youth at risk
of substance use, and provides promising neural tar-
gets for the development of novel future therapeutic
interventions.

Supplementary material

The supplementary material for this article can be
found at https://doi.org/10.1017/S0033291716003147
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